All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
This invention relates to syringe injectors.
Syringes are commonly used in the medical field for the injection or withdrawal of liquid medications. Syringes typically have a hollow glass or plastic barrel with an internal piston. By moving the piston, a user can create a positive or negative pressure inside the barrel, thereby transmitting fluid out of or into the barrel through a small opening opposite the piston.
Syringes are often used in intravenous therapy where the syringe may directly puncture the vein, or more commonly, may be used in conjunction with a catheter. When a catheter is used, one side of the catheter remains in the vein, while the other side remains outside the skin. The external portion of the catheter typically includes a coupler for connection to a syringe.
After injection in either procedure, a small amount of medication is typically left behind. When a syringe is used, the medication remains within the tip of the syringe. When a catheter is used in conjunction with a syringe, the unadministered medication remains in the both the tip of the syringe and in the catheter.
This leftover medication is problematic for several reasons. First, it necessarily means that the entire amount of medicine drawn into the syringe does not reach the patient. Second, many medications are time sensitive and should not remain in the catheter until a subsequent medicine flushes it through.
In a catheter system, these problems are solved using a second liquid to immediately flush the remaining medication out of the catheter and into the patient. Generally, a second syringe prefilled with a flushing solution provides the second liquid.
While many different liquids may be used to flush the catheter, the most commonly used liquid is a 0.9% concentration of sodium chloride (saline solution). The saline solution is injected from a syringe into the catheter, thereby flushing any stranded medication into the patient. Thus, the saline flush ensures that a full dosage of medication has been timely delivered.
This method for purging the catheter has certain disadvantages. For instance, by using a separate syringe for each injection, there is an increased chance of medical error. Most medicines are colorless (like the saline solution), and it is easy to accidentally administer medication when intending to flush the line or vice versa. This risk is increased when clinicians carry medicines for multiple patients at one time.
The likelihood of error is compounded in an emergency, when it may be necessary to inject several medications quickly and in a specific order. In such situations, a separate saline flush is necessary between every individual medication injection, so the risk of error is high, and the consequences of a mistake may be grave.
Finally, the clinician may be distracted by a separate medical need during the time between the injection of medication and the saline flush. Without some reminder, the clinician may forget that he or she has not flushed the line.
Even if all precautions are taken and the two injections are made in the proper order, drawbacks remain. With each breach of the catheter's seal for injection, the patient is potentially exposed to bacteria, increasing the risk of infection. By requiring a clinician to access the system once for the medication and a second time for the flush, the risk of infection is doubled.
Using a second syringe for the saline flush also wastes resources. Attaching a second syringe to the catheter takes time, and since a clinician may perform a saline flush more than one hundred times per day, this lost time adds up quickly. Finally, requiring a second syringe unnecessarily increases the already significant costs related to manufacturing, shipping, storage, and disposal of syringes.
Previous attempts to provide syringes adapted to deliver multiple fluids for sequential injection can be found in various patents discussed herein. Some conventional syringes include a “standard” syringe that is separated by an intermediate sliding stopper into two chambers. The sliding stopper receives motive force communicated through an intermediate fluid from a primary stopper (part of a plunger assembly of the standard syringe) against which an external force is applied. Examples of such prior art devices may be found in U.S. Pat. Nos. 6,997,910 and 7,101,354 which describe multiple embodiments of a conventional syringe adapted to deliver multiple fluids and a displaceable valved stopper which partitions a conventional syringe.
There are several disadvantages associated with the previously described syringes adapted to deliver multiple fluids. These include: reliance on the intermediate fluid in the proximal chamber to transmit the force from the plunger to the sliding stopper to expel the primary fluid; the absence of a physical locking mechanism to prevent the intermediate fluid from being expelled accidentally due to increased pressure; the need for a filling procedure that includes placing the intermediate sliding stopper into the syringe barrel, then backfilling with a liquid and subsequently installing the plunger assembly and therefore relying on the compressibility of the gas trapped in the proximal chamber for a successful installation of the plunger; prefilled proximal and distal chambers that force the caregiver away from their standard syringe filling procedures; and a limit to the volume of medicine that can be filled into the distal chamber caused by the presence of the filled proximal chamber.
The devices and methods described in the present application provide improved means for delivering multiple fluids sequentially. Moreover, variations of the devices and methods described herein can optionally include a simple design that makes storage easy and keeps manufacturing costs to a minimum. In an additional variation, the devices and methods does not rely on the fluid in the proximal chamber to expel the primary fluid (medicine) from the syringe. Instead, the methods and devices described in the present disclosure rely upon the presence of a fluid (typically air) gap to maintain separation of fluids until desired. Variations of the present methods and devices can include a physical locking mechanism such that the intermediate fluid cannot be expelled accidentally due to increased pressure; it allows filling of the proximal chamber from the distal end (during manufacturing), which enables complete filling of the proximal chamber without trapping any large/non injectable air bubbles; it allows caregivers to follow their standard syringe filling procedures; and it does not limit the volume of medicine that can be filled into the distal chamber. Any number of locking mechanisms is within the scope of this disclosure.
The present invention advances the state of the art by providing a cost-effective single syringe that both administers medication and flushes the intravenous system. By using a single syringe for both purposes, a clinician need only access the intravenous catheter once, thereby decreasing the rate of error and infection. Additionally, the presence of the saline or other solution in the syringe after injection alerts the clinician of the need to flush the system, thus reducing the chance that the flush would be forgotten. Finally, the extra cost and time associated with a second “flush-only” syringe would be eliminated.
The present invention is a two-chambered syringe with an outer barrel having an open end for slidably receiving an inner barrel/first piston. A second piston is slidably movable in the inner barrel/first piston. A latching mechanism locks and unlocks the inner barrel/first piston to the second piston. In the locked configuration, the second piston is prevented from substantially all longitudinal movement relative to the inner barrel/first piston, and in the unlocked configuration, the second piston may move longitudinally within the inner barrel. Thus, the invention may be repeatedly used as a traditional syringe to withdraw medicine from a bottle, either before or after the administration of a second flushing solution contained in the syringe.
Syringes should optionally provide a cost-effective single syringe that both administers medication and flushes the intravenous system. It is desirable to not rely on the fluid in the proximal chamber to expel the primary fluid (medicine) from the syringe; to include a physical locking mechanism such that the intermediate fluid cannot be expelled accidentally due to increased pressure; to allow filling of the proximal chamber from the distal end (during manufacturing), which enables complete filling of the proximal chamber without trapping any large/non injectable air bubbles; to allow caregivers to follow their standard syringe filling procedures; and to not limit the volume of medicine that can be filled into the distal chamber.
Described herein are syringe devices, systems and methods. In general, the syringe may include a first chamber and a cartridge movable within the first chamber. The cartridge may include a cartridge chamber and a valve in fluid communication with the cartridge chamber and the first chamber and having an open configuration and a closed configuration. The valve may allow movement of a liquid out of the cartridge chamber while in a open configuration. The cartridge may also include a second end, movable within the cartridge chamber, and a locking mechanism having a locked configuration and an unlocked configuration, the locking mechanism preventing movement of the second end within the cartridge chamber while in the locked configuration.
One aspect of the invention provides a syringe further includes a liquid disposed within the cartridge chamber. In some embodiments, the cartridge includes about 1 to 10 ml of liquid disposed within the cartridge chamber, while in some embodiments, the cartridge includes about 2 to 3 ml of liquid disposed within the cartridge chamber.
One variation of the device includes a syringe for dispensing a first liquid. For example such a syringe can include a first chamber having a moveable seal located therein such that movement of the moveable seal changes a volume of the first chamber, the first chamber having an outlet; a second chamber movable in the first chamber along with the first chamber movable seal, the second chamber comprising a second movable seal located therein such that movement of the second moveable seal changes a volume of the second chamber; a second liquid located in the second chamber, where a volume of the second liquid at least fills the second chamber; and a conduit fluidly connecting the first chamber and the second chamber where the conduit contains a fluid gap that is adjacent to the second liquid, where the conduit is configured to retain the fluid gap when the second liquid fills at least the volume of the second chamber, the fluid gap maintains the second liquid in the second chamber, where the fluid gap is retained in the conduit until the volume of the second chamber changes, such that while the volume of the second chamber remains unchanged volume of the first chamber can be altered by movement of the moveable seal without displacing the fluid gap.
The devices in the present disclosure can be fabricated from glass, a medical grade polymer, a metal, a metal alloy, or any material suitable for use in such applications.
Variations of the device can include a latching mechanism having a first position in which movement between the first chamber seal and the second chamber seal is prevented to maintain a volume of the second chamber at a fixed volume, and a second position in which movement between the first chamber seal and the second chamber seal is permitted. In an alternate variation, the lock or latching mechanism can simply comprise a resistance stop to oppose movement of the second movable seal. Such a resistance stop can prevent movement of the plunger until the second chamber bottoms out in the first.
Typically the fluid gap described herein comprises an air gap. However, other gasses can be used so long as they function to separate fluids from mixing as described herein.
The variations disclosed herein can include one or more valves located within the conduit. The valve can add an additional means of protection to avoid undesired mixture of fluids during storage and transportation of the syringe. In some embodiments, the syringe further includes a second liquid disposed within the first chamber, and the valve prevents movement of the second liquid into the cartridge chamber. However, the fluid gap remains the primary mechanism for separating the liquids in the respective chambers.
Variations of the invention also include methods for preparing a two-chambered syringe for sequential delivery of different liquids. In one example, the method includes positioning an opening of the syringe adjacent to a source of a secondary liquid where the syringe comprises a first chamber having a moveable seal located therein such that movement of the moveable seal changes a volume of the first chamber, the first chamber having an outlet, the syringe further comprising a second chamber movable in the first chamber along with the first chamber movable seal, the second chamber comprising a second movable seal located therein such that movement of the second moveable seal changes a volume of the second chamber, where the first and second chambers are fluidly coupled by a conduit; and filling the second chamber with the secondary liquid where a volume of the secondary liquid at least fills the second chamber leaving a fluid gap adjacent to the secondary liquid but within the conduit, where the conduit is configured to retain the fluid gap until displaced by a change in volume of the second chamber, such that while the volume of the second chamber remains unchanged the volume of the first chamber can be adjusted to draw in or expel a primary fluid through the opening without displacing the fluid gap.
Another variation of the method includes positioning an opening of the syringe adjacent to a source of a primary liquid where the syringe comprises a first chamber having a moveable seal located therein such that movement of the moveable seal changes a volume of the first chamber, the first chamber having an outlet, the syringe further comprising a second chamber movable in the first chamber along with the first chamber movable seal, the second chamber comprising a second movable seal located therein such that movement of the second moveable seal changes a volume of the second chamber, where the first and second chambers are fluidly coupled by a conduit; where the second chamber carries a secondary liquid that at least fills the second chamber and leaves a fluid gap within the conduit and adjacent to the secondary liquid, where the conduit is configured to retain the fluid gap until the volume of the second chamber changes; and drawing the primary liquid into the first chamber without changing a volume of the second chamber such that the primary fluid can be drawn into and expelled from the first chamber without displacing the fluid gap.
In some embodiments, the first end of the flexible arm is coupled to the second end of the cartridge and the groove is defined by the inner surface of the cartridge. In some embodiments, the flexible arm has an equilibrium configuration wherein the tab extends beyond the outer surface of the second end and a bent configuration wherein the tab does not extend beyond the outer surface of the second end. In some embodiments, the tab includes a ramped surface, such that when the second end is rotated within the inner surface of the cartridge, the ramped surface interacts with the groove such that the flexible arm is moved from the equilibrium configuration to the bent configuration. In some embodiments, the tab includes two ramped surfaces such that the second end may be rotated in two directions within the inner surface of the cartridge. In some embodiments, the locking mechanism is in the locked configuration when the flexible arm is in the equilibrium configuration and the tab is within the groove, and wherein the locking mechanism is in an unlocked configuration when the flexible arm is in the bent configuration and the tab is released from the groove. In some embodiments, the syringe further includes an adjacent groove adapted to receive the tab when the locking mechanism is in the unlocked configuration.
In some embodiments, the tab is substantially triangular shaped, while in some embodiments, the tab is substantially semi-circular shaped.
In some embodiments, the syringe further includes a second groove configured to receive the tab when the second end is in the second distal position. In some embodiments, the second groove extends around the circumference of the cartridge.
In some embodiments, the syringe further includes a first ridge on the inner surface of the cartridge, wherein the ridge is configured to prevent the withdrawal of the second end from the cartridge. In some embodiments, the syringe further includes a second ridge on the outer surface of the second end of the cartridge and a second ridge, wherein the ridges are configured to prevent the withdrawal of the second end from the cartridge.
In some embodiments, the cartridge further includes a first end that defines a channel in fluid communication with the cartridge chamber and the first chamber. In some embodiments, the first end of the cartridge is coupled to the first chamber, such that when the second end of the cartridge is rotated within the cartridge the first end is not rotated. In some embodiments, the first chamber has an oval cross section.
In some embodiments, the syringe further includes indicia that signify when the locking mechanism is in the locked configuration, and when the locking mechanism is in an unlocked configuration.
In some embodiments, the syringe further includes a ridge coupled to an end of the groove, wherein the ridge is configured to prevent the tab from reentering the groove after it has been released. In some embodiments, the second end of the cartridge further includes a handle sized and configured to move the second end within the cartridge. In some embodiments, the first end of the flexible arm is coupled to the handle.
In additional variations, the methods of using the syringe may include the steps of expelling a liquid from the first chamber through the outlet by moving the cartridge within the first chamber, increasing pressure within the cartridge chamber by moving the second end of the cartridge within the cartridge chamber, opening the valve with the increased pressure within the cartridge chamber, and expelling a second liquid from the cartridge chamber through the valve and through the outlet by further moving the second end of the cartridge within the cartridge chamber
It should be understood that combinations of the various embodiments described herein or combinations of aspects of the embodiments themselves are within the scope of the disclosure.
Described herein are syringe devices, systems and methods. In general, the syringe may include a first chamber and a cartridge movable within the first chamber where construction of the chambers and conduits fluidly coupling the chambers allows for the maintenance of an air or fluid gap that serves to separate liquids or other substances in the various chambers. The air gap or fluid gap, described in detail below, provides the main mechanism to separate the fluids until the operator desires to eject or dispense the secondary or flush fluid.
Additional variations of the device can include a cartridge chamber and a valve in fluid communication with the cartridge chamber and the first chamber and having an open configuration and a closed configuration. The valve may allow movement of a liquid out of the cartridge chamber while in a open configuration. The cartridge may also include a second end, movable within the cartridge chamber, and a locking mechanism having a locked configuration and an unlocked configuration, the locking mechanism preventing movement of the second end within the cartridge chamber while in the locked configuration. In general, the methods of using the syringe may include the steps of expelling a liquid from the first chamber through the outlet by moving the cartridge within the first chamber, increasing pressure within the cartridge chamber by moving the second end of the cartridge within the cartridge chamber, opening the valve with the increased pressure within the cartridge chamber, and expelling a second liquid from the cartridge chamber through the valve and through the outlet by further moving the second end of the cartridge within the cartridge chamber.
The syringe devices, systems, methods, and any combination thereof described herein provide at least the following advantages. First, the syringe described herein does not rely on the fluid in the proximal chamber to expel the primary fluid (medicine) from the syringe. Therefore the syringe as described is more versatile and reliable. Second, the syringe includes a physical locking mechanism such that the intermediate fluid cannot be expelled accidentally due to increased pressure. This is an advantage, because in some prior syringes that are adapted to deliver multiple fluids but lack a physical locking mechanism, the valve is opened and the intermediate fluid (flushing liquid) is expelled simply due to increased pressure. In use, a caretaker will typically eject air from the distal chamber prior to drawing a medicine into the distal chamber. In pushing the air from the distal chamber, the caretaker could easily increase pressure in the proximal chamber and open the valve, and therefore accidentally expel the flushing liquid. A physical locking mechanism, as described herein, will therefore provide an advantage.
Additionally, the syringe described herein provides the advantage that it allows the filling of the proximal chamber from the distal end (during manufacturing), which enables complete filling of the proximal chamber without trapping any large/non injectable air bubbles. Some prior art syringes that are adapted to deliver multiple fluids require filling procedures that include placing an intermediate sliding stopper into a conventional syringe barrel, then backfilling the proximal chamber with a liquid, such as saline, and subsequently installing the plunger assembly. By filling the proximal chamber with saline before installing the conventional syringe plunger, the prior art syringe has the disadvantage of reliance on the compressibility of the gas trapped in the proximal chamber for a successful installation of the plunger. Furthermore, the prior art syringe has the disadvantage that the distal chamber must be filled with a fluid, such as a medicine, before the saline chamber is filled as described in more detail below.
Additionally, the syringe described herein allows caregivers to follow their standard syringe filling procedures. Some alternative syringes that are adapted to deliver multiple fluids require that they be provided to a caregiver with prefilled proximal (saline) and distal (medicine) chambers. Therefore, caregivers cannot follow their standard filling procedures. For onsite usage most medicines come in multidose bottles. The most common procedure a clinician uses to fill an empty syringe with medication includes the steps of (1) fitting a syringe with a needle (metal or plastic) to penetrate the seal on a medicine bottle; (2) pulling the handle of the syringe back (proximally) to draw air into the syringe of equal or greater volume than the medicine that is to be withdrawn; (3) inserting the air filled syringe with attached needle into the medicine bottle; (4) depressing (pushing distally) the plunger to inject the air into the medicine bottle; (5) pulling the handle of the syringe back (proximally) to draw medicine from the bottle into the syringe; and (6) withdrawing the needle/syringe from the medicine bottle and removing the needle from the syringe. Prior syringes that are adapted to deliver multiple fluids cannot be used in this procedure for at least the reason that during Step 4, after injecting all the air from the distal chamber of the syringe into the medicine bottle, the plunger will collide with the internal surface of the inside of the syringe barrel. This collision causes the displaceable valved stopper to open and remain open. Once the valve is open, pulling back on the plunger would cause medicine to flow through the open valve and mix with the contents of proximal chamber. Alternatively, if the forward force were continually applied, after the valve was opened, the contents of the proximal chamber would flow through the open valve into the medicine bottle. Neither one of these scenarios is desirable. The syringe described herein, including a physical locking mechanism and separate cartridge (including an inner barrel), is ideally suited for a caregiver's standard filling procedure.
A further advantage of the syringe described herein is that it does not limit the volume of medicine that can be filled into the distal chamber. A disadvantage of some prior syringes that are adapted to deliver multiple fluids is that the volume of medicine that can be filled into the distal chamber is limited by the presence of the proximal chamber. In general the greater diameter the syringe barrel has the less exact a measurement of volume can be made by reading the fluid meniscus against gradations marked on the outside of the syringe. The specificity required is generally related the total volume of medicine to be administered. To solve this problem clinicians use a wide range of syringe sizes depending on the amount of medication to be administered. Syringes from 1 ml to 60 ml are the most commonly used sizes. In the alternative syringes that are adapted to deliver multiple fluids the proximal chamber defined by the sliding stopper takes up space within the standard syringe barrel (the effective volume for medication is decreased by the proximal chamber by about a factor of 2) and therefore clinicians would have to use a relatively larger syringe barrel size and therefore less accurate to attempt to administer the same volume of medicine. The syringe described herein includes a separate cartridge that includes the proximal chamber, and therefore does not negatively impact the size of the distal chamber and its capability to hold a volume of medicine.
The present invention is a two-chambered syringe with three basic components: (i) an outer barrel 10 for holding a first liquid 26, (ii) an inner barrel/first piston 30 for holding a flushing liquid 52, and (iii) a second piston 60. See
The barrels and pistons may be constructed of polypropylene or other similar inert, nonreactive semi-flexible material. Both barrels 10, 30 are generally circular cylinders. The inner barrel/first piston 30 acts as both a barrel and a piston. That is, it both holds liquid like a barrel, and may be used as a plunger to expel liquid from the outer barrel 10. See
For purposes of this patent, the proximal end of the syringe is the end typically comprising a first conduit 20, while the distal end is the end of the syringe typically comprising the second piston 60 and a gripping handle 64. See
The outer barrel 10 has an outer barrel distal open end 14 adapted for receiving the inner barrel/first piston 30. See
In one embodiment, a proximal end 16 of the outer barrel 10 may comprise an adapter 18, such as a luer connector device as disclosed in U.S. Pat. No. 4,452,473, or other locking means common in the art. See
The inner barrel/first piston 30 has an inner barrel/first piston proximal end 40 slidably received within the outer barrel open distal end 14. See
The first sealing ring 46 comprises a sealing ring conduit 45 through which extends the hollow projection 42. See
The flushing liquid 52 is inside the inner barrel/first piston 30. See
The flushing liquid 52 occupies substantially all of the space defined by the inner barrel/first piston inner wall 50, and initially extends partially through the second conduit 44 defined by the hollow projection 42. See
The second piston 60 is slidably placed within the inner barrel/first piston 30. See
Extending distally from second piston proximal end 66 is a piston rod 62. See
The two-chambered syringe further comprises a latching mechanism that can alternate between an unlocked configuration and a locked configuration. See generally
In the unlocked configuration, the second piston 60 is free to move longitudinally relative to the inner barrel/first piston 30. See
In one embodiment, the latching mechanism comprises a projection 68, extending outward radially from near the second piston proximal end 66. See
This projection fits snugly into a groove 34 cut into the inner barrel/first piston inner wall 50, thereby allowing the second piston 60 to only move according a path of movement defined by groove 34. See
The groove 34 includes a longitudinal portion 39 extending longitudinally along the inner barrel/first piston inner wall 50, ending at the inner barrel/first piston proximal end 40. See
In one embodiment, the groove 34 continues to substantially the distal end of inner barrel/first piston 30, outlining a track ultimately leading to a projection entry point 36. See
When the second piston 60 is in the fully extended position, the projection 68 will lie in the radial portion 37 of the groove 34. See
In yet another embodiment, instead of comprising a track defined by an indented groove on the inner barrel/first piston 30, the syringe comprises a track defined by a raised track 35 outlining the same path previously defined by the groove 34. See
To ensure the saline does not leak backwards out of the flush chamber, the second piston 60 may additionally comprise breakaway guard 75, which provides a cover over the indentation 69. The breakaway guard 75 may be a layer of plastic that is capable of being punctured by raised track 35 when the operator applies sufficient force. The operator of the syringe will feel the resistance and subsequent release as the breakaway guard is punctured. See
Other latching mechanisms may be used, and for purposes of this patent, “latching mechanism” refers generically to any structure that can lock and unlock the inner barrel/first piston 30 relative to the second piston 60. See
One advantage of applicant's device is that the syringe may function as a traditional syringe, independent of the internal flush chamber in the inner barrel/first piston 30. See
In operation, the syringe will typically first be in the locked position so medicine withdrawn from a bottle fills the outer chamber 10. See
Because the flushing liquid 52 does not extend through the second conduit 44, it will not mix with fluid drawn into the outer chamber 10. In a separate embodiment, flushing liquid 52 extends only partially through the second conduit 44, but not enough to mix with fluid drawn into outer chamber 10. The two fluids will not come in contact with each other due to basic fluid mechanics. That is, surface tension of the fluid drawn into the outer chamber 10 prevents it from entering the second conduit 44. The flushing liquid 52 does not move through the second conduit because as it completely fills the inner barrel/first piston 30, the negative pressure created inside the outer barrel 10 when fluid is drawn in, is not great enough to displace the flushing liquid 52 from the inner barrel/first piston 30.
Next, while the syringe is still in the locked configuration, the contents of the outer barrel 10 may be delivered to a patient by depressing the second piston 60. See
In the embodiment shown in
As shown in
This variation of the cartridge also includes a valve 1800 in fluid communication with the cartridge chamber (inner barrel/first piston 30) and the distal chamber (outer barrel 10). The valve has a closed configuration, as shown in
The cartridge is nearly rigid; the volume contained within the cartridge of the syringe is constant if the second end (second piston 60) is fixed in position by the locking mechanism. When this is the case, as long as the fluid volume and/or pressure in the inner barrel 30 is unchanged, the valve 1800 will remain in the closed configuration, preventing the movement of the liquid 52 out of the cartridge. When the locking mechanism is unlocked and the second end is depressed, the pressure in the cartridge is increased by the forward flow of liquid 52 causing the valve to open and the liquid to be expelled through the valve.
As shown in
In some embodiments, as shown in
As described above, in some embodiments, the syringe is designed to be filled with a flushing liquid, such as saline, by the manufacturer of the syringe. In general, as shown in
As shown, the liquid 52 may be injected into the cartridge chamber via a needle or nozzle 2002 positioned within the outlet of the outer barrel 10 and the conduit 44 of the cartridge. The needle or nozzle may be inserted within the flaps or “lips” of the valve (not shown). The cartridge may be filled such that the chamber includes about 1 to 10 ml of liquid disposed within inner barrel 30. Alternatively, the cartridge comprises about 2 to 3 ml of liquid disposed within the cartridge chamber. Ideally the cartridge is filled with the smallest volume of fluid, such as saline, that can still effectively flush an intravenous catheter line, for example. In one particular embodiment, the cartridge is prefilled with 2.5 ml of saline. In some embodiments, the syringe may be offered in a complete line of syringes of different volumes. For example, the range of syringe sizes may include syringes that are capable of holding 1, 3, 6, 12, 15, 30, and/or 60 ml of an injectable liquid such as medicine in the distal chamber. Each syringe size may have a common flush size in the proximal chamber, for example 2.5 ml. Alternatively, each syringe size may include a cartridge with a different flush size.
As shown in
As shown in
In an alternative embodiment, the syringe cartridge may be filled through the proximal end of the inner barrel, prior to inserting the second end of the cartridge into the inner barrel. In this embodiment, the first end of the cartridge may be temporarily occluded while the cartridge is filled through the open proximal end of the inner barrel. Once filled the second end of the cartridge may be positioned within the filled inner barrel, and in some embodiments locked in place with respect to the inner barrel by the locking mechanism. Once the chamber of the cartridge is closed off by the second end of the cartridge, the occlusion from the first end of the cartridge can be removed such that air trapped in the cartridge during the filling and positioning of the second end may escape.
Once a user receives a syringe, in some cases having a prefilled cartridge, filling the medicine chamber (outer barrel 10) follows the standard operation for filling a syringe, which includes the steps of (1) fitting a syringe with a needle (metal or plastic) to penetrate the seal on a medicine bottle; (2) pulling the handle of the syringe back (proximally) to draw air into the syringe of equal or greater volume than the medicine that is to be withdrawn; (3) inserting the air filled syringe with attached needle into the medicine bottle; (4) depressing (pushing distally) the plunger to inject the air into the medicine bottle; (5) pulling the handle of the syringe back (proximally) to draw medicine from the bottle into the syringe; and (6) withdrawing the needle/syringe from the medicine bottle and removing the needle from the syringe.
The syringe may then be connected to the patient or patient line at a luer port for injection of the medicine. The handle is depressed to inject the medicine, then the cartridge is unlocked and the handle is depressed further to open the valve and inject the saline. The syringe is removed and discarded.
In general, a method of using a syringe includes the steps of drawing a second liquid (such as medicine) into the outer barrel through the distal outlet by moving the cartridge proximally within the outer barrel and creating a second liquid-air interface within the conduit. In some embodiments, the method further includes the steps, or any combination thereof, of (a) expelling the second liquid (such as medicine) from the outer barrel through the distal outlet by moving the cartridge distally within the outer barrel, (b) releasing a locking mechanism from a locked configuration to an unlocked configuration to allow movement of a second end within the inner barrel, (c) increasing pressure within the cartridge chamber by moving the second end of the cartridge within the cartridge chamber, (d) opening the valve with the increased pressure within the cartridge chamber, and (d) expelling the first liquid (such as saline) from the inner barrel of the cartridge through the valve and the distal outlet by moving the second end of the cartridge distally within the inner barrel.
In some embodiments, as shown in
The geometry of the groove is such that it receives the tab and holds the tab in place, preventing movement of the second end with respect to the cartridge chamber. The geometry of the groove is such that the tab can be moved in and out of the groove in the circumferential direction, i.e. by rotating the second end of the cartridge with respect to the cartridge chamber. The tab cannot be moved in and out of the groove in the axial direction (i.e. proximally or distally). Once the tab is rotated out of the groove, however, the locking mechanism is in the unlocked configuration, and the tab may be moved proximally or distally with respect to the groove, and therefore the second end may be moved proximally or distally with respect to the cartridge chamber.
The flexible arm is configured such that it has an equilibrium configuration, and a bent configuration. In the equilibrium configuration, the tab extends beyond the outer surface of the second end 2206 of the cartridge and/or the handle 2212. In the bent configuration, the second end 2209 of the flexible arm is bent inward, such that the tab is within or flush with the outer surface of the second end 2206 of the cartridge and/or the handle 2212. When the flexible arm is in the bent configuration, the second end of the cartridge can move with respect to the cartridge chamber. When the flexible arm is in the equilibrium configuration the tab extends beyond the outer surface of the second end 2206. It is in the equilibrium configuration that the tab will be received by the groove and that the locking mechanism is in the locked configuration. The flexible arm is biased toward the equilibrium configuration such that once the tab reaches a groove within the cartridge, the tab will spring into the groove, thereby locking the locking mechanism. To release the tab from the groove, the tab is rotated out of the groove.
As shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
The syringe as described above may be configured such that the cartridge is first moved distally within the outer barrel to expel the liquid from the distal chamber, such as medicine. Once the liquid is expelled from the distal chamber, and the cartridge is positioned toward the distal end of the outer barrel, the locking mechanism of the cartridge may be released by rotating the second end of the cartridge with respect to the first end of the cartridge. While the second end is rotated the first end remains fixed with respect to the outer barrel. The first end may be fixed with respect to the outer barrel in one of several variations. In a first variation, as shown in
In a second variation, as shown in
In a fourth variation, there may be sufficient friction between the first end of the cartridge and the inner surface of the outer barrel such that as the second end of the cartridge is rotated within the inner barrel, the first end of the cartridge remains fixed. This may be accomplished by having the first end comprise a rubber stopper 72 (as shown in
In some embodiments, the syringe may further include lock state indicia that aid a user of the syringe by signifying when the locking mechanism is in the locked configuration and/or when the locking mechanism is in an unlocked configuration. The syringe may also bear a warning not to prematurely rotate the second end of the cartridge prior to the desired time of expelling the flush liquid, and/or any other suitable indication or warning. The lock state indicia may be printed onto a surface of the syringe or may be printed on a label coupled to the syringe. In the case of a label coupled to the syringe, the outer surface of the syringe may include a groove or recess sized to receive the label. As shown in
In some embodiments, as shown in
In one example, these transition angles can be tailored to prevent formation of air bubbles that would affect the fluid gap 51 in the chamber of the cartridge. For example, making angle 3100 more obtuse than is commonly found in syringes reduces the likelihood of bubble formation at the top of the cartridge. Traditionally this angle is slightly less than 90 degrees in conventional syringes. Additionally, making transition angle 3200 more obtuse than 90 degrees makes bubble formation less likely during filling. Making transition angle 3300 closer to 180 degrees (as opposed to a normal 270 degrees) can reduce the likelihood of formation of a bubble. For example, the flush chamber can comprise a tear drop shape where bottoming of the plunger still maintains some fluid in the flush chamber.
One skilled in the art will appreciate that the present invention can be practiced by other than the preferred embodiments, which are presented for purposes of illustration and not of limitation.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application is a continuation of U.S. patent application Ser. No. 15/401,770, filed Jan. 9, 2017, now U.S. Pat. No. 10,322,236, which is a continuation of U.S. patent application Ser. No. 14/597,097, filed Jan. 14, 2015, now U.S. Pat. No.9,539,391, which is a continuation of U.S. patent application Ser. No. 13/356,477, filed Jan. 23, 2012, now U.S. Pat. No. 8,936,577, which is a continuation-in-part of U.S. patent application Ser. No. 12/847,825, filed Jul. 30, 2010, now abandoned, and is a continuation-in-part of U.S. patent application Ser. No. 12/833,735, filed Jul. 9, 2010, now U.S. Pat. No. 8,529,517, which is a continuation-in-part of U.S. patent application Ser. No. 11/120,906, filed May 2, 2005, now U.S. Pat. No. 8,075,533, the contents of each of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
368627 | Threlfall | Aug 1887 | A |
553234 | Finot | Jan 1896 | A |
1142682 | Fairleigh | Jun 1915 | A |
1234582 | Barclay | Jul 1917 | A |
1343787 | Neil | Jun 1920 | A |
2841145 | Epps | Jul 1958 | A |
3487834 | Silas et al. | Jan 1970 | A |
3559645 | Schaller | Feb 1971 | A |
3605742 | Robert | Sep 1971 | A |
3705582 | Stumpf et al. | Dec 1972 | A |
3729031 | Baldwin | Apr 1973 | A |
3747812 | Karman et al. | Jul 1973 | A |
3826260 | Killinger | Jul 1974 | A |
3835835 | Thompson et al. | Sep 1974 | A |
3923058 | Weingarten | Dec 1975 | A |
4171698 | Genese | Oct 1979 | A |
4188949 | Antoshkiw | Feb 1980 | A |
4313439 | Babb et al. | Feb 1982 | A |
4411157 | Babin et al. | Oct 1983 | A |
4425120 | Sampson et al. | Jan 1984 | A |
4452473 | Ruschke | Jun 1984 | A |
4476866 | Chin | Oct 1984 | A |
4501306 | Chu et al. | Feb 1985 | A |
4506691 | Tseo | Mar 1985 | A |
4562844 | Carpenter et al. | Jan 1986 | A |
4581015 | Alfano | Apr 1986 | A |
4583978 | Porat et al. | Apr 1986 | A |
4655747 | Allen | Apr 1987 | A |
4685910 | Schweizer | Aug 1987 | A |
4693706 | Ennis | Sep 1987 | A |
4702737 | Pizzino | Oct 1987 | A |
4702738 | Spencer | Oct 1987 | A |
4715853 | Prindle | Dec 1987 | A |
4723943 | Spencer | Feb 1988 | A |
4737144 | Choksi | Apr 1988 | A |
4747834 | Prindle | May 1988 | A |
4758232 | Chak | Jul 1988 | A |
4871353 | Thomsen | Oct 1989 | A |
4874385 | Moran et al. | Oct 1989 | A |
4929230 | Pfleger | May 1990 | A |
4929238 | Baum | May 1990 | A |
4950241 | Ranford | Aug 1990 | A |
4986813 | Blake et al. | Jan 1991 | A |
4988339 | Vadher | Jan 1991 | A |
4994045 | Ranford | Feb 1991 | A |
5032117 | Motta | Jul 1991 | A |
5061252 | Dragosits | Oct 1991 | A |
5067948 | Haber | Nov 1991 | A |
5137521 | Wilkins | Aug 1992 | A |
5176635 | Dittmann | Jan 1993 | A |
5358497 | Dorsey et al. | Oct 1994 | A |
5374250 | Dixon | Dec 1994 | A |
5435076 | Hjertman et al. | Jul 1995 | A |
5496284 | Waldenburg | Mar 1996 | A |
5512054 | Morningstar | Apr 1996 | A |
5688250 | Naganuma | Nov 1997 | A |
5704918 | Higashikawa | Jan 1998 | A |
5713873 | Jehle | Feb 1998 | A |
5720731 | Aramata et al. | Feb 1998 | A |
5772433 | Esrock | Jun 1998 | A |
5772630 | Ljungquist | Jun 1998 | A |
5833654 | Powers et al. | Nov 1998 | A |
5875976 | Nelson et al. | Mar 1999 | A |
6090077 | Shaw | Jul 2000 | A |
6093170 | Hsu et al. | Jul 2000 | A |
6270482 | Rosoff et al. | Aug 2001 | B1 |
6361524 | Odell et al. | Mar 2002 | B1 |
6423050 | Twardowski | Jul 2002 | B1 |
6558358 | Rosoff et al. | May 2003 | B2 |
6719733 | Heffernan et al. | Apr 2004 | B1 |
6723074 | Halseth | Apr 2004 | B1 |
6780167 | Leone | Aug 2004 | B2 |
6805015 | Schwartz et al. | Oct 2004 | B1 |
6866653 | Bae | Mar 2005 | B2 |
6873627 | Miller et al. | Mar 2005 | B1 |
6972005 | Boehm et al. | Dec 2005 | B2 |
6997910 | Howlett et al. | Feb 2006 | B2 |
7011650 | Rosoff et al. | Mar 2006 | B2 |
7041084 | Fojtik | May 2006 | B2 |
7048720 | Thorne et al. | May 2006 | B1 |
7077827 | Greenfield | Jul 2006 | B2 |
7101354 | Thorne et al. | Sep 2006 | B2 |
7204797 | Reilly et al. | Apr 2007 | B2 |
8075533 | Lee | Dec 2011 | B2 |
8075547 | Lee | Dec 2011 | B2 |
8529517 | Lee | Sep 2013 | B2 |
8936577 | Lee | Jan 2015 | B2 |
9539391 | Lee | Jan 2017 | B2 |
10322236 | Lee | Jun 2019 | B2 |
20020022807 | Duchon et al. | Feb 2002 | A1 |
20020035351 | Lodice | Mar 2002 | A1 |
20020128609 | Koch et al. | Sep 2002 | A1 |
20020197211 | Henriksen et al. | Dec 2002 | A1 |
20030009132 | Schwartz et al. | Jan 2003 | A1 |
20030040712 | Ray et al. | Feb 2003 | A1 |
20030199816 | Ramming | Oct 2003 | A1 |
20030212371 | Smith et al. | Nov 2003 | A1 |
20030213504 | Cerra et al. | Nov 2003 | A1 |
20040039346 | Baldwin et al. | Feb 2004 | A1 |
20040097875 | Bae | May 2004 | A1 |
20040116871 | Vincent | Jun 2004 | A1 |
20050065479 | Schiller et al. | Mar 2005 | A1 |
20050081914 | Kalley et al. | Apr 2005 | A1 |
20050094556 | Thompson et al. | May 2005 | A1 |
20060030816 | Zubry | Feb 2006 | A1 |
20060100591 | Alheidt et al. | May 2006 | A1 |
20060173415 | Cummins | Aug 2006 | A1 |
20060178644 | Reynolds | Aug 2006 | A1 |
20060256815 | Kivinen et al. | Nov 2006 | A1 |
20060258977 | Lee | Nov 2006 | A1 |
20070088283 | Hongo et al. | Apr 2007 | A1 |
20070249996 | Tennican et al. | Oct 2007 | A1 |
20070265574 | Tennican et al. | Nov 2007 | A1 |
20080114304 | Nalesso et al. | May 2008 | A1 |
20080119782 | Steinman et al. | May 2008 | A1 |
20080119794 | Alheidt et al. | May 2008 | A1 |
20090287184 | Lee | Nov 2009 | A1 |
20100292672 | Lee | Nov 2010 | A1 |
20110270027 | Augarten et al. | Nov 2011 | A1 |
20120029471 | Lee et al. | Feb 2012 | A1 |
20120197232 | Lee et al. | Aug 2012 | A1 |
20150190576 | Lee et al. | Jul 2015 | A1 |
20170182249 | Lee et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2005-027805 | Feb 2005 | JP |
WO 1998005433 | Feb 1998 | WO |
WO 2006118949 | Nov 2006 | WO |
WO 2009094345 | Jul 2009 | WO |
WO 2011014259 | Feb 2011 | WO |
WO 2011055243 | May 2011 | WO |
WO 2012006555 | Jan 2012 | WO |
WO 2013112579 | Aug 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20190358398 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15401770 | Jan 2017 | US |
Child | 16438269 | US | |
Parent | 14597097 | Jan 2015 | US |
Child | 15401770 | US | |
Parent | 13356477 | Jan 2012 | US |
Child | 14597097 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12847825 | Jul 2010 | US |
Child | 13356477 | US | |
Parent | 12833735 | Jul 2010 | US |
Child | 12847825 | US | |
Parent | 11120906 | May 2005 | US |
Child | 12833735 | US |