The present application relates generally to the control of ablation therapy. More particularly, this application relates to improved devices and methods for controlling ablation therapy.
The use of thermal energy to destroy bodily tissue can be applied to a variety of therapeutic procedures, including the treatment of cardiac arrhythmias, such as atrial fibrillation. In such a procedure, thermal energy can be imparted to the arrhythmogenic myocardium using various forms of energy, such as radio frequency electrical energy, microwave or light wave electromagnetic energy, or ultrasonic vibrational energy. Radio frequency (RF) ablation, for example, can be effected by placing a catheter within the heart and pressing an emitting electrode disposed on the catheter against the heart wall near the region of the myocardium that is causing the arrhythmia. High frequency electrical current can be passed into the tissue between closely spaced emitting electrodes or between the emitting electrode and a larger, common electrode located remotely from the tissue to be heated. The energy can heat the myocardium to a temperature that will cause necrosis (e.g., a temperature above about 50° C.).
One embodiment of a prior art ablation catheter is shown in
Prior art ablation catheters have a number of disadvantages. For example, using the above techniques, maximum heating often occurs at or near the interface between the catheter electrode 104 and the tissue 106. In RF ablation, for example, maximum heating can occur in the tissue immediately adjacent to the emitting electrode. Furthermore, as these techniques are increasingly used in areas having thicker tissue walls, the RF power level must be increased to effect heating at greater depths within the tissue. This can result in even higher levels of heating at the interface between the electrode and the tissue. As described in more detail below, these high levels of heating can reduce the conductivity of the tissue, effectively preventing the transmission of further energy into the tissue. In addition, some levels of heating can produce dangerous medical complications for a patient, including, for example, clots that can result from overheating surrounding blood.
Accordingly, there is a need for improved methods and devices for controlling ablation therapy.
The present invention generally provides devices and methods for controlling ablation therapy. In particular, the devices and methods described herein permit regulation of the temperature of an ablation element being used to emit ablative energy into tissue. By controlling the temperature of the ablation element, the undesirable effects associated with overheating the tissue can be avoided. This, in turn, can allow a greater amount of tissue to be treated using a lower amount of ablative energy, thereby reducing the risk of unintended damage to tissue.
In one aspect, an ablation device is provided that includes an elongate body having proximal and distal ends, and an inner lumen extending therethrough. The device further includes an ablation element positioned at the distal end of the elongate body, the ablation element being configured to heat surrounding tissue. The inner lumen of the elongate body is configured to receive fluid therein such that the fluid flows to the distal end of the elongate body. The device further includes a heater element disposed within the inner lumen adjacent to a distal end thereof. The heater element can be configured to heat fluid flowing through the inner lumen.
The devices and methods described herein can have a variety of modifications and additional features, all of which are considered within the scope of the invention. For example, in some embodiments the elongate body and the ablation element can be non-porous such that fluid is preventing from flowing therethrough. The inner lumen can include a delivery lumen, as well as a return lumen such that fluid can flow distally through the delivery lumen to the distal end, and then flow proximally through the return lumen to the proximal end of the elongate body. In other embodiments, the elongate body can include one or more outlet ports formed through a sidewall thereof adjacent to the distal end thereof, the outlet ports being configured to allow fluid to flow from the inner lumen and into surrounding tissue.
In certain embodiments, the device can further include a temperature sensor disposed on a distal end of the ablation element to sample a temperature at the interface between the ablation element and a tissue wall. In certain embodiments, the temperature sensor can be recessed within the ablation element such that it does not protrude from a distal end thereof. In other embodiments still, the temperature sensor can be disposed within the inner lumen of the elongate body and in contact with the ablation element.
In some embodiments, the device can include a different temperature sensor positioned adjacent to the distal end of the inner lumen at a location distal to the heater element in order to sample a temperature of fluid heated by the heater element. Still further, in some embodiments the device can include a temperature sensor positioned proximal to the heater element within the inner lumen to sample the temperature of fluid flowing through the inner lumen.
The heater element can have a variety of forms. In some embodiments, the heater element can include at least one wire extending through the inner lumen and configured to pass Radio Frequency (RF) electrical energy through fluid flowing through the inner lumen. In other embodiments, the heater element can be a resistive element disposed within the inner lumen.
The ablation element can, in some embodiments, form a blunt distal tip of the elongate body that is configured to contact tissue without penetrating through the tissue. In other embodiments, however, the ablation element can have a variety of other shapes.
In another aspect, a method of ablating tissue is provided that includes positioning a blunt distal portion of an elongate body in contact with tissue, and delivering ablative energy to the tissue through an ablation element while simultaneously delivering fluid through the elongate body where the fluid is heated by a heater element disposed in a distal portion of the elongate body. The fluid can be heated to control the ablation therapy provided to the tissue by the ablation element.
In some embodiments, the blunt distal portion of the elongate body does not penetrate the tissue when positioned in contact therewith, but rather abuts against a surface of the tissue. In other embodiments, the ablation element is positioned at that distal end of the elongate body, such that the distal end of the elongate body is positioned in contact with tissue.
In other embodiments, delivering fluid through the elongate body can include forcing fluid through an inner lumen disposed within the elongate body. In certain embodiments, the heater element can be disposed within the inner lumen. In still other embodiments, the method can further include receiving fluid delivered through the elongate body at a proximal end thereof, e.g., such that the fluid circulates through the elongate body without exiting at the distal end of the elongate body. In some embodiments, however, the fluid delivered through the elongate body can flow through one or more outlet ports formed in the ablation element into the surrounding tissue or fluid.
In certain embodiments, the method can further include detecting a temperature of the tissue in contact with the blunt distal portion of the elongate body using a temperature sensor disposed on a distal end of the elongate body. In other embodiments, however, the method can include detecting the temperature of the fluid delivered through the elongate body using a temperature sensor disposed distal to the heater element.
The aspects and embodiments of the invention described above will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The terms “a” and “an” can be used interchangeably, and are equivalent to the phrase “one or more” as utilized in the present application. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. The terms “about” and “approximately” used for any numerical values or ranges indicate a suitable dimensional tolerance that allows the composition, part, or collection of elements to function for its intended purpose as described herein. These terms generally indicate a ±10% variation about a central value. Components described herein as being coupled may be directly coupled, or they may be indirectly coupled via one or more intermediate components. The recitation of any ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”), provided herein is intended merely to better illuminate the invention and does not impose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention. Further, to the extent the term “saline” is used in conjunction with any embodiment herein, such embodiment is not limited to the use of “saline” as opposed to another fluid unless explicitly indicated. Other fluids can typically be used in a similar manner.
As described above, conventional ablation techniques using a device similar to the ablation catheter 100 of
Referring back to
In either case, fluid (e.g., saline) can be introduced into the ablation catheter at room temperature and is often heated to near body temperature by the surrounding blood as the fluid moves through the body toward the distal end of the catheter. The flowing body-temperature fluid can cool and constrain the ablation element to a temperature that is about body temperature, or 37° C.
An exemplary temperature profile created by such a device is shown in
To compensate for this cooling effect, the level of RF power used to heat the tissue can be increased. An increase in RF power in combination with fluid cooling of the ablation element can, for example, produce the temperature profile 400 shown in
To address these issues, methods and devices are provided herein to control the temperature and power level of an ablation element to thereby prevent undesirable temperature spikes while maintaining the depth of the treatment lesion created during ablation therapy.
For example, and as shown in the figure, the ablation element can be cooled to a temperature of about 60° C. Regulating the temperature of the ablation element to this level can prevent the desiccation and impedance rise associated with heating above 100° C., but can also allow for deeper therapeutic heating using a lower RF power level. For example, the profile 500 shows that tissue to a depth of 5 mm can be heated above 50° C. with no tissue rising above about 80° C. While 60° C. is illustrated as an example, any temperature between about 37° C. and 100° C. can be selected. For example, a temperature of 40, 50, 60, 70, 80, or 90° C. can be selected. The selection of the fluid temperature (which can approximate the ablation element temperature because the flowing fluid can cool the ablation element to approximately the same temperature) and RF power level can be coordinated such that a treatment lesion of a desired depth is created without heating any portion of the tissue above about 100° C.
A number of different devices and methods can be employed to heat the cooling fluid to a desired temperature.
The elongate body 602 can also include an ablation element 606 disposed along a length thereof adjacent to its distal end. As shown in the figure, in some embodiments the ablation element 606 can be positioned at the distal end of the elongate body 602. The ablation element 606 can be formed from a variety of materials suitable for conducting current. Any metal or metal salt may be used. Aside from stainless steel, exemplary metals include platinum, gold, or silver, and exemplary metal salts include silver/silver chloride. In one embodiment, the electrode can be formed from silver/silver chloride. It is known that metal electrodes assume a voltage potential different from that of surrounding tissue and/or liquid. Passing a current through this voltage difference can result in energy dissipation at the electrode/tissue interface, which can exacerbate excessive heating of the tissue near the electrodes. One advantage of using a metal salt such as silver/silver chloride is that it has a high exchange current density. As a result, a large amount of current can be passed through such an electrode into tissue with only a small voltage drop, thereby minimizing energy dissipation at this interface. Thus, an electrode formed from a metal salt such as silver/silver chloride can reduce excessive energy generation at the tissue interface and thereby produce a more desirable therapeutic temperature profile, even where there is no liquid flow about the electrode.
In some embodiments, the ablation element 606 can be disposed at a distal end of the elongate body 602. The ablation element 606 can have a variety of shapes but, in some embodiments, can be shaped to form a blunt distal tip of the device 600. As such, the ablation element 606 can be configured to press against, or be positioned adjacent to, a tissue wall without penetrating into the tissue wall. Furthermore, the ablation element 606 can be formed from a non-porous material or, in some embodiments, the ablation element 606 can have one or more outlet ports or pores formed therein that provide fluid communication between the inner lumen and the tissue and/or fluids surrounding the ablation element.
In some embodiments, the inner lumen of the elongate body 602 can include a delivery lumen 608 configured to provide a passage for fluid flow from the proximal end to the distal end, and a return lumen formed by the annular space between the delivery lumen 608 and the inner wall of the inner lumen 604. The return lumen can be configured to receive fluid at a distal end thereof and deliver the fluid back to the proximal end of the elongate body 602. This allows fluid to be circulated through the elongate body without the need to release the fluid to the surrounding tissue. Similar to the elongate body 602, the delivery lumen 608 can be formed from a variety of materials that are rigid, flexible, polymeric, metallic, conductive, or insulating. Further, the delivery lumen 608 can be positioned within the inner lumen 604 of the elongate body 602 such that the delivery lumen does not move with respect to the elongate body, or can be allowed to float freely within the elongate body 602. In some embodiments, the delivery lumen 608 can be a hollow tube disposed within the inner lumen of the elongate body. In addition, in certain embodiments, the return lumen can be a separate hollow tube disposed within the inner lumen 604 of the elongate body.
In some embodiments, the delivery lumen 608 can house a heating assembly or heater element 612 disposed adjacent to a distal end of the delivery lumen and configured to heat fluid flowing through the delivery lumen. The heating assembly 612 can be connected to a power supply and controller coupled to the proximal end of the elongate body 602. A number of heating assemblies can be utilized to heat fluid flowing through the delivery lumen 608, including those described in U.S. Pat. No. 6,328,735 to Curley et al., and U.S. patent application Ser. No. 13/445,036, entitled “Methods and Devices for Heating Fluid in Fluid Enhanced Ablation Therapy,” filed concurrently herewith. The disclosures of each of these references are hereby incorporated by reference in their entirety. For example, the heater element 612 can be a resistive coil disposed within the delivery lumen 608. In other embodiments, however, a heating assembly 612 formed from one or more wires suspended in the delivery lumen 608 that can be used to pass RF electrical energy through the fluid flowing through the delivery lumen, thereby heating the fluid due to its inherent electrical resistivity.
In certain embodiments, the delivery lumen 608 can also house a temperature sensor 614 configured to detect the temperature of the fluid flowing through the delivery lumen 608 after it is heated by the heating assembly 612. For this reason, the temperature sensor 614 can, in some embodiments, be positioned distal to the heating assembly 612, and can be separated from the heating assembly by a distance sufficient to allow mixing of the fluid after passing through the heating assembly (e.g., about 1 mm). The temperature sensor 614 can have a variety of forms and, in some embodiments, can be a fine-wire thermocouple. The temperature sensor 614 can be connected to a controller that can utilize the detected fluid temperature to regulate the heating assembly 612.
In use, a fluid (e.g., saline) can be pumped through the delivery lumen 608 from a proximal end thereof to a distal end that is positioned adjacent to the ablation element 606. The fluid can pass by the heating assembly 612 and be heated to a desired temperature, e.g., any temperature below 100° C., or any temperature between about 40 and about 90° C., or between about 50 and about 80° C., or between about 60 and about 70° C. In some embodiments, an additional temperature sensor (not shown) can be positioned in the delivery lumen 608 at a position proximal to the heating assembly 612 in order to determine the initial temperature of the fluid flowing through the delivery lumen 608 (and thereby determine a power output needed for the heating assembly 612). After being heated by the heating assembly 612, the fluid can mix and exit the delivery lumen 608 near the distal end of the elongate body 602 adjacent to the ablation element 606. As shown by the flow direction arrows 616, the fluid can contact an inner surface of the ablation element and subsequently be directed back toward the proximal end of the elongate body 602 through the return lumen. The movement of the fluid can convect heat away from the ablation element 606, thereby regulating its temperature. Given a sufficient flow rate, the ablation element 606 can be regulated to about the same temperature of the fluid exiting the delivery lumen 608.
In order to confirm the effectiveness of the temperature regulation, the device 600 can also include an external temperature sensor 618 disposed on a distal end of the device 600. In some embodiments, the temperature sensor 618 can be recessed within the ablation element 606 such that it does not protrude from a distal end thereof. In still other embodiments in which the ablation element 606 is formed from a metal or other thermally conductive material, the temperature sensor 618 can be positioned inside the inner lumen 604 touching a proximal surface of the ablation element 606. Regardless of its position, the temperature sensor 618 can be configured to detect the temperature at the interface between the ablation element 606 and a tissue surface 620. Detecting the temperature at this location can confirm that the ablation element 606 is being cooled to the temperature of the fluid flowing from the delivery lumen 608.
The device 700 differs from the device 600 in that it includes an ablation element 702 having a plurality of outlet ports or pores formed therein that communicate between an inner surface and an outer surface of the ablation element. As a result, when fluid is introduced into the inner lumen 604 adjacent to the ablation element 702, the fluid can flow through the ablation element 702 and into the body cavity surrounding the device 700. The resulting open-loop flow pattern is illustrated by flow direction arrows 704. As a result of the open-loop flow pattern, the device 700 can, in some embodiments, remove the separate delivery lumen 608 and simply pump fluid in a single direction through the inner lumen 604 of the elongate body 602. In such an embodiment, the heating assembly and any temperature sensors can be disposed within the inner lumen 604 of the elongate body 602.
The devices shown in
The devices described above can be utilized in a variety of procedures requiring ablation of tissue within the body. For example, the devices and methods disclosed herein can be particularly useful in cardiac ablation. Procedures for the treatment of atrial fibrillation and atrial flutter, such as the Maze Procedure, often require ablating a large amount of the cardiac anatomy in locations where the tissue walls have variable thickness. The methods and devices of the present invention allow operators to ablate a variety of tissue geometries using a minimum level of RF power and without overheating tissue at any depth.
For example, in ablating a thicker wall of the myocardium, a device similar to the device 600 can be inserted into a patient's body via an access port or other opening formed through one or more layers of tissue, or via a natural orifice (i.e., endoscopically). The device can subsequently be delivered to any treatment site within the body directly, or using existing passageways within the body (e.g., passing the device into the heart through a patient's blood vessels). Once in the vicinity of a desired treatment site, the ablation element of the device can be positioned using the aid of sensing electrodes or other positioning instruments, and the distal tip of the ablation element can be pressed against a tissue wall at a particular location. Further, in many embodiments the elongate body and/or ablation element can have a blunt distal end, such that the elongate body and/or ablation element can be pressed against a tissue wall without penetrating through the tissue. Following positioning, RF energy can be delivered into the tissue wall while fluid is simultaneously delivered through the elongate body, e.g., through a delivery lumen. The fluid can be heated by a heating assembly positioned in a distal portion of the elongate body, e.g., within a distal portion of the delivery lumen. The fluid can contact the ablation element and either flow through ports formed in the ablation element or flow back up to the proximal end of the elongate member to convect heat away from the ablation element. The delivery of the heated fluid can effectively regulate the temperature of the ablation element to match that of the heated fluid. The controlled and elevated operating temperature can allow ablation therapy to be conducted using an efficient level of RF power, and the heating of tissue above a threshold level, e.g., 100° C., can be avoided.
The above exemplary embodiments describe the treatment of cardiac tissue. While this is one contemplated use, the methods and devices of the present invention can be equally adapted for use in other areas of a patient's body. As such, the devices described herein can be formed in a variety of sizes and materials appropriate for use in various areas of a patient's body.
In addition, those that are knowledgeable in the art will recognize that the heating mechanism for producing hyperthermia within the target tissue sufficient to destroy it can include other forms of energy. Ultrasonic vibrational energy is known to be absorbed by tissue and converted to heat, as is microwave and light wave electromagnetic energy. Alternative embodiments may employ ultrasonic transducers, microwave antennas, or light wave diffusers as emitters disposed in the distal end of an elongate body. Light wave electromagnetic energy can fall in a range spanning visible, near-infrared, infrared, and far-infrared radiation, and can be generated by filaments, arc lamps, lasers of various forms (e.g., diodes, semiconductors, or pumps), or by other means. Similarly, the heating assembly or element described above can have a variety of forms, including a resistive wire for heating the fluid through conduction. Regardless of the type of ablation element utilized, the injection of heated liquid into the elongate body adjacent to the ablation element can aid in regulating its temperature, and using saline heated above room temperature can increase the efficiency of the ablation therapy and allow the use of lower RF power. It is also recognized that the devices described above can be delivered to a treatment site using any standard medical delivery device, depending on the tissue to be treated. Exemplary alternative embodiments can include metallic or nonmetallic needle bodies, sheaths, or introducers.
The devices disclosed herein can be designed to be disposed after a single use, or they can be designed for multiple uses. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present invention.
For example, the devices disclosed herein may be disassembled partially or completely. In particular, the elongate body 602 of the medical device 600 shown in
Preferably, the devices described herein will be processed before surgery. First, a new or used instrument can be obtained and, if necessary, cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and its contents can then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation can kill bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container can keep the instrument sterile until it is opened in the medical facility.
In many embodiments, it is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam, and a liquid bath (e.g., cold soak). In certain embodiments, the materials selected for use in forming components such as the elongate body may not be able to withstand certain forms of sterilization, such as gamma radiation. In such a case, suitable alternative forms of sterilization can be used, such as ethylene oxide.
All papers and publications cited herein are hereby incorporated by reference in their entirety. One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
This application is a continuation of U.S. application Ser. No. 15/909,103, filed on Mar. 1, 2018, entitled “Methods and Devices for Controlling Ablation Therapy,” and now issued as U.S. Pat. No. 10,448,987. U.S. application Ser. No. 15/909,103 is a continuation of U.S. application Ser. No. 15/240,693, filed on Aug. 18, 2016, entitled “Methods and Devices for Controlling Ablation Therapy,” and now issued as U.S. Pat. No. 9,937,000. U.S. application Ser. No. 15/240,693 is a divisional of U.S. application Ser. No. 13/445,373, filed on Apr. 12, 2012, entitled “Methods and Devices for Controlling Ablation Therapy,” and now issued as U.S. Pat. No. 9,445,861. U.S. application Ser. No. 13/445,373 claims priority to U.S. Provisional Application No. 61/474,574, filed on Apr. 12, 2011, and entitled “Ablation Catheters.” This application is also related to U.S. application Ser. No. 13/445,034, entitled “Devices and Methods for Remote Temperature Monitoring in Fluid Enhanced Ablation Therapy,” U.S. application Ser. No. 13/445,036, now issued as U.S. Pat. No. 9,138,287 and entitled “Methods and Devices for Heating Fluid in Fluid Enhanced Ablation Therapy,” U.S. application Ser. No. 13/445,040, now issued as U.S. Pat. No. 8,945,121 and entitled “Methods and Devices for Use of Degassed Fluids with Fluid Enhanced Ablation Devices,” and U.S. application Ser. No. 13/445,365, now issued as U.S. Pat. No. 8,702,697 and entitled “Devices and Methods for Shaping Therapy in Fluid Enhanced Ablation,” all of which were filed concurrently with U.S. application Ser. No. 13/445,373. The disclosures of each of these applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4160455 | Law | Jul 1979 | A |
4424190 | Mather, III et al. | Jan 1984 | A |
5190538 | Hussein et al. | Mar 1993 | A |
5271413 | Dalamagas et al. | Dec 1993 | A |
5336222 | Durgin, Jr. et al. | Aug 1994 | A |
5403311 | Abele et al. | Apr 1995 | A |
5409487 | Jalbert et al. | Apr 1995 | A |
5431648 | Lev | Jul 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5437629 | Goldrath | Aug 1995 | A |
5437673 | Baust | Aug 1995 | A |
5449380 | Chin | Sep 1995 | A |
5456682 | Edwards et al. | Oct 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5472441 | Edwards et al. | Dec 1995 | A |
5496271 | Burton et al. | Mar 1996 | A |
5522815 | Durgin, Jr. et al. | Jun 1996 | A |
5545195 | Lennox et al. | Aug 1996 | A |
5549559 | Eshel | Aug 1996 | A |
5573510 | Isaacson | Nov 1996 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5653692 | Masterson et al. | Aug 1997 | A |
5697949 | Giurtino et al. | Dec 1997 | A |
5728143 | Gough et al. | Mar 1998 | A |
5735846 | Panescu et al. | Apr 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5827269 | Saadat | Oct 1998 | A |
5891094 | Masterson et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5944713 | Schuman | Aug 1999 | A |
5954719 | Chen et al. | Sep 1999 | A |
5964791 | Bolmsjo | Oct 1999 | A |
6024743 | Edwards | Feb 2000 | A |
6030379 | Panescu et al. | Feb 2000 | A |
6032077 | Pomeranz | Feb 2000 | A |
6033383 | Ginsburg | Mar 2000 | A |
6045549 | Smethers et al. | Apr 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6071280 | Edwards et al. | Jun 2000 | A |
6080151 | Swartz et al. | Jun 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6119041 | Pomeranz et al. | Sep 2000 | A |
6139570 | Saadat et al. | Oct 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6179803 | Edwards et al. | Jan 2001 | B1 |
6208881 | Champeau | Mar 2001 | B1 |
6217573 | Webster | Apr 2001 | B1 |
6233490 | Kasevich | May 2001 | B1 |
6235023 | Lee et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6272370 | Gillies et al. | Aug 2001 | B1 |
6302904 | Wallsten et al. | Oct 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6328735 | Curley | Dec 2001 | B1 |
6337994 | Stoianovici et al. | Jan 2002 | B1 |
6358273 | Strul et al. | Mar 2002 | B1 |
6405067 | Mest et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6443947 | Marko et al. | Sep 2002 | B1 |
6463332 | Aldrich | Oct 2002 | B1 |
6464694 | Massengill | Oct 2002 | B1 |
6468274 | Alleyne et al. | Oct 2002 | B1 |
6475213 | Whayne et al. | Nov 2002 | B1 |
6477396 | Mest et al. | Nov 2002 | B1 |
6494902 | Hoey et al. | Dec 2002 | B2 |
6514251 | Ni et al. | Feb 2003 | B1 |
6529756 | Phan et al. | Mar 2003 | B1 |
6564096 | Mest | May 2003 | B2 |
6565561 | Goble et al. | May 2003 | B1 |
6603997 | Doody | Aug 2003 | B2 |
6620155 | Underwood et al. | Sep 2003 | B2 |
6641580 | Edwards et al. | Nov 2003 | B1 |
6669685 | Rizoiu et al. | Dec 2003 | B1 |
6678552 | Pearlman | Jan 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6752802 | Isenberg et al. | Jun 2004 | B1 |
6772012 | Ricart et al. | Aug 2004 | B2 |
6814730 | Li | Nov 2004 | B2 |
6904303 | Phan et al. | Jun 2005 | B2 |
6972014 | Eum et al. | Dec 2005 | B2 |
7001378 | Yon et al. | Feb 2006 | B2 |
7025768 | Elliott | Apr 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7101369 | van der Welde | Sep 2006 | B2 |
7160259 | Tardy et al. | Jan 2007 | B2 |
7179256 | Mest | Feb 2007 | B2 |
7207989 | Pike, Jr. et al. | Apr 2007 | B2 |
7244254 | Brace et al. | Jul 2007 | B2 |
7270659 | Ricart et al. | Sep 2007 | B2 |
7311703 | Furovskiy et al. | Dec 2007 | B2 |
7387625 | Hovda et al. | Jun 2008 | B2 |
7387630 | Mest | Jun 2008 | B2 |
7412273 | Jais et al. | Aug 2008 | B2 |
7416552 | Paul et al. | Aug 2008 | B2 |
7468057 | Ponzi | Dec 2008 | B2 |
7507222 | Cindrich et al. | Mar 2009 | B2 |
7559905 | Kagosaki et al. | Jul 2009 | B2 |
7604634 | Hooven | Oct 2009 | B2 |
7666166 | Emmert et al. | Feb 2010 | B1 |
7815590 | Cooper | Oct 2010 | B2 |
7879030 | Paul et al. | Feb 2011 | B2 |
7938822 | Berzak et al. | May 2011 | B1 |
7951143 | Wang et al. | May 2011 | B2 |
7993335 | Rioux et al. | Aug 2011 | B2 |
8128620 | Wang et al. | Mar 2012 | B2 |
8128621 | Wang et al. | Mar 2012 | B2 |
8273082 | Wang et al. | Sep 2012 | B2 |
8287531 | Mest | Oct 2012 | B2 |
8333762 | Mest et al. | Dec 2012 | B2 |
8369922 | Paul et al. | Feb 2013 | B2 |
8439907 | Auth et al. | May 2013 | B2 |
8444638 | Woloszko et al. | May 2013 | B2 |
8449535 | Deno et al. | May 2013 | B2 |
8515560 | Debruyne et al. | Aug 2013 | B2 |
8591507 | Kramer et al. | Nov 2013 | B2 |
8663226 | Germain | Mar 2014 | B2 |
8700133 | Hann | Apr 2014 | B2 |
8702697 | Curley | Apr 2014 | B2 |
8755860 | Paul et al. | Jun 2014 | B2 |
8758349 | Germain et al. | Jun 2014 | B2 |
8864760 | Kramer et al. | Oct 2014 | B2 |
8945121 | Curley | Feb 2015 | B2 |
9033972 | Curley | May 2015 | B2 |
9061120 | Osypka et al. | Jun 2015 | B2 |
9125671 | Germain et al. | Sep 2015 | B2 |
9138287 | Curley et al. | Sep 2015 | B2 |
9138288 | Curley | Sep 2015 | B2 |
9445861 | Curley | Sep 2016 | B2 |
9610396 | Curley et al. | Apr 2017 | B2 |
9730748 | Curley | Aug 2017 | B2 |
9743984 | Curley et al. | Aug 2017 | B1 |
9877768 | Curley et al. | Jan 2018 | B2 |
9937000 | Curley | Apr 2018 | B2 |
10022176 | Curley | Jul 2018 | B2 |
10058385 | Curley | Aug 2018 | B2 |
10307201 | Curley | Jun 2019 | B2 |
10448987 | Curley | Oct 2019 | B2 |
10463425 | Hoitink et al. | Nov 2019 | B2 |
10548654 | Curley | Feb 2020 | B2 |
10881443 | Curley | Jan 2021 | B2 |
11013555 | Curley et al. | May 2021 | B2 |
11083871 | Curley et al. | Aug 2021 | B2 |
11135000 | Curley | Oct 2021 | B2 |
11583330 | Curley | Feb 2023 | B2 |
20010031946 | Walker et al. | Oct 2001 | A1 |
20020026210 | Abdel-Gawwad | Feb 2002 | A1 |
20020120259 | Lettice et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020153046 | Dantsker et al. | Oct 2002 | A1 |
20020183735 | Edwards et al. | Dec 2002 | A1 |
20030060862 | Goble et al. | Mar 2003 | A1 |
20030109871 | Johnson et al. | Jun 2003 | A1 |
20030120271 | Bumside et al. | Jun 2003 | A1 |
20040006336 | Swanson | Jan 2004 | A1 |
20040116922 | Hovda et al. | Jun 2004 | A1 |
20040133154 | Flaherty et al. | Jul 2004 | A1 |
20040220559 | Kramer et al. | Nov 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20040260282 | Gough et al. | Dec 2004 | A1 |
20050015081 | Turovskiy et al. | Jan 2005 | A1 |
20050055019 | Skarda | Mar 2005 | A1 |
20050059963 | Phan et al. | Mar 2005 | A1 |
20050080410 | Rioux et al. | Apr 2005 | A1 |
20050090729 | Solis et al. | Apr 2005 | A1 |
20050165391 | Maguire et al. | Jul 2005 | A1 |
20050187543 | Underwood et al. | Aug 2005 | A1 |
20050187599 | Sharkey et al. | Aug 2005 | A1 |
20050192652 | Cioanta et al. | Sep 2005 | A1 |
20050245923 | Christopherson et al. | Nov 2005 | A1 |
20050267552 | Conquergood et al. | Dec 2005 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060118127 | Chinn | Jun 2006 | A1 |
20060129091 | Bonnette et al. | Jun 2006 | A1 |
20060216275 | Mon | Sep 2006 | A1 |
20060241366 | Falwell et al. | Oct 2006 | A1 |
20060253183 | Thagalingam et al. | Nov 2006 | A1 |
20060259024 | Furovskiy et al. | Nov 2006 | A1 |
20060276780 | Brace et al. | Dec 2006 | A1 |
20060287650 | Cao et al. | Dec 2006 | A1 |
20070027448 | Paul et al. | Feb 2007 | A1 |
20070032786 | Francischelli | Feb 2007 | A1 |
20070167775 | Kochavi et al. | Jul 2007 | A1 |
20070185483 | Butty et al. | Aug 2007 | A1 |
20070219434 | Abreu | Sep 2007 | A1 |
20070250053 | Fernald et al. | Oct 2007 | A1 |
20070250056 | Vanney | Oct 2007 | A1 |
20070287998 | Sharareh et al. | Dec 2007 | A1 |
20070288075 | Dowlatshahi | Dec 2007 | A1 |
20080086073 | McDaniel | Apr 2008 | A1 |
20080154258 | Chang et al. | Jun 2008 | A1 |
20080161788 | Dando et al. | Jul 2008 | A1 |
20080161793 | Wang et al. | Jul 2008 | A1 |
20080161797 | Wang et al. | Jul 2008 | A1 |
20080167650 | Joshi et al. | Jul 2008 | A1 |
20080249463 | Pappone et al. | Oct 2008 | A1 |
20080275438 | Gadsby et al. | Nov 2008 | A1 |
20080275440 | Kratoska et al. | Nov 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080288038 | Paul et al. | Nov 2008 | A1 |
20080294096 | Uber, III et al. | Nov 2008 | A1 |
20090069808 | Pike, Jr. et al. | Mar 2009 | A1 |
20090082837 | Gellman et al. | Mar 2009 | A1 |
20090093811 | Koblish et al. | Apr 2009 | A1 |
20090118725 | Auth et al. | May 2009 | A1 |
20090118727 | Pearson et al. | May 2009 | A1 |
20090163836 | Sliwa | Jun 2009 | A1 |
20090192507 | Luttich | Jul 2009 | A1 |
20090254083 | Wallace | Oct 2009 | A1 |
20100030098 | Fojtik | Feb 2010 | A1 |
20100048989 | Akahane | Feb 2010 | A1 |
20100094272 | Rossetto et al. | Apr 2010 | A1 |
20100198056 | Fabro et al. | Aug 2010 | A1 |
20100292766 | Duong et al. | Nov 2010 | A1 |
20100324471 | Flaherty et al. | Dec 2010 | A1 |
20110060349 | Cheng et al. | Mar 2011 | A1 |
20110137150 | Connor et al. | Jun 2011 | A1 |
20110160726 | Ingle | Jun 2011 | A1 |
20110184403 | Brannan | Jul 2011 | A1 |
20110190756 | Venkatachalam et al. | Aug 2011 | A1 |
20110230799 | Christian et al. | Sep 2011 | A1 |
20110251615 | Truckai et al. | Oct 2011 | A1 |
20110270246 | Clark et al. | Nov 2011 | A1 |
20110282342 | Leo et al. | Nov 2011 | A1 |
20120108938 | Kauphusman et al. | May 2012 | A1 |
20120130381 | Germain | May 2012 | A1 |
20120165812 | Christian | Jun 2012 | A1 |
20120253188 | Holland | Oct 2012 | A1 |
20120265190 | Curley et al. | Oct 2012 | A1 |
20120265199 | Curley | Oct 2012 | A1 |
20120265200 | Curley | Oct 2012 | A1 |
20120265276 | Curley | Oct 2012 | A1 |
20120277737 | Curley | Nov 2012 | A1 |
20120310230 | Willis | Dec 2012 | A1 |
20130345670 | Rajagopalan et al. | Dec 2013 | A1 |
20140052117 | Curley | Feb 2014 | A1 |
20140058386 | Clark et al. | Feb 2014 | A1 |
20140155883 | Marion | Jun 2014 | A1 |
20140188106 | Curley | Jul 2014 | A1 |
20140275977 | Curley | Sep 2014 | A1 |
20140276743 | Curley | Sep 2014 | A1 |
20140276758 | Lawrence et al. | Sep 2014 | A1 |
20140303619 | Pappone et al. | Oct 2014 | A1 |
20140350542 | Kramer et al. | Nov 2014 | A1 |
20150066025 | Curley | Mar 2015 | A1 |
20150223882 | Curley | Aug 2015 | A1 |
20150265344 | Aktas et al. | Sep 2015 | A1 |
20150297290 | Beeckler et al. | Oct 2015 | A1 |
20150351823 | Curley | Dec 2015 | A1 |
20150359582 | Curley et al. | Dec 2015 | A1 |
20160278856 | Panescu et al. | Sep 2016 | A1 |
20160354138 | Curley | Dec 2016 | A1 |
20170007324 | Kadamus et al. | Jan 2017 | A1 |
20170072193 | Heller et al. | Mar 2017 | A1 |
20170100582 | McEvoy et al. | Apr 2017 | A1 |
20170238993 | Curley | Aug 2017 | A1 |
20170296739 | Curley et al. | Oct 2017 | A1 |
20170333107 | Curley | Nov 2017 | A1 |
20180042669 | Curley et al. | Feb 2018 | A1 |
20180140345 | Curley et al. | May 2018 | A1 |
20180185083 | Curley | Jul 2018 | A1 |
20190290349 | Curley | Sep 2019 | A1 |
20190336729 | Curley et al. | Nov 2019 | A1 |
20200015880 | Curley | Jan 2020 | A1 |
20200113614 | Curley | Apr 2020 | A1 |
20200138502 | Curley | May 2020 | A1 |
20210393322 | Curley et al. | Dec 2021 | A1 |
20220032007 | Curley et al. | Feb 2022 | A1 |
20220047318 | Curley | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
1159154 | Sep 1997 | CN |
1323233 | Nov 2001 | CN |
1341462 | Mar 2002 | CN |
1119127 | Aug 2003 | CN |
1456400 | Nov 2003 | CN |
1525839 | Sep 2004 | CN |
1211171 | Jul 2005 | CN |
1897885 | Jan 2007 | CN |
1942145 | Apr 2007 | CN |
2885157 | Apr 2007 | CN |
101115527 | Jan 2008 | CN |
101209217 | Jul 2008 | CN |
101411645 | Apr 2009 | CN |
101578073 | Nov 2009 | CN |
101653375 | Feb 2010 | CN |
101773699 | Jul 2010 | CN |
101801445 | Aug 2010 | CN |
201642316 | Nov 2010 | CN |
101999931 | Apr 2011 | CN |
105030325 | Nov 2015 | CN |
103930153 | Sep 2016 | CN |
103764056 | Feb 2017 | CN |
103619276 | Jul 2017 | CN |
103619275 | Aug 2017 | CN |
104869929 | Nov 2018 | CN |
0 823 843 | Feb 1998 | EP |
0 895 756 | Feb 1999 | EP |
1 033 107 | Sep 2000 | EP |
1 159 036 | Dec 2001 | EP |
0 908 156 | Nov 2003 | EP |
2 042 112 | Apr 2009 | EP |
2 430 996 | Mar 2012 | EP |
1772109 | Apr 2015 | EP |
2207492 | Mar 2018 | EP |
62-211057 | Sep 1987 | JP |
01-146539 | Jun 1989 | JP |
05-212048 | Aug 1993 | JP |
10-505268 | May 1998 | JP |
H11504539 | Apr 1999 | JP |
11-178787 | Jul 1999 | JP |
2001515368 | Sep 2001 | JP |
2001526098 | Dec 2001 | JP |
2003-528684 | Sep 2003 | JP |
2004024331 | Jan 2004 | JP |
2004275594 | Oct 2004 | JP |
2007509693 | Apr 2007 | JP |
2008080152 | Apr 2008 | JP |
2008-534081 | Aug 2008 | JP |
2009-504327 | Feb 2009 | JP |
2010505596 | Feb 2010 | JP |
2011-229920 | Nov 2011 | JP |
2014-516622 | Jul 2014 | JP |
2014516625 | Jul 2014 | JP |
2014518520 | Jul 2014 | JP |
2015205181 | Nov 2015 | JP |
2016209582 | Dec 2016 | JP |
6170037 | Jul 2017 | JP |
62-097971 | Mar 2018 | JP |
6559186 | Aug 2019 | JP |
19990082587 | Nov 1999 | KR |
10-2014-0022887 | Feb 2014 | KR |
1994010948 | May 1994 | WO |
9607360 | Mar 1996 | WO |
9634569 | Nov 1996 | WO |
9636288 | Nov 1996 | WO |
9729702 | Aug 1997 | WO |
9829068 | Jul 1998 | WO |
1998033428 | Aug 1998 | WO |
9920191 | Apr 1999 | WO |
9932186 | Jul 1999 | WO |
02089686 | Nov 2002 | WO |
03028524 | Oct 2003 | WO |
03096871 | Nov 2003 | WO |
2005048858 | Jun 2005 | WO |
2005089663 | Sep 2005 | WO |
2006031541 | Mar 2006 | WO |
2006055658 | May 2006 | WO |
2006071058 | Jul 2006 | WO |
2006095171 | Sep 2006 | WO |
2006102471 | Sep 2006 | WO |
2006103951 | Oct 2006 | WO |
2007080578 | Jul 2007 | WO |
2008083099 | Jul 2008 | WO |
2010002733 | Jan 2010 | WO |
2010151619 | Dec 2010 | WO |
2012071058 | May 2012 | WO |
2018031281 | Feb 2018 | WO |
Entry |
---|
U.S. Appl. No. 13/445,034, filed Apr. 12, 2012, Devices and Methods for Remote Temperature Monitoring in Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 13/445,036, filed Apr. 12, 2012, Methods and Devices for Heating Fluid in Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 13/445,040, filed Apr. 12, 2012, Methods and Devices for Use of Degassed Fluids With Fluid Enhanced Ablation Devices. |
U.S. Appl. No. 13/445,365, filed Apr. 12, 2012, Devices and Methods for Shaping Therapy in Fluid Enhanced Ablation. |
U.S. Appl. No. 13/445,373, filed Apr. 12, 2012, Methods and Devices for Controlling Ablation Therapy. |
U.S. Appl. No. 13/586,559, filed Aug. 15, 2012, Low Profile Fluid Enhanced Ablation Therapy Devices and Methods. |
U.S. Appl. No. 13/837,295, filed Mar. 15, 2013, Methods and Devices for Fluid Enhanced Microwave Ablation Therapy. |
U.S. Appl. No. 13/842,561, filed Mar. 15, 2013, Systems and Methods for Visualizing Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 14/202,425, filed Mar. 10, 2014, Devices and Methods for Shaping Therapy in Fluid Enhanced Ablation. |
U.S. Appl. No. 14/536,212, filed Nov. 7, 2014, Methods and Devices for Use of Degassed Fluids With Fluid Enhanced Ablation Devices. |
U.S. Appl. No. 14/688,790, filed Apr. 16, 2015, Methods and Devices for Fluid Enhanced Microwave Ablation Therapy. |
U.S. Appl. No. 14/826,549, filed Aug. 14, 2015, Methods and Devices for Heating Fluid in Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 14/826,563, filed Aug. 14, 2015, Methods and Devices for Use of Degassed Fluids With Fluid Enhanced Ablation Devices. |
U.S. Appl. No. 15/234,858, filed Aug. 11, 2016, Devices and Methods for Delivering Fluid to Tissue During Ablation Therapy. |
U.S. Appl. No. 15/240,693, filed Aug. 18, 2016, Methods and Devices for Controlling Ablation Therapy. |
U.S. Appl. No. 15/450,806, filed Mar. 6, 2017, Devices and Methods for Remote Temperature Monitoring in Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 15/476,371, filed Mar. 31, 2017, Systems and Methods for Visualizing Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 15/663,914, filed Jul. 31, 2017, Devices and Methods for Shaping Therapy in Fluid Enhanced Ablation. |
U.S. Appl. No. 15/663,929, filed Jul. 31, 2017, Devices and Methods for Delivering Fluid to Tissue During Ablation Therapy. |
U.S. Appl. No. 15/861,359, filed Jan. 13, 2018, Methods and Devices for Heating Fluid in Fluid Enhanced Ablation Therapy. |
U.S. Appl. No. 15/909,103, filed Mar. 1, 2018, Methods and Devices for Controlling Ablation Therapy. |
U.S. Appl. No. 15/970,543, filed May 3, 2018, Devices and Methods for Electively Deploying Catheter Instruments. |
U.S. Appl. No. 16/035,797, filed Jul. 16, 2018, Inferred Maximum Temperature Monitoring for Irrigated Ablation Therapy. |
U.S. Appl. No. 16/373,104, filed Apr. 2, 2019, Methods and Devices for Use of Degassed Fluids With Fluid Enhanced Ablation Devices. |
U.S. Appl. No. 16/673,305, filed Nov. 4, 2019, Systems and Methods for Visualizing Fluid Enhanced Ablation Therapy. |
Anselmino et al., “Silent Cerebral Embolism during Atrial Fibrillation Ablation: Pathophysiology, Prevention and Management,” J Atr Fibrillation. Aug. 31, 2013. 6(2):796. |
Calkins et al., Document Reviewers: 2017 “HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation,” Europace. Jan. 1, 2018.20(1):e1-e160. |
Dello Russo et al., “Role of Intracardiac echocardiography in Atrial Fibrillation Ablation,” J Atr Fibrillation Apr. 6, 2013. 5(6):786. |
Extended European Search Report for Application No. 20184347.1 dated Feb. 1, 2021 (8 pages). |
Goya et al., “The use of intracardiac echocardiography catheters in endocardial ablation of cardiac arrhythmia: Meta-analysis of efficiency, effectiveness, and safety outcomes,” J Cardiovasc Electrophysiol. Mar. 2020. 31(3):664-673. |
Haines et al., “Microembolism and Catheter Ablation I A Comparison of Irrigated Radiofrequency and Multielectrode-phased Radiofrequency Catheter Ablation of Pulmonary Vein Ostia,” Circ Arrhythm Electrophysiol. 2013. 6:16-22. |
Haines et al., “Microembolism and Catheter Ablation II Effects of Cerebral Microemboli Injection in a Canine Model,” Circe Arrhythm Electrophysiol. 2012. 6:23-30. |
Haines, “Asymptomatic Cerebral Embolism and Atrial Fibrillation Ablation. What Price Victory?” Circ Arrhythm Electrophysiol. 2013. 6:455-457. |
Hijazi et al., “Intracardiac echocardiography during interventional and electrophysiological cardiac catheterization.,” Circulation. Feb. 3, 2009. 119(4):587-96. |
Jongbloed et al., “Clinical applications of intracardiac echocardiography in interventional procedures,” Heart. Jul. 2005. 91(7):981-90. |
Kalman et al., “Biophysical characteristics of radiofrequency lesion formation in vivo: Dynamics of catheter tip-tissue contact evaluated by intracardiac echocardiography,” American Heart Journal, vol. 133, Issue 1, 1997, pp. 8-18. |
Marrouche et al., “Phased-array intracardiac echocardiography monitoring during pulmonary vein isolation in patients with atrial fibrillation: impact on outcome and complications,” Circulation. Jun. 3, 2003. 107(21):2710-6. |
Oh et al., “Avoiding microbubbles formation during radiofrequency left atrial ablation versus continuous microbubbles formation and standard radiofrequency ablation protocols: comparison of energy profiles and chronic lesion characteristics,” J Cardiovasc Electrophysiol. Jan. 2006. 17(1):72-7. |
Saliba et al., “Intracardiac echocardiography during catheter ablation of atrial fibrillation,”Europace. 2008. 0:0-0. |
Steinberg et al., “Intracranial Emboli Associated With Catheter Ablation of Atrial Fibrillation. Has the Silence Finally Been Broken?” JACC. 2011. 58(7):689-91. |
Takami et al., “Effect of Left Atrial Ablation Process and Strategy on Microemboli Formation During Irrigated Radiofrequency Catheter Ablation in an In Vivo Model,” Circ Arrhythm Electrophysiol. 2016. 9:e003226. |
Brace CL. Microwave tissue ablation: biophysics, technology, and applications.; Crit Rev Biomed Eng. 2010;38(1):65-78. |
Chinese Office Action for Application No. 201280028609.9, dated May 27, 2015 (22 pages). |
Chinese Office Action for Application No. 201280028611.6, dated Jul. 29, 2015. (23 pages). |
Chinese Office Action for Application No. 201280028612.0, dated Nov. 2, 2016. (8 pages). |
Chinese Office Action for Application No. 201280028620.5, dated May 27, 2015. (26 pages). |
Chinese Office Action for Application No. 201280028621.X, dated Jul. 31, 2015. (18 pages). |
Chinese Office Action for Application No. 201380053690.0, dated Jul. 20, 2017. (18 pages). |
Chinese Office Action for Application No. 201380053690.0, dated Sep. 30, 2016. (17 pages). |
Chinese Office Action for Application No. 2016112115279.0, dated Nov. 30, 2018. (15 pages). |
Chinese Office Action for Application No. 201611215279.0, dated Aug. 12, 2019. (21 pages). |
Chinese Office Action for Application No. 201710537279.0, dated Apr. 3, 2019. (8 pages). |
David R. Lide (ed)., CRC Handbook of Chemistry and Physics, 87th Edition. 2006. p. 8-81. CRC Press, Florida. |
European Office Action for Application No. 12771601.7, dated Jun. 13, 2018 (5 pages). |
European Office Action for Application No. EP 12771876.5, dated May 31, 2018 (6 pages). |
Extended European Search Report and Search Opinion for Application No. 13829821.1 dated Mar. 17, 2016 (7 pages). |
Extended European Search Report and Search Opinion for Application No. 19151775.4 dated May 21, 2019 (8 pages). |
Extended European Search Report and Written Opinion for Application No. 12771601.7 dated Oct. 27, 2014 (7 pages). |
Extended Search Report and Written Opinion for EP 12770537.4 dated Oct. 10, 2014 (6 pages). |
Extended Search Report and Written Opinion for EP 12770631.5 dated Oct. 1, 2014. |
Extended Search Report and Written Opinion for EP 12771331.1 dated Sep. 25, 2014. |
Extended Search Report and Written Opinion for EP 12771876.5 dated Oct. 13, 2014 (6 pages). |
International Invitation to Pay Additional Fees for Application No. PCT/US2017/044706, dated Oct. 5, 2017 (2 Pages). |
International Search Report and Written Opinion for Application No. PCT/US19/30645, dated Jul. 22, 2019 (14 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033203, dated Sep. 21, 2012. (23 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033213, dated Sep. 21, 2012. (17 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033216, dated Sep. 21, 2012. (17 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033327, dated Sep. 21, 2012. (14 pages). |
International Search Report and Written Opinion for Application No. PCT/US2012/033332, dated Sep. 21, 2012. (20 pages). |
International Search Report and Written Opinion for Application No. PCT/US2013/053977, dated Nov. 14, 2013. (20 pages). |
International Search Report and Written Opinion for Application No. PCT/US2014/024731, dated Jul. 21, 2014 (39 pages). |
International Search Report and Written Opinion for Application No. PCT/US2017/044706, dated Nov. 29, 2017 (25 pages). |
Japanese Office Action for Application No. 2014-505263, dated Jan. 26, 2016 (4 pages). |
Japanese Office Action for Application No. 2014-505266, dated Feb. 23, 2016 (7 pages). |
Japanese Office Action for Application No. 2017-151156, dated Apr. 16, 2019 (23 pages). |
Japanese Office Action for Application No. 2017-151156, dated Aug. 7, 2018 (11 pages). |
Japanese Office Action for Application No. 2017-207454, dated Oct. 2, 2018 (6 pages). |
Japanese Office Action for Application No. 2018-029767, dated Sep. 4, 2018 (5 pages). |
Nath et al., Prog. Card. Dis. 37(4):185-204 (1995). |
Rolf Sander, Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry. Max-Planck Institute of Chemistry. 1999, Mainz Germany. Www.henrys-law.org. |
Sapareto et al., Int. J Rad. One. Biol. Phys. 10(6)787-800 (1984). |
Young, S.T., et al., An instrument using variation of resistance to aid in needle tip insertion in epidural block in monkeys. Med Instrum. Oct. 1987;21(5):266-8. Abstract Only. |
European Invitation to Attend Oral Proceedings for Application No. 12771601.7 dated Feb. 19, 2020 (7 Pages). |
Extended European Search Report for Application No. 19796516.3 dated Dec. 2, 2021 (8 Pages). |
Japanese Office Action for Application No. 2019-507789, dated Jun. 29, 2021 (13 pages). |
Korean Office Action for Application No. 10-2019-7005130, dated Jan. 26, 2022 (13 pages). |
Chinese Office Action for Application No. 201980043984.2, dated May 31, 2022. (19 pages). |
Chinese Office Action for Application No. 201780062751.8, dated Jul. 1, 2022. (19 pages). |
Extended European Search Report for Application No. 19837499.3 dated Apr. 8, 2022 (11 pages). |
Japanese Office Action for Application No. 2019-507789, dated May 24, 2022 (13 Pages). |
Chinese Search Report for Application No. 201711019074, dated Nov. 26, 2019 (2 pages). |
Chinese Supplementary Search for Application No. 201711019074, dated Feb. 29, 2020 (1 page). |
European Office Action for Application No. 19151775, dated Feb. 2, 2023 (4 pages). |
Japanese Office Action for Application No. 2020-561818, dated Apr. 4, 2023. |
Korean Office Action for Application No. 10-2021-7023589, dated Sep. 29, 2022 (10 pages). |
Chinese First Search for Application No. 201780062751, dated Dec. 28, 2021 (1 page). |
Japanese Search Report for Application No. 2020-557181, dated Apr. 21, 2023 (19 pages). |
Number | Date | Country | |
---|---|---|---|
20200113614 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
61474574 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13445373 | Apr 2012 | US |
Child | 15240693 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15909103 | Mar 2018 | US |
Child | 16660212 | US | |
Parent | 15240693 | Aug 2016 | US |
Child | 15909103 | US |