The inventions described herein relate to devices and associated methods for the treatment of chronic total occlusions. More particularly, the inventions described herein relate to devices and methods for crossing chronic total occlusions and establishing a pathway blood flow past the chronic total occlusions.
Due to age, high cholesterol and other contributing factors, a large percentage of the population has arterial atherosclerosis that totally occludes portions of the patient's vasculature and presents significant risks to patient health. For example, in the case of a total occlusion of a coronary artery, the result may be painful angina, loss of cardiac tissue or patient death. In another example, complete occlusion of the femoral and/or popliteal arteries in the leg may result in limb threatening ischemia and limb amputation.
Commonly known endovascular devices and techniques are either inefficient (time consuming procedure), have a high risk of perforating a vessel (poor safety) or fail to cross the occlusion (poor efficacy). Physicians currently have difficulty visualizing the native vessel lumen, cannot accurately direct endovascular devices toward the visualized lumen, or fail to advance devices through the lesion. Bypass surgery is often the preferred treatment for patients with chronic total occlusions, but less invasive techniques would be preferred.
Described herein are devices and methods employed to exploit the vascular wall of a vascular lumen for the purpose of bypassing a total occlusion of an artery. Exploitation of a vascular wall may involve the passage of an endovascular device into and out of said wall which is commonly and interchangeable described as false lumen access, intramural access, sub medial access or in the case of this disclosure, subintimal access.
Described herein are devices and methods employed to exploit the vascular wall of a vascular lumen for the purpose of bypassing a total occlusion of an artery. Exploitation of a vascular wall may involve the passage of an endovascular device into and out of said wall which is commonly and interchangeable described as false lumen access, intramural access, sub medial access or in the case of this disclosure, subintimal access.
In one aspect, the present disclosure is directed to a method of facilitating treatment via a vascular wall defining a vascular lumen containing an occlusion therein. The method may include providing an intravascular device having a distal portion and a longitudinal axis and inserting the intravascular device into the vascular lumen. The method may further include positioning the distal portion in the vascular wall, rotating the intravascular device about the longitudinal axis, and advancing the intravascular device within the vascular wall.
In another aspect, the present disclosure is direct to a device for facilitating treatment via a vascular wall defining a vascular lumen containing an occlusion therein. The device may include a shaft having a distal end and a proximal end. The shaft may include a coil having a plurality of filars wound in a helical shape, the coil extending from the distal end of the shaft to the proximal end of the shaft, and a sleeve, having a proximal end and a distal end, the sleeve extending from the distal end of the shaft and covering a portion of the coil. The device may further include a tip fixed to the distal end of the shaft, and a hub fixed to the proximal end of the shaft.
The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
Intima 107 defines a true lumen 106 of artery 102. In
In the embodiment of
In some useful methods in accordance with the present disclosure, crossing device 120 is rotated about its longitudinal axis and moved in a direction parallel to its longitudinal axis simultaneously. When this is the case, rotation of crossing device 120 may reduce resistance to the axial advancement of crossing device 120. These methods take advantage of the fact that the kinetic coefficient of friction is usually less than the static coefficient of friction for a given frictional interface. Rotating crossing device 120 assures that the coefficient of friction at the interface between the crossing device and the surround tissue will be a kinetic coefficient of friction and not a static coefficient of friction.
The position of guidewire 132 shown in
With guidewire 132 in the position shown in
In the embodiment of
The position of guidewire 232 shown in
Devices such as balloon angioplasty catheters and atherectomy catheters may be advanced over guidewire 232 and into subintimal space 228. In this way, these devices may be used in conjunction with guidewire 232 to establish a blood flow path between proximal segment 203 of true lumen 206 and distal segment 204 of true lumen 206. This path allows blood to flow through subintimal space 228 and around occlusion 208.
Tip 324 is fixed to a distal portion of coil 334. Coil 334 comprises a plurality of filars 342 that are wound in a generally helical shape. In some useful embodiments of crossing device 320, coil 334 comprises eight, nine or ten filars wound into the shape illustrated in
Sleeve 336 and coil 334 both extend into a lumen defined by a tubular body 338. Tubular body 338 may comprise, for example hypodermic tubing formed of Nitinol, i.e. nickel titanium. With reference to
A proximal portion of coil 334 extends proximally beyond the distal end of tubular body 338. A hub 346 is fixed to a proximal portion of coil 334 and a proximal portion of tubular body 338. Hub 346 may comprise, for example, a luer fitting. Sheath 344 is disposed about a portion of tubular body 338 and a portion of sleeve 336. In some embodiments of crossing device 320, sheath 344 comprises HYTREL, a thermoplastic elastomer.
With reference to
With reference to
In some useful embodiments in accordance with the present disclosure, handle assembly 350 is long enough to receive the thumb and for fingers of a physician's right and left hands. When this is the case, a physician can use two hands to rotate handle assembly 350. In the embodiment of
In some useful methods, crossing device 320 is rotated and axially advanced simultaneously. Rotation of crossing device 320 can be achieved by rolling handle assembly 350 between the thumb and forefinger one hand. Two hands can also be used as shown in
In some useful methods in accordance with the present disclosure, crossing device 320 is rotated at a rotational speed of 2 to 200 revolutions per minute. In some particularly useful methods in accordance with the present disclosure, crossing device 320 is rotated at a rotational speed of 50 and 150 revolutions per minute. Crossing device 320 may be rotated by hand as depicted in
When handle cap 354 is rotated relative to handle body 352, the threads produce relative longitudinal motion between handle cap 354 and handle body 352. In other words, handle cap 354 can be screwed into handle body 352. As handle cap 354 is advanced into handle body 352, the inner end of handle cap 354 applies a compressive force to grip sleeves 362. Grip sleeves 362 are made from an elastomeric material. The compression forces applied to grip sleeves 362 by handle body 352 and handle cap 354 cause grip sleeves 362 to bulge. The bulging of grip sleeves 362 causes grip sleeves 362 to grip shaft 322 of crossing device 320.
The force that each grip sleeve 362 applies to the shaft is generally equally distributed about the circumference of the shaft. When this is the case, the likelihood that the shaft will be crushed by the grip sleeves is reduced. At the same time, the grip sleeves provide an interface that allows significant torque to be applied to the shaft when the handle is rotated.
In the embodiment of
In the embodiment of
Some useful methods in accordance with the present disclosure include the step of rotating crossing device 520. When the proximal portion of a crossing device is rotated, it may be desirable to confirm that the distal end of the crossing device is also rotating.
Many physicians have experience using guidewires. These physicians are aware that twisting the proximal end of a guidewire when the distal end of the guidewire is fixed may cause the guidewire to break due to twisting. Accordingly, many physicians may be hesitant to rotate an intravascular device more than a few revolutions unless they are certain that the distal end of the device is free to rotate.
One method for determining whether the tip of a crossing member is rotating may be described with reference to
During rotation of crossing device 520, the shape of radiopaque marker provides visual feedback assuring the physician that the tip of the crossing member is rotating as the physician rotates the proximal portion of the crossing member. Radiopaque marker 572 provides two different appearances while it is being rotated and observed using fluoroscopic methods. When edge 576 of radiopaque marker is viewed on a fluoroscopic display a first appearance is achieved. When face 574 of radiopaque marker 572 is viewed, it provides a second appearance on the fluoroscopic display. With reference to the figures, it will be appreciate that the first appearance has a smaller footprint than the second appearance. When the appearance of radiopaque marker 572 is alternating between the first appearance and the second appearance, the physician can infer that tip 524 is rotating. This visual feedback allows the physician to confirm that the distal end of crossing member is rotating.
For example, one method in accordance with the present disclosure may include the steps of positioning the distal end of a crossing device in a position that may or may not be in the subintimal space of an artery and injecting radiopaque fluid into the body from the distal end of crossing device 520. If the radiopaque fluid remains in a localized area (e.g., in the subintimal space) then a physician viewing the radiopaque fluid on a fluoroscopic display can infer that the distal end of the crossing device is disposed in the subintimal space. If the radiopaque fluid rapidly enters the bloodstream and is carried through the vasculature, then the physician can infer that the distal end of the crossing device is disposed in the true lumen of the artery.
Additional methods are also contemplated. For example, negative pressure (i.e., sub atmospheric pressure) may be applied to the lumen defined by crossing device 520. The physician may observe the results of this application of negative pressure. If a partial vacuum is produced and little or no blood is drawn through the lumen, then the physician can infer that the distal end of the lumen is located in the subintimal space. If, on the other hand, blood is drawn through the lumen of the crossing member, then the physician can infer that the distal end of the crossing member is disposed in the true lumen of a blood vessel.
The present application is a continuation application of U.S. patent application Ser. No. 16/571,563, filed Sep. 16, 2019, which is a continuation application of U.S. patent application Ser. No. 14/156,949, filed Jan. 16, 2014, now U.S. Pat. No. 10,448,940, which is a continuation application of U.S. patent application Ser. No. 12/289,154, filed Oct. 21, 2008, now U.S. Pat. No. 8,632,556 which claims the benefit of U.S. Provisional Application No. 60/999,879, filed Oct. 22, 2007, the complete disclosures of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4020829 | Willson et al. | May 1977 | A |
4233983 | Rocco | Nov 1980 | A |
4540404 | Wolvek | Sep 1985 | A |
4569347 | Frisbie | Feb 1986 | A |
4581017 | Sahota | Apr 1986 | A |
4621636 | Fogarty | Nov 1986 | A |
4747821 | Kensey et al. | May 1988 | A |
4762130 | Fogarty et al. | Aug 1988 | A |
4774949 | Fogarty et al. | Oct 1988 | A |
4819634 | Shiber et al. | Apr 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4976689 | Buchbinder et al. | Dec 1990 | A |
4979939 | Shiber et al. | Dec 1990 | A |
4990134 | Auth | Feb 1991 | A |
5071406 | Jang et al. | Dec 1991 | A |
5127917 | Niederhauser et al. | Jul 1992 | A |
5157852 | Patrou | Oct 1992 | A |
5161534 | Berthiaume | Nov 1992 | A |
5193546 | Shaknovich | Mar 1993 | A |
5201753 | Lampropoulos et al. | Apr 1993 | A |
5228441 | Lundquist | Jun 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5275610 | Eberbach et al. | Jan 1994 | A |
5324263 | Kraus et al. | Jun 1994 | A |
5356418 | Shturman | Oct 1994 | A |
5372587 | Hammerslag et al. | Dec 1994 | A |
5383856 | Bersin | Jan 1995 | A |
5385152 | Abele et al. | Jan 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5415637 | Khosravi et al. | May 1995 | A |
5464395 | Faxon et al. | Nov 1995 | A |
5501667 | Verduin, Jr. | Mar 1996 | A |
5505702 | Arney | Apr 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5571122 | Kelly et al. | Nov 1996 | A |
5571169 | Plaia et al. | Nov 1996 | A |
5603720 | Kieturakis | Feb 1997 | A |
5643298 | Nordgren et al. | Jul 1997 | A |
5645529 | Fagan et al. | Jul 1997 | A |
5655548 | Nelson et al. | Aug 1997 | A |
5695506 | Pike et al. | Dec 1997 | A |
5728133 | Kontos et al. | Mar 1998 | A |
5741270 | Hansen et al. | Apr 1998 | A |
5741429 | Donadio et al. | Apr 1998 | A |
5759172 | Weber et al. | Jun 1998 | A |
5779721 | Nash et al. | Jul 1998 | A |
5807241 | Heimberger et al. | Sep 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5830222 | Makower | Nov 1998 | A |
5830224 | Cohn et al. | Nov 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5882329 | Patterson et al. | Mar 1999 | A |
5910133 | Gould et al. | Jun 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5935108 | Katoh et al. | Aug 1999 | A |
5944686 | Patterson et al. | Aug 1999 | A |
5954713 | Newman et al. | Sep 1999 | A |
5957900 | Ouchi et al. | Sep 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
5989276 | Houser et al. | Nov 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6013055 | Bampos et al. | Jan 2000 | A |
6015405 | Schwartz et al. | Jan 2000 | A |
6022343 | Johnson et al. | Feb 2000 | A |
6033414 | Tockman et al. | Mar 2000 | A |
6036707 | Spaulding et al. | Mar 2000 | A |
6036717 | Mers et al. | Mar 2000 | A |
6059750 | Fogarty et al. | May 2000 | A |
6059769 | Lunn et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6071292 | Makower et al. | Jun 2000 | A |
6081738 | Hinohara et al. | Jun 2000 | A |
6099542 | Cohn et al. | Aug 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6126649 | VanTassel et al. | Oct 2000 | A |
6155264 | Ressemann et al. | Dec 2000 | A |
6157852 | Selmon et al. | Dec 2000 | A |
6159225 | Makower | Dec 2000 | A |
6183432 | Milo | Feb 2001 | B1 |
6186972 | Nelson et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6203559 | Davis et al. | Mar 2001 | B1 |
6217527 | Selmon et al. | Apr 2001 | B1 |
6217549 | Selmon et al. | Apr 2001 | B1 |
6221049 | Selmon et al. | Apr 2001 | B1 |
6231546 | Milo et al. | May 2001 | B1 |
6231587 | Makower | May 2001 | B1 |
6235000 | Milo et al. | May 2001 | B1 |
6241667 | Vetter et al. | Jun 2001 | B1 |
6246914 | de la Rama et al. | Jun 2001 | B1 |
6254588 | Jones et al. | Jul 2001 | B1 |
6258052 | Milo | Jul 2001 | B1 |
6266550 | Selmon et al. | Jul 2001 | B1 |
6277133 | Kanesaka | Aug 2001 | B1 |
6283940 | Mulholland | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6283963 | Regula | Sep 2001 | B1 |
6287317 | Makower et al. | Sep 2001 | B1 |
6283983 | Makower et al. | Oct 2001 | B1 |
6302875 | Makower et al. | Oct 2001 | B1 |
6330884 | Kim | Dec 2001 | B1 |
6337142 | Harder et al. | Jan 2002 | B2 |
6358244 | Newman et al. | Mar 2002 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6379319 | Garibotto et al. | Apr 2002 | B1 |
6387119 | Wolf et al. | May 2002 | B2 |
6398798 | Selmon et al. | Jun 2002 | B2 |
6416523 | Lafontaine | Jul 2002 | B1 |
6428552 | Sparks | Aug 2002 | B1 |
6432127 | Kim et al. | Aug 2002 | B1 |
6447539 | Nelson et al. | Sep 2002 | B1 |
6475226 | Belef et al. | Nov 2002 | B1 |
6482216 | Hiblar et al. | Nov 2002 | B1 |
6482329 | Takahashi et al. | Nov 2002 | B1 |
6485458 | Takahashi | Nov 2002 | B1 |
6491660 | Guo et al. | Dec 2002 | B2 |
6491707 | Makower et al. | Dec 2002 | B2 |
6506178 | Schubart et al. | Jan 2003 | B1 |
6508824 | Flaherty et al. | Jan 2003 | B1 |
6508825 | Selmon et al. | Jan 2003 | B1 |
6511458 | Milo et al. | Jan 2003 | B2 |
6514217 | Selmon et al. | Feb 2003 | B1 |
6544230 | Flaherty et al. | Apr 2003 | B1 |
6561998 | Roth et al. | May 2003 | B1 |
6565583 | Deaton | May 2003 | B1 |
6569143 | Alchas et al. | May 2003 | B2 |
6569145 | Shmulewitz et al. | May 2003 | B1 |
6569150 | Teague et al. | May 2003 | B2 |
6579311 | Makower | Jun 2003 | B1 |
6589164 | Flaherty | Jul 2003 | B1 |
6599304 | Selmon et al. | Jul 2003 | B1 |
6602241 | Makower et al. | Aug 2003 | B2 |
6613081 | Kim et al. | Sep 2003 | B2 |
6616675 | Evard et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6638247 | Selmon et al. | Oct 2003 | B1 |
6638293 | Makower et al. | Oct 2003 | B1 |
6655386 | Makower et al. | Dec 2003 | B1 |
6656195 | Peters et al. | Dec 2003 | B2 |
6660024 | Flaherty et al. | Dec 2003 | B1 |
6669709 | Cohn et al. | Dec 2003 | B1 |
6679861 | Yozu et al. | Jan 2004 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6685716 | Flaherty et al. | Feb 2004 | B1 |
6694983 | Wolf et al. | Feb 2004 | B2 |
6709444 | Makower | Mar 2004 | B1 |
6719725 | Milo et al. | Apr 2004 | B2 |
6726677 | Flaherty et al. | Apr 2004 | B1 |
6746426 | Flaherty et al. | Jun 2004 | B1 |
6746462 | Selmon et al. | Jun 2004 | B1 |
6746464 | Makower | Jun 2004 | B1 |
6786884 | DeCant, Jr. et al. | Sep 2004 | B1 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6824550 | Noriega et al. | Nov 2004 | B1 |
6830577 | Nash et al. | Dec 2004 | B2 |
6837868 | Fajnsztajn | Jan 2005 | B1 |
6844225 | Chen et al. | Jan 2005 | B2 |
6860892 | Tanaka | Mar 2005 | B1 |
6863684 | Kim et al. | Mar 2005 | B2 |
6866676 | Kieturakis et al. | Mar 2005 | B2 |
6884225 | Kato et al. | Apr 2005 | B2 |
6905505 | Nash et al. | Jun 2005 | B2 |
6929009 | Makower et al. | Aug 2005 | B2 |
6936056 | Nash et al. | Aug 2005 | B2 |
6942641 | Seddon | Sep 2005 | B2 |
6949125 | Robertson | Sep 2005 | B2 |
6991617 | Hektner et al. | Jan 2006 | B2 |
7004173 | Sparks et al. | Feb 2006 | B2 |
7025758 | Klint et al. | Apr 2006 | B2 |
7056325 | Makower et al. | Jun 2006 | B1 |
7059330 | Makower et al. | Jun 2006 | B1 |
7083588 | Shmulewitz et al. | Aug 2006 | B1 |
7094230 | Flaherty et al. | Aug 2006 | B2 |
7105031 | Letort | Sep 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7137990 | Hebert et al. | Nov 2006 | B2 |
7159592 | Makower et al. | Jan 2007 | B1 |
7179270 | Makower | Feb 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7229421 | Jen et al. | Jun 2007 | B2 |
7316655 | Garibotto et al. | Jan 2008 | B2 |
7377910 | Katoh et al. | May 2008 | B2 |
7465286 | Patterson et al. | Dec 2008 | B2 |
7485107 | DiFiore et al. | Feb 2009 | B2 |
7749193 | Shalev | Jul 2010 | B2 |
20010000041 | Selmon et al. | Mar 2001 | A1 |
20010056273 | C. | Dec 2001 | A1 |
20020029052 | Evans et al. | Mar 2002 | A1 |
20020052637 | Houser et al. | May 2002 | A1 |
20020103459 | Sparks et al. | Aug 2002 | A1 |
20030028200 | Berg et al. | Feb 2003 | A1 |
20030040737 | Merril et al. | Feb 2003 | A1 |
20030109809 | Jen et al. | Jun 2003 | A1 |
20030120195 | Milo et al. | Jun 2003 | A1 |
20030167038 | Yozu et al. | Sep 2003 | A1 |
20030171642 | Schock et al. | Sep 2003 | A1 |
20030236542 | Makower | Dec 2003 | A1 |
20040015193 | Lamson et al. | Jan 2004 | A1 |
20040059280 | Makower et al. | Mar 2004 | A1 |
20040102719 | Keith et al. | May 2004 | A1 |
20040133225 | Makower | Jul 2004 | A1 |
20040158143 | Flaherty et al. | Aug 2004 | A1 |
20040167554 | Simpson et al. | Aug 2004 | A1 |
20040230156 | Schreck et al. | Nov 2004 | A1 |
20040249277 | Kato et al. | Dec 2004 | A1 |
20040249338 | DeCant, Jr. et al. | Dec 2004 | A1 |
20050021002 | Deckman et al. | Jan 2005 | A1 |
20050038467 | Hebert et al. | Feb 2005 | A1 |
20050049574 | Petrick et al. | Mar 2005 | A1 |
20050171478 | Selmon et al. | Aug 2005 | A1 |
20050177105 | Shalev | Aug 2005 | A1 |
20050216044 | Hong | Sep 2005 | A1 |
20050261663 | Patterson et al. | Nov 2005 | A1 |
20060094930 | Sparks et al. | May 2006 | A1 |
20060135984 | Kramer et al. | Jun 2006 | A1 |
20060229646 | Sparks | Oct 2006 | A1 |
20060271078 | Modesitt | Nov 2006 | A1 |
20060276749 | Selmon et al. | Dec 2006 | A1 |
20070083220 | Shamay | Apr 2007 | A1 |
20070088230 | Terashi et al. | Apr 2007 | A1 |
20070093779 | Kugler et al. | Apr 2007 | A1 |
20070093780 | Kugler et al. | Apr 2007 | A1 |
20070093781 | Kugler et al. | Apr 2007 | A1 |
20070093782 | Kugler et al. | Apr 2007 | A1 |
20070093783 | Kugler et al. | Apr 2007 | A1 |
20070219464 | Davis et al. | Sep 2007 | A1 |
20070265596 | Jen et al. | Nov 2007 | A1 |
20080103443 | Kabrick et al. | May 2008 | A1 |
20080140101 | Carley et al. | Jun 2008 | A1 |
20080228171 | Kugler et al. | Sep 2008 | A1 |
20080243065 | Rottenberg et al. | Oct 2008 | A1 |
20080243067 | Rottenberg et al. | Oct 2008 | A1 |
20090088685 | Kugler et al. | Apr 2009 | A1 |
20090209910 | Kugler et al. | Aug 2009 | A1 |
20090270890 | Robinson et al. | Oct 2009 | A1 |
20100063534 | Kugler et al. | Mar 2010 | A1 |
20100069945 | Olson et al. | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
58183174 | Oct 1983 | JP |
H0473069 | Mar 1992 | JP |
0178822 | Oct 2001 | WO |
2007033052 | Mar 2007 | WO |
2007082216 | Jul 2007 | WO |
2008063621 | May 2008 | WO |
2008116600 | Oct 2008 | WO |
2009054943 | Apr 2009 | WO |
2009100129 | Aug 2009 | WO |
2009134346 | Nov 2009 | WO |
2010019241 | Feb 2010 | WO |
2010044816 | Apr 2010 | WO |
Entry |
---|
Bolia, “Subintimal Angioplasty: Which Cases To Choose, How To Avoid Pitfall And Technical Tips,” Combined Session: Vascular Surgery and Interventional Radiology, p. III 8.1-8.3. |
Colombo et al., “Treating Chronic Total Occlusions Using Subintimal Tracking and Reentry: The STAR Technique,” Catheterization and Cardiovascular Interventions, 2005, vol. 64, pp. 407-411. |
English Translation of claims granted in European Application No. 08734691.2 (European national phase of WO 2008/116600 A1) dated Feb. 3, 2012 (3 pages). |
Extended European Search Report for European Application No. 08841515.3 dated Mar. 30, 2012 (6 pages). |
International Preliminary Report on Patentability for PCT/US08/11976 issued on Jan. 13, 2009. |
International Written Opinion for PCT/US08/11976 issued on Jan. 13, 2009. |
Extended European Search Report for Application No. 20152392.5 dated Apr. 22, 2020. |
Number | Date | Country | |
---|---|---|---|
20230050257 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
60999879 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16571563 | Sep 2019 | US |
Child | 17974126 | US | |
Parent | 14156949 | Jan 2014 | US |
Child | 16571563 | US | |
Parent | 12289154 | Oct 2008 | US |
Child | 14156949 | US |