Methods and devices for deep vein thrombosis prevention

Information

  • Patent Grant
  • 9474673
  • Patent Number
    9,474,673
  • Date Filed
    Wednesday, November 21, 2012
    11 years ago
  • Date Issued
    Tuesday, October 25, 2016
    7 years ago
Abstract
Portable devices and methods for preventing deep vein thrombosis (DVT) by assuring that the ankle is flexed and extended sufficiently to promote blood flow in the lower leg are disclosed. The device includes an actuator with a free movement mode that allows a patient to move freely between activations or to initiate movement to delay a next automatic activation.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


Deep Vein Thrombosis (DVT) is the formation of a thrombus (clot) in a deep vein in a leg. The clot can block blood flow in the leg, or the clot may travel to the lungs causing a potentially fatal pulmonary embolism. The incidence of DVT is particularly high after hip or knee surgery, but may occur whenever patients are immobilized over a period of time. DVT occurrence is known to be high after lower extremity paralysis due to stroke or injury and is also a risk factor in pregnancy, obesity, and other conditions.


Current techniques for avoiding DVT have drawbacks. For example, blood thinning drugs have side effects, elastic stockings and compression devices have limited effectiveness, while compression and exercise devices have limited patient compliance. Active or passive movement of the ankle, alone or in combination with other DVT avoidance techniques, can reduce the incidence of DVT; however there has been no device to assure adequate movement that is acceptable to hospital patients and staff.


SUMMARY OF THE INVENTION

The present invention teaches a variety of methods, techniques and devices for preventing deep vein thrombosis (DVT). According to one embodiment, a DVT prevention device is attached to a patient's ankle, or any portion of any limb, to deliver active or passive movement to promote blood flow in the lower extremities. According to certain aspects, the DVT prevention device includes a battery or AC-powered actuator, an embedded computer, a software control system, sensors, and a coupling to the ankle and the foot.


According to another embodiment, a DVT prevention device operates in one or more modes to supply 1) passive extension and flexion of the ankle, 2) active extension and flexion of the ankle, and 3) free movement of the ankle. Patient compliance may be enhanced by allowing the patient to determine the preferred mode of operation; the device assures adequate total movement over a period of time by supplying passive movement when necessary. For example, the patient may perform enough movements in free-movement mode to delay future activations of the device, or the patient may actively resist the movement to exercise the calf muscles and promote enhanced blood flow beyond that of passive movement.


According to yet another aspect of the present invention, the present invention may include an output connection to allow the patient's extension and flexion of the ankle to serve as a human interface device similar to a computer mouse. If coupled to a web browser or computer game, the device can serve the dual role of preventing DVT and helping the patient to pass time more quickly. Such a device can also serve as the primary input device to those with arm or hand disabilities and may tend to avoid or mitigate carpal tunnel syndrome.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of electronics and an embedded computer that controls a deep vein THROMBOSIS (DVT) prevention device according to an embodiment of the present invention.



FIG. 2a shows a front view of a DVT prevention device attached to the leg of a patient according to an embodiment of the present invention.



FIG. 2b shows a side view of the DVT prevention device of FIG. 2a near the flexion limit.



FIG. 2c shows a side view of the DVT prevention device near the extension limit.



FIG. 3. shows a continuously variable actuator according to another aspect of the present invention that may be used to construct a DVT prevention device.



FIG. 4. shows a single-motor actuator with a free movement mode according to another embodiment of the present invention.



FIG. 5. shows a single-motor actuator as attached to an ankle according to a further embodiment of the present invention.



FIG. 6. is a flowchart of a method for the prevention of DVT according to one aspect of the present invention.





DETAILED DESCRIPTION


FIG. 1 shows a block diagram of a deep vein THROMBOSIS (DVT) prevention device 100 according to an embodiment of the present invention. An embedded microcontroller 102 is programmed to accept input from one or more sensors such as joint angle sensor 104 and a force (e.g., current) sensor 106. The embedded microcontroller 102 may also be coupled to a control panel 108. The control panel 108 may be for use by a patient, a doctor, or other health care provider. The embedded microcontroller 102 is operable to produce outputs for power drivers 112 to control the motion of one or more actuators 114.


With further reference to FIG. 1, power is supplied to the DVT prevention device 100 through an actuator power supply 116. Power may come through a battery 118 or from an AC adapter 120. In one embodiment, the battery 118 is wirelessly recharged by inductive coupling to a pad conveniently placed, such as at the foot of a hospital bed. Such a wireless recharge device has been announced by Wildcharge at the 2007 Consumer Electronics show.


In certain embodiments, such as cases where the patient can supply significant force to exercise the ankle, the battery charging requirements may be reduced or eliminated by recharging the battery from energy captured from running the actuator 114 as backdriven motor generator. This may provide an extra incentive to the patient to exercise, especially if the amount of exercise is recorded and presented to the patient, the patient's family and the hospital staff.


The control panel 108 may be as simple as an on/off switch, or may include switches and displays to allow adjustments for the range of motion, minimum repetition frequency, movement statistics, battery charge, and the like.


One embodiment includes a USB or wireless connection 122 to allow the DVT prevention device 100, or a pair of devices (e.g., one device each on the left and right ankles), to act as a human interface device (HID) that may be connected, for instance, to a PC. For example, the right ankle position may determine the left/right location of a computer curser and the left ankle position may determine the up/down location of the curser. When a patient uses the computer, for instance to surf the internet or play a game, the ankles must be flexed and extended, and in the process the blood flow to the leg is enhanced. The computer connection may significantly enhance patient compliance, which is a major problem with existing compression devices.



FIG. 2 shows three views of a DVT prevention device 200, according to another embodiment of the present invention, attached to an ankle 202. An actuator 204 is attached to upper and lower ankle attachment points such that activation of the actuator 204 may extend or flex the ankle 202. FIG. 2a shows a front view of the DVT prevention device 200, FIG. 2b shows a side view of the DVT prevention device 200 near a flexion limit, and FIG. 2c shows a side view of the DVT prevention device 200 near an extension limit. The limits may be programmatically or physically limited within the patient's range of motion. As will be appreciated, a typical extension limit (also known as Planar Flexion) is about 45 degrees from the standing position of the ankle, and a typical flexion limit (also known as Doral Flexion) is about −20 degrees from the standing position.


With further reference to FIG. 2, a rigid foot support structure 206 is placed under the foot and a rigid ankle support 208 structure is placed behind the calf. The two support structures 206 and 208 are connected to each other with a hinge 210. The actuator 204 is mounted to the upper rigid structure 208. Straps or padded supports 212 hold the ankle support structure 208 and actuator 204 to the lower leg. An output shaft 214 of the actuator 204 is connected to a linkage 216 attached to the foot support structure 206. One or more straps 212 hold the foot support structure 206 to the foot.



FIG. 3 shows a continuously variable actuator 300 suitable for use as an actuator according to certain embodiments of the present invention. One suitable example of the continuously variable actuator is described in more detail in the Horst et al.'s U.S. patent application Ser. No. 11/649,493, filed Jan. 3, 2007, the contents of which are incorporated herein by reference. The actuator 300 uses a flexible belt 302 connected by belt supports 304 and 306, two motor-driven lead screws 308 and 310 driven by motors 312 and 314, respectively, and a motor driven cam 316 driven by motor 318 to provide variable drive ratio forces in either direction or to allow the output shaft 320 to move in a free-movement mode. Also shown are two driven carriages 322 and 324, and two passive carriages 326 and 328.



FIG. 4 shows a single-motor actuator 400 suitable for use as an actuator according to another embodiment the present invention. In the single-motor actuator 400, a motor 402, which may have an internal gear head, drives a lead screw 404 to move a nut 406 linearly. The lead screw 404 may be an acme screw, a ball screw with a ball nut for lower friction and higher motor efficiency, or any other suitable screw. The ball nut 406 is always between a flexion stop 408 and an extension stop 410 connected to an output shaft 412. When the ball nut 406 is in a center of travel, the output shaft 412 is free to move linearly in either direction without having movement impeded by interaction with the ball nut 406. This position provides free movement of the output shaft 412, and likewise free movement of the ankle or other relevant body part, even with no power applied to the actuator 400. When it is time to extend or flex the ankle, the ball screw 404 is turned to move the ball nut 406 to the left or the right where the ball nut 406 eventually pushes against the flexion or extension stop. Further movement of the ball nut 406 in the same direction moves the flexion stop 408 or the extension stop 410, and hence moves the output shaft 412, thus causing the ankle to flex or extend, respectively. The output shaft 412 is supported by one or more linear bearings 414 allowing the output shaft 412 to move freely in one dimension while preventing substantial movement or twisting in other dimensions


To further elaborate, lead screws include types of screws such as acme screws and ball screws. Ball screws have nuts with recirculating ball bearings allowing them to be backdriven more easily than acme screws. When using a ball screw, motion of the nut causes the lead screw and hence the motor to rotate. Therefore, when the ball nut is engaged by one of the stops, the patient may exercise the leg muscles by extending or flexing the foot to cause motion of the output shaft and hence cause motion of the motor. Exercise may be accomplished either by resisting the passive motions imparted by the actuator, or through a separate exercise mode where all motion is caused by the patient. In either case, software running in the embedded processor controls the amount of current delivered to/from the motor and therefore the amount of exercise resistance



FIG. 5 shows the single motor actuator 400 of FIG. 4 attached to an ankle support 212 and coupled to a foot support 206 through a linkage 216. The ball screw 404 in the actuator 400 is shown in a position about to extend the ankle by pushing to the right. Near the extension and flexion limits, some compliance may be built in to provide more comfort to the patient and to assure that there is no possibility of injuring the patent. This may be accomplished by springs in the actuator 400 or springs in the linkage 216, or both (not shown), that expand or compress before damaging forces are applied


To further elaborate, a free-movement mode of the actuator 400 allows the patient to move the ankle with little resistance. The free movement mode obviates the need to remove the DVT prevention device when walking (for instance, to the restroom); this improves patient compliance because there is no need for the patient or hospital staff to remove and reattach the DVT protection device frequently.



FIG. 6 is a flowchart of a method for operating a device in the prevention of DVT according to one embodiment of the present invention. In step 602, a person such as a medical professional sets up the device with appropriate limits for range of motion and minimum time between ankle movements. This step 602 may also be performed automatically. Then, in step 604, a DVT prevention device is attached to one or both ankles of the patient, and if necessary the device is turned on. In step 606, a test is made to determine if too much time has elapsed since the last flexion of the ankle. If the predefined time limit between flexion has been exceeded, step 608 runs a device actuator through one flexion/extension cycle or other suitable sequence. This cycle may be purely passive motion, or the patient may actively resist tending to cause more blood flow. If the time limit has not been exceeded or if the cycle is at the end of the passive or active movement cycle, the actuator is put into free movement mode in step 610. Finally, in step 612, the movements of the ankle are monitored to help determine the appropriate time for the next movement. Step 612 is followed by step 606, repeating the sequence until the prevention method stops, the device is removed, or the device is turned off.


In the flowchart of FIG. 6, step 606 determines if the specified time has elapsed in order to initiate movement of the ankle. The “specified time” can be determined by any suitable manner including one or more of any of the following ways:

    • 1. A fixed elapsed time since the last ankle movement
    • 2. A moving average over time of the frequency of ankle movements.
    • 3. A dynamic algorithm that approximates blood flow in the leg by taking into account the frequency of movement, the intensity of active movement, and the patients age and condition.


A fixed time algorithm is simplest to implement, but may move the ankle more than necessary. Using a frequency of movement algorithm, the patient can have more control and has more positive feedback for initiating movements beyond the minimum. A dynamic algorithm rewards patient-initiated exercise (resisting the passive movement) and also customizes the frequency of movement based on the patient's condition. The algorithm can be determined through clinical studies of different patients using the device while monitoring blood flow.


The invention is not limited to the specific embodiments described. For example, actuators need only have a way to move and allow free movement of the ankle and need not have strictly linear movement. The actuator may be driven from a brushed or brushless motor or may be activated through pneumatics, hydraulics, piezoelectric activation, electro-active polymers or other artificial muscle technology. The usage of the device is not confined to hospitals but also may be beneficial to those bedridden in nursing homes or at home. The device may also be beneficial to avoid DVT for those traveling long distances by airplane, automobile or train.

Claims
  • 1. An ankle support device for use with a patient, the device comprising: a foot support structure;an ankle support structure;a hinge connecting the foot support structure to the ankle support structure;a portable power supply;an embedded controller powered by the portable power supply;an actuator with an output shaft, the actuator controlled by the embedded controller;where the device has a free movement mode and a powered output mode;a first attachment for coupling the actuator to a first portion of the patient and to the ankle support structure;a second attachment for coupling the output shaft to a second portion of the patient and to the foot support structure;wherein the embedded controller contains computer readable instructions for a pre-determined limit of actuator motion and a minimum amount of time between actuator movements whereby the computer readable instructions for the pre-determined limit of actuator motion contain actuator operating instructions for execution of a pre-determined actuator flexion and extension sequence when the minimum amount of time between actuator movements has been exceeded; and wherein the minimum of time between actuator movements is determined by a dynamic algorithm that approximates blood flow in a leg coupled to the ankle support structure by taking into account one of a frequency of ankle movement, an intensity of active ankle movement, and the patient's age and condition.
  • 2. The device of claim 1 further comprising a joint angle sensor.
  • 3. The device of claim 1 further comprising a force sensor.
  • 4. The device of claim 1 further comprising a wireless recharger for the portable power supply.
  • 5. The device of claim 1 further characterized in that power recharging is performed by power generation resulting from ankle movement.
  • 6. The device of claim 1 further comprising a connection port to communicate patient movement.
  • 7. The device of claim 6 further characterized in that communication of patient movement is used to control the operation of a personal computer.
  • 8. The device of claim 6 further characterized in that communication of patient movement is used to control the operation of an electronic game.
  • 9. The device of claim 1 wherein the computer readable instructions for a pre-determined limit of actuator motion include a planar flexion limit of 45 degrees and a dorsal flexion limit of −20 degrees.
  • 10. The device of claim 1 wherein the minimum amount of time between actuator movements is determined by a fixed elapsed time since a last ankle movement of an ankle between the foot support structure and the ankle support structure.
  • 11. The device of claim 1 wherein the minimum amount of time between actuator movements is determined by a moving average over time of a frequency of movements of an ankle between the foot support structure and the ankle support structure.
  • 12. The device of claim 1 wherein in use the second portion of the patient is a foot and the hinge is behind a heel of the foot.
  • 13. The device of claim 1 wherein the first attachment for coupling the actuator to a first portion of the patient is adapted and configured for attachment to a lower leg of the patient.
  • 14. The device of claim 1 wherein the second attachment for coupling the output shaft to a second portion of the patient is adapted and configured for attachment to a foot of the patient.
  • 15. The device of claim 1 wherein the first attachment for coupling the actuator to a first portion of the patient and the second attachment for coupling the output shaft to a second portion of the patient are adapted and configured to position the actuator whereby motion of the actuator output shaft corresponds to movement of an ankle.
  • 16. An ankle support device for use with a patient, the device comprising: a portable power supply;an embedded controller powered by the portable power supply;an actuator with an output shaft, the actuator controlled by the embedded controller;a first attachment for coupling the actuator to a portion of the leg of the patient and to an ankle support structure adjacent an ankle;a second attachment for coupling the output shaft to a foot support structure and to a portion of the foot adjacent the ankle; andcomputer readable instructions in the embedded controller to operate the device in a mode selected from: a passive extension and flexion of the ankle, an active extension and flexion of the ankle, and a free movement of the ankle, wherein when executing the computer readable instructions to operate the device the foot support structure moves about a hinged connection with the ankle support structure, wherein the computer readable instructions further comprise a pre-determined limit of actuator motion and a minimum amount of time between actuator movements whereby the computer readable instructions for the pre-determined limit of actuator motion contain actuator operating instructions for execution of a pre-determined actuator flexion and extension sequence when the minimum amount of time between actuator movements has been exceeded; and wherein the minimum amount of time between actuator movements is determined by a dynamic algorithm that approximates blood flow in a leg coupled to the ankle support structure by taking into account one of a frequency of ankle movement, an intensity of active ankle movement, and the patient's age and condition.
  • 17. The device of claim 16 wherein the computer readable instructions in the embedded controller limit the free movement mode and the active extension mode of actuator motion to a planar flexion limit of 45 degrees.
  • 18. The device of claim 16 wherein the computer readable instructions in the embedded controller limit the free movement mode and the active extension mode of actuator motion to a dorsal flexion limit of −20 degrees.
  • 19. The device of claim 16 further comprising a joint angle sensor configured to indicate the hinged connection joint angle.
  • 20. The device of claim 16 further comprising a force sensor configured to indicate a force in an output of the actuator.
  • 21. The device of claim 16 further comprising a wireless recharger for the portable power supply wherein power recharging is performed by power generation resulting from ankle movement.
  • 22. The device of claim 16 further comprising a connection port to communicate patient movement of the actuator or the hinged connection.
  • 23. The device of claim 22 further characterized in that communication of patient movement is used to control the operation of a personal computer.
  • 24. The device of claim 22 further characterized in that communication of patient movement is used to control the operation of an electronic game.
  • 25. The device of claim 16 wherein the minimum amount of time between actuator movements is determined by a fixed elapsed time since a movement of the hinged connection.
  • 26. The device of claim 16 wherein the minimum amount of time between actuator movements is determined by a moving average over time of a frequency of hinged connection movements.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application which claims priority to U.S. patent application Ser. No. 11/932,799 filed on Oct. 31, 2007; which claims priority to U.S. Provisional Patent Application No. 60/901,614 entitled “Deep Vein Thrombosis Prevention Device”, which was filed on Feb. 14, 2007, the contents of which are expressly incorporated by reference herein.

US Referenced Citations (256)
Number Name Date Kind
1286482 Yoder Dec 1918 A
1366904 Davis Feb 1921 A
1391290 Welffens Sep 1921 A
1513473 Ackerman Oct 1924 A
1739053 Wilhelm Dec 1929 A
1847720 Marcellis Mar 1932 A
2169813 Parkin Aug 1939 A
3059490 McDuffie Oct 1962 A
3200666 Schrodt et al. Aug 1965 A
3358678 Kultsar Dec 1967 A
3398248 Klauss et al. Aug 1968 A
3402942 Shimano et al. Sep 1968 A
3631542 Potter Jan 1972 A
3641843 Lemmens Feb 1972 A
3863512 Crawley Feb 1975 A
3899383 Schultz et al. Aug 1975 A
3925131 Krause Dec 1975 A
3976057 Barclay Aug 1976 A
4273113 Hofstein Jun 1981 A
4474176 Farris et al. Oct 1984 A
4507104 Clark et al. Mar 1985 A
4538595 Hajianpour Sep 1985 A
4549555 Fraser et al. Oct 1985 A
4588040 Albright, Jr. et al. May 1986 A
4647918 Goforth Mar 1987 A
4649488 Osanai et al. Mar 1987 A
4665899 Farris et al. May 1987 A
4678354 Olsen Jul 1987 A
4679548 Pecheux Jul 1987 A
4691694 Boyd et al. Sep 1987 A
4697808 Larson et al. Oct 1987 A
4731044 Mott Mar 1988 A
4745930 Confer May 1988 A
4754185 Gabriel et al. Jun 1988 A
4796631 Grigoryev Jan 1989 A
4801138 Airy et al. Jan 1989 A
4807874 Little Feb 1989 A
4814661 Ratzlaff et al. Mar 1989 A
4872665 Chareire Oct 1989 A
4878663 Luquette Nov 1989 A
4883445 Gomoll et al. Nov 1989 A
4922925 Crandall et al. May 1990 A
4934694 McIntosh Jun 1990 A
4944713 Salerno Jul 1990 A
4953543 Grim et al. Sep 1990 A
4981116 Trinquard Jan 1991 A
4983146 Charles et al. Jan 1991 A
5020790 Beard et al. Jun 1991 A
5046375 Salisbury et al. Sep 1991 A
5052681 Williams Oct 1991 A
5078152 Bond et al. Jan 1992 A
5117814 Luttrell et al. Jun 1992 A
5170776 Pecheux Dec 1992 A
5170777 Reddy et al. Dec 1992 A
5195617 Clemens Mar 1993 A
5203321 Donovan et al. Apr 1993 A
5209223 McGorry et al. May 1993 A
5213094 Bonutti May 1993 A
5239222 Higuchi et al. Aug 1993 A
5241952 Ortiz Sep 1993 A
5282460 Boldt Feb 1994 A
5303716 Mason et al. Apr 1994 A
5313968 Logan et al. May 1994 A
5345834 Hayashi Sep 1994 A
5358468 Longo et al. Oct 1994 A
5378954 Higuchi et al. Jan 1995 A
5395303 Bonutti et al. Mar 1995 A
5399147 Kaiser Mar 1995 A
5410488 Andersen Apr 1995 A
5421798 Bond et al. Jun 1995 A
5440945 Penn Aug 1995 A
5448124 Higuchi et al. Sep 1995 A
5463526 Mundt Oct 1995 A
5476441 Durfee et al. Dec 1995 A
5509894 Mason et al. Apr 1996 A
5520627 Malewicz May 1996 A
5525642 Cipriano et al. Jun 1996 A
5534740 Higuchi et al. Jul 1996 A
5541465 Higuchi et al. Jul 1996 A
5573088 Daniels Nov 1996 A
5582579 Chism et al. Dec 1996 A
5585683 Higuchi et al. Dec 1996 A
5608599 Goldman Mar 1997 A
5624390 Van Dyne Apr 1997 A
5653680 Cruz Aug 1997 A
5662594 Rosenblatt Sep 1997 A
5662693 Johnson et al. Sep 1997 A
5674262 Tumey Oct 1997 A
5678448 Fullen et al. Oct 1997 A
5683351 Kaiser et al. Nov 1997 A
5695859 Burgess Dec 1997 A
5704440 Urban et al. Jan 1998 A
5708319 Ban et al. Jan 1998 A
5728017 Bellio et al. Mar 1998 A
5746684 Jordan May 1998 A
5746704 Schenck et al. May 1998 A
5755303 Yamamoto et al. May 1998 A
5789843 Higuchi et al. Aug 1998 A
5833257 Kohlheb et al. Nov 1998 A
5865770 Schectman Feb 1999 A
5916689 Collins et al. Jun 1999 A
5931756 Ohsono et al. Aug 1999 A
5976063 Joutras et al. Nov 1999 A
6001075 Clemens et al. Dec 1999 A
6030351 Schmidt et al. Feb 2000 A
6033330 Wong et al. Mar 2000 A
6033370 Reinbold et al. Mar 2000 A
6062096 Lester May 2000 A
6119539 Papanicolaou Sep 2000 A
6146341 Sato et al. Nov 2000 A
6149612 Schnapp et al. Nov 2000 A
6162189 Girone et al. Dec 2000 A
6183431 Gach, Jr. Feb 2001 B1
6217532 Blanchard et al. Apr 2001 B1
6221032 Blanchard et al. Apr 2001 B1
6290662 Morris et al. Sep 2001 B1
6314835 Lascelles et al. Nov 2001 B1
6375619 Ohdachi Apr 2002 B1
6387066 Whiteside May 2002 B1
6440093 McEwen et al. Aug 2002 B1
6472795 Hirose et al. Oct 2002 B2
6494798 Onogi Dec 2002 B1
6500138 Irby et al. Dec 2002 B1
6517503 Naft et al. Feb 2003 B1
6525446 Yasuda et al. Feb 2003 B1
6527671 Paalasmaa et al. Mar 2003 B2
6533742 Gach, Jr. Mar 2003 B1
6537175 Blood Mar 2003 B1
6554773 Nissila et al. Apr 2003 B1
6572558 Masakov et al. Jun 2003 B2
6599255 Zhang Jul 2003 B2
6659910 Gu et al. Dec 2003 B2
6666796 MacCready, Jr. Dec 2003 B1
6689075 West Feb 2004 B2
6694833 Hoehn et al. Feb 2004 B2
6709411 Olinger Mar 2004 B1
6796926 Reinkensmeyer et al. Sep 2004 B2
6805677 Simmons Oct 2004 B2
6821262 Muse et al. Nov 2004 B1
6827579 Burdea et al. Dec 2004 B2
6836744 Asphahani et al. Dec 2004 B1
6872187 Stark et al. Mar 2005 B1
6878122 Cordo Apr 2005 B2
6936994 Gimlan Aug 2005 B1
6966882 Horst Nov 2005 B2
7041069 West May 2006 B2
7124321 Garnett et al. Oct 2006 B2
7137938 Gottlieb Nov 2006 B2
7171331 Vock et al. Jan 2007 B2
7190141 Ashrafiuon et al. Mar 2007 B1
7192401 Saalasti et al. Mar 2007 B2
7217247 Dariush et al. May 2007 B2
7239065 Horst Jul 2007 B2
7252644 Dewald et al. Aug 2007 B2
7309320 Schmehl Dec 2007 B2
7324841 Reho et al. Jan 2008 B2
7365463 Horst et al. Apr 2008 B2
7410471 Campbell et al. Aug 2008 B1
7416537 Stark et al. Aug 2008 B1
7431707 Ikeuchi Oct 2008 B2
7457724 Vock et al. Nov 2008 B2
7458922 Pisciottano Dec 2008 B2
7537573 Horst May 2009 B2
7559909 Katoh et al. Jul 2009 B2
7578799 Thorsteinsson et al. Aug 2009 B2
7648436 Horst et al. Jan 2010 B2
7731670 Aguirre-Ollinger et al. Jun 2010 B2
7833178 Lee et al. Nov 2010 B2
7880345 Hoffmann et al. Feb 2011 B2
7998092 Avni et al. Aug 2011 B2
8052629 Smith et al. Nov 2011 B2
8058823 Horst et al. Nov 2011 B2
8167829 Sterling et al. May 2012 B2
8274244 Horst et al. Sep 2012 B2
8353854 Horst et al. Jan 2013 B2
20010029343 Seto et al. Oct 2001 A1
20020029911 Richards Mar 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20030104886 Gajewski Jun 2003 A1
20030120183 Simmons Jun 2003 A1
20030184310 Lurtz Oct 2003 A1
20030195638 Kajitani et al. Oct 2003 A1
20030212356 Scorvo Nov 2003 A1
20040015112 Salutterback et al. Jan 2004 A1
20040049139 Craciunescu Mar 2004 A1
20040054311 Sterling Mar 2004 A1
20040078091 Elkins Apr 2004 A1
20040106881 McBean et al. Jun 2004 A1
20050014600 Clauson Jan 2005 A1
20050085346 Johnson Apr 2005 A1
20050085353 Johnson Apr 2005 A1
20050101887 Stark et al. May 2005 A1
20050151420 Crombez et al. Jul 2005 A1
20050173994 Pfister et al. Aug 2005 A1
20050210557 Falconer Sep 2005 A1
20050221926 Naude Oct 2005 A1
20050245849 Cordo Nov 2005 A1
20050251067 Terry Nov 2005 A1
20050253675 Davison Nov 2005 A1
20050273022 Diaz et al. Dec 2005 A1
20060004265 Pulkkinen et al. Jan 2006 A1
20060046907 Rastegar Mar 2006 A1
20060069336 Krebs et al. Mar 2006 A1
20060108954 Sebille et al. May 2006 A1
20060132069 Hemphill et al. Jun 2006 A1
20060157010 Moriwaki et al. Jul 2006 A1
20060206045 Townsend et al. Sep 2006 A1
20060249315 Herr et al. Nov 2006 A1
20060251179 Ghoshal Nov 2006 A1
20060293624 Enzerink et al. Dec 2006 A1
20070015611 Noble et al. Jan 2007 A1
20070038161 Bonutti et al. Feb 2007 A1
20070055163 Asada et al. Mar 2007 A1
20070093729 Ewing Apr 2007 A1
20070105695 Susta May 2007 A1
20070149899 Shechtman Jun 2007 A1
20070155557 Horst et al. Jul 2007 A1
20070155558 Horst et al. Jul 2007 A1
20070155560 Horst et al. Jul 2007 A1
20070155588 Stark et al. Jul 2007 A1
20070162152 Herr et al. Jul 2007 A1
20070173747 Knotts Jul 2007 A1
20070225620 Carignan et al. Sep 2007 A1
20070248799 DeAngelis et al. Oct 2007 A1
20070265534 Martikka et al. Nov 2007 A1
20070270265 Miller et al. Nov 2007 A1
20070287302 Lindberg et al. Dec 2007 A1
20070287928 Kiviniemi et al. Dec 2007 A1
20080039731 McCombie et al. Feb 2008 A1
20080097269 Weinberg et al. Apr 2008 A1
20080152463 Chidambaram et al. Jun 2008 A1
20080177208 Borschneck Jul 2008 A1
20080200994 Colgate et al. Aug 2008 A1
20080234608 Sankai Sep 2008 A1
20080281436 Townsend et al. Nov 2008 A1
20090007983 Healy Jan 2009 A1
20090036804 Horst Feb 2009 A1
20090048686 Ikeuchi et al. Feb 2009 A1
20090093353 Weiner Apr 2009 A1
20090131839 Yasuhara May 2009 A1
20090171469 Thorsteinsson et al. Jul 2009 A1
20090265018 Goldfarb et al. Oct 2009 A1
20090306548 Bhugra et al. Dec 2009 A1
20100049102 Yasuhara Feb 2010 A1
20100114329 Casler et al. May 2010 A1
20100211355 Horst et al. Aug 2010 A1
20100224844 Boussaton et al. Sep 2010 A1
20100234775 Yasuhara et al. Sep 2010 A1
20100280628 Sankai Nov 2010 A1
20100318006 Horst Dec 2010 A1
20120053498 Horst Mar 2012 A1
20120095377 Smith et al. Apr 2012 A1
20120316475 Bhugra et al. Dec 2012 A1
20130165817 Horst et al. Jun 2013 A1
20130261511 Smith et al. Oct 2013 A1
20130345601 Bhugra et al. Dec 2013 A1
Foreign Referenced Citations (21)
Number Date Country
1138286 Oct 2001 EP
1410780 Apr 2004 EP
63-136978 Jun 1988 JP
02-275162 Nov 1990 JP
04-104180 Apr 1992 JP
05-038948 Feb 1993 JP
05-260766 Oct 1993 JP
06-038551 Feb 1994 JP
07-274540 Oct 1995 JP
08-033360 Feb 1996 JP
08-149858 Jun 1996 JP
08-154304 Jun 1996 JP
09-133196 May 1997 JP
09-261975 Oct 1997 JP
2001-353675 Dec 2001 JP
2002-191654 Jul 2002 JP
WO 9011049 Oct 1990 WO
WO 03088865 Oct 2003 WO
WO 2005057054 Jun 2005 WO
WO 2007027673 Mar 2007 WO
WO 2007041303 Apr 2007 WO
Non-Patent Literature Citations (35)
Entry
Horst et al.; U.S. Appl. No. 14/162,553 entitled “Food pad device and method of obtaining weight data,” filed Jan. 23, 2014.
Horst, R.; U.S. Appl. No. 14/225,186 entitled “Intention-based therapy device and method,” filed Mar. 25, 2014.
Advanced Mechatronics Lab (Univ. of Tokyo); Dual Excitation Multiphase Electrostatic Drive (DEMED); http://www.intellect.pe.u-tokyo.ac.jp/research/es—motor/demed—e.html; pp. 1-5; (printed) Nov. 21, 2002.
Advanced Mechatronics Lab (Univ. of Tokyo); High-power electrostatic motor; http://www.intellect.pe.u-tokyo.ac.jp/research/es—motor/es—motor—e.html; pp. 1-2; (printed) Nov. 21, 2002.
Advanced Mechatronics Lab (Univ. of Tokyo); Pulse driven induction electrostatic motor; http://www.intellect.pe.u-tokyo.ac.jp/research/es—motor/pim—e.html; pp. 1-5; (printed) Nov. 21, 2002.
Asel (Univ. of Delaware); Powered orthosis project; http://www.asel.udel.edu/robotics/orthosis/orthosis.html, 1 pg.; (update) Jan. 17, 1999.
British Tech. Group; Demonstration of energy saving in vehicles by integrating an infinitely variable transmission with an optimized petrol engine; prj. no. TR/00087/92; pp. 1-19; (version) Jul. 15, 1998.
Coronel et al; The Coronel effect positively infinitely variable transmission; U.C. Davis; No. 04CVT-51; pp. 1-8; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2004.
Fitch, C. J.; Development of the electrostatic clutch; IBM Journal; pp. 49-56; Jan. 1957.
Frank, Andrew; Engine optimization concepts . . . ; U.C. Davis; No. 04CVT-56; pp. 1-12; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2004.
Gongola et al.; Design of a PZT-actuated proportional drum brake; IEEE ASME Trans. on Mech.; vol. 4; No. 4; pp. 409-416; Dec. 1999.
Howard Leitch, PPT LTD.; Waveform Gearing; Motion System Design; pp. 33-35; Nov. 2002.
James et al.; Increasing power density in a full toroidal variator; 3rd Int'l. IIR-Symposium; Innovative Automotive Transmission; pp. 1-11; Dec. 2004.
Kawamoto et al.; Power assist system HAL-3 for GAIT disorder person; ICCHP 2002; LNCS 2398; pp. 196-203; Aug. 2002.
Kim et al.; On the energy efficiency of CVT-based mobile robots; Proc. 2000 IEEE; Int. Conf. on Robotics & Automation; pp. 1539-1544; San Francisco, CA; Apr. 2000.
Kluger et al.; An overview of current automatic, manual and continuously variable transmission efficiencies and their projected future improvements; Int. Congress and Expo. (No. 1999-1-1259); pp. 1-6; Detroit, MI; Mar. 1-4, 1999.
Misuraca et al.; Lower limb human enhancer; Int. Mech. Eng. Conf. and Expo.; New York, NY; pp. 1-7; Nov. 11-16, 2001.
Niino et al.; Electrostatic artificial muscle: compact, high-power linear actuators with multiple-layer structures; Proc. IEEE Workshop on Micro Electro Mechanical Systems; Oiso, Japan; pp. 130-135; Jan. 1994.
Nugent, James; Design and performance of an exponential roller gear . . . ; U.C. Davis; No. 04CVT-18; pp. 1-8; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2004.
Ohhashi, Toshio et al.; Human perspiration measurement; Physiological Measurement; vol. 19; pp. 449-461; Nov. 1998.
Otto Bock Health Care; (3C100 C-Leg® System) Creating a new standard for prosthetic control; http://www.ottobockus.com/products/op—lower—cleg.asp; pp. 1-2; (printed) Nov. 22, 2002.
Otto Bock Health Care; (3C100 C-Leg® System) New generation leg system revolutionizes lower limb prostheses; http://www.ottobockus.com/products/op—lower—cleg4.asp; pp. 1-2; (printed) Nov. 22, 2002.
Patras et al.; Electro-rheological fluids in the design of clutch systems for robotic applications; IEEE; pp. 554-558; Nov. 11-13, 1992.
Powell et al.; Computer model for a parallel hybrid electric vehicle (PHEV) with CVT; Proc. AACC; pp. 1011-1015; Chicago, IL; Jun. 2000.
Shastri et al.; Comparison of energy consumption and power losses of a conventionally controlled CVT with a servo-hydraulic controlled CVT and with a belt and chain as the torque transmitting element; U.C. Davis; No. 04CVT-55; pp. 1-11; Sep. 2004.
Shriner'S Hospitals; Your new orthosis; http://www.shrinershq.org/patientedu/orthosis.html; pp. 1-3; (printed) Nov. 22, 2002.
Takaki et al; Load-sensitive continuously variable transmission for powerful and inexpensive robot hands; IEEE; pp. 45-46; Nov. 2004.
Takesue et al.; Development and experiments of actuator using MR fluid; IEEE; pp. 1838-1843; Oct. 2000.
Townsend Design; Functional Bracing Solutions (AIR Townsend & Ultra AIR); http://wvvw.townsenddesign.com/air.html; 2 pgs; (printed) Nov. 21, 2002.
Townsend Design; Functional Knee Bracing Solutions; http://www.townsenddesign.com/functional.html; pp. 1; (printed) Nov. 21, 2002.
Townsend Design; Patented Motion Hinge (Planes of Motion); http://wvvw.townsenddesign.com/motion.html; pp. 1; (printed) Nov. 21, 2002.
Trimmer et al.; An operational harmonic electrostatic motor; IEEE; pp. 13-16; Feb. 1989.
Smith et al., U.S. Appl. No. 12/471,299 entitled “Therapy and mobility assistance system,” filed May 22, 2009.
Bhugra, Kern; U.S. Appl. No. 12/363,567 entitled “System and method for controlling the joint motion of a user based on a measured physiological property,” filed Jan. 30, 2009.
Smith et al.; U.S. Appl. No. 14/325,935 entitled “Multi-fit orthotic and mobility assistance apparatus,” filed Jul. 8, 2014.
Related Publications (1)
Number Date Country
20130079687 A1 Mar 2013 US
Provisional Applications (1)
Number Date Country
60901614 Feb 2007 US
Divisions (1)
Number Date Country
Parent 11932799 Oct 2007 US
Child 13683503 US