Various features of, for example, gastrointestinal bypass sleeves, attachment cuffs, and/or toposcopic delivery methods that can be used or adapted for use with systems and methods disclosed herein can be found, for example, at U.S. patent application Ser. No. 10/698,148, filed Oct. 31, 2003, published May 13, 2004 as U.S. Patent Pub. No. 2004-0092892 A1 and entitled “APPARATUS AND METHODS FOR TREATMENT OF MORBID OBESITY” (and may be referred to herein as the “Kagan '148 application or Kagan '892 publication”); U.S. patent application Ser. No. 11/025,364, filed Dec. 29, 2004, published Aug. 11, 2005 as U.S. Patent Pub. No. 2005-0177181 A1 and entitled “DEVICES AND METHODS FOR TREATING MORBID OBESITY” (and may be referred to herein as the “Kagan '181 publication”); U.S. patent application Ser. No. 11/124,634, filed May 5, 2005, published Jan. 26, 2006 as U.S. Patent Pub. No. 2006-0020247 A1 and entitled “DEVICES AND METHODS FOR ATTACHMENT OF AN ENDOLUMENAL GASTROINTESTINAL IMPLANT” (and may be referred to herein as the “Kagan '247 publication”); U.S. patent application Ser. No. 11/400,724, filed Apr. 7, 2006, published Jan. 11, 2007 as U.S. Patent Pub. No. 2007-0010794 A1 and entitled “DEVICES AND METHODS FOR ENDOLUMENAL GASTROINTESTINAL BYPASS” (and may be referred to herein as the “Dann '794 publication”); and U.S. patent application Ser. No. 11/548,605, filed Oct. 11, 2006, published Aug. 23, 2007 as U.S. Pub. No. 2007-0198074 A1 and entitled “DEVICES AND METHODS FOR ENDOLUMENAL GASTROINTESTINAL BYPASS” (and may be referred to herein as the “Dann '605 application” or “Dann '074 publication”) are hereby incorporated by reference in their entireties herein, as well as any additional applications, patents, or publications noted in the specification below.
In one embodiment, disclosed herein is an intraluminal support system, which can be a gastrointestinal, or intragastric support system in some embodiments, that includes a proximal orientation element and a distal support element. The proximal orientation element includes a proximal end and a distal end, and has a diameter sized to fit within the lumen of an esophagus. The long axis of the proximal orientation element can be substantially parallel with the long axis of the esophagus. The distal support element can be configured to reside within the stomach, such as along the greater curve of the stomach. The distal support element can be transformable from a first configuration where a long axis of the distal support element is configured to be substantially parallel with the long axis of the proximal orientation element during delivery to a second configuration where the long axis of the distal support element is configured to be not substantially parallel with the long axis of the proximal orientation element when implanted in the body. The proximal orientation element can include a food-collecting ring, which can include a proximal tapered portion and a distal cylindrical portion in some embodiments. The proximal tapered portion can include a first shoulder and a second shoulder. The second shoulder can be longitudinally offset from the first shoulder. The system can further include a joint configured to pivotably couple the proximal orientation element to the distal support element. The joint could be, for example, a ball-and-socket joint, or a hinged joint in other embodiments. The system can also include a gastrointestinal bypass sleeve, which can be attached to the food-collecting ring in some embodiments. The distal support element can include an enlarged distal end to retain the distal support element within the stomach. The distal support element can include a drug reservoir. The proximal orientation element can include a rounded proximal head to prevent esophageal trauma. In some embodiments, the proximal orientation element has a variable-length cross-section. The proximal orientation element can include a plurality of strut members in some embodiments. The distal support element can be transformable from a first reduced configuration to a second expanded configuration. In some embodiments, the system includes a restrictive element and/or an obstructive element operably connected to the food-collecting ring.
Also disclosed herein is a method of treating a patient, including the steps of providing an providing an intragastric support system, the system comprising a proximal orientation element having a proximal end and a distal end, and a distal support element; inserting the proximal orientation element and the distal support element into a gastrointestinal tract lumen, wherein a long axis of the proximal orientation element is substantially parallel to a long axis of the distal support element; positioning the system such that at least a portion of the proximal orientation element is within the esophagus of a patient and the distal support element is within the stomach of a patient; and transforming the distal support element such that the long axis of the distal support element is not substantially parallel to the long axis of the proximal orientation element. In some embodiments, transforming the distal support element is such that the long axis of the distal support element is substantially perpendicular to the long axis of the proximal orientation element. In some embodiments, the intragastric support system further includes a joint configured to pivotably couple the distal support element to the proximal orientation element, the joint having a locked state to prevent movement of the distal support element with respect to the proximal orientation element. In some embodiments, the method further includes the step of locking the joint at a position wherein a long axis of the proximal orientation element is at least substantially coaxial with a long axis of the distal support element during delivery; and unlocking the joint to allow the distal support element to pivot within a range of motion with respect to the proximal orientation element when the distal support element is implanted in the stomach.
In some embodiments, the proximal orientation element is configured to reside at least partially within the esophageal lumen while the distal support element is configured to reside within the stomach, such as along the greater curve of the stomach. The gastrointestinal support system has a first configuration in which the long axis of the proximal orientation element is coaxial or substantially coaxial with the long axis of the distal support element, and a second configuration in which the long axis of the proximal orientation element is not substantially coaxial with the long axis of the distal support element, to retain the gastrointestinal support system in place and prevent unwanted proximal migration of the distal support element into the esophagus or distal migration into the intestine.
In one embodiment, disclosed is an intragastric support system. In some embodiments, the system can be used for positioning a prosthetic or functional device within the GI tract. While the intragastric support most preferably includes at least one component within the stomach, other components of the system may reside partially or completely outside of the stomach, such as, for example, in the esophagus and/or intestines as well. The system need not be attached transmurally to a wall of the GI tract. The system can include a proximal orientation element, a support component, and a distal retention component (also referred to as a pyloric support component). The system can also include a sleeve connected to the support component and/or proximal orientation element, or other various devices such as an anti-reflux device, a drug-eluting device, a stimulator, a volume-occupying device, or a chemical, biochemical or physiologic parameter sensor such as a pH sensor. In some embodiments, the sleeve can be a gastric and/or intestinal bypass sleeve for bypassing at least a portion of the stomach and/or intestines.
In some embodiments, the proximal orientation component is connected to or is a part of the intragastric support component. The sleeve is connected to the intragastric support at one or more points, preferably at a location at or near the GEJ so that food leaving the esophagus flows into the sleeve with minimal leak. In other embodiments, the sleeve may be connected to a portion, such as a ring element of the proximal orientation element, which can be an esophageal post above the GEJ. One way to accomplish this is if the intragastric support component includes a gasket or baffle element, that may be dome-shaped in some embodiments, in the upper part of the stomach, the sleeve can be connected to an opening in the dome that aligns with the GEJ. The sleeve may also include a cuff portion as disclosed in, for example, the Kagan '148 application. The term “cuff/sleeve” as used herein may encompass embodiments with a sleeve, such as a gastric and/or intestinal bypass sleeve, cuff alone, or sleeve that includes a cuff. As used herein proximal refers to closer to the mouth in the implanted orientation, while distal refers to the “downstream” GI tract toward the anus. The proximal orientation component can be substantially linear, or spiral shaped in some embodiments. The proximal orientation component can also include one or more V-shaped posts. The proximal orientation component can also have an atraumatic tip portion that is flexible, or a rounded ball-like tip. In some embodiments, the proximal orientation component can be coated with a coating, such as a hydrophilic coating material. The proximal orientation component is preferably configured to reside at least partially within the esophagus. In some embodiments, the length of the proximal orientation component is no greater than the distance between the gastroesophageal junction distally and the level of the cricopharyngeous muscle proximally. In some embodiments, a proximal orientation element is configured to reduce reflux of gastric acids into the esophagus.
In other embodiments, the proximal orientation component may be or could include one or more strips of material attached to a sleeve. The strips may be made of a woven fiber, polymer, or a tissue graft and adhere to the walls of a body lumen such as the esophagus. In some embodiments, the strips are configured to promote tissue in-growth. In some embodiments, at least a portion of the mucosal surface of the esophagus is ablated or otherwise injured prior to installation of an attachment system. The ablation could be controlled to increase bonding of the system to the esophageal wall, accelerate tissue in-growth, and/or alter the tissue layers to provide a more durable attachment substrate. The surface may be injured using various energy forms, such as a laser, Argon Plasma Coagulation (APC), RF, microwave, thermal, cryo, or ultrasound energy, mechanical abrasion, or any of a variety of sclerosing agents known in the art.
In some embodiments, the distal support element can include a conical or dome-shaped support element that may be convex or concave or some complex form that is designed to mimic the shape of the upper part of the stomach. While this can be referred to as a dome-shaped element herein, the structure could be any other complex form as noted to mimic or fit within the upper part of the stomach and that can help prevent the device from migrating proximally into the esophagus. The dome-shaped element may have a lumen in which the cuff/sleeve can pass therethrough. The dome-shaped element may be sized and shaped such that the forces of the stomach acting on the proximal end are not able to significantly move the device where the cuff/sleeve is no longer aligned with the GEJ. In addition, the proximal end may be supplementally attached at or near the gastroesophageal junction or along the lesser or greater curve of the stomach at one or more places if necessary using any of the attachment methods previously disclosed in the disclosures incorporated by reference, above.
In some embodiments, the dome-shaped element may be implanted within the stomach in a first configuration with a low crossing profile and expanded to a second configuration with a second crossing profile. The dome-shaped element may be made of a polymeric or metal shape memory material to facilitate the transformation from the first to the second configuration. In other embodiments, the dome-shaped element may be transformed using a filler, such as a liquid polymerizable in situ. In some embodiments, the support element may be a nitinol basket, or helical shaped. In addition, the dome shaped element could be made up of component parts that lock together after placement in the stomach. This could be accomplished using key-slot type locking mechanisms or preferably magnets implanted in the components so the device self-assembles when the components are placed in the stomach.
The distal support element can include a connecting support element that can be arcuate-shaped, such as banana-shaped in some embodiments. The arcuate support element is preferably shaped to conform or cooperate with the shape of the greater curvature, or alternately in some embodiments, the lesser curvature of the stomach. The arcuate support element is preferably connected to or forms distally a pyloric retention element configured to prevent the system from migrating distally past the pylorus into the intestine. The support element could be a wire such as Nitinol or other alloy or metal with a distal stop such as a loop configured such that the system cannot pass through the pylorus. The wire can be covered with a silicon or polyurethane or other coating to make the device less traumatic to the wall of the stomach. In addition, the device could have a hydrophilic coating such as the HARMONY® Advanced Hydrophilic Coating from SurModics (Eden Prairie, Minn.).
In some embodiments, the arcuate element may be actuatable from a straighter or flexible configuration to a more rigid arcuate configuration. In this way, the device could be placed in the stomach while in a flexible or generally linear form and then utilizing a mechanical mechanism or the properties of the shape memory nature of nitinol be triggered to take an arcuate shape. One method to achieve this would be to shape set the nitinol in an arcuate form and then cool the material so that it is flexible. The device can be first implanted in a cold, more flexible form and then when the device warms due to the ambient temperature in the stomach it takes its arcuate shape.
The pyloric retention element may form a loop such that a sleeve configured to contain orally ingested materials may pass therethrough. Alternatively, the sleeve could go outside the loop so it is pinched between the stomach wall and the loop. This would in essence form a pinch valve and may be desirable to regulate the flow of food through the pylorus. The dome element, arcuate element, and pyloric support element may be integrally formed or assembled from component parts. In some embodiments, the distal support element includes one or more balloons. The balloons may be positioned near the gastroesophageal junction and/or the distal stomach near the pylorus. The balloons could serve to help anchor the device in place and keep it from being passed through the pylorus. In addition, the balloon or balloons could serve as volume occupying devices. Preferably the design of the structure is such that it does not significantly interfere with the ability of the stomach walls to move and have that motion transfer forces to the sleeve that helps move material through the sleeve. By having an arcuate structure in the greater curve, the stomach can still contract around the arcuate element and contact the sleeve. This allows the transmission of peristaltic motion to the sleeve to help keep food or other material moving through the sleeve.
In some embodiments, an intragastric support system (which can also be referred to as a GI attachment system) includes a proximal orientation element that can be in some embodiments an esophageal post with a ringed tubular element for connecting a sleeve above the GEJ, and a distal (e.g., intragastric) support element hingably connected to the proximal orientation element (e.g., esophageal post).
The invention relates, in some embodiments, to various structures forming a system for attaching or maintaining the position of a therapeutic or diagnostic device in a body lumen, such as the GI tract without necessarily requiring any penetrating attachments through any body walls. The system 501 can include at least two elements: (1) a proximal orientation element 500 and (2) a distal support element 502, as shown schematically in
Methods and devices disclosed to accomplish this could be used in conjunction with a wide variety of devices including any of the embodiments, combinations, or subcombinations of those described in any of the aforementioned applications listed above in the section “Applications Incorporated by Reference” above. For illustrative purposes, an intragastric support system described, in some embodiments, is configured to support a cuff and/or gastrointestinal bypass sleeve and/or optional stoma device that has been previously described in some of the aforementioned applications previously incorporated by reference. Instead of, or in addition to a cuff and/or sleeve, these intragastric support systems as described could also aid in the placement of various diagnostic and therapeutic devices, such as gastric stimulators, volume occupying devices such as bezoars or balloons, or diagnostic devices such pH detectors. Some other non-limiting examples of devices that can be secured using the attachment systems described herein include: a drug eluting device which could release substances into the stomach and be refilled endoscopically; hanging device for cameras or capsules in the stomach; device that monitors consumption of specific substances (calories, fat, cholesterol, alcohol, drugs, poisons) and optionally triggers a system to reduce the effects of consumption through one or more of: stimulation to increase or decrease motility or regurgitation, release of a stored emetic, release of a diuretic, release of an antidote; volume and/or flow restrictive device (with or without sleeve), and/or a device which stores, emits, and receives data. The device may also function as a device to reduce gastroesophageal reflux, creating a barrier to reflux with the use of a valve or flap.
A preferred location for the cuff/sleeve device, in some embodiments, is to have the cuff placed at or near the gastro-esophageal junction (GEJ) and the sleeve attached or coupled to the cuff. In a preferred embodiment, the distal end of the sleeve resides in the intestine, distal to the ligament of Treitz. This preferred embodiment is intended to replicate a Roux-en-Y gastric bypass with an endoscopically implanted device. However, other implantation locations are also within the scope of the invention, and can be selected by one of ordinary skill in the art depending on the desired clinical result. The intragastric support systems described could be used and/or modified to attach any of the aforementioned disclosed devices in any position of the GI tract that can, for example, provide the desired results of reduction in weight and/or resolution of comorbidities associated with obesity. Alternatively, the bypass sleeve could be held with the proximal end of the sleeve at or past the pylorus or elsewhere in the structure. In this example, a restrictive element could still be provided by modifying the design by adding a GEJ flow restrictor, such as by modifying a silicone dome, to restrict flow out of the GEJ. In other embodiments, the dome could support a separate stoma device at the GEJ, or there could be no restrictive element at all. In addition, the cuff may not be necessary in some cases and the device could just be a bypass sleeve. For ease of description, the words “cuff/sleeve” and bypass sleeve will often be used to describe any bypass sleeve that is used as a conduit for ingested food or liquid to bypass a section of the GI tract. Note the bypass sleeve could be any embodiment of those described in the previous aforementioned applications incorporated by reference. For example, sleeve material and embodiments, for example, can be as described in previous disclosures, such as disclosed in the Kagan '892 publication, for example, at FIGS. 11-31 and the accompanying disclosure at, e.g., paragraphs [0241] to [0312] of the '892 publication, or, for example, at paragraphs [0174] to [0185] of the Dann '074 publication, both of which are incorporated by reference in their entirety.
Attachment of the device can be achieved through a wide variety of means; attachment as disclosed herein refers to the fact that the device can hold its position in or near a desired location in the GI tract. The attachment need not necessarily penetrate any wall of the GI tract.
As illustrated in
Proximal Orientation Element
Structures are disclosed that may be deployed in the esophagus, and are designed to attach to or extend from the proximal end of the cuff/sleeve construct or proximal gastric support construct. These structures can also be configured to keep the proximal opening of the cuff/sleeve oriented in communication with the opening from the GEJ. In a preferred embodiment, the proximal orientation elements have mechanical properties that keep them in position without being anchored to or causing trauma to the esophageal wall. Alternatively, these structures could be fixedly attached to the lumen of the esophagus using a variety of possible devices including t-tags, adhesives, sutures, stents, or other devices that will be appreciated by one of ordinary skill in the art. In some embodiments, the proximal orientation element 500 could be actively or passively expanded or contracted in one or more dimensions. In other words, the proximal orientation element could be expanded or contracted, for example, in an axial direction with a motor or some control means that could be mechanical. In some embodiments, there is a telescoping or spring-loaded component to produce the desired clinical result. This may be, in some embodiments, controlled via a remote transmitter, or automated, such as by a sensing mechanism.
As shown in the schematic
The length of the proximal orientation element 202 is preferably configured such that the proximal end does not come far enough proximally up the esophagus (toward the oral cavity) to be felt or sensed by the patient. The level of the cricopharyngeous muscle is considered to be the most proximal point (toward the oral cavity) in the esophagus where an object would be felt by the patient, therefore the length of the post should be such that the proximal end is below the cricopharyngeous. Generally, in some embodiments the alignment structure will extend at least about 1 cm, more preferably at least about 2 cm but no more than about 20 cm or no more than about 25 cm above the distal support element (and/or above the gastroesophageal junction).
A proximal orientation element as described above would preferably not provide force against the wall of the esophagus to “hang” the cuff/sleeve construct in place.
As shown in the embodiment 216 of
In some embodiments as shown in
The food-collecting ring 520, in some embodiments, has an outside diameter of between about 10-30 mm, such as between about 15-25 mm in some embodiments. The food collecting ring 520 is preferably configured to have sufficient column strength to keep a relaxed esophagus open, although the food collecting ring 520 can be collapsible by a peristaltic wave of the esophagus.
In some embodiments, the food collecting ring 520 has a distal cylindrical segment 522 and a proximal tapered segment 524, that may be beveled in some embodiments. The length of the proximal tapered segment 524 may be, in some embodiments, between about 30-70%, such as 40-60% of the entire length of the ring 520 in some embodiments. While the tapered segments 524 may be symmetric, in some embodiments as illustrated in
Such tapered ring configurations may be advantageous to more easily allow the device to move proximally and distally within the esophagus during delivery, removal, as well as while in use and to reduce friction and prevent “snagging” of the device within the esophagus. The ring structure can be configured to interface with a gastrointestinal bypass sleeve. The sleeve is preferably bonded on an internal luminal surface of the ring in some embodiments to advantageously prevent trauma to the esophageal wall.
Spiral Construct
In some embodiments, the proximal orientation element 500 could be either linear or complex in shape, such as a spiral, or some combination of both. One embodiment of such a spiral proximal orientation element 240 is shown schematically in
In other embodiments, if the radial force of the spiral 240 does not have sufficient opposing force to the esophagus 164 to keep the cuff 204/sleeve 100 in place, the spiral construct 240 could facilitate orientation of the cuff 204/sleeve 100 with a distal support element 502 described elsewhere in the application. Alternatively, in other embodiments, the spiral 240 would not oppose the esophagus 164 at all, but rather be made of a relatively atraumatic material and float freely in the esophagus 164. Such a non-opposing spiral would maintain the position of the distal support element 502 such that food and liquid flowing through the esophagus 164 would enter the bypass sleeve 100 and bypass the stomach.
Once in the esophagus, the proximal orientation element could take the form of a spiral. Most preferably, in some embodiments, any spiral shape in the esophagus would be very compliant so as not to interfere with the peristaltic movement of the esophagus. The spiral element would then connect to the cuff. An advantage of having a spiral shape element may be that it could help keep the cuff in an orientation so that the plane of the opening of the cuff remains as perpendicular as possible to the flow of ingested material to minimize any leaks. This would enable most if not all of the contents passing through the esophagus to enter the sleeve and thereby bypass the stomach. In addition, the spiral shape of the connective element could have some minimal amount of radial force to help keep the cuff in contact with the walls of the GEJ to help minimize leaks. In some embodiments, the spiral element could be formed from an elastic material such as a polymer or other plastic or it could be formed from a super elastic material such as Nitinol. Preferably, the amount of radial force would be just enough to help keep the lumen of the cuff open and oppose the walls of the GEJ without causing any expansion of the GEJ or damage to the tissue. In other embodiments, the opening pressure would be less than that of the GEJ, such that when the GEJ was closed or flaccid, the opening of the sleeve would also be closed or flaccid. When the GEJ opens, the outward force would be such that the opening of the sleeve would then open.
The spiral proximal orientation element can preferably extend through at least about one or two and in some embodiments at least about 3, 4, 5, 6, 7, 8, 9, 10 complete revolutions, or more about the longitudinal axis of the esophagus.
In some embodiments, the proximal orientation element 500 includes an esophageal strut that can be an elongate member that is between about 10-50 cm, such as about 20-40 cm in length in some embodiments. The proximal orientation element 500, in some embodiments, can be made of a wire made of an appropriate material, such as steel or nitinol. The wire, or a proximal portion of the wire, such as at least about 60%, 70%, 80%, or more of the total length of the wire, may be tapered in some embodiments, such that the wire has a greater diameter proximally and a lesser diameter distally, such that the stiffness of the wire increases from a proximal to distal direction. In some embodiments, the wire can be covered by a biocompatible covering, such as silicone, with a durometer of between 30 a-50 a, such as about 40 a in some embodiments. The proximal end of the proximal orientation element may comprise a soft arcuate tip with a full radius to prevent trauma to the esophagus, and may be formed of the biocompatible covering extending beyond the proximal end of the wire.
Strips
In order to promote tissue ingrowth/adherence of the proximal orientation element to the esophagus, strips of material attached to a cuff could be applied to the walls of the esophagus. There could be at least one, two, three, four, or more strips that can attach at the GEJ area to the cuff and extend cephalad (proximally) up the esophagus.
Surface Preparation
In some embodiments, it may be beneficial to prepare the surface of the esophagus before applying any of the esophageal attachment devices described above. The goal of the surface preparation of the esophagus would be one or more of the following: (1) increase ability of an adhesive to bond; (2) accelerate the rate of tissue in growth or (3) alter the tissue layers to help provide a more durable attachment substrate. Possible non-limiting methods used to prepare the surface could include the delivery of any of: optical energy, such as a laser for example an Argon laser; RF energy; microwave energy; Argon plasma coagulation (APC), thermal energy; cryo energy; ultrasound, focused or unfocused; high or low pH materials; sclerosing agents, friction, or the like. The surface preparation could have the goal of damaging the mucosal layer or removing the mucosal layer completely to expose the submucosa.
There are devices described in the art to mechanically remove, such as by sucking in and then cutting off a layer of tissue, the mucosa of the esophagus in order to remove strips of mucosal tissue. These devices are described for the use of removing abnormal tissue that may be precancerous from the walls of the esophagus (e.g., Barrett's esophagus). In this indication, they could be used to prepare the inner surface of the esophagus for the attachment of devices described above. In some embodiments, the method could also entail removing the submucosa to expose the muscularis.
Alternatively, proximal orientation elements as described above could be used with a distal support element or as part of an element in complex intragastric support systems as described below.
Distal Support Element
Another component to provide support to an implanted device to help maintain position in a body lumen such as the GI tract is to provide support by maintaining a position in the GI tract, for example, the stomach. A simple example of this would be a pillar like device in the stomach that supports a cuff at the GEJ as shown in FIG. 25 of the Kagan '148 application. A rigid pillar is less preferred because of the amount of motility of the stomach and the dynamic nature of the environment. However, other elements could provide similar support. Similar to the device as described in U.S. Patent Publication No. 2006-0015125 to Swain et al., which is hereby incorporated by reference herein in its entirety, in one embodiment, disclosed is a dynamic-shaped element that if surrounding or supporting the sleeve could hold or help hold the sleeve in place at the GEJ. FIG. 1 of the Swain '125 publication incorporated by reference above illustrates a distal support element that could be used to help support the cuff/sleeve construct at the GEJ.
Referencing
The pyloric support element 212 of the distal support element 502 as shown, for example, in
Various methods known in the art could be used to create a distal end (e.g., pyloric support component 212) that expands from a first configuration with a smaller cross-sectional area to a second configuration with a larger cross sectional area to resist passage of the device through the GI tract. The distal end 212 could be made of a shape memory metal or polymer that when delivered is in a collapsed state, and when in the selected region of the GI tract, such as the stomach, expands to a diameter greater than could pass through the selected region of the GI tract. If the arcuate support element 206 is a rod-like structure that is bent back on itself with the bend at the pylorus, the pyloric element 212 could be preformed into a hoop shape at the bend as shown that is biased to compress for delivery and expand and rotate to form a loop upon placement in the stomach. In other embodiments, multiple stent structures could accomplish this; Malecot-type or other devices having mechanically enlargeable cross sections or surface area could also be used. Inflatable elements or injectable bags of material optionally with a hardenable polymer could also provide the same interference fit with the lumen. In a preferred embodiment, the pyloric support element 212 has a central lumen through which the sleeve can fit therethrough to allow free flow of food and other contents through the system without being pinched between the pyloric element and the wall of the stomach or pylorus. Alternatively, it can be desirable in some cases to have the sleeve pinched between the pyloric support element 212 and the stomach wall to form a restrictive element to slow up the passage of food. Some examples of pyloric support elements 212 have been described, for example, in the Kagan '148 application, previously incorporated by reference in its entirety.
The arcuate support component 206 of a distal support element 502 is preferably configured to hold in place the proximal end of the cuff 204/sleeve 100 and/or flexible dome 208. To form a support structure, the distal support element 502 can be more rigid in some aspects, however still have flexibility and compliance in some motion directions to accommodate the natural motion of the stomach, allowing the stomach to act on the sleeve and propel food through it The cuff 204 or cuff 204/sleeve 100 could have a columnar strength or it could have one or more spines to provide vertical support. The arcuate support element 206 preferably provides support from the proximal end of the cuff and/or sleeve to its base of support either against the greater curve of the stomach or against some aspect of the pylorus or preferably some combination of both in some embodiments. In one embodiment the arcuate support element 206 is banana shaped with dimensions that tend to match, or are proportional to, the greater curve of the stomach. The arcuate support element 206 could have an arc angle from the attachment at the GEJ to the pylorus depending on the particular stomach configuration of the patient. In some embodiments, the arc angle is at least about 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210 degrees, or more. The device can be made of a shape memory metal, plastic, or other biocompatible material and most preferably would have a hydrophilic or lubricious coating. The pyloric support element can 212 be on the distal end of the banana-shaped arcuate support 206. Alternatively, the support device can be expanded by inflation with, for example, a liquid, a gas, a liquid that becomes a solid, or a foam. In one embodiment, the banana-shaped arcuate support element 206 can be made of two telescoping pieces with an internal spring much like a banana shaped shock absorber. This would allow for some compression along the length of the device to accommodate contractions of the stomach. The arc of the banana would provide predisposition to flex along the length of the arc. It could be more compliant in the approximate direction defined by an axis drawn from the esophagus to the pylorus than in a direction perpendicular to that axis or vice versa. In some embodiments, the device could be made from a shape memory metal or polymer that has a preferred shape when at body temperature but is cooled before implantation to make it very flexible for delivery through an endoscope. The flexibility allows for nearly free motion of the stomach wall, and the device would be low enough in profile to not significantly interfere with the stomach transferring its motion to the sleeve and thus the contents thereof.
In some embodiments with separate dome support components and pyloric support components of a distal support element, the arcuate support structure between the dome support element and the pyloric support element could be actuated. In other words, the arc could be expanded or contracted with a motor or some control means that expand or contract the stomach to induce satiety or another desired therapeutic purpose. This may be manually controlled via a transmitter, or automated, such as by a sensing mechanism.
The device design of the distal support element most preferably prevents it from migrating through the pylorus as noted above, in some embodiments. The entire device can be deployed in a collapsed state and then expanded in the stomach. Optimally, it would be collapsed enough so it can be delivered perorally, such as via endoscopic assistance.
In another embodiment, as shown in
Similar to the embodiment described in
The distal support element 502, and/or at least a portion of the proximal orientation element 500, shown in
The distal support element 502 is preferably atraumatic and smooth to prevent damage to the stomach mucosa as well as associated structures. In some embodiments, the distal support element 502 is configured to conform to the anatomy of the stomach, such as having a portion configured to conform to the greater curvature of the stomach as shown. The distal support element 502 may be made of any appropriate material, and may be made of titanium in some embodiments.
In some embodiments, as shown schematically in
The device 504 or a portion of the device, such as the distal support element 502, may be inserted into a body lumen in a first, reduced configuration for delivery 504′ (shown in phantom) and then transformed into a second, enlarged configuration 504 as shown in
In some embodiments, the distal support element can be made of a wire such as stainless steel, nitinol, or other appropriate material as shown in
Hybrid Attachment System
In some embodiments, the entire intragastric support system could be a combination of non-transmural attachment elements each designed to share the load of the device and one or more transmural attachment points. Disclosed below is one embodiment of a potential hybrid attachment system. Note the preferred attachment system may include any combination or subcombination of elements as described below.
The proximal orientation element, in one embodiment, is made out of nitinol coated with a hydrophilic coating with a soft tip on the free end. In some embodiments, the cuff would preferably be disposed within a funnel shaped opening in the top of a silicone dome as described above. In one embodiment, the dome preferably resides on top of a banana shaped support element that can be made of nitinol wire and has a similar shape as the greater curve of the stomach. The distal end of the nitinol wire preferably forms a hoop that is larger than can fit through the pylorus. One embodiment and dimensions of one preferred nitinol wire that may be part of a distal support element is shown in
In some embodiments, such as with the hybrid attachment system described above, in addition to the proximal orientation element and distal support element, one or more transmural anchors could optionally be placed through the cuff, silicone dome, cuff loops, or other appropriate structure to help provide additional fixation. Because of the additional orientation from the proximal orientation element and distal support elements, fewer anchors may be needed than have been previously disclosed in other applications referenced above and incorporated by reference. In one embodiment, no more than about 6, 5, 4, 3, 2, or 1 anchors would need to be placed. The anchors could be placed in areas of the GEJ where the strength of the attachment points could be optimized and at the same time the risk to adjacent structures could be minimized. For example, there could be three anchors placed along a 180° arc of the GEJ on the side of the lesser curve if this was known to be farther away from any critical adjacent structures and have greater anchor strength than the greater curve. Note that this is a non-limiting example only and it may be preferred to place the anchors along the greater curve of the stomach. In some embodiments, the anchors could have transverse elements that preferably have a length that is greater than a thickness of the stomach wall. For example, the length of the transverse elements could be at least about 150%, 200%, 250%, 300%, or more of the thickness of the stomach wall such that the transverse element functions as a tether assisting the post in maintaining the position of the intragastric support and/or sleeve such that alignment between the esophagus and sleeve is maintained.
In one embodiment of the above, the system could be attached with the following components: a proximal orientation element attached to the greater curve side of the cuff or distal support element; 2-4 transmural t-tags placed around the lesser curve of the cuff; a sleeve with a stiffening element; and an arcuate support portion with a pyloric support portion of the distal support element.
Sleeve with Support Lumen
In one embodiment, an intragastric support system could include a cuff/sleeve with one or more lumens built into the sleeve wall that run approximately from the proximal end to the distal end, as disclosed in the Kagan '148 application. Such a cuff/sleeve with one or more lumens in the sleeve wall can advantageously hold the sleeve in place with a stiffening element inserted into the lumen to resist movement of the sleeve proximally or distally. In other words, the sleeve could potentially be self-supporting with an elongate support element, such as a stiffening element (e.g., a guidewire) without other support or attachment structures. Following placement of the cuff/sleeve, a flowable polymer that polymerizes in situ can be injected into the lumen. Once this hardens, it will not only act as a stiffening member in the sleeve but will also keep the device from undesirably migrating proximally or distally along the GI tract. Instead of filling the lumen with a polymer, a support wire, for example a standard guide wire used for interventional procedures could be placed down a lumen in the wall of the sleeve. Alternatively, the sleeve could have support wire or wires built into the wall of the sleeve (as disclosed in the Kagan '148 application) to keep the sleeve in place or provide any radial force if desired. It may be that a sleeve with a stiffening element could have enough resistance to avoid displacement proximally or distally that it could function as a stand alone device. A stand alone supported bypass sleeve could run from above the GEJ, at the GEJ or immediately below the GEJ to the small intestine. Placement of the sleeve above the GEJ can advantageously help align the proximal sleeve with the esophagus. In one embodiment 293 depicted in
The total weight of the intragastric support system 504 in some embodiments, can be between about 0.05-0.5 kg, or between about 0.1-0.2 kg. The system 504 can have a low center of gravity in some embodiments, with at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, or more of the weight present in the distal support element 502 compared to the total weight of the system 504.
Obstructive or Restrictive Device
In some embodiments, the gastrointestinal support device may include an obstructive or restrictive component positionable in the esophagus and/or stomach. The obstructive or restrictive component can cause a portion of the gastrointestinal wall, such as at the lower esophageal sphincter in one embodiment, to expand, provoking a feeling of satiety in a patient and suppressing appetite.
As shown schematically in
In some embodiments, the restrictive or obstructive element includes a control that can allow the degree of expansion of the reservoir and/or the degree of the restriction. In some embodiments, the reservoir includes a sensor that can measure a pressure change, e.g., at the LES and cause dilation of the GEJ, such as to prevent reflux or induce satiety.
Gastric Bypass Device
In some embodiments, as illustrated schematically in
Gastric Space-Occupying Device
In one embodiment, as illustrated schematically in
Delayed Gastric Emptying Device
In one embodiment, illustrated schematically in
Pacing Device
In one embodiment, illustrated schematically in
Food Incinerator
In one embodiment, as shown schematically in
Implantable Diagnostic Device
As shown schematically in
Chemical Detector
In some embodiments, a tethered device or the intragastric support system itself is incorporated with a sensor configured to detect, for example, the presence of one or more toxins (e.g., a heavy metal, a poison) or allergen that can send the alert to an external device and/or can administer therapy (e.g., an antidote, a chemical to break down the toxin or allergen, epinephrine, a corticosteroid, an antihistamine) to prevent toxicity or an allergic reaction.
Implantable Therapeutic Device
In some embodiments, at least a portion of the intragastric support system is incorporated with a drug delivery function in, for example, the esophagus, stomach or intestine. This could deliver therapies as one or more of the following: a reaction to the sensing feature; administer prophylactic treatment; time-release medication, neutralize hormonal releases; and/or other therapeutic applications. In one embodiment, a capsule tethered to the device could also serve as a cautery in the stomach or intestine to treat ulcers, polyps, cancers, arteriovenous malformations, areas of infection, and the like.
In some embodiments, the intragastric support system is incorporated with a reservoir to store an energy source, such as glucose for endurance-type activity or for outdoor sports to provide sustained energy. The reservoir may be replenishable. This can be used advantageously in recreational or military training or combat situations, for example.
In some embodiments, the intragastric support system may include a thermoregulatory element such as a heat source or cooling source to maintain body temperature in extreme weather conditions.
In some embodiments, the intragastric support system can include a power generator, such as a battery, to provide energy to electronics or electrical devices internal and/or external to the body.
In some embodiments, the intragastric support system can include an accelerometer to detect body motions or orientation; data can be transmitted to a processing unit inside or external to the body.
In some embodiments, the drug delivery platform can include a drug to treat a wide variety of conditions depending on the clinical result. For example, in some embodiments, the distal support element can include a drug to treat peptic ulcer disease, gastritis, or GERD such as a proton-pump inhibitor, H2 receptor blocker, prostaglandin or prostaglandin analogue, sucralfate, or bismuth subsalicylate. The distal support element could include a drug to treat a motility disorder or chronic nausea/vomiting such as a pro-motility agent such as metoclopramide or an anti-emetic agent such as ondansetron, chlorpromazine, or droperidol, for example. The distal support element could include a chemotherapeutic agent to treat cancer, such as gastric cancer, e.g., 5-FU, cisplatin, epirubicin, etoposide, docetaxel, or irinotecan. The distal support element could include an anti-obesity drug, such as, for example, orlistat, metformin, sibtramine, exenatide, pramlintide, rimonabant, an amphetamine, naloxone, or a hydrogel. An intragastric drug delivery platform can be especially advantageous for patients who have difficulty with compliance with orally administered medications that may need to be taken chronically. In some embodiments, other non-limiting examples of drugs that can be included on the drug delivery platform could include an antipsychotic, an antidepressant, an oral contraceptive, a hypoglycemic agent, an anti-hypertensive, an anti-coagulant, an antibiotic, an-antiepileptic, and many other drugs depending on the desired clinical result. In some embodiments, the proximal orientation element could also include a drug delivery platform, such as, for example, a chemotherapeutic agent to treat esophageal cancer.
Reflux Treatment
In some embodiments, the intragastric support system (also referred to herein as the IGS) includes one or more sensors that can measure pH levels in the esophagus. In some embodiments, the IGS includes a reservoir of a basic substance such as sodium bicarbonate to neutralize gastric acid. The IGS may also include a pressure sensor to measure pressure at, for example, the lower esophageal sphincter (LES). If LES pressure are too low, the sensor could trigger filling of a bladder operably connected to the IGS device that compensates for poor LES function and prevents acid reflux into the esophagus. Such a system can be controlled remotely. In some embodiments, the IGS device is incorporated with a plug of cotton or other absorbent material (tampon-like) feature to absorb acid at the lower esophageal sphincter (LES).
Gastric Prosthesis
In some embodiments, the IGS includes features to restore an anatomical defect, such as a hiatal hernia, by acting as a prosthetic device to prevent or to correct the deformity. There could have dome-like elements as described above or different geometries attached to the IGS to restore or prevent tissue abnormalities.
Natural Orifice Transluminal Endoscopic Surgery (NOTES) Applications:
In some embodiments, the IGS is incorporated with an intra-gastric “workstation” to facilitate NOTES procedures so that the surgeons can stage items or instruments necessary during the operation without the need to transport items multiple times into the body cavity. For example, the IGS device can include one or more dilators as a space creator in the stomach. In some embodiments, the IGS device is incorporated with a secondary instruments leverage point to support NOTES procedure intra-gastrically.
Stent Placement Applications
In some embodiments, the IGS 606 can include a gastric stent support or graft support feature 598 to provide alternate stent placement technique, as illustrated schematically in
Delivery Methods
One delivery method for an intragastric support system is disclosed. In some embodiments, as disclosed in the Dann '605 application, as well as U.S. Provisional Patent Application No. 60/826,862 to Dann et al., filed Sep. 25, 2006 and hereby incorporated by reference in its entirety, a cuff/sleeve 100 that includes an attached guidewire 152, as illustrated schematically in cross-section in
The overtube 480 of
Referring to
The proximal end of the sleeve 100 is connected to a guidewire 152. The guidewire 152 lies along the outside of the delivery catheter 400 during delivery of the sleeve 100. There may be one or more guidewires 152 connected to the proximal end of the sleeve. The guidewire 152 allows control of the sleeve 100 after deployment of the sleeve 100 into the small intestine 114. The guidewire 152 also functions as a control element for the sleeve 100 and should not be limited to a wire concept. A catheter connected to the sleeve 100, multiple catheters or any other linear device which would allow retraction of the sleeve 100 up to the GEJ from outside the body could be used instead of a guidewire 152.
The guidewire 152 is preferably releasably connected to the proximal end of the sleeve 100. Following connection of the sleeve 100 to the intragastric support system shown in
With the sleeve 100 deployed in the intestine 114 and the delivery catheter 400 removed, the intragastric support system can then be introduced perorally over the guidewire 152, as illustrated in
Optionally, the order of the implantation can be changed. In another embodiment, the distal support element 502 is placed in the stomach first in one piece. The elements including the proximal orientation element 500, arcuate support element 206 and pyloric support element 212 are made out of a continuous piece of nitinol wire with one end of the nitinol wire stopping at the atraumatic tip 201 of the proximal orientation element 500 and the other end ending where the dome 208 is attached after making a bend, such as an approximately 180° bend to form the pyloric support element 212 as shown in
In yet another embodiment, the sleeve could be attached to the intragastric support system before implantation. In this method, the intragastric support system (IGS) would be collapsed or crimped down around the delivery catheter with the sleeve attached and inverted as shown in
While delivery of the sleeve as described herein has generally focused on toposcopic delivery, it should be noted that any of the sleeve delivery methods as previously described in prior applications or known in the art, such as the Kagan '148 application, could be used including using a pushing catheter, peristaltic delivery, double balloon enteroscopic delivery, etc.
In the above described disclosure, it is most preferred that there is as little risk as possible of damage to the esophagus during any of the implantation steps. Thus before any of the devices as described are advanced perorally, it is preferred that an overtube would be placed. Overtubes such as those described in the Dann '605 application, may be used for delivery. The overtube may be only long enough to protect the esophagus, or it may be long enough, such as at least about 100 cm, 110 cm 120 cm, 130 cm, 140 cm, 150 cm or longer, to reach the pylorus. If the later, it could be advanced with the delivery catheter and the inverted sleeve in its lumen and used to approach or cannulate the pylorus for toposcopic delivery of the sleeve. After sleeve delivery, the overtube would then be retracted to the level of the GEJ for the rest of the procedure.
In some embodiments, an intragastric support system, such as illustrated, for example, in
If sleeve is to be attached:
Another method for delivering an IGS system 501, such as the system illustrated, for example, in
Next, the system 501 releasably connected to pusher tool 486 and endoscope 488 are inserted into the short overtube 490. As shown in
In some embodiments, the intragastric support system 501 can be delivered within the body in multiple pieces, e.g., the distal support element 502 and the proximal orientation element 500 are delivered separately as illustrated schematically in
System Removal
A method sequence to remove an intragastric support system, such as the system described in
While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For example, while the embodiments herein have primarily described components of an intragastric support system, the system can also be adapted for positioning in other body lumens, for example, a system with a distal support element configured to be placed in the bladder and the proximal orientation element in a ureter, or a system with a distal support element configured to be placed in the uterus with a proximal orientation element in a fallopian tube, in some embodiments. Furthermore, the intragastric systems and methods disclosed herein can be used or adapted for positioning a device in a patient concurrent with or after bariatric surgery as described, for example, in U.S. Provisional Application No. 61/023,809, hereby incorporated by reference in its entirety, e.g, as described in FIGS. 2-6, 9-12, 14-22, and the accompanying text at paragraphs [0016] to [0018], [0020] to [0051] and [0058] to [0067] of that application.
For all of the embodiments described above, the steps of the methods need not be performed sequentially. While any above-listed applications may have been incorporated by reference for particular subject matter as described earlier in this application, Applicants intend the entire disclosures of the above-identified applications to be incorporated by reference into the present application, in that any and all of the disclosures in these incorporated by reference applications may be combined and incorporated with the embodiments described in the present application.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US2008/066214 | Jun 2008 | WO | international |
The present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/942,975, filed Jun. 8, 2007, and U.S. Provisional Application No. 61/023,809, filed Jan. 25, 2008, both of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4134405 | Smit | Jan 1979 | A |
4217664 | Faso | Aug 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4252131 | Hon et al. | Feb 1981 | A |
4315509 | Smit | Feb 1982 | A |
4329995 | Anthracite | May 1982 | A |
4501264 | Rockey | Feb 1985 | A |
4532926 | O'Holla | Aug 1985 | A |
4630609 | Chin | Dec 1986 | A |
4641653 | Rockey | Feb 1987 | A |
4719916 | Ravo | Jan 1988 | A |
4763653 | Rockey | Aug 1988 | A |
4846836 | Reich | Jul 1989 | A |
4905693 | Ravo | Mar 1990 | A |
4946440 | Hall | Aug 1990 | A |
5085661 | Moss | Feb 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5171305 | Schickling et al. | Dec 1992 | A |
5236423 | Mix et al. | Aug 1993 | A |
5306300 | Berry | Apr 1994 | A |
5314473 | Godin | May 1994 | A |
5411508 | Bessler et al. | May 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5458573 | Summers | Oct 1995 | A |
5470337 | Moss | Nov 1995 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5785684 | Zimmon | Jul 1998 | A |
5820584 | Crabb | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5843164 | Frantzen | Dec 1998 | A |
5861036 | Godin | Jan 1999 | A |
5887594 | LoCicero, III | Mar 1999 | A |
5957940 | Tanner et al. | Sep 1999 | A |
5972023 | Tanner et al. | Oct 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6113609 | Adams | Sep 2000 | A |
6193733 | Adams | Feb 2001 | B1 |
6254642 | Taylor | Jul 2001 | B1 |
6264700 | Kilcoyne et al. | Jul 2001 | B1 |
6285897 | Kilcoyne et al. | Sep 2001 | B1 |
6312437 | Kortenbach | Nov 2001 | B1 |
6338345 | Johnson et al. | Jan 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6409656 | Sangouard et al. | Jun 2002 | B1 |
6447533 | Adams | Sep 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6520974 | Tanner et al. | Feb 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6544291 | Taylor | Apr 2003 | B2 |
6558400 | Deem et al. | May 2003 | B2 |
6558429 | Taylor | May 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6595911 | LoVuolo | Jul 2003 | B2 |
6626916 | Yeung et al. | Sep 2003 | B1 |
6626919 | Swanstrom | Sep 2003 | B1 |
6675809 | Stack et al. | Jan 2004 | B2 |
6699263 | Cope | Mar 2004 | B2 |
6702735 | Kelly | Mar 2004 | B2 |
6736828 | Adams et al. | May 2004 | B1 |
6740121 | Geitz | May 2004 | B2 |
6746489 | Dua et al. | Jun 2004 | B2 |
6764518 | Godin | Jul 2004 | B2 |
6773452 | Shaker | Aug 2004 | B2 |
6790237 | Stinson | Sep 2004 | B2 |
6845776 | Stack et al. | Jan 2005 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7120498 | Imran et al. | Oct 2006 | B2 |
7121283 | Stack et al. | Oct 2006 | B2 |
7152607 | Stack et al. | Dec 2006 | B2 |
7175669 | Geitz | Feb 2007 | B2 |
7220284 | Kagan et al. | May 2007 | B2 |
7267694 | Levine et al. | Sep 2007 | B2 |
7288099 | Deem et al. | Oct 2007 | B2 |
7306614 | Weller et al. | Dec 2007 | B2 |
7309341 | Ortiz et al. | Dec 2007 | B2 |
7314489 | McKenna et al. | Jan 2008 | B2 |
7329285 | Levine et al. | Feb 2008 | B2 |
7347875 | Levine et al. | Mar 2008 | B2 |
7354454 | Stack et al. | Apr 2008 | B2 |
7371215 | Colliou et al. | May 2008 | B2 |
7483754 | Imran et al. | Jan 2009 | B2 |
7520884 | Swanstrom et al. | Apr 2009 | B2 |
20010044595 | Reydel et al. | Nov 2001 | A1 |
20010056282 | Sonnenschein et al. | Dec 2001 | A1 |
20020016607 | Bonadio et al. | Feb 2002 | A1 |
20020026214 | Tanner et al. | Feb 2002 | A1 |
20020035370 | Kortenbach | Mar 2002 | A1 |
20020040226 | Laufer et al. | Apr 2002 | A1 |
20020082621 | Schurr et al. | Jun 2002 | A1 |
20020111658 | Greenberg et al. | Aug 2002 | A1 |
20020165589 | Imran et al. | Nov 2002 | A1 |
20020183768 | Deem et al. | Dec 2002 | A1 |
20020188354 | Peghini | Dec 2002 | A1 |
20030014064 | Blatter | Jan 2003 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030040804 | Stack et al. | Feb 2003 | A1 |
20030040808 | Stack et al. | Feb 2003 | A1 |
20030055313 | Anderson et al. | Mar 2003 | A1 |
20030055442 | Laufer et al. | Mar 2003 | A1 |
20030065340 | Geitz | Apr 2003 | A1 |
20030120285 | Kortenbach | Jun 2003 | A1 |
20030130560 | Suzuki et al. | Jul 2003 | A1 |
20030139752 | Pasricha et al. | Jul 2003 | A1 |
20030181929 | Geitz | Sep 2003 | A1 |
20030191497 | Cope | Oct 2003 | A1 |
20030208209 | Gambale et al. | Nov 2003 | A1 |
20040002734 | Fallin et al. | Jan 2004 | A1 |
20040024427 | Imran et al. | Feb 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040059349 | Sixto, Jr. et al. | Mar 2004 | A1 |
20040059354 | Smith | Mar 2004 | A1 |
20040087976 | DeVries et al. | May 2004 | A1 |
20040087977 | Nolan et al. | May 2004 | A1 |
20040092892 | Kagan et al. | May 2004 | A1 |
20040093065 | Yachia et al. | May 2004 | A1 |
20040097986 | Adams | May 2004 | A1 |
20040097987 | Pugsley et al. | May 2004 | A1 |
20040102855 | Shank | May 2004 | A1 |
20040116949 | Ewers et al. | Jun 2004 | A1 |
20040117031 | Stack et al. | Jun 2004 | A1 |
20040122453 | Deem et al. | Jun 2004 | A1 |
20040122456 | Saadat et al. | Jun 2004 | A1 |
20040122473 | Ewers et al. | Jun 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040133147 | Woo | Jul 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040133238 | Cerier | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040138761 | Stack et al. | Jul 2004 | A1 |
20040143342 | Stack et al. | Jul 2004 | A1 |
20040147958 | Lam et al. | Jul 2004 | A1 |
20040162567 | Adams | Aug 2004 | A9 |
20040162568 | Saadat et al. | Aug 2004 | A1 |
20040167546 | Saadat et al. | Aug 2004 | A1 |
20040181242 | Stack et al. | Sep 2004 | A1 |
20040186514 | Swain et al. | Sep 2004 | A1 |
20040193190 | Liddicoat et al. | Sep 2004 | A1 |
20040199189 | Gifford et al. | Oct 2004 | A1 |
20040220682 | Levine et al. | Nov 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040225305 | Ewers et al. | Nov 2004 | A1 |
20040243152 | Taylor et al. | Dec 2004 | A1 |
20040243195 | Imran et al. | Dec 2004 | A1 |
20040249362 | Levine et al. | Dec 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20050033240 | Oishi et al. | Feb 2005 | A1 |
20050033331 | Burnett et al. | Feb 2005 | A1 |
20050049718 | Dann et al. | Mar 2005 | A1 |
20050065401 | Saadat et al. | Mar 2005 | A1 |
20050075653 | Saadat et al. | Apr 2005 | A1 |
20050075654 | Kelleher | Apr 2005 | A1 |
20050080431 | Levine et al. | Apr 2005 | A1 |
20050080444 | Kraemer et al. | Apr 2005 | A1 |
20050085787 | Laufer | Apr 2005 | A1 |
20050096750 | Kagan et al. | May 2005 | A1 |
20050101977 | Gannoe | May 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050143784 | Imran | Jun 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050187567 | Baker et al. | Aug 2005 | A1 |
20050192629 | Saadat et al. | Sep 2005 | A1 |
20050197714 | Sayet | Sep 2005 | A1 |
20050197715 | Kugler et al. | Sep 2005 | A1 |
20050203547 | Weller et al. | Sep 2005 | A1 |
20050222592 | Gannoe et al. | Oct 2005 | A1 |
20050228413 | Binmoeller et al. | Oct 2005 | A1 |
20050228504 | Demarais | Oct 2005 | A1 |
20050247320 | Stack et al. | Nov 2005 | A1 |
20050261549 | Hewit et al. | Nov 2005 | A1 |
20050261712 | Balbierz et al. | Nov 2005 | A1 |
20050267499 | Stack et al. | Dec 2005 | A1 |
20050267595 | Chen et al. | Dec 2005 | A1 |
20060009858 | Levine et al. | Jan 2006 | A1 |
20060015125 | Swain | Jan 2006 | A1 |
20060020164 | Butler et al. | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060020254 | von Hoffmann | Jan 2006 | A1 |
20060020277 | Gostout et al. | Jan 2006 | A1 |
20060020278 | Burnett et al. | Jan 2006 | A1 |
20060025819 | Nobis et al. | Feb 2006 | A1 |
20060047289 | Fogel | Mar 2006 | A1 |
20060064120 | Levine et al. | Mar 2006 | A1 |
20060074458 | Imran | Apr 2006 | A1 |
20060155312 | Levine et al. | Jul 2006 | A1 |
20060155375 | Kagan et al. | Jul 2006 | A1 |
20060161139 | Levine et al. | Jul 2006 | A1 |
20060161172 | Levine et al. | Jul 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060173422 | Reydel et al. | Aug 2006 | A1 |
20060206063 | Kagan et al. | Sep 2006 | A1 |
20060206064 | Kagan et al. | Sep 2006 | A1 |
20060235446 | Godin | Oct 2006 | A1 |
20060247718 | Starkebaum | Nov 2006 | A1 |
20060265021 | Herbert et al. | Nov 2006 | A1 |
20060265082 | Meade et al. | Nov 2006 | A1 |
20060287734 | Stack et al. | Dec 2006 | A1 |
20060293742 | Dann et al. | Dec 2006 | A1 |
20070005147 | Levine et al. | Jan 2007 | A1 |
20070010794 | Dann et al. | Jan 2007 | A1 |
20070010864 | Dann et al. | Jan 2007 | A1 |
20070010865 | Dann et al. | Jan 2007 | A1 |
20070010866 | Dann et al. | Jan 2007 | A1 |
20070027548 | Levine et al. | Feb 2007 | A1 |
20070027549 | Godin | Feb 2007 | A1 |
20070032879 | Levine et al. | Feb 2007 | A1 |
20070083271 | Levine et al. | Apr 2007 | A1 |
20070100367 | Quijano et al. | May 2007 | A1 |
20070106313 | Golden et al. | May 2007 | A1 |
20070156248 | Marco et al. | Jul 2007 | A1 |
20070198074 | Dann et al. | Aug 2007 | A1 |
20070208360 | Demarais et al. | Sep 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070225555 | Stefanchik | Sep 2007 | A1 |
20070233162 | Gannoe et al. | Oct 2007 | A1 |
20070293885 | Binmoeller | Dec 2007 | A1 |
20080004606 | Swain et al. | Jan 2008 | A1 |
20080009888 | Ewers et al. | Jan 2008 | A1 |
20080033574 | Bessler et al. | Feb 2008 | A1 |
20080058840 | Albrecht et al. | Mar 2008 | A1 |
20080058887 | Griffin et al. | Mar 2008 | A1 |
20080103604 | Levine et al. | May 2008 | A1 |
20080167606 | Dann et al. | Jul 2008 | A1 |
20080167610 | Dann et al. | Jul 2008 | A1 |
20080167629 | Dann et al. | Jul 2008 | A1 |
20080195226 | Williams et al. | Aug 2008 | A1 |
20080208355 | Stack et al. | Aug 2008 | A1 |
20080208356 | Stack et al. | Aug 2008 | A1 |
20080208357 | Melanson et al. | Aug 2008 | A1 |
20080221597 | Wallace et al. | Sep 2008 | A1 |
20080228030 | Godin | Sep 2008 | A1 |
20080243071 | Quijano et al. | Oct 2008 | A1 |
20080249533 | Godin | Oct 2008 | A1 |
20080255587 | Cully et al. | Oct 2008 | A1 |
20080255594 | Cully et al. | Oct 2008 | A1 |
20080255678 | Cully et al. | Oct 2008 | A1 |
20080269797 | Stack et al. | Oct 2008 | A1 |
20090012356 | Dann et al. | Jan 2009 | A1 |
20090012541 | Dahl et al. | Jan 2009 | A1 |
20090012544 | Thompson et al. | Jan 2009 | A1 |
20090062881 | Gross et al. | Mar 2009 | A1 |
20100049224 | Vargas | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090012553 A1 | Jan 2009 | US |
Number | Date | Country | |
---|---|---|---|
60942975 | Jun 2007 | US | |
61023809 | Jan 2008 | US |