Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach

Information

  • Patent Grant
  • 7214233
  • Patent Number
    7,214,233
  • Date Filed
    Thursday, February 13, 2003
    21 years ago
  • Date Issued
    Tuesday, May 8, 2007
    17 years ago
Abstract
Methods and devices for maintaining a space-occupying device in a fixed relationship relative to a patient's stomach by manipulation of the stomach. In one variation, two or more regions of the stomach wall are brought into approximation with one another and secured together in a manner that secures a space-occupying device within the stomach of the patient. In another variation, two or more regions of the stomach wall are wrapped around a space-occupying device to maintain the position of the space-occupying device relative to the stomach wall. In another variation, a system having a space-occupying member and a locking member capable holding the space-occupying member against the inner wall of the stomach are provided. In a further variation, a pouch is created within the stomach that receives and retains a space-occupying device.
Description
BACKGROUND OF THE INVENTION

The present invention relates generally to methods and medical apparatus, more particularly to methods and devices for securing the a space-occupying devices in a patient's stomach through the manipulation of the inner wall of the stomach for purposes of taking up a defined volume in the stomach to provide the patient with a feeling of satiety or fullness. These devices may also be removed once they have served their purpose, e.g., the patient has lost the directed or desired amount of weight.


Currently, in cases of severe obesity, patients may undergo several types of surgery either to tie off or staple portions of the large or small intestine or stomach, and/or to bypass portions of the same to reduce the amount of food desired by the patient, and the amount absorbed by the intestinal track. Procedures such as laparoscopic banding, where a device is used to “tie off” or constrict a portion of the stomach, or the placement of intragastric balloons can also achieve these results.


Endoscopic procedures that have been used to assist weight loss have been primarily focused on the placement of a balloon or other space occupying device in the patient's stomach to fill portions of the stomach and provide the patient with the feeling of fullness, thereby reducing food intake. To accomplish these procedures, an endoscope is utilized to guide the balloon through the patient's mouth and down the esophagus to the stomach. Usually these procedures have allowed placement of the device for 6–12 months, and are coupled with counseling and other types of psychological support.


In the case of laparoscopic banding and other invasive surgical procedures, several complications can arise that make these procedures clinically suboptimal. The surgical interventions require the patient to submit to an intervention under general anesthesia, and can require large incisions and lengthy recovery time. In addition, most of these surgical procedures are irreversible.


Intragastric balloons, on the other hand, provide a minimally invasive approach for treating obesity. Intragastric balloons have been developed and used in patients for over twenty years. Prior to the present invention, various intragastric balloons have been devised for treating obesity. Examples of such intragastric balloons are disclosed in U.S. Pat. No. 4,133,315, issued Jan. 9, 1979 to Berman et al.; U.S. Pat. No. 4,485,805, issued Dec. 4, 1984 to Foster, Jr.; U.S. Pat. No. 4,899,747, issued Feb. 13, 1990 to Garren et al.; U.S. Pat. No. 5,112,310, issued May 12, 1992 to Grobe; and U.S. Pat. No. 6,030,364, issued Feb. 29, 2000 to Durgin et al; each of which is incorporated herein by reference in its entirety. However, many problems are associated with laparoscopic balloons and a significant number of these problems arose due to the fact that the space occupying devices were implanted in such a manner as to remain unattached or free-floating within the stomach. An unsecured balloon could cause abrasion to the wall of the stomach, induce mucosal damage, or stimulate abnormal amounts of acid production. Furthermore, in the event that the balloon deflates due to the caustic nature of stomach acids and other factors, migration of the deflated balloon into the intestine becomes inevitable. The migration of the balloon into the intestine could lead to bowel obstructions and in some case death.


In order to safely and effectively deploy balloons and other space-occupying devices in a patent's stomach to induce weight loss, improved methods and devices for effectively maintaining a space-occupying device in a fixed relationship relative to the patient's stomach are desirable.


BRIEF SUMMARY OF THE INVENTION

The present invention meets these and other needs by providing for improved methods and apparatuses for securing a space-occupying device within a patient's stomach by manipulating the wall of the stomach. Methods and apparatuses of the present invention may also be useful when used in conjunction with existing procedures that result in manipulation of the stomach wall.


Minimally invasive surgical techniques, including but not limited to technique used during a percutaneous endoscopic gastrostomy (PEG), may be combined with methods discussed here for placement of space-occupying devices and at the same time minimize injury to the body. This invention allows placement of space-occupying devices in a patient's stomach in a stable and secured manner.


The space-occupying device may have a fixed volume and may be inserted into the stomach through surgical procedures. However, it is preferable that the space-occupying device is an inflatable or otherwise expandable device, and deliverable or otherwise deployable through the patient's mouth in a transesophageal procedure into the patient's stomach. The expandable space-occupying device may be constructed of a composite material to achieve desirable surface characteristics and may also be visible under x-ray. In addition, the space-occupying device may have surface features, such as a flange, beads, loops, and/or tabs to facilitate manipulation, deflation and/or removal of the device. The volume of the space-occupying device may be adjustable while it is maintained in the deployed condition.


In one aspect of the invention, an expandable device is provided that can be inserted into the stomach of a patient. Its position is maintained within the stomach by manipulating the stomach wall about the device. The expandable device is secured on the wall of the stomach by wrapping a section of the stomach wall around a part of the device. The method may be achieved by securing one region of the stomach wall to another region and at the same time partially encircling a section of the space-occupying device there by holding the space-occupying device to the wall of the stomach. The two regions of the stomach may be secured together with e.g. suture, or other like fasteners. However, more elaborate fastening devices may also be implemented for securing the two regions of the stomach. It is preferable that the two regions of the stomach be brought into physical contact with one another, such that the approximated regions are able to fuse to one another and create a tissue bridge along the length of the fastened tissue. The tissue bridge may be formed of various layers of the stomach and may include scar tissue and other elements of effective wound healing. An advantage of such a method is that integrity of the stomach wall, especially the mucosal layer, remains uncompromised, and exposure of the fastener to the acidic conditions of the stomach is minimized. This is in contrast to other means of fastening a device to the stomach wall where the fastening means present a continuing potential trauma to the stomach wall and wherein such fastening means remain continually exposed to stomach acid.


In a variation of the method described above, the two regions of the stomach used to secure the space-occupying device are opposite each other. A space-occupying device with an opening through its body may be anchored according to this method. The first region of the stomach is brought through the opening on the device and into contact with the second region. A suture or other fastening device may be used to secure the two regions together. The space-occupying device implemented in this method may be e.g. toroidal or any other shape suitable for placement inside the stomach, provided the device contains an opening through the center of the device that provides a passageway from one side of the device to the other.


In another variation, multiple stomach regions may be approximated to secure a space-occupying device. For example, three regions may be used, e.g. region one and two are secured onto region three or are otherwise brought into approximation with each other. In an alternative variation, after the first set of surface areas are brought into approximation with each other, additional surface areas on the inner wall of the stomach may be brought into approximation of each other. For example, the space-occupying device may be secured by two sets of approximated surface areas that secure the device at two different locations on the device.


In another aspect, the invention provides a space-occupying system or kit that consists of two portions, a sphere and a toroid. The sphere when properly deployed acts as a “locking member” and in connection with the toroid itself is able to maintain the toroid against the inner wall of the stomach. Procedures and methods for implementing such a system in the stomach are also within the contemplation of this invention. In one variation, a deflated toroidal shaped balloon is first deployed inside the patient's stomach, and a region of the stomach wall is then forced through the center opening of the toroidal balloon. A sphere is then deployed from the external side of the stomach, passed through the center opening of the toroidal balloon and inserted within the same region of stomach tissue. The sphere has a diameter that is greater than that of the toroidal balloon center opening when the toroidal balloon itself is inflated. Thus, upon inflation of the toroidal balloon the sphere and associated region of stomach tissue is trapped against the toroidal balloon, and cannot pass back through the center opening of the balloon, thus anchoring the toroid on the inner surface of the stomach wall. In the above procedure, it may also be possible to concurrently pass the regions of stomach wall through the toroid along with the spherical locking member. Preferably, the regions of the stomach that are trapped within the opening of the toroidal balloon are held in physical contact with one another, such that the regions are able to fuse to one another and create a tissue bridge along the length of the approximated regions. Such a tissue bridge has the advantages previously described.


In other variation of the dual-member-interlocking system for securing a space-occupying device on the wall of the stomach, the space-occupying device may be of various shapes suitable for placement inside a patient's stomach, and include an opening passing through the body of the space-occupying device. The corresponding locking member may be expandable or of a fixed shape. The space-occupying device in its deflated state may allow the corresponding member to pass through its opening. The space-occupying device is placed inside the patient's stomach and the corresponding locking member is place inside the patient's body, and outside the stomach. Through e.g. vacuum pull, physical pushing/pulling, or a combination of both, the locking member is put through the opening of the space-occupying device. If necessary, the locking member may be expanded at this stage. The space-occupying device is then inflated holding the locking member in its place.


In yet another aspect of the invention, methods are provided wherein a pouch is created within the stomach that is able to receive and retain a space-occupying device within the pouch. Such pouches can be created according to known methods currently used to reduce stomach volume, including gastric bypasses, such as the Roux-En-Y gastric bypass, vertical banded gastroplasty (VBG), or laproscopic banding. Methods of creating a pouch capable of receiving and retaining a space occupying device also include those methods of plicating the stomach described in U.S. application Ser. No. 09/871,297, filed May 30, 2001, which is commonly owned and incorporated herein by reference. Such plication methods include methods where transorally advanced tools are used to form a pouch or partition in the stomach by the approximation and fixation of folds of the stomach wall from inside the stomach. In one such exemplary procedure, folds in the posterior and anterior walls of the stomach are created using a tissue acquisition device inserted into the stomach transorally, and then the two folds of tissue are fixed together thereby reducing stomach volume. The tissue folds may be fixed together in a variety of configurations. Space-occupying devices can be deployed in the created pouches either initially to aid in the efficacy of the procedures, or post-procedure as a means, e.g., of enhancing the efficacy of such procedures.


In a further aspect of the invention, methods are provided wherein a pouch is created within the stomach that is able to receive and retain a space-occupying device within the pouch, and wherein the device is further designed to include a passageway extending through the device and a cavity within the device in communication with the passageway, the cavity further having a predefined volume. The device is introduced into the pouch with the passageway in alignment with the esophagus so as to receive and pass food. The cavity thus creates, in essence, a smaller artificial pouch within the originally created stomach pouch. This allows for convenient manipulation to optimize weight loss in a patient without the need of further interventional procedures, by simply adjusting the cavity volume of the deployed device. This can be done, for example, by initially starting with a larger volume cavity device, monitoring the patient's progress, and transorally exchanging the device for one of sequentially smaller cavity volumes, until the desired weight loss parameters are achieved. Alternatively, the device can be provided with a cavity volume that is adjustable. In particular, inflation or filling ports are provided on the device that can be accessed transorally, and the cavity volume can be adjusted by inflation or deflation. In a further variation, the passageway and cavity of the device are relatively rigid as compared to the rest of the device, allowing for a slow, constant release of food unaffected by the peristaltic action of the stomach. In a further variation, the device includes a sleeve extending from the passageway for the passage of food directly through the pylorus and into the duodenum.





BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, reference characters refer to the same parts through out the different views. The drawings are intended for illustrating some of the principles of the invention and are not intended to limit the description in any way. Furthermore, the drawings are not necessarily to scale, emphasis instead being placed upon illustrating the depicted principles in a clear manner.



FIG. 1 shows one variation of the method to anchor a space-occupying device in the stomach according to the invention. Two regions of the stomach that are located across from each other in the stomach are brought together at the opening in the center of the space-occupying device and fastened to each other.



FIG. 2 illustrates an example of applying the method described in FIG. 1 to maintain a toroidal space-occupying device at the upper portion of a patient's stomach.



FIG. 3 shows another embodiment of the inventive method wherein a space-occupying device is secured in the stomach by a fastener that secures two separate regions of stomach wall together.



FIG. 4 illustrates an embodiment of a space-occupying device locking system according to the invention. In this variation, the system includes an inflatable toroidal space-occupying device and an inflatable spherical locking member.



FIG. 5 is a cross-sectional view of a space-occupying device locking system according to FIG. 4 deployed on the wall of a patient's stomach. The extragastric balloon is surrounded by a region of stomach wall that interacts with the toroidal intragastric balloon and prevents the two balloons from moving.



FIG. 6 illustrates another aspect of the invention wherein a space-occupying device is retained within a pouch created in the stomach through manipulation of the stomach wall. In the variation depicted, the stomach pouch has been created by performing a Roux-En-Y gastroplasty.



FIG. 7 illustrates a variation of the method shown in FIG. 6, where the pouch has been created by a vertical band gastroplasty.



FIG. 8 illustrates a variation of the method shown in FIG. 6, where the pouch has been created by laproscopic banding.



FIG. 9 illustrates a variation of the method shown in FIG. 6, where the pouch has been created by plication of the stomach.



FIG. 10 is a cross-sectional view of the stomach and space-occupying device depicted in FIG. 9, showing the created pouch, stomach plication line and the retained space-occupying device.



FIG. 11 is a sectional view of the stomach depicted in FIG. 9 taken along the plane designated by lines 1111 showing the plication of the stomach.



FIG. 12 illustrates yet another aspect of the invention wherein a space-occupying device is retained within a pouch created in the stomach, the space-occupying device having a passageway and extending sleeve configured to pass food from the patient's esophagus to the pylorus.



FIG. 13 illustrates a cross-sectional view the deployed space-occupying device of FIG. 12 with parts broken away, showing a cavity within the device in communication with the passageway.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is focused on methods and devices for maintaining a space-occupying device in a relatively fixed position within a patient's stomach. Various methods and devices for deployment of a space-occupying device in a human stomach that are well know to one skilled in the art may be incorporated with the present methods and devices in executing the procedure for deploying a space-occupying device inside a patient's stomach and securing its location within the stomach. International Application No. PCT/US01/43868 (International Publication No. WO 02/35980 A2) describes various tools, devices and methods for deployment of expandable devices inside a patient's body cavity. It is incorporated herein by reference in its entirety.


Referring to FIG. 1, one variation of the method according to the present invention of maintaining a space-occupying device 2 in a fixed relationship to a patient's stomach is illustrated in detail. The space-occupying device 2 is adapted for occupying a defined amount of space within the stomach to provide the patient with a feeling of fullness. The space-occupying device 2 is delivered into the patient's stomach in the deflated state through a transesophageal procedure. The space-occupying device 2 is then inflated inside the patient's stomach. With the assistance of an endoscope, catheters and other surgical tools well known to one skilled in the art, a surgeon may place the space-occupying device on the inner wall of the stomach. As shown in FIG. 1, the surgeon brings together two regions 8, 10 of the stomach within an opening 4 on the space-occupying device and secures the two regions 8, 10 to each other. The two regions 8, 10 of the stomach to be brought together may be located opposite one another. Although it is preferable that the two regions 8, 10 be directly opposite each other, this not a necessary requirement in the application of this method and one skilled in the art will appreciate that a variety of different region locations can be used to achieve the desired result.


In the example illustrated in FIG. 1, the toroidal space-occupying device 2 is secured in the stomach by fastening two regions 8, 10 of the stomach that are located on the opposite side of the stomach within the center passage way of the toroidal device. This may be achieved e.g. by first passing an elongated surgical instrument through the opening on the toroid and then securing an area on the inner wall of the stomach. This first area of the stomach is then pulled through the toroidal opening. The first area of the stomach is then brought in contact with a second area. At least one fastener 6 is then deployed to connect the two areas 8, 10 of the stomach. FIG. 2 illustrates a toroidal space-occupying device 2 secured at the upper portion of a patient's stomach 14 with the method described above. The posterior and anterior regions of the stomach that corresponds to the opening on the toroid are brought together in the opening and fastened to each other. Alternatively, a space-occupying device 2 may also be placed in other locations within the stomach. For example, the space-occupying device 2 may be positioned more towards the center of the stomach.


It is preferable, that the two regions 8, 10 of the stomach come in contact with each other. As illustrated in FIG. 3, the two regions 8, 10 of the stomach may be brought into approximation and fastened to each other with a fastener 6.


Furthermore, various fasteners 6 may be used to secure the two areas 8, 10 of the stomach. It is preferable that the space-occupying device deployed in this manner has an opening 4 allowing the stomach tissue to pass through it. However, the space-occupying device 2 may be of various shapes one skilled in the arts considers suitable for deployment inside a patient's stomach.


Although it is preferable that the two regions 8, 10 of the stomach tissue that are brought together within the opening of the space-occupying device be translated approximately the same distance, it is also within the contemplation of this invention that one region of tissue may be translated more than the other, resulting in the meeting point 7 or the gap 26 being shifted away from the center of the space occupying device toward one side or the other.


Alternatively, the space-occupying device 2 may be deflated or only partially inflated when it is being secured with the wall of the stomach. Once the space-occupying device is secured at the desired position, it is then fully inflated.


The two regions 8, 10 of the stomach may be fastened to each other with the assistance of endoscopic instruments through the esophagus. The fastener 6 may only partially penetrate the stomach wall without penetrating the outer wall of the stomach.


Alternatively, sutures may also be used to secure the space-occupying device that extend through the external wall of the stomach. For example, the space-occupying device is positioned in the stomach, a needle with a suture is inserted from the outside of the stomach through the wall of the stomach into the stomach. The surgeon then passes the needle through the opening on the space-occupying device and exits the stomach through the wall on the opposite side. The surgeon then brings the needle along with the connected suture back into the stomach at approximately the same region and passing the opening again, and exits the stomach at a location near the first entry point. The two ends of the sutured are then secure to each other. As pressure is applied due to the tightening of the suture, the two regions 8, 10 of the stomach collapse toward each other and meet inside the opening within the space-occupying device.


In another variation, a laproscopic instrument can be used to deliver a fastener through the stomach from extragastric space. The fastener is inserted into the abdomen and then through the anterior of the stomach. The fastener is then pushed through the opening of the space-occupying device and through the stomach wall on the posterior side. An anchor is then deployed, followed by application of pressure to force the two side of the stomach to collapse toward each other. A second anchor is then deployed on the opposite side of the stomach. The laproscopic instrument is then withdrawn from the body of the patient leaving the fastener to securing the two region of the stomach. The result is similar to the situation shown in FIG. 3, where anchors 24 are located outside the stomach, which have a large surface area relative to the entry and exit points of the fastener 6, and allow distribution of pressure from the fastener 6 over a larger area of the stomach tissue thus minimizing potential damage to the tissue due to tearing or abrasion of the tissue.


In another variation, the stomach wall is wrapped around the space-occupying device to maintain its position within the stomach. The surgeon may secure one region of the stomach wall and places it over the space-occupying device. The surgeon then secures a second region of the stomach wall and places it over the space-occupying device. A fastener is then used to secure the two regions of the stomach over the space-occupying device. The fastener may be a suture, a surgical staple, a surgical clip, an implantable loop, or other devices commonly used in surgery for securing two sections of tissues together. As discussed earlier, the two regions of the stomach do not have to come in contact with each other. It is sufficient that they are in approximation of each other.


Although it is preferable that the two regions of the stomach tissue wrapping over the space-occupying device be approximately the same amount, it is also within the contemplation of this invention that one region of tissue may be more than the other, resulting in the meeting point or the gap be shifted away from the center of the space occupying device toward one side or the other.


Alternatively, the space-occupying device may be deflated or only partially inflated when it is being anchored to the wall of the stomach. After the space-occupying device is secured at the desired location then it is fully inflated.


In the above method, other minimal invasive surgical techniques that are well know to one skilled in the art may also be incorporated to assist the positioning of the space-occupying device with the inner wall of the stomach. The surgeon may make incisions on the abdomen and introduce catheters and other laproscopic instruments into the stomach through the extra-gastric space. For example, the surgeon may insert an elongated laproscopic fastener instrument through the abdomen into the stomach. The fastener is then used to secure one region of the stomach wall, place it over an intragastric balloon, then position this first region of the stomach wall over a second region of the stomach wall, and then deploy a fastener to fasten the two regions of the stomach together.


Alternatively, the surgeon may introduce a needle connected to a suture into the abdomen of the patient and then penetrate the wall of the stomach with the needle at a first region and bring a section of the suture into the stomach. The suture is brought over the space-occupying device and exits the stomach at a second region. The needle then penetrates the stomach around the second region and enters the stomach again. The needle and a section of the suture are then brought over the space-occupying device and exit the stomach adjacent the first entry point. The suture is tightened and as the result forcing the two regions of stomach tissue to collapse inward and wrapping around the space occupying device.


The inflatable space-occupying device may be fabricated from medical grade rubber or synthetic rubber-like material, one criteria being that such material be impervious so that the insert is capable of holding a charge of air or other fluid. Moreover, the material may be soft and flexible having significant dynamic strength to resist over-inflation. In one variation of the design, the finished product will inflate to the manufactured shape and not further. Polyester base thermoplastic polyurethane film is one material that may be used to achieve such functionality. In an alternative design, the inflatable space-occupying device may be produced of flexible synthetic materials such as polyethylene, polypropylene, PVC, PVCD, PET, teflon, polyolefin or any other appropriate type of materials well known to one skilled in the art.


When the intragastric balloon is inflated, it may be desirable to carefully control the inflation pressure so that when the balloon is deployed the internal pressure is higher than average intragastric pressure during digestion to maintain shape, but less than maximal pressure generated by the stomach contractions, to minimize mucosal damage.


The space-occupying device may be of various shapes that one skilled in the art would consider suitable for placement inside the stomach of a patient. For example, in one variation, the space-occupying device may have an elongated bar shaped body with distal ends having larger diameters than the mid-section of the device. This narrow mid-section allows easier wrapping of stomach tissue over the device and the expanded ends prevent the device from shifting its position after it is secured with the stomach wall. Radio opaque markers may be incorporated on the space-occupying device to assist physician in monitoring the position and status of the space-occupying device while it is inside a patient's body. Alternatively, it may be desirable to coat the space-occupying device with radio-opaque materials or other substances that may enhance the detection of the space-occupying device by electronic monitors, e.g. x-ray monitor or ultrasound monitor, while the space-occupying device is in the patient's stomach.


In another variation, the space-occupying device is secured with the wall of the stomach at two or more locations. For example, a toroidal shaped space-occupying device can be secured against the wall of the stomach at two separated positions on the toroid.



FIG. 4 shows yet another embodiment of the invention having a space-occupying device 32 with an opening 34, in this case a toroidal intragastric balloon, and a locking member 36, in this case spherical extragastric balloon. The toroid 32 has a center opening with a diameter “d” when it is fully inflated. The sphere 36 has a diameter “D” when it is fully inflated. D is larger then d. Thus, when both the toroid 32 and the sphere 36 are inflated the sphere 36 cannot pass through the opening 34 of the toroid.



FIG. 5 illustrates the toroidal intragastric balloon 32 and the spherical extragastric balloon 36 being deployed on the wall of stomach 40. A deflated toroidal (or doughnut shaped) intragastric balloon 32 is inserted into the stomach through the esophagus. A region 42 of the stomach wall is pulled into a fold or bag inside the stomach using e.g. a vacuum acquisition tool. The deflated toroidal intragastric balloon 32 is positioned around the fold (or uvula). The spherical extragastric balloon 36 is then placed either laproscopically or gastroscopically (using transgastric deployment) inside the fold in the extragastric space 44, and then inflated. The intragastric balloon 32 is then inflated and the two balloons become locked together across the gastric wall 40. Because the diameter of the inflated sphere 36 is larger than the diameter of the opening of the inflated toroid 32, there is a mechanical interference between the two balloons that prevents the two balloons from moving relative to one another or the stomach.


The balloons may be constructed of various materials that one skilled in the art would consider suitable for fabrication of a balloon for implantation inside a human body. For example, the intragastric and extragastric balloons may be fabricated from medical grade rubber or synthetic polymeric materials. Flexible synthetic materials such as polyurethane, polyethylene, polypropylene, PVC, PVCD, PET, teflon, their mixtures and blocks or random copolymers may also be used.


Radio opaque makers may be incorporated in the space-occupying device 32 and/or the locking member 36. The surface of the space-occupying device and/or the locking member may be coated with radio-opaque materials to enhance detection of the device while it is positioned in a patient's stomach.


In an alternative design, the extragastric balloon 36 may be substituted with a viscous, curable bolus of a material such as collagen or other biocompatible polymer. The locking member may also be a solid component such as delrin, silicon or titanium alloy ball. Other polymers or metal alloys may also be used to construct the locking member.


Although it is preferable that the intragastric balloon 32 be toroidal or doughnut shape, the intragastric balloon 32 may also have other shapes suitable for implantation inside a patient's stomach. In an alternative design, the space-occupying device 32 is a non-inflatable object with a relatively constant volume that is insert into a patient's stomach through the esophagus or with surgical procedures. After the insertion of the fixed-shape space-occupying device, an expandable locking member 36 is used to anchor the space-occupying device on the wall of the stomach as described above.


Referring now to FIGS. 6–11, the present invention also contemplates methods of retaining space-occupying devices that rely on the creation of retaining pouches within the stomach through manipulation of the stomach or stomach wall. In current obesity treatments, the creation of such pouches is the desired result of a variety of gastroplasty procedures. The purpose of most of these procedures is to create a smaller, upper gastric pouch within the stomach, through manipulation of the stomach walls. As the smaller, upper gastric pouch expands or stretches upon intake of food, a feeling of early fullness is triggered in the patient, which ideally results in reduced overall caloric intake by the patient. According to methods of the present invention, these pouches can also serve to receive and retain space occupying devices of the appropriate corresponding configurations. Due to the physical constraints of the pouches themselves, these space occupying devices are maintained in place relative to the stomach as a whole and restricted from migrating out of the pouch. The provision of a space occupying device within a formed gastric pouch further lessens the amount of food intake that will trigger a feeling of fullness in the patient. The space occupying devices can be deployed at the time of the gastroplasty procedure itself to enhance the efficacy of the gastroplasty. In other scenarios, such as where a formed gastric pouch has become stretched out over time or has otherwise failed to provide the desired clinical effect, a space occupying device can be inserted at such later time to increase or enhance the desired effect.



FIG. 6 in particular shows an upper, gastric pouch 54 formed from a gastric bypass procedure commonly known as a Roux-en-Y gastric bypass (RYGB) procedure. In this procedure, the stomach is completely divided into two unequal portions, the smaller upper, gastric pouch 54 and a larger, lower gastric pouch 56, using e.g. an automatic stapling device with the raw surface being reinforced with additional sutures. The upper pouch typically measures less than about 1 ounce or 20 cc, while the lower larger pouch remains generally intact and continues to secrete stomach juices flowing through the intestinal tract. Segment 57 of the small intestine (located just distal of the duodenum or proximal of the jejunum) is then brought from the lower abdomen and joined with the upper pouch 54 to form an end-to-end anastomosis 58 created through an opening or stoma of approximately one-half inch in upper pouch 54. This segment of the small intestine is called the “Roux loop” and carries food from the upper pouch to the remainder of the intestines, where the food is digested. The remaining lower pouch 56 and the attached segment of duodenum are then reconnected to form another anastomotic connection 59 to the Roux loop at a location approximately 50–150 cm (1.6–4.9 ft) from the stoma, typically using a stapling instrument. At this connection, the digestive juices from the bypassed stomach, pancreas, and liver enter the jejunum or ileum to aid in the digesting of food. As with other similar gastroplasty procedures, due to the small size of the upper pouch, patients are forced to eat at a slower rate and are satiated much more quickly, thereby reducing the caloric intake.


Space-occupying device 52 is placed and maintained within upper gastric pouch 54 and further lessens the volume of pouch 54. Space-occupying device 52 as depicted is spherical in shape but other configurations may used that generally conform to the shape of the formed pouch. The space-occupying device can be formed of materials and deployed according to ways previously described herein.



FIG. 7 shows an upper, gastric pouch 64 formed from a vertical banded gastroplasty (VBG) procedure. In this type of a procedure, upper gastric pouch 64 can be typically formed using a vertical staple line 67, with band 68 applied to prevent dilation of the outlet from upper pouch 64 into the remaining portion of the stomach which forms lower pouch 66. Again, space occupying device 52 is placed and retained within upper pouch 64. Alternative methods of performing vertical banded gastroplasty may also be used, including those methods described in U.S. Pat. No. 5,549,621, incorporated herein by reference.



FIG. 8 shows an upper gastric pouch 74 formed by a laproscopic banding procedure. In this type of a procedure, laproscopic methods and tools are used to insert a banding device 78 that constricts the stomach wall, creating upper and lower gastric pouchs 74 and 76, respectively. Space occupying device 52 is deployed and retained within upper pouch 74. Variations on such laproscopic banding methods may also be used, including those methods described in U.S. Pat. No. 5,345,949, incorporated herein by reference.



FIGS. 9–11 show an upper gastric pouch 84 created by methods of plication of the stomach wall. Preferred methods include those described in U.S. application Ser. No. 09/871,297, filed May 30, 2001, which is commonly owned and incorporated herein by reference. Such described methods include plication methods wherein transorally advanced tools are used to form a pouch or partition in the stomach by the approximation and fixation of folds of stomach. Referring to FIGS. 9–11, folds in the posterior wall 87 and anterior wall 89 of the stomach may be created using a tissue acquisition device inserted into the stomach transorally, and then the two folds of tissue may be fixed together using staples or other fastening means to create a linear segment or line of plicated tissue 88. The plicated tissue runs at an angle relative to the esophogeal lumen, resulting in the formation of upper gastric pouch 84. Space occupying device 52 is received and retained with gastric pouch 84. As can be-seen, the plication of the anterior and posterior walls does not extend across the entirety of the stomach, thereby leaving small openings 81 and 83 at either end of the plication for food to pass into the lower gastric pouch 86.


The above methods of retaining space-occupying devices in created pouches can also be adapted for situations where it is difficult to perform a gastroplasty procedure, either by transoral stapling or other methods previously described, at a more optimal location such as in close proximity to the cardiac notch (or GE junction) of the stomach. In such situations, it may be advantageous to perform the stapling at a more accessible location, i.e., lower in the stomach from the cardiac notch. In this scenario, the resultant pouch may have a volume on the order of 150–200 ccs, as compared to more desirable volumes for optimal weight loss conditions of from 20–50 ccs. However, in such a situation, whether the larger pouch was created either purposefully or inadvertently, a larger space-occupying device commensurate in size with the larger pouch can be selected and deployed according to the methods described herein.



FIGS. 12–13 illustrate one such application, where staple line 98 has been placed at a lower position relative to the cardiac notch, thereby creating upper and lower pouches 94 and 96, respectively. Upper pouch 94 has a larger relative volume as compared to upper pouches depicted in FIGS. 6–11. A space-occupying device, here depicted as intragastric balloon 102, is selected to have shape and commensurate volume proportionate to that of upper pouch.


Referring now to FIG. 13, it can be seen that intragastric balloon 102 is further provided with a passageway 104 extending through the balloon and a cavity 106 in communication with the passageway. The passageway is oriented such that it is aligned with the patient's esophagus. In this manner, food can be received and travel through the passageway. In the interior of the device, passageway 104 opens up into cavity 106 which has a defined volume. Cavity 106, in essence, defines an artificial pouch, that is smaller in volume than the originally created upper stomach pouch 94.


This system can be readily and conveniently manipulated by a physician to adjust a patient's weight-loss treatment program without the need for additional surgery. For example, a treating physician can initially place a space-occupying device, such as intragastric balloon 102, that has a relatively larger cavity volume. As the patient's weight loss progress is monitored, the physician can as warranted, transorally exchange the device with one having sequentially smaller cavity volumes, until the desired weight loss conditions, rate of loss, or other parameters, are achieved. In this manner, the degree and pace of weight loss can be finely tuned, without need for additional invasive procedures.


Alternatively, intragastric balloon 102 can be constructed such that the volume of cavity 106 is adjustable. For example, the device can be inflatable and further provided with an inflation or filling port or ports (not shown) that are accessible to a transorally-advanced endoscope. Inflation media can then be introduced into or released from the balloon to alter the size of the cavity. Such adjustments could also affect the overall volume of the balloon which can increase stretching of the gastric pouch itself, further affecting weight loss.


In a further variation, passageway 104 and cavity 106 can be made to be somewhat rigid relative to the remaining components of the balloon. In such a variation, the exterior portions of the balloon will flex and expand or contract to a much greater degree than the passageway. As a result, the dimensions of the passageway and cavity remain fairly constant, and food that enters and fills the cavity will empty at a constant rate and not be impacted by stretching and contraction of the stomach. In other words, the normal peristaltic effect of the stomach on food contained in the passageway or cavity will be diminished. This may slow the overall release of food from the device and further contribute to a more desired and controllable weight loss pattern in the patient.


As also shown in FIG. 12, intragastric balloon 102 further includes a sleeve that extends from passageway 104. This sleeve can be positioned as shown to extend through pyloris and pyloric valve of the stomach and into the duodenum of the small intestine. As shown in FIG. 13, the sleeve can be attached to the balloon by the provision of rim 105 which is securable to corresponding recess 107 in passageway 104, although one of ordinary skill in the art will recognize other known methods of attachment. The provision of the sleeve allows food to pass directly into the small intestine and, depending on the overall length of the sleeve, can operate to avoid absorption of nutrients by the duodenum altogether. Depending on the clinical situation, the inclusion of the bypass sleeve may be of further advantage.


This invention has been described and specific examples of the invention have been portrayed. The use of those specifics is not intended to limit the invention in anyway. Additionally, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is our intent that this patent will cover those variations as well.

Claims
  • 1. A method of maintaining a space-occupying device in a fixed relationship relative to a patient's stomach wall comprising the steps of providing a space-occupying device;introducing said space-occupying device into the patient's stomach to a location adjacent an inner wall of the stomach;bringing a first surface area of the inner wall of the stomach into approximation with a second surface area of the inner wall of the stomach; andsecuring said first surface area to said second surface area such that the space-occupying device is retained at a fixed location relative to the stomach.
  • 2. The method of claim 1 wherein said approximating step further results in a portion of the inner wall surrounding a portion of the space-occupying device.
  • 3. The method of claim 1 wherein the provided space-occupying device is an intragastric balloon.
  • 4. The method of claim 3 wherein the introducing step further comprises the step of inflating the space-occupying device.
  • 5. The method of claim 1 wherein the securing step comprises suturing said first surface area to said second surface area.
  • 6. The method of claim 5 wherein the securing step comprises suturing said first surface area to said second surface area from inside the stomach without penetrating the outer wall of the stomach.
  • 7. The method of claim 1 wherein the approximating step comprises approximating a first and a second surface area located opposite one another.
  • 8. The method of claim 1 further comprising the steps of bringing additional surface areas on the inner wall of the stomach into approximation with one another; andsecuring said additional surfaces to one another.
  • 9. The method of claim 1 wherein the securing step further comprises the use of a fastener to secure said first surface to said second surface.
  • 10. The method of claim 1 wherein the securing step further comprises the step of introducing a fastener tool to deploy a fastener for securing said first surface to said second surface.
  • 11. The method of claim 1 wherein the providing step comprises providing a toroid-shape space-occupying device.
  • 12. The method of claim 11 wherein the first and the second surfaces are opposite each other.
  • 13. The method of claim 12 wherein the approximation step further comprises the step of bring said first surface area through a center opening of said toroid-shape space-occupying device.
  • 14. A method of anchoring a space-occupying device on a patient's stomach wall comprising the step of, providing an inflatable space-occupying device having a passageway there through;introducing said inflatable space-occupying device into the stomach to a location adjacent to a first region of the stomach wall;placing an spherical member adjacent the first region on the outside of said stomach;forcing said spherical member and said first region of the stomach wall through the passage way of the space-occupying device while the space-occupying device is in a deflated state; andinflating said space-occupying device and trapping said spherical member, thereby securing said space-occupying device to the patients stomach wall.
  • 15. The method of claim 14 wherein the providing step comprises providing a toroidal space-occupying device having a passageway there through.
  • 16. The method of claim 14 wherein: the providing step comprises providing an inflatable toroidal intragastric balloon;the placing step comprises placing an inflatable spherical extragastric balloon adjacent the first region on the outside of said stomach; andthe forcing step further comprises applying suction to said first region of the stomach wall to form a fold, inserting said deflated extragastic balloon into the fold, and inflating said spherical extragastric balloon.
  • 17. A method of assisting weight loss in a patient comprising the steps of: a) creating a pouch within the patient's stomach;b) selecting a first space-occupying device adapted for placement and retention within the pouch, the first space-occupying device having a passageway extending through the device, and a cavity within the device and in communication with the passageway, the cavity having a first defined volume;c) introducing the space-occupying device into the created pouch such that the passageway is oriented in alignment with the patient's esophagus;d) monitoring the patient's weight loss, and, if warrantede) replacing the first space-occupying device with a second space-occupying device adapted for placement and retention within the pouch, the second space-occupying having a passageway extending through the device, and a cavity within the device and in communication with the passageway, the cavity having a second defined volume, such that the passageway is oriented in alignment with the patient'sesophagus, the second defined volume of the second space-occupying device being different than the first defined volume of the first space-occupying device.
  • 18. A method of assisting weight loss in a patient comprising the steps of, a) creating a pouch within the patient's stomach;b) selecting a space-occupying device adapted for placement and retention within the pouch, the space-occupying device having a passageway extending through the device, and a cavity within the device and in communication with the passageway, the cavity having an adjustable volume;c) introducing the space-occupying device into the created pouch such that the passageway is oriented in alignment with the patient's esophagus;d) monitoring the patient's weight loss, and, if warrantede) adjusting the cavity volume of the space-occupying device.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part and claims the benefit of earlier filed U.S. application Ser. No. 10/232,505, filed on Aug. 30, 2002, now U.S. Pat. No. 6,981,978 which is incorporated herein by reference in its entirety.

US Referenced Citations (362)
Number Name Date Kind
2108206 Meeker Feb 1938 A
2508690 Schmerl May 1950 A
3395710 Stratton et al. Aug 1968 A
3986493 Hendren, III Oct 1976 A
4057065 Thow Nov 1977 A
4133315 Berman et al. Jan 1979 A
4134405 Smit Jan 1979 A
4198982 Fortner et al. Apr 1980 A
4246893 Berson Jan 1981 A
4315509 Smit Feb 1982 A
4402445 Green Sep 1983 A
4416267 Garren et al. Nov 1983 A
4434066 Lewis Feb 1984 A
4458681 Hopkins Jul 1984 A
4485805 Foster, Jr. Dec 1984 A
4501264 Rockey Feb 1985 A
4547192 Brodsky et al. Oct 1985 A
4558699 Bashour Dec 1985 A
4592339 Kuzmak et al. Jun 1986 A
4592354 Rothfuss Jun 1986 A
4598699 Garren et al. Jul 1986 A
4607618 Angelchik Aug 1986 A
4610383 Rothfuss et al. Sep 1986 A
4641653 Rockey Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4648383 Angelchik Mar 1987 A
4694827 Weiner et al. Sep 1987 A
4716900 Ravo et al. Jan 1988 A
4723547 Kullas et al. Feb 1988 A
4739758 Lai et al. Apr 1988 A
4744363 Hasson May 1988 A
4773393 Haber et al. Sep 1988 A
4790294 Allred, III et al. Dec 1988 A
4803985 Hill Feb 1989 A
4841888 Mills et al. Jun 1989 A
4899747 Garren et al. Feb 1990 A
4905693 Ravo Mar 1990 A
4925446 Garay et al. May 1990 A
4927428 Richards May 1990 A
4969474 Schwarz Nov 1990 A
5037021 Mills et al. Aug 1991 A
5059193 Kuslich Oct 1991 A
5080663 Mills et al. Jan 1992 A
5084061 Gau et al. Jan 1992 A
5112310 Grobe May 1992 A
5129915 Cantenys Jul 1992 A
5156609 Nakao et al. Oct 1992 A
5171233 Amplatz et al. Dec 1992 A
5197649 Bessler et al. Mar 1993 A
5220928 Oddsen et al. Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5226429 Kuzmak Jul 1993 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5250058 Miller et al. Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5259366 Reydel et al. Nov 1993 A
5259399 Brown Nov 1993 A
5261920 Main et al. Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5297536 Wilk Mar 1994 A
5301658 Zhu et al. Apr 1994 A
5306300 Berry Apr 1994 A
5309896 Moll et al. May 1994 A
5309927 Welch May 1994 A
5327914 Shlain Jul 1994 A
5330486 Wilk Jul 1994 A
5330503 Yoon Jul 1994 A
5331975 Bonutti Jul 1994 A
5334209 Yoon Aug 1994 A
5334210 Gianturco Aug 1994 A
5345949 Shlain Sep 1994 A
5346501 Regula et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5376095 Ortiz Dec 1994 A
5382231 Shlain Jan 1995 A
5403312 Yates et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5411408 Bessler et al. May 1995 A
5433721 Hooven et al. Jul 1995 A
5437291 Pasricha et al. Aug 1995 A
5449368 Kuzmak Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5458131 Wilk Oct 1995 A
5465894 Clark et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5486183 Middleman et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5503635 Sauer et al. Apr 1996 A
5527319 Green et al. Jun 1996 A
5535935 Vidal et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5555898 Suzuki et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5571116 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5578044 Gordon et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5584861 Swain et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5601604 Vincent Feb 1997 A
5603443 Clark et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5624381 Kieturakis Apr 1997 A
5626588 Sauer et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5649937 Bito et al. Jul 1997 A
5651769 Waxman et al. Jul 1997 A
5655698 Yoon Aug 1997 A
5662664 Gordon et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5667520 Bonutti Sep 1997 A
5676659 McGurk Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5685868 Lundquist Nov 1997 A
5690656 Cope et al. Nov 1997 A
5697943 Sauer et al. Dec 1997 A
5707382 Sierocuk et al. Jan 1998 A
5722990 Sugarbaker et al. Mar 1998 A
5728178 Buffington et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5755730 Swain et al. May 1998 A
5766216 Gangal et al. Jun 1998 A
5776054 Bobra Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788715 Watson, Jr. et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5797931 Bito et al. Aug 1998 A
5810851 Yoon Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5820584 Crabb Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5836311 Borst et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5860581 Robertson et al. Jan 1999 A
5861036 Godin Jan 1999 A
5868141 Ellias Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5879371 Gardiner et al. Mar 1999 A
5887594 LoCicero, III Mar 1999 A
5888196 Bonutti Mar 1999 A
5897534 Heim et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5906625 Bito et al. May 1999 A
5910105 Swain et al. Jun 1999 A
5910149 Kuzmak Jun 1999 A
5921993 Yoon Jul 1999 A
5927284 Borst et al. Jul 1999 A
5928264 Sugarbaker et al. Jul 1999 A
5935107 Taylor et al. Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5947983 Solar et al. Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972001 Yoon Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5980537 Ouchi Nov 1999 A
5993464 Knodel Nov 1999 A
5993473 Chan et al. Nov 1999 A
6015378 Borst et al. Jan 2000 A
6030364 Durgin et al. Feb 2000 A
6030392 Dakov Feb 2000 A
6042538 Puskas Mar 2000 A
6044847 Carter et al. Apr 2000 A
6067991 Forsell May 2000 A
6074343 Nathanson et al. Jun 2000 A
6083241 Longo et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6113609 Adams Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120513 Bailey et al. Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6159146 El Gazayerli Dec 2000 A
6159195 Ha et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6179022 Schneider et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6186942 Sullivan et al. Feb 2001 B1
6186985 Snow Feb 2001 B1
6197022 Baker Mar 2001 B1
6200318 Har-Shai et al. Mar 2001 B1
6206822 Foley et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6224614 Yoon May 2001 B1
6231561 Frazier et al. May 2001 B1
6248058 Silverman et al. Jun 2001 B1
6254642 Taylor Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6290674 Roue et al. Sep 2001 B1
6302917 Dua et al. Oct 2001 B1
6312437 Kortenbach Nov 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6338345 Johnson et al. Jan 2002 B1
6358197 Silverman et al. Mar 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6416535 Lazarus Jul 2002 B1
6423087 Sawada Jul 2002 B1
6432040 Meah Aug 2002 B1
6447533 Adams Sep 2002 B1
6460543 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6494888 Laufer et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6535764 Imran et al. Mar 2003 B2
6540789 Silverman et al. Apr 2003 B1
6551310 Ganz et al. Apr 2003 B1
6554844 Lee et al. Apr 2003 B2
6558400 Deem et al. May 2003 B2
6561696 Rusnak et al. May 2003 B1
6561969 Frazier et al. May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6592596 Geitz Jul 2003 B1
6626899 Houser et al. Sep 2003 B2
6632227 Adams Oct 2003 B2
6663598 Carrillo, Jr. et al. Dec 2003 B1
6663639 Laufer et al. Dec 2003 B1
6663640 Kortenbach Dec 2003 B2
6675809 Stack et al. Jan 2004 B2
6682520 Ingenito Jan 2004 B2
6689062 Mesallum Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6716222 McAlister et al. Apr 2004 B2
6733512 McGhan May 2004 B2
6736822 McClellan et al. May 2004 B2
6740098 Abrams et al. May 2004 B2
6740121 Geitz May 2004 B2
6746489 Dua et al. Jun 2004 B2
6754536 Swoyer et al. Jun 2004 B2
6755849 Gowda et al. Jun 2004 B1
6755869 Geitz Jun 2004 B2
6756364 Barbier et al. Jun 2004 B2
6764518 Godin Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer Aug 2004 B1
6786898 Guenst Sep 2004 B2
6790214 Kraemer et al. Sep 2004 B2
6802868 Silverman et al. Oct 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837848 Bonner et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6845776 Stack et al. Jan 2005 B2
6896682 McClellan et al. May 2005 B1
6926722 Geitz Aug 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6981978 Gannoe Jan 2006 B2
6991643 Saadat Jan 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025791 Levine et al. Apr 2006 B2
7033378 Smith et al. Apr 2006 B2
7037343 Imran May 2006 B2
7037344 Kagan et al. May 2006 B2
7063715 Onuki et al. Jun 2006 B2
7083630 DeVries et al. Aug 2006 B2
7087011 Cabiri et al. Aug 2006 B2
20010014800 Frazier et al. Aug 2001 A1
20010020190 Taylor Sep 2001 A1
20010037127 De Hoyos Garza Nov 2001 A1
20020035361 Houser et al. Mar 2002 A1
20020040226 Laufer et al. Apr 2002 A1
20020047036 Sullivan et al. Apr 2002 A1
20020058967 Jervis May 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020077661 Saadat Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020143346 McGuckin, Jr. et al. Oct 2002 A1
20020165589 Imran et al. Nov 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020193816 Laufer et al. Dec 2002 A1
20030065340 Geitz Apr 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030093117 Saadat May 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030109931 Geitz Jun 2003 A1
20030109935 Geitz Jun 2003 A1
20030120265 Deem et al. Jun 2003 A1
20030120285 Kortenbach Jun 2003 A1
20030120289 McGuckin, Jr. et al. Jun 2003 A1
20030132267 Adams et al. Jul 2003 A1
20030158563 McClellan et al. Aug 2003 A1
20030158601 Silverman et al. Aug 2003 A1
20030171760 Gambale Sep 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20040009224 Miller Jan 2004 A1
20040010271 Kortenbach Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040037865 Miller Feb 2004 A1
20040039452 Bessler Feb 2004 A1
20040049209 Benchetrit Mar 2004 A1
20040059349 Sixto, Jr. et al. Mar 2004 A1
20040059354 Smith et al. Mar 2004 A1
20040059358 Kortenbach et al. Mar 2004 A1
20040087977 Nolan et al. May 2004 A1
20040089313 Utley et al. May 2004 A1
20040092892 Kagan et al. May 2004 A1
20040097989 Trigueros May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040116949 Ewers et al. Jun 2004 A1
20040122456 Saadat et al. Jun 2004 A1
20040122473 Ewers et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040133147 Woo Jul 2004 A1
20040133238 Cerier Jul 2004 A1
20040138525 Saadat Jul 2004 A1
20040138526 Guenst Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138531 Bonner et al. Jul 2004 A1
20040138682 Onuki et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040162568 Saadat et al. Aug 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040181242 Stack et al. Sep 2004 A1
20040193190 Liddicoat et al. Sep 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225194 Smith et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20050049718 Dann et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050075622 Levine et al. Apr 2005 A1
20050075653 Saadat et al. Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050085787 Laufer Apr 2005 A1
20050096750 Kagan et al. May 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050143760 Imran Jun 2005 A1
20050148818 Mesallum Jul 2005 A1
20050149067 Takemoto et al. Jul 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050194038 Brabee et al. Sep 2005 A1
20050194294 Oexle et al. Sep 2005 A1
20050194312 Niemeyer et al. Sep 2005 A1
20050195925 Traber Sep 2005 A1
20050195944 Bartels et al. Sep 2005 A1
20050196356 Leinen et al. Sep 2005 A1
20050197540 Liedtke Sep 2005 A1
20050197622 Blumenthal et al. Sep 2005 A1
20050197684 Koch Sep 2005 A1
20050198476 Gazsi et al. Sep 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060020254 Hoffmann Jan 2006 A1
20060020276 Saadat et al. Jan 2006 A1
20060036267 Saadat et al. Feb 2006 A1
Foreign Referenced Citations (50)
Number Date Country
0 137 878 Apr 1985 EP
0 174 843 Mar 1986 EP
0 246 999 Nov 1987 EP
0 540 010 May 1993 EP
63277063 Nov 1988 JP
63279854 Nov 1988 JP
63302863 Dec 1988 JP
01049572 Feb 1989 JP
04297219 Oct 1992 JP
WO 199418893 Sep 1994 WO
WO 199917662 Apr 1999 WO
WO 199953827 Oct 1999 WO
WO 200032137 Jun 2000 WO
WO 200048656 Aug 2000 WO
WO 200078227 Dec 2000 WO
WO 200078229 Dec 2000 WO
WO 200166018 Sep 2001 WO
WO 200167964 Sep 2001 WO
WO 200185034 Nov 2001 WO
WO 2002024080 Mar 2002 WO
WO 0235980 May 2002 WO
WO 2002039880 May 2002 WO
WO 2002071951 Sep 2002 WO
WO 2002091961 Nov 2002 WO
WO 2002096327 Dec 2002 WO
WO 2003007796 Jan 2003 WO
WO 2003017882 Mar 2003 WO
WO 2003078721 Sep 2003 WO
WO 2003086247 Oct 2003 WO
WO 2003088844 Oct 2003 WO
WO 2003094785 Nov 2003 WO
WO 2003099140 Dec 2003 WO
WO 2003105563 Dec 2003 WO
WO 2003105671 Dec 2003 WO
WO 2004009269 Jan 2004 WO
WO 20045014237 Feb 2004 WO
WO 2004017863 Mar 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004019826 Mar 2004 WO
WO 2004037064 May 2004 WO
WO 2004049911 Jun 2004 WO
WO 2004058102 Jul 2004 WO
WO 2004060150 Jul 2004 WO
WO 2004087014 Oct 2004 WO
WO 2004103189 Dec 2004 WO
WO 2005053118 Mar 2005 WO
WO 2005037152 Apr 2005 WO
WO 20050548239 Jun 2005 WO
WO 2005060882 Jul 2005 WO
WO 2006078781 Jul 2006 WO
Related Publications (1)
Number Date Country
20040044354 A1 Mar 2004 US
Continuation in Parts (1)
Number Date Country
Parent 10232505 Aug 2002 US
Child 10366818 US