Procedures and devices for removing fatty tissue, e.g., for cosmetic reasons, are common and represent a significant market in the cosmetic procedures sector. Conventional fat-removal procedures and devices, e.g., liposuction, can be disruptive to surrounding tissue and often include many risks such as excessive bleeding. There are relatively few procedures for removal of small amounts of fatty tissue, e.g., subcutaneous fat, for cosmetic purposes, and such procedures generally require a skilled practitioner for effective removal and can be very time-consuming and subject to complications. Accordingly, there is a need to provide a simple and safe method and apparatus for removal of subcutaneous fatty tissue.
In one aspect, the invention features a method of manipulating subdermal fat in a treatment area by
a. inserting a first needle (e.g., a micro-coring needle) into the dermis of the treatment area followed by
b. removing the needle from the treatment area. In this embodiment of the invention, the first needle includes a hollow tip and an elongated hollow shaft, the hollow tip being inserted to a depth that results in contact between the hollow tip and the subdermal fat, and the removal of the first needle resulting in the excision of dermis and/or subdermal fat from the treatment area.
The above methods can optionally further include inserting a second needle into the dermis proximate to the first needle (e.g., less than 5 cm, 1 cm, 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm or 0.05 mm from the first needle). These methods can also, e.g., include injecting a liquid (e.g., saline solution) into the treatment area via the second needle at a pressure sufficient to force fat through the first needle.
The above methods can further include the application of a suction force to the first and/or second needle while the tip is in contact with the subdermal fat. Here, the suction force results in subdermal fat being drawn into the needle. Alternatively, or additionally, a suction force is applied to the treatment area after the removal of the first and/or second needle. Here, the suction force results in subdermal fat being extruded from the treatment area.
In any of the foregoing embodiments, the method can further include mobilizing the subdermal fat in the treatment area prior to, during, or after insertion of a needle. This mobilization can include, e.g., introduction of a chemical agent (e.g., a detergent) that denatures fat cells in the subdermal fat (e.g., through the first and/or second needle), application of ultrasound, heating, cooling, or repeated cycles of heating or cooling of the subdermal fat (e.g., heating or cooling the first and/or second needle and/or applying or removing heat from outside the dermis, e.g., the in immediate proximity to the first and/or second needle), mechanically manipulating the subdermal fat (e.g., applying pressure from outside the dermis or directly contacting the subdermal fat with a disruption tool), and/or the application of tumescent anesthesia.
In some embodiments, the invention features repeating steps a. and b. at locations throughout the treatment area (e.g., between 5 and 100 locations per square centimeter of the treatment area). In any of the foregoing embodiments, the first and/or second needle can be, e.g., between 16 and 32 gauge (e.g., 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, or 32 gauge) and the areal fraction of skin removed can be, e.g., between 5% and 80%. The treatment area can be, e.g., between 1 cm2 and 50 cm2.
In certain embodiments, the treatment area includes cellulite. In embodiments where the treatment area is, e.g., cellulite, the methods of the invention can, e.g., further include severing septae in the subdermal fat of the treatment area. This severing can be accomplished, e.g., by
i) deploying a wire including a bend into and through the first and/or second needle such that the bend exits from the tip; and
ii) rotating the wire such that the end of the wire which has exited the tip contacts and severs the septae. In this embodiment, the wire is deployed while the needle tip is in contact with the subdermal fat. A suction force can optionally be applied to the first and/or second needle after the insertion but prior to the deploying of the wire.
In any foregoing aspects of the invention, the first and/or second needle can optionally include a smooth hollow lumen free of protuberances or barbs.
By “excised” tissue portion or “excision” is meant a removed tissue, including a tissue portion from a skin region, or the act of removing tissue or one or more tissue portions from a skin region. For example, an excision includes any removed tissue or tissue portion from a skin region, which can result in excised tissue portions having a particular geometry (e.g., a cylindrical geometry) and produce one or more holes (i.e., negative space created by the removal of tissue) in the skin region. Exemplary methods of forming excised tissue portions or excisions include use of one or more hollow needles (optionally include one or more notches, extensions, protrusions, and/or barbs), one or more microaugers, one or more microabraders, any useful tool for forming excisions, or any methods and apparatuses described herein.
By “subject” is meant a human or non-human animal (e.g., a mammal).
Other features and advantages of the invention will be apparent from the following Detailed Description and the claims.
In general, the present invention features methods of manipulating subdermal fat in a treatment area. Such methods include inserting a needle (e.g., a micro-coring needle) through the dermis to the subdermal fat layer in order to excise a portion of tissue from the treatment area. These insertions result in a portion of the dermis and a portion of subdermal fat to enter into the needle and/or enter the hole in the skin created by insertion of a needle. Removal of the needle results in excision of the portion of dermis and subdermal fat that entered into the needle. Additional subdermal fat can optionally be removed after removal of the needle via the hole left in the dermis by the tissue extraction. Additionally, or alternatively, subdermal fat can be removed by applying a suction force to the needle while inserted into the skin, resulting in additional subdermal fat being drawn into and though the needle or by applying a suction force to the skin after the needle has been removed, resulting in additional subdermal fat being extruded from the treated area. Additionally, fat may passively extrude through the openings created in the skin. Pressure may be applied to the fat layer to facilitate extrusion.
Further, the above methods may be supplemented by mobilization of the subdermal fat prior to, during, or after needle insertion. Such mobilization results in an increased propensity for subdermal fat to flow into the needle or flow through the holes left by the excision of a portion of dermis. For example, mechanical disruption of the fat layer may occur by movement of the penetrating member which may further facilitate extraction or extrusion.
In certain applications, the methods of the invention can be used to treat cellulite. Such treatments can, e.g., include the fat manipulation methods described above. Such treatments can further include severing of septae located with the affected tissue.
Embodiments of the invention are described in more detail below.
In certain embodiments of the invention, the subdermal fat in the treatment area is mobilized prior to, during, and/or after insertion of the needle. Methods of subdermal fat mobilization include liquefaction/degeneration of adipose tissue located in the treatment area, resulting in increased fat extraction through the micro-cored holes in the skin. The adipose tissue can, for example, be liquefied by:
In cases where a second needle is used to aid in subdermal fat mobilization, the second needle can be either hollow or occluded.
The present invention relates to methods of manipulating subdermal fat in a treatment area. These methods include excision of tissue portions (e.g., dermis and subdermal fat) using a needle (e.g., a micro-coring needle).
Such methods can include any part of the body, including the face (e.g., eyelid, cheeks, chin, forehead, lips, or nose), neck, chest (e.g., as in a breast lift), arms, legs, stomach, hips, buttocks, and/or back. Accordingly, the devices on the invention can be arranged or configured to be amenable to the size or geometry of different body regions. Such arrangements and configurations can include any useful shape (e.g., linear, curved, or stellate), size, and/or depth.
In one exemplary method, a plurality of tissue portions are excised from a treatment area of the skin (e.g., 1 cm2, 5 cm2, 10 cm2, 20 cm2, 30 cm2, or 50 cm2) in a subject (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, or more tissue portions, such as between about 2 and 100 tissue portions (e.g., between 2 and 10, 2 and 15, 2 and 20, 2 and 25, 2 and 30, 2 and 35, 2 and 40, 2 and 45, 2 and 50, 2 and 75, 5 and 10, 5 and 15, 5 and 20, 5 and 25, 5 and 30, 5 and 35, 5 and 40, 5 and 45, 5 and 50, 5 and 75, 5 and 100, 10 and 20, 10 and 25, 10 and 30, 10 and 35, 10 and 40, 10 and 45, 10 and 50, 10 and 75, 10 and 100, 15 and 20, 15 and 25, 15 and 30, 15 and 35, 15 and 40, 15 and 45, 15 and 50, 15 and 75, 15 and 100, 20 and 25, 20 and 30, 20 and 35, 20 and 40, 20 and 45, 20 and 50, 20 and 75, 20 and 100, 25 and 30, 25 and 35, 25 and 40, 25 and 45, 25 and 50, 25 and 75, 25 and 100, 30 and 35, 30 and 40, 30 and 45, 30 and 50, 30 and 75, 30 and 100, 35 and 40, 35 and 45, 35 and 50, 35 and 75, 35 and 100, 40 and 45, 40 and 50, 40 and 75, 40 and 100, 50 and 75, or 50 and 100)). Such tissue portions can be included in any useful geometric, non-geometric, or random array (e.g., such as those described herein for an array of needles). Such tissue portions can have any useful dimension that promotes wound or skin healing. Non-limiting dimensions of a tissue portion includes at least one dimension that is less than about 2.0 mm (e.g., less than or equal to about 1.5 mm, 1 mm, 0.75 mm, 0.5 mm, 0.3 mm, 0.2 mm, 0.1 mm, 0.075 mm, 0.05 mm, or 0.025 mm) or between about 0.025 mm and 2.0 mm (e.g., between about 0.025 mm and 1.5 mm, 0.025 mm and 1.0 mm, 0.025 mm and 0.75 mm, 0.025 mm and 0.5 mm, 0.025 mm and 0.3 mm, 0.025 mm and 0.2 mm, 0.025 mm and 0.1 mm, 0.025 mm and 0.075 mm, 0.025 mm and 0.05 mm, 0.05 mm and 2.0 mm, 0.05 mm and 1.5 mm, 0.05 mm and 1.0 mm, 0.05 mm and 0.75 mm, 0.05 mm and 0.5 mm, 0.05 mm and 0.3 mm, 0.05 mm and 0.2 mm, 0.05 mm and 0.1 mm, 0.05 mm and 0.075 mm, 0.075 mm and 2.0 mm, 0.075 mm and 1.5 mm, 0.075 mm and 1.0 mm, 0.075 mm and 0.75 mm, 0.075 mm and 0.5 mm, 0.075 mm and 0.3 mm, 0.075 mm and 0.2 mm, 0.075 mm and 0.1 mm, 0.1 mm and 2.0 mm, 0.1 mm and 1.5 mm, 0.1 mm and 1.0 mm, 0.1 mm and 0.75 mm, 0.1 mm and 0.5 mm, 0.1 mm and 0.3 mm, 0.1 mm and 0.2 mm, 0.2 mm and 2.0 mm, 0.2 mm and 1.5 mm, 0.2 mm and 1.0 mm, 0.2 mm and 0.75 mm, 0.2 mm and 0.5 mm, 0.2 mm and 0.3 mm, 0.3 mm and 2.0 mm, 0.3 mm and 1.5 mm, 0.3 mm and 1.0 mm, 0.3 mm and 0.75 mm, 0.3 mm and 0.5 mm, 0.5 mm and 2.0 mm, 0.5 mm and 1.5 mm, 0.5 mm and 1.0 mm, 0.5 mm and 0.75 mm, 0.75 mm and 2.0 mm, 0.75 mm and 1.5 mm, or 0.75 mm and 1.0 mm).
In some embodiments, the excised tissue portions forms a hole in the skin region, where the diameter or width of the hole is less than about 1.0 mm and results in a tissue portion having a diameter or width that is less than about 1.0 mm. In further embodiments, the tissue portion has a diameter or width that is less than about 1.0 mm and a length of more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). In particular embodiments, relatively small dimensions of the tissue portions can promote healing while minimizing the formation of scars.
In other embodiments, the excised tissue portions forms a slit in the skin region, where the length or width of the slit is less than about 1.0 mm and results in a tissue portion having a length or width that is less than about 1.0 mm. In further embodiments, the tissue portion has a length or width that is less than about 1.0 mm and a length of more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). In particular embodiments, relatively small dimensions of the tissue portions can promote healing while minimizing the formation of scars.
The tissue portion can be of any useful shape. Exemplary shapes include cylinders (i.e., thereby forming round or elongated holes in the skin region), holes (e.g., microholes), slits (e.g., microslits), elongated strips (i.e., thereby forming elongated openings in the skin region), or other geometries including at least dimension that is less than about 1.0 mm (e.g., less than or equal to about 0.75 mm, about 0.5 mm, about 0.3 mm, about 0.2 mm, about 0.1 mm, or about 0.05 mm) or between about 0.05 mm and 1.0 mm (e.g., 0.05 mm and 0.75 mm, 0.05 mm and 0.5 mm, 0.05 mm and 0.3 mm, 0.05 mm and 0.2 mm, 0.05 mm and 0.1 mm, 0.1 mm and 1.0 mm, 0.1 mm and 0.75 mm, 0.1 mm and 0.5 mm, 0.1 mm and 0.3 mm, 0.1 mm and 0.2 mm, 0.2 mm and 1.0 mm, 0.2 mm and 0.75 mm, 0.2 mm and 0.5 mm, 0.2 mm and 0.3 mm, 0.3 mm and 1.0 mm, 0.3 mm and 0.75 mm, 0.3 mm and 0.5 mm, 0.4 mm and 1.0 mm, 0.4 mm and 0.75 mm, 0.4 mm and 0.5 mm, 0.5 mm and 1.0 mm, 0.5 mm and 0.75 mm, 0.6 mm and 1.0 mm, 0.6 mm and 0.75 mm, or 0.75 mm and 1.0 mm). In other embodiments, the excised tissue portion has an areal dimension (e.g., a cross-sectional dimension in the xy-plane, such as an areal dimension of a circle or non-circular (e.g., elliptical) shape) of less than about or equal to about 1.0 mm2 (e.g., less than or equal to about 0.9 mm2, 0.8 mm2, 0.7 mm2, 0.6 mm2, 0.5 mm2, 0.4 mm2, 0.3 mm2, 0.2 mm2, 0.1 mm2, 0.07 mm2, 0.05 mm2, 0.03 mm2, 0.02 mm2, 0.01 mm2, 0.007 mm2, 0.005 mm2, 0.003 mm2, 0.002 mm2, or 0.001 mm2) or between about 0.001 mm2 and 1.0 mm2 (e.g., 0.001 mm2 and 0.9 mm2, 0.001 mm2 and 0.8 mm2, 0.001 mm2 and 0.7 mm2, 0.001 mm2 and 0.6 mm2, 0.001 mm2 and 0.5 mm2, 0.001 mm2 and 0.4 mm2, 0.001 mm2 and 0.3 mm2, 0.001 mm2 and 0.2 mm2, 0.001 mm2 and 0.1 mm2, 0.001 mm2 and 0.07 mm2, 0.001 mm2 and 0.05 mm2, 0.001 mm2 and 0.03 mm2, 0.001 mm2 and 0.02 mm2, 0.001 mm2 and 0.01 mm2, 0.001 mm2 and 0.007 mm2, 0.001 mm2 and 0.005 mm2, 0.001 mm2 and 0.003 mm2, 0.001 mm2 and 0.002 mm2, 0.002 mm2 and 1.0 mm2, 0.002 mm2 and 0.9 mm2, 0.002 mm2 and 0.8 mm2, 0.002 mm2 and 0.7 mm2, 0.002 mm2 and 0.6 mm2, 0.002 mm2 and 0.5 mm2, 0.002 mm2 and 0.4 mm2, 0.002 mm2 and 0.3 mm2, 0.002 mm2 and 0.2 mm2, 0.002 mm2 and 0.1 mm2, 0.002 mm2 and 0.07 mm2, 0.002 mm2 and 0.05 mm2, 0.002 mm2 and 0.03 mm2, 0.002 mm2 and 0.02 mm2, 0.002 mm2 and 0.01 mm2, 0.002 mm2 and 0.007 mm2, 0.002 mm2 and 0.005 mm2, 0.002 mm2 and 0.003 mm2, 0.005 mm2 and 1.0 mm2, 0.005 mm2 and 0.9 mm2, 0.005 mm2 and 0.8 mm2, 0.005 mm2 and 0.7 mm2, 0.005 mm2 and 0.6 mm2, 0.005 mm2 and 0.5 mm2, 0.005 mm2 and 0.4 mm2, 0.005 mm2 and 0.3 mm2, 0.005 mm2 and 0.2 mm2, 0.005 mm2 and 0.1 mm2, 0.005 mm2 and 0.07 mm2, 0.005 mm2 and 0.05 mm2, 0.005 mm2 and 0.03 mm2, 0.005 mm2 and 0.02 mm2, 0.005 mm2 and 0.01 mm2, 0.005 mm2 and 0.007 mm2, 0.007 mm2 and 1.0 mm2, 0.007 mm2 and 0.9 mm2, 0.007 mm2 and 0.8 mm2, 0.007 mm2 and 0.7 mm2, 0.007 mm2 and 0.6 mm2, 0.007 mm2 and 0.5 mm2, 0.007 mm2 and 0.4 mm2, 0.007 mm2 and 0.3 mm2, 0.007 mm2 and 0.2 mm2, 0.007 mm2 and 0.1 mm2, 0.007 mm2 and 0.07 mm2, 0.007 mm2 and 0.05 mm2, 0.007 mm2 and 0.03 mm2, 0.007 mm2 and 0.02 mm2, 0.007 mm2 and 0.01 mm2, 0.01 mm2 and 1.0 mm2, 0.01 mm2 and 0.9 mm2, 0.01 mm2 and 0.8 mm2, 0.01 mm2 and 0.7 mm2, 0.01 mm2 and 0.6 mm2, 0.01 mm2 and 0.5 mm2, 0.01 mm2 and 0.4 mm2, 0.01 mm2 and 0.3 mm2, 0.01 mm2 and 0.2 mm2, 0.01 mm2 and 0.1 mm2, 0.01 mm2 and 0.07 mm2, 0.01 mm2 and 0.05 mm2, 0.01 mm2 and 0.03 mm2, 0.01 mm2 and 0.02 mm2, 0.03 mm2 and 1.0 mm2, 0.03 mm2 and 0.9 mm2, 0.03 mm2 and 0.8 mm2, 0.03 mm2 and 0.7 mm2, 0.03 mm2 and 0.6 mm2, 0.03 mm2 and 0.5 mm2, 0.03 mm2 and 0.4 mm2, 0.03 mm2 and 0.3 mm2, 0.03 mm2 and 0.2 mm2, 0.03 mm2 and 0.1 mm2, 0.03 mm2 and 0.07 mm2, 0.03 mm2 and 0.05 mm2, 0.07 mm2 and 1.0 mm2, 0.07 mm2 and 0.9 mm2, 0.07 mm2 and 0.8 mm2, 0.07 mm2 and 0.7 mm2, 0.07 mm2 and 0.6 mm2, 0.07 mm2 and 0.5 mm2, 0.07 mm2 and 0.4 mm2, 0.07 mm2 and 0.3 mm2, 0.07 mm2 and 0.2 mm2, 0.07 mm2 and 0.1 mm2, 0.1 mm2 and 1.0 mm2, 0.1 mm2 and 0.9 mm2, 0.1 mm2 and 0.8 mm2, 0.1 mm2 and 0.7 mm2, 0.1 mm2 and 0.6 mm2, 0.1 mm2 and 0.5 mm2, 0.1 mm2 and 0.4 mm2, 0.1 mm2 and 0.3 mm2, 0.1 mm2 and 0.2 mm2, 0.3 mm2 and 1.0 mm2, 0.3 mm2 and 0.9 mm2, 0.3 mm2 and 0.8 mm2, 0.3 mm2 and 0.7 mm2, 0.3 mm2 and 0.6 mm2, 0.3 mm2 and 0.5 mm2, 0.3 mm2 and 0.4 mm2, 0.5 mm2 and 1.0 mm2, 0.5 mm2 and 0.9 mm2, 0.5 mm2 and 0.8 mm2, 0.5 mm2 and 0.7 mm2, 0.5 mm2 and 0.6 mm2, 0.7 mm2 and 1.0 mm2, 0.7 mm2 and 0.9 mm2, or 0.7 mm2 and 0.8 mm2). When viewed from the top of the skin, the shape of the hole can be circular or non-circular (e.g., elliptical). Exemplary shapes of tissue portions are provided in
Any beneficial areal fraction of the skin region can be removed, such as an areal fraction of less than about 70% (e.g., less than about 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 10%, or 5%) or such as between about 5% and 80% (e.g., between about 5% and 10%, 5% and 10%, 5% and 20%, 5% and 25%, 5% and 30%, 5% and 35%, 5% and 40%, 5% and 45%, 5% and 50%, 5% and 55%, 5% and 60%, 5% and 65%, 5% and 70%, 5% and 75%, 10% and 10%, 10% and 20%, 10% and 25%, 10% and 30%, 10% and 35%, 10% and 40%, 10% and 45%, 10% and 50%, 10% and 55%, 10% and 60%, 10% and 65%, 10% and 70%, 10% and 75%, 10% and 80%, 15% and 20%, 15% and 25%, 15% and 30%, 15% and 35%, 15% and 40%, 15% and 45%, 15% and 50%, 15% and 55%, 15% and 60%, 15% and 65%, 15% and 70%, 15% and 75%, 15% and 80%, 20% and 25%, 20% and 30%, 20% and 35%, 20% and 40%, 20% and 45%, 20% and 50%, 20% and 55%, 20% and 60%, 20% and 65%, 20% and 70%, 20% and 75%, or 20% and 80%).
Furthermore, the plurality of tissue portions can be excised in any beneficial pattern within the skin region. Exemplary patterns within the skin region include tile patterns or fractal-like shapes, where the array of hollow tubes can be arranged, e.g., in a base, to effectuate such a pattern. For example, a higher density and/or smaller spacing of tissue portions (e.g., slits and/or holes) can be excised in the skin in center of the pattern or in thicker portions of the skin. In another example, the pattern within the skin can be random, staggered rows, parallel rows, a circular pattern, a spiral pattern, a square or rectangular pattern, a triangular pattern, a hexagonal pattern, a radial distribution, or a combination of one or more such patterns of the incised or excised tissue portions. The pattern can arise from modifications to the average length, depth, or width of an incised or excised tissue portion, as well as the density, orientation, and spacing between such incisions and/or excisions (e.g., by using an apparatus having one or more needles with differing lengths, widths, or geometries that are arranged in a particular density or spacing pattern). Such patterns can be optimized to promote unidirectional, non-directional, or multidirectional contraction or expansion of skin (e.g., in the x-direction, y-direction, x-direction, x-y plane, y-z plane, x-z plane, and/or xyz-plane), such as by modifying the average length, depth, width, density, orientation, and/or spacing between incisions and/or excisions.
In addition to subdermal fat, any useful portion of the skin can be excised. Such tissue portions can include epidermal tissue, dermal tissue, and/or cells or tissue proximal to the dermal/fatty layer boundary (e.g., stem cells). In particular embodiments, the excised tissue portions forms a hole in the skin region, where the depth of the hole is more than about 1.0 mm and results in a tissue portion having a length that is more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). The holes can, e.g., extend up to, or into the subdermal fat region. In particular embodiments, the incised or excised tissue portions forms a slit in the skin region, where the depth of the slit is more than about 1.0 mm and results in a tissue portion having a length that is more than about 1.0 mm (e.g., about 1.0 mm, 1.5 mm, 2.0 mm. 2.5 mm, 3.0 mm, or 3.5 mm). The slits can, e.g., extend up to, or into the subdermal fat region. In some embodiments, the tissue portion has a length that corresponds to a typical total depth of the skin layer (e.g., epidermal and dermal layers). Based on the part of the body, the total depth of the epidermal and dermal layers can vary. In some embodiments, the depth of the epidermal layer is between about 0.8 mm to 1.4 mm, and/or the depth of the dermal layer is between about 0.3 mm to 4.0 mm. In other embodiments, the total depth of the skin layer (e.g., epidermal and dermal layers) is between about 1.0 mm and 5.5 mm, thereby resulting in a tissue portion having a length between about 1.0 mm and 5.5 mm (e.g., between about 1.0 mm and 1.5 mm, 1.0 mm and 2.0 mm, 1.0 mm and 2.5 mm, 1.0 mm and 3.0 mm, 1.0 mm and 3.5 mm, 1.0 mm and 4.0 mm, 1.0 mm and 4.5 mm, 1.0 mm and 5.0 mm, 1.5 mm and 2.0 mm, 1.5 mm and 2.5 mm, 1.5 mm and 3.0 mm, 1.5 mm and 3.5 mm, 1.5 mm and 4.0 mm, 1.5 mm and 4.5 mm, 1.5 mm and 5.0 mm, 1.5 mm and 5.5 mm, 2.0 mm and 2.5 mm, 2.0 mm and 3.0 mm, 2.0 mm and 3.5 mm, 2.0 mm and 4.0 mm, 2.0 mm and 4.5 mm, 2.0 mm and 5.0 mm, 2.0 and 5.5 mm, 2.5 mm and 3.0 mm, 2.5 mm and 3.5 mm, 2.5 mm and 4.0 mm, 2.5 mm and 4.5 mm, 2.5 mm and 5.0 mm, 2.5 mm and 5.5 mm, 3.0 mm and 3.5 mm, 3.0 mm and 4.0 mm, 3.0 mm and 4.5 mm, 3.0 mm and 5.0 mm, 3.0 and 5.5 mm, 3.5 mm and 4.0 mm, 3.5 mm and 4.5 mm, 3.5 mm and 5.0 mm, 3.5 and 5.5 mm, 4.0 mm and 4.5 mm, 4.0 mm and 5.0 mm, 4.0 and 5.5 mm, 4.5 mm and 5.0 mm, 4.5 and 5.5 mm, or 5.0 mm and 5.5 mm). In yet other embodiments, the average total depth of the tissue portion or the skin layer (e.g., epidermal and dermal layers) is about 1.5 mm. In yet other embodiments, the average total depth of the tissue portion or the skin layer (e.g., epidermal and dermal layers) is about 3 mm.
Excisions can be performed by a micro-coring needle. For example, a plurality of excised tissue portions can be achieved by use of one or more micro-coring needles characterized as hollow tubes or needles (e.g., where the inner diameter of at least one tube is less than about 0.5 mm, about 0.3 mm, or about 0.2 mm) or one or more solid tubes or needles. Exemplary components for performing excisions include a needle (e.g., a 16 gauge needle having an inner diameter of 1.194 mm; an 18 gauge needle having an inner diameter of 0.838 mm; a 20 gauge needle having an inner diameter of 0.564 mm; a 23 gauge needle having an inner diameter of about 0.337 mm and an outer diameter of about 0.51 mm, thereby resulting in a tissue portion having a dimension (e.g., a width or diameter) of about 0.3 mm; a 25 gauge needle having an inner diameter of about 0.26 mm or a thin-walled 25 gauge needle having an inner diameter of about 0.31 mm and an outer diameter of about 0.51 mm, thereby resulting in a tissue portion having a dimension (e.g., a width or diameter) of about 0.2 mm; a 30 gauge needle having an inner diameter of about 0.159 mm; a 32 gauge needle having an inner diameter of about 0.108 mm; or a 34 gauge needle having an inner diameter of about 0.0826 mm).
The geometry of the one or more micro-coring needles can include at least two points (or prongs) (e.g., at least three, four, five, six, seven, eight, or more points) provided at a distal end of the tube (e.g., to facilitate separation of the tissue portions from the surrounding tissue and/or insertion of the tubes into the skin region), where an angle formed by at least one of the points is about thirty degrees. Exemplary micro-coring needles include those having two points (e.g., by grinding in orientations that are 180 degrees apart), three points (e.g., by grinding in orientations that are 120 degrees apart), or four points (e.g., by grinding in orientations that are 90 degrees apart). The points can optionally include a beveled edge (e.g., to further facilitate separation of tissue portions or insertion of tubes).
The points can have any useful geometric configuration. In one example, the micro-coring needle has a longitudinal axis (i.e., along the length of the needle) and a diameter (i.e., through the cross-section of the needle), as well as a proximal end and the distal end. The distal end can include one or more points, where each point is characterized by angle α (i.e., the angle between each of the opposing lateral sides of the tube that forms the point and the longitudinal axis of the tube). When viewed from the side, the angle formed by a point is characterized by angle 2α. For example, a tip angle of about 30 degrees corresponds to an angle α of about 15 degrees. Furthermore, the angled distal end of the tube can be formed (e.g., by grinding or cutting) at angle α, e.g., to form a second bevel structure at the distal end of a tube, where this second bevel is characterized by angle β and is orthogonal to the primary point (or bevel) characterized by angle α. This second bevel can be provided to reduce the size or width of the point. Exemplary angle α and β includes less than about 20 degrees, 15 degrees, 10, degrees, or 5 degrees (e.g., about 15 degrees, 10 degrees, 6 degrees, 5 degrees, or 3 degrees). See, e.g.,
The micro-coring needles can optionally include one or more notches within the lumen of the needle and/or extensions on the exterior surface of the needle (e.g., at the distal portion of the needle). Such notches and extensions could be useful to promote cutting of tissue surrounding the excised tissue portions. Exemplary needles having such notches and/or extensions include a microauger, as well as any needles provided in
The micro-coring needles can optionally include one or more protrusions or barbs within the lumen of the needle to promote retention of fat within the needle. In use, an apparatus including such needles can be inserted into the subcutaneous fat layer and then withdrawn to remove retained fat tissue. See, e.g.,
The components for making or excisions can be provided in any useful arrangement (e.g., a linear array, a radial array, or any described herein) of one or more components (e.g., two, three, four, five, ten, thirty, fifty, hundred, or more). The spacing between each component (e.g., needle) can be of any useful dimension, such as between about 1 mm and 50 mm (e.g., between about 1 mm and 40 mm, 1 mm and 30 mm, 1 mm and 25 mm, 1 mm and 20 mm, 1 mm and 15 mm, 1 mm and 10 mm, 1 mm and 5 mm, 1 mm and 3 mm, 3 mm and 50 mm, 3 mm and 40 mm, 3 mm and 30 mm, 3 mm and 25 mm, 3 mm and 20 mm, 3 mm and 15 mm, 3 mm and 10 mm, 3 mm and 5 mm, 5 mm and 50 mm, 5 mm and 40 mm, 5 mm and 30 mm, 5 mm and 25 mm, 5 mm and 20 mm, 5 mm and 15 mm, 5 mm and 10 mm, 10 mm and 50 mm, 10 mm and 40 mm, 10 mm and 30 mm, 10 mm and 25 mm, 10 mm and 20 mm, 10 mm and 15 mm, 15 mm and 50 mm, 15 mm and 40 mm, 15 mm and 30 mm, 15 mm and 25 mm, 15 mm and 20 mm, 20 mm and 50 mm, 20 mm and 40 mm, 20 mm and 30 mm, 20 mm and 25 mm, 30 mm and 50 mm, 30 mm and 40 mm, or 40 mm and 50 mm). Such arrangements can include one or more needles (e.g., about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, or more needles, such as between about 2 and 100 needles (e.g., between 2 and 10, 2 and 15, 2 and 20, 2 and 25, 2 and 30, 2 and 35, 2 and 40, 2 and 45, 2 and 50, 2 and 75, 5 and 10, 5 and 15, 5 and 20, 5 and 25, 5 and 30, 5 and 35, 5 and 40, 5 and 45, 5 and 50, 5 and 75, 5 and 100, 10 and 20, 10 and 25, 10 and 30, 10 and 35, 10 and 40, 10 and 45, 10 and 50, 10 and 75, 10 and 100, 15 and 20, 15 and 25, 15 and 30, 15 and 35, 15 and 40, 15 and 45, 15 and 50, 15 and 75, 15 and 100, 20 and 25, 20 and 30, 20 and 35, 20 and 40, 20 and 45, 20 and 50, 20 and 75, 20 and 100, 25 and 30, 25 and 35, 25 and 40, 25 and 45, 25 and 50, 25 and 75, 25 and 100, 30 and 35, 30 and 40, 30 and 45, 30 and 50, 30 and 75, 30 and 100, 35 and 40, 35 and 45, 35 and 50, 35 and 75, 35 and 100, 40 and 45, 40 and 50, 40 and 75, 40 and 100, 50 and 75, or 50 and 100)).
Such arrangements of components can be any of various two-dimensional or three-dimensional patterns along a base holding one or more components for making excisions. The base can be optionally mounted on a roller apparatus having a cylindrical body with a longitudinal rotational axis, where the one or more needles are arranged on the longitudinal surface of the cylindrical body. In some embodiments, the needles extend as substantially coplanar extensions of the cylindrical body. In use, rotation of the cylindrical body along the skin results in the excision of tissue portions by the needles. Exemplary roller apparatuses are provided in
Such components for making excisions can include one or more stop arrangements (e.g., one or more collars, which can be coupled to the outer portion of the needle and be adjusted along the long axis of the needle to control the depth of excision in the biological tissue); one or more sleeves around a portion of a needle, such that the sleeve is slidably translatable along the longitudinal axis of the needle (e.g., to excise tissue portions below the surface of the skin region); a vibrating arrangement (e.g., a piezoelectric element, a solenoid, a pneumatic element, ultrasonic element, or a hydraulic element) that mechanically couples to at least one needle (e.g., to promote insertion of one or more needles into the skin region, such as by providing an amplitude of vibration in the range of about 50-500 μm (e.g., between about 100-200 μm) or by providing a frequency of the induced vibrations to be between about 10 Hz and about 10 kHz (e.g., between about 500 Hz and about 2 kHz, or even about 1 kHz)); a suction or pressure system (e.g., by squeezing a flexible bulb or deformable membrane attached thereto or by opening a valve leading from a source of elevated pressure, such as a small pump) to stabilize the surrounding skin region prior to excision and/or to facilitate removal of the skin portions and/or subdermal fat from the tube; a pin within the lumen to the tube to facilitate removal of the skin portions or subdermal fat from the tube; one or more actuators for positioning, translating, and/or rotating the one or more needles relative to the skin portion or relative to the optional one or more pins; a housing or frame to stabilize the surrounding skin region prior to excision; one or more actuators for positioning and/or translating the one or more pins relative to the skin portion or relative to one or more needles; one or more sensors (e.g., force sensors, optical sensors, laser fibers, photodetectors, and/or position sensors) in communication with one or more needles to detect the position of the needles, the presence of a tissue portion in the needle, the position of the apparatus relative to the treated skin portion; a reciprocating arrangement attached to a base or a substrate having one or more attached needles (e.g., a motor or actuator configured to repeatedly insert and/or withdrawn one or more needles); a fluid system coupled to the needles to facilitate removal of excised tissue portions or to irrigate the skin portion, e.g., with saline or a phosphate buffered solution; a heat source (e.g., a resistive heater or current) in communication with the needle to promote cauterization or ablation of tissue portions or mobilization of fat in or around the needle; an optical element (e.g., a lens, a prism, a reflector, etc.) to facilitate viewing of the skin portion beneath the apparatus, needle; and/or an abrading element optionally mounted on a rotating shaft (e.g., to promote dermabrasion).
The needles can be formed from any useful material and optionally coated or chemically treated to promote excision of a tissue portion and subdermal fat and/or to increase precision or effectiveness for treating the skin region. Exemplary materials include metal (e.g., a stainless steel tube, 304 stainless steel, a surgical stainless steel), a biopsy needle, an epoxy, a glass, a polymer, a plastic, a resin, another structurally rigid material, or a similar structure. Exemplary coatings include a lubricant, a low-friction material (e.g., Teflon™), a chromium coating (e.g., ME-92™, such as to increase material strength), a plastic, a polymer (e.g., nylon or polyethylene), a polished metal alloy, or the like.
In particular embodiments, an apparatus for manipulating subdermal fat includes at least one needle including at least two points provided at a distal end thereof and an optional stop arrangement coupled to the outer portion of the tube (e.g., to control and/or limit a distance to which the one needle is inserted into a biological tissue), where the angle formed by at least one of the points is about thirty degrees, where the inner diameter of at least one needle is less than about 1 mm, and where at least one section of the needle is structured to be inserted into a biological tissue to excise at least one tissue therefrom when the tube is withdrawn from the tissue. In other embodiments, the apparatus further includes a pin provided at least partially within the central lumen of a needle, where the pin is controllably translatable in a direction along a longitudinal axis of the one needle and the pin is configured to facilitate removal of at least one tissue portion (e.g., subdermal fat) from the tube. In yet other embodiments, the apparatus includes a substrate; a plurality of needles affixed to the substrate and configured to be at least partially inserted into a biological tissue; at least one opening provided on or in a wall of each of the needles; at least one cutting edge protruding from the wall of each of the needles proximal to the at least one opening; and a sleeve provided around at least a portion of each of the needle, where each needle is configured to be translatable along a longitudinal axis of a corresponding sleeve, and where a distance from the longitudinal axis of each needle to an outer edge of each corresponding sleeve is at least as large as a distance from the longitudinal axis of the tube to an outer portion of the cutting edge of the tube.
The procedures herein can include one or more optional processes that promote effective excision of tissue portions or that benefit healing or mobilize subdermal fat. Such optional processes include cooling, freezing, or partially freezing the skin portion prior to skin excision (e.g., by applying a cryospray or by contacting a surface of a skin region with a cooled object for an appropriate duration), where such cooling and/or freezing can, e.g., increase mechanical stability of the tissue portions and/or mobilize subdermal fat; treatment with red or near-infrared light of the skin portion to further promote healing of the tissue; and/or treatment with an optical energy source, such as any described herein (e.g., an ablative laser).
Exemplary procedures, methods, and apparatuses are provided in U.S. Pub. Nos. 2012/0041430, 2011/0313429, 2011/0251602, 2012/0226214, 2012/0226306 and 2012/0226214; International Pub. Nos. WO 2012/103492, WO 2012/103483, WO 2012/103488, WO 2013/013199, WO 2013/013196, and WO 2012/119131; Fernandes et al., “Micro-Mechanical Fractional Skin Rejuvenation,” Plastic & Reconstructive Surgery 130(5S-1):28 (2012); and Fernandes et al., “Micro-Mechanical Fractional Skin Rejuvenation,” Plastic & Reconstructive Surgery 131(2):216-223 (2013), where each is hereby incorporated by reference in its entirety.
In certain embodiments, the methods of the invention include applying pressure to the treatment area to facilitate fat removal. In one embodiment, pressure can be applied to the treatment area prior to insertion of a needle, thereby facilitating fat entry into the needle once inserted. In another embodiment, pressure can be applied while the needle is inserted (e.g., by a second needle as described above), thereby causing subdermal fat to flow into and, in some cases, through the needle. Finally, certain embodiments feature applying pressure after the needle is removed, thereby causing subdermal fat to escape the dermis through the holes left by the excised tissue. Alternatively, a vacuum source may be applied to the external surface of the cored region to aid in fat extrusion. Heat and other mechanical stimuli may further facilitate fat extrusion.
Micro-coring needles allow excision of small columns of skin as described, e.g., in “Method and apparatus for dermatological treatment” from Anderson et al. (PCT Application Publication No. 2011/0313429, herein incorporated by reference).
Tumescent anesthesia is a local anesthesia technique requiring the infiltration of a large volume of fluid in the area to be treated. The injected fluid typically consists of lidocaine and epinephrine highly diluted in physiologic saline solution. Tumescent anesthesia prior to treatment with micro-coring needles can result in (1) local anesthesia of tissue, (2) reduction of bleeding during the treatment, (3) increased sub-cutaneous pressure, and (4) chemical modification of the sub-cutaneous fat.
Cellulite is characterized by dimpling or nodularity of the skin. Cellulite is thought to be formed by herniation of subcutaneous fat into the dermis. Formation of fibrotic bands (septae) between the subcutaneous tissue and the dermis and weakening of the mechanical properties of the dermis (e.g. breakdown of collagen in reticular dermis) result in the formation of nodules or dimples as illustrated in
Modified micro-coring needles (see, e.g.,
All publications, patent applications, and patents mentioned in this specification are herein incorporated by reference.
Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific desired embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the fields of medicine, pharmacology, or related fields are intended to be within the scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/071443 | 12/19/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/095675 | 6/25/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2426535 | Turkel | Aug 1947 | A |
2496111 | Turkel | Jan 1950 | A |
2881763 | Robbins | Apr 1959 | A |
3001522 | Silverman | Sep 1961 | A |
3086530 | Groom | Apr 1963 | A |
3214869 | Stryker | Nov 1965 | A |
3598108 | Jamshidi et al. | Aug 1971 | A |
3640279 | Brown et al. | Feb 1972 | A |
3683892 | Harris | Aug 1972 | A |
3788320 | Dye | Jan 1974 | A |
3929123 | Jamshidi | Dec 1975 | A |
4108096 | Ciecior | Aug 1978 | A |
4159659 | Nightingale | Jul 1979 | A |
4403617 | Tretinyak | Sep 1983 | A |
4458678 | Yannas et al. | Jul 1984 | A |
4476864 | Tezel | Oct 1984 | A |
4604346 | Bell et al. | Aug 1986 | A |
4640296 | Schnepp-Pesch et al. | Feb 1987 | A |
4649918 | Pegg et al. | Mar 1987 | A |
D297375 | Liu | Aug 1988 | S |
4815462 | Clark | Mar 1989 | A |
4865026 | Barrett | Sep 1989 | A |
4903709 | Skinner | Feb 1990 | A |
D323034 | Reinstein | Jan 1992 | S |
5152763 | Johnson | Oct 1992 | A |
D338070 | Lam | Aug 1993 | S |
5242453 | Gubich | Sep 1993 | A |
D342138 | Wollman et al. | Dec 1993 | S |
5269316 | Spitalny | Dec 1993 | A |
5306490 | Barley, Jr. | Apr 1994 | A |
5324305 | Kanner | Jun 1994 | A |
5331972 | Wadhwani et al. | Jul 1994 | A |
5415182 | Chin et al. | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5439475 | Bennett | Aug 1995 | A |
5458112 | Weaver | Oct 1995 | A |
D377404 | Izumi | Jan 1997 | S |
5593381 | Tannenbaum et al. | Jan 1997 | A |
5611810 | Arnold et al. | Mar 1997 | A |
5615690 | Giurtino et al. | Apr 1997 | A |
5639654 | Bernard et al. | Jun 1997 | A |
D388543 | Eguchi et al. | Dec 1997 | S |
5713375 | McAllister | Feb 1998 | A |
5749895 | Sawyer et al. | May 1998 | A |
5792169 | Markman | Aug 1998 | A |
5810857 | Mackool | Sep 1998 | A |
5827297 | Boudjema | Oct 1998 | A |
5868744 | Willmen | Feb 1999 | A |
5879326 | Godshall et al. | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5885226 | Rubinstein et al. | Mar 1999 | A |
5902319 | Daley | May 1999 | A |
5922000 | Chodorow | Jul 1999 | A |
5925002 | Wollman | Jul 1999 | A |
5928162 | Giurtino et al. | Jul 1999 | A |
5931855 | Buncke | Aug 1999 | A |
5989273 | Arnold | Nov 1999 | A |
6022324 | Skinner | Feb 2000 | A |
D425241 | Nishizawa et al. | May 2000 | S |
6059807 | Boudjema | May 2000 | A |
6063094 | Rosenberg | May 2000 | A |
6178346 | Amundson et al. | Jan 2001 | B1 |
6197039 | Ashraf | Mar 2001 | B1 |
6211598 | Dhuler et al. | Apr 2001 | B1 |
6241687 | Voegele et al. | Jun 2001 | B1 |
6241739 | Waldron | Jun 2001 | B1 |
6251097 | Kline et al. | Jun 2001 | B1 |
6264618 | Landi et al. | Jul 2001 | B1 |
6342213 | Barley et al. | Jan 2002 | B1 |
D457265 | Gebhard | May 2002 | S |
D458710 | Altamore et al. | Jun 2002 | S |
6419641 | Mark et al. | Jul 2002 | B1 |
6432098 | Kline et al. | Aug 2002 | B1 |
6440086 | Hohenberg | Aug 2002 | B1 |
6461369 | Kim | Oct 2002 | B1 |
6537264 | Cormier et al. | Mar 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6669618 | Reising et al. | Dec 2003 | B2 |
6669694 | Shadduck | Dec 2003 | B2 |
6733496 | Sharkey et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
D500391 | Nielsen et al. | Dec 2004 | S |
6881203 | Delmore et al. | Apr 2005 | B2 |
6887250 | Dority et al. | May 2005 | B1 |
6893388 | Reising et al. | May 2005 | B2 |
6936039 | Kline et al. | Aug 2005 | B2 |
D509301 | Talbot et al. | Sep 2005 | S |
6997923 | Anderson et al. | Feb 2006 | B2 |
7073510 | Redmond et al. | Jul 2006 | B2 |
7131951 | Angel | Nov 2006 | B2 |
D538430 | Ohta | Mar 2007 | S |
7618429 | Mulholland | Nov 2009 | B2 |
7651507 | Mishra et al. | Jan 2010 | B2 |
7658728 | Yuzhakov | Feb 2010 | B2 |
7926401 | Mishra et al. | Apr 2011 | B2 |
8128639 | Tippett | Mar 2012 | B2 |
8209006 | Smith et al. | Jun 2012 | B2 |
8226664 | Drews et al. | Jul 2012 | B2 |
8246611 | Paithankar et al. | Aug 2012 | B2 |
8435791 | Galun et al. | May 2013 | B2 |
8480592 | Chudzik et al. | Jul 2013 | B2 |
8696686 | Drews et al. | Apr 2014 | B2 |
8900181 | Knowlton | Dec 2014 | B2 |
9017343 | Westerling, Jr. et al. | Apr 2015 | B2 |
9060803 | Anderson et al. | Jun 2015 | B2 |
9084465 | Oostman, Jr. et al. | Jul 2015 | B2 |
9119945 | Simons et al. | Sep 2015 | B2 |
9439673 | Austen | Sep 2016 | B2 |
9561051 | Austen et al. | Feb 2017 | B2 |
D797286 | Ginggen et al. | Sep 2017 | S |
10251792 | Levinson et al. | Apr 2019 | B2 |
10543127 | Levinson et al. | Jan 2020 | B2 |
10555754 | Ginggen et al. | Feb 2020 | B2 |
20010018572 | Kinsey et al. | Aug 2001 | A1 |
20020022854 | Irion et al. | Feb 2002 | A1 |
20020022861 | Jacobs et al. | Feb 2002 | A1 |
20020045859 | Gartstein et al. | Apr 2002 | A1 |
20020103500 | Gildenberg | Aug 2002 | A1 |
20020120260 | Morris et al. | Aug 2002 | A1 |
20020169431 | Kline et al. | Nov 2002 | A1 |
20020183688 | Lastovich et al. | Dec 2002 | A1 |
20020187556 | Shartle et al. | Dec 2002 | A1 |
20020188280 | Nguyen et al. | Dec 2002 | A1 |
20030023196 | Liguori | Jan 2003 | A1 |
20030083607 | Bobo, Jr. | May 2003 | A1 |
20030088220 | Molander et al. | May 2003 | A1 |
20030119641 | Reising | Jun 2003 | A1 |
20030135161 | Fleming et al. | Jul 2003 | A1 |
20030144656 | Ocel et al. | Jul 2003 | A1 |
20030158521 | Ameri | Aug 2003 | A1 |
20030158566 | Brett | Aug 2003 | A1 |
20030163160 | O'Malley et al. | Aug 2003 | A1 |
20030181936 | Trautman et al. | Sep 2003 | A1 |
20030195625 | Garcia Castro et al. | Oct 2003 | A1 |
20030199811 | Sage et al. | Oct 2003 | A1 |
20030212415 | Karasiuk | Nov 2003 | A1 |
20030233082 | Kline et al. | Dec 2003 | A1 |
20040002723 | Ball | Jan 2004 | A1 |
20040010268 | Gabehart | Jan 2004 | A1 |
20040015139 | La Bianco et al. | Jan 2004 | A1 |
20040019297 | Angel | Jan 2004 | A1 |
20040023771 | Reising et al. | Feb 2004 | A1 |
20040054410 | Barrows | Mar 2004 | A1 |
20040073195 | Cucin | Apr 2004 | A1 |
20040087992 | Gartstein et al. | May 2004 | A1 |
20040122471 | Toby et al. | Jun 2004 | A1 |
20040138680 | Twitchell et al. | Jul 2004 | A1 |
20040162566 | Carson et al. | Aug 2004 | A1 |
20040175690 | Mishra et al. | Sep 2004 | A1 |
20040220589 | Feller | Nov 2004 | A1 |
20050049582 | DeBenedictis et al. | Mar 2005 | A1 |
20050090765 | Fisher | Apr 2005 | A1 |
20050130821 | Reising et al. | Jun 2005 | A1 |
20050165329 | Taylor et al. | Jul 2005 | A1 |
20050171480 | Mukerjee et al. | Aug 2005 | A1 |
20050203575 | Carson et al. | Sep 2005 | A1 |
20050209567 | Sibbitt | Sep 2005 | A1 |
20050215921 | Hibner et al. | Sep 2005 | A1 |
20050215970 | Kline et al. | Sep 2005 | A1 |
20050215971 | Roe et al. | Sep 2005 | A1 |
20050226856 | Ahlfors | Oct 2005 | A1 |
20050234419 | Kline et al. | Oct 2005 | A1 |
20050245952 | Feller | Nov 2005 | A1 |
20050283141 | Giovannoli | Dec 2005 | A1 |
20060047234 | Glucksman et al. | Mar 2006 | A1 |
20060064031 | Miller | Mar 2006 | A1 |
20060116605 | Nakao | Jun 2006 | A1 |
20060155266 | Manstein et al. | Jul 2006 | A1 |
20060161179 | Kachenmeister | Jul 2006 | A1 |
20060184153 | Mark et al. | Aug 2006 | A1 |
20060193819 | Lu et al. | Aug 2006 | A1 |
20060216781 | Gebing | Sep 2006 | A1 |
20060259006 | McKay et al. | Nov 2006 | A1 |
20060264926 | Kochamba | Nov 2006 | A1 |
20060271070 | Eriksson et al. | Nov 2006 | A1 |
20060276806 | Martinez Zunino | Dec 2006 | A1 |
20070010810 | Kochamba | Jan 2007 | A1 |
20070038181 | Melamud et al. | Feb 2007 | A1 |
20070038236 | Cohen | Feb 2007 | A1 |
20070060888 | Goff et al. | Mar 2007 | A1 |
20070073217 | James | Mar 2007 | A1 |
20070073327 | Giovannoli | Mar 2007 | A1 |
20070078359 | Luloh et al. | Apr 2007 | A1 |
20070078466 | Bodduluri et al. | Apr 2007 | A1 |
20070078473 | Bodduluri et al. | Apr 2007 | A1 |
20070106306 | Bodduluri et al. | May 2007 | A1 |
20070142722 | Chang | Jun 2007 | A1 |
20070142744 | Provencher | Jun 2007 | A1 |
20070142885 | Hantash et al. | Jun 2007 | A1 |
20070149991 | Mulholland | Jun 2007 | A1 |
20070156161 | Weadock et al. | Jul 2007 | A1 |
20070167958 | Sulamanidze et al. | Jul 2007 | A1 |
20070179455 | Geliebter et al. | Aug 2007 | A1 |
20070183938 | Booker | Aug 2007 | A1 |
20070198000 | Miyamoto et al. | Aug 2007 | A1 |
20070213634 | Teague | Sep 2007 | A1 |
20070239236 | Manstein | Oct 2007 | A1 |
20070239260 | Palanker et al. | Oct 2007 | A1 |
20070249960 | Williamson | Oct 2007 | A1 |
20070270710 | Frass et al. | Nov 2007 | A1 |
20080009802 | Lambino et al. | Jan 2008 | A1 |
20080009901 | Redmond et al. | Jan 2008 | A1 |
20080033334 | Gurtner et al. | Feb 2008 | A1 |
20080045858 | Tessitore et al. | Feb 2008 | A1 |
20080045861 | Miller et al. | Feb 2008 | A1 |
20080132979 | Gerber | Jun 2008 | A1 |
20080146982 | Rastegar et al. | Jun 2008 | A1 |
20080183167 | Britva et al. | Jul 2008 | A1 |
20080208146 | Brandwein et al. | Aug 2008 | A1 |
20080221548 | Danenberg et al. | Sep 2008 | A1 |
20080234602 | Oostman et al. | Sep 2008 | A1 |
20080234699 | Oostman, Jr. et al. | Sep 2008 | A1 |
20080269735 | Vila Echague et al. | Oct 2008 | A1 |
20080275378 | Herndon | Nov 2008 | A1 |
20080300507 | Figueredo et al. | Dec 2008 | A1 |
20080306471 | Altshuler et al. | Dec 2008 | A1 |
20080312648 | Peterson | Dec 2008 | A1 |
20090030340 | Mc Clellan | Jan 2009 | A1 |
20090048557 | Yeshurun et al. | Feb 2009 | A1 |
20090088720 | Oostman, Jr. | Apr 2009 | A1 |
20090093864 | Anderson | Apr 2009 | A1 |
20090146068 | Agarwal | Jun 2009 | A1 |
20090163877 | Christoffersen et al. | Jun 2009 | A1 |
20090198336 | Qiao et al. | Aug 2009 | A1 |
20090227895 | Goldenberg | Sep 2009 | A1 |
20090312749 | Pini et al. | Dec 2009 | A1 |
20100023003 | Mulholland | Jan 2010 | A1 |
20100041938 | Stoianovici et al. | Feb 2010 | A1 |
20100057100 | Zeevi | Mar 2010 | A1 |
20100082042 | Drews | Apr 2010 | A1 |
20100121307 | Lockard et al. | May 2010 | A1 |
20100145373 | Alon | Jun 2010 | A1 |
20100160822 | Parihar et al. | Jun 2010 | A1 |
20100185116 | Al-Mohizea | Jul 2010 | A1 |
20100330589 | Bahrami et al. | Dec 2010 | A1 |
20110009882 | Remsburg et al. | Jan 2011 | A1 |
20110028898 | Clark, III et al. | Feb 2011 | A1 |
20110040497 | Olesen | Feb 2011 | A1 |
20110046616 | Manstein | Feb 2011 | A1 |
20110092844 | Bargo et al. | Apr 2011 | A1 |
20110105949 | Wiksell | May 2011 | A1 |
20110152738 | Zepeda et al. | Jun 2011 | A1 |
20110166520 | Iwase et al. | Jul 2011 | A1 |
20110172745 | Na et al. | Jul 2011 | A1 |
20110245834 | Miklosovic | Oct 2011 | A1 |
20110251602 | Anderson et al. | Oct 2011 | A1 |
20110257588 | Knowlton | Oct 2011 | A1 |
20110270274 | Hull, Jr. | Nov 2011 | A1 |
20110282238 | Houser et al. | Nov 2011 | A1 |
20110313345 | Schafer | Dec 2011 | A1 |
20110313429 | Anderson et al. | Dec 2011 | A1 |
20120041430 | Anderson et al. | Feb 2012 | A1 |
20120065551 | Aviad et al. | Mar 2012 | A1 |
20120136387 | Redmond et al. | May 2012 | A1 |
20120158100 | Schomacker | Jun 2012 | A1 |
20120209283 | Zhu | Aug 2012 | A1 |
20120226214 | Gurtner et al. | Sep 2012 | A1 |
20120226268 | Liu et al. | Sep 2012 | A1 |
20120226306 | Jackson et al. | Sep 2012 | A1 |
20120245629 | Gross et al. | Sep 2012 | A1 |
20120253333 | Garden et al. | Oct 2012 | A1 |
20120259237 | Axelrod | Oct 2012 | A1 |
20120271320 | Hall et al. | Oct 2012 | A1 |
20130006168 | Del Vecchio | Jan 2013 | A1 |
20130041397 | Nishimura | Feb 2013 | A1 |
20130045171 | Utecht et al. | Feb 2013 | A1 |
20130110026 | Jackson et al. | May 2013 | A1 |
20130131635 | Rimsa | May 2013 | A1 |
20130204238 | Lederman et al. | Aug 2013 | A1 |
20140036523 | Thullier et al. | Feb 2014 | A1 |
20140039523 | Austen | Feb 2014 | A1 |
20140163582 | Austen et al. | Jun 2014 | A1 |
20140200484 | Austen et al. | Jul 2014 | A1 |
20140249547 | Boone, III | Sep 2014 | A1 |
20140277055 | Austen, Jr. | Sep 2014 | A1 |
20140296741 | Austen | Oct 2014 | A1 |
20140296796 | Lim | Oct 2014 | A1 |
20140303648 | Knowlton | Oct 2014 | A1 |
20140343481 | Ignon | Nov 2014 | A1 |
20150143713 | Cheng | May 2015 | A1 |
20150173991 | Anderson et al. | Jun 2015 | A1 |
20150238214 | Anderson et al. | Aug 2015 | A1 |
20150258319 | Simmers | Sep 2015 | A1 |
20150320990 | Burton et al. | Nov 2015 | A1 |
20150366719 | Levinson et al. | Dec 2015 | A1 |
20160082241 | Burton et al. | Mar 2016 | A1 |
20160095592 | Levinson et al. | Apr 2016 | A1 |
20160121091 | Burton et al. | May 2016 | A1 |
20160129198 | Bitar et al. | May 2016 | A1 |
20160136406 | Berry et al. | May 2016 | A1 |
20160192961 | Ginggen et al. | Jul 2016 | A1 |
20160367280 | Austen | Dec 2016 | A1 |
20170367729 | Ginggen et al. | Dec 2017 | A1 |
20180008500 | Anderson et al. | Jan 2018 | A1 |
20180021087 | Anderson et al. | Jan 2018 | A1 |
20180078278 | Levinson et al. | Mar 2018 | A1 |
20180185196 | Levinson et al. | Jul 2018 | A1 |
20180193054 | Austen | Jul 2018 | A1 |
20180206875 | Austen et al. | Jul 2018 | A1 |
20190099199 | Levinson et al. | Apr 2019 | A1 |
20190366067 | Ginggen et al. | Dec 2019 | A1 |
20200038051 | Austen | Feb 2020 | A1 |
20200121354 | Ginggen et al. | Apr 2020 | A1 |
20200188184 | Levinson et al. | Jun 2020 | A1 |
20200214766 | Anderson et al. | Jul 2020 | A1 |
20200246039 | Levinson et al. | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
2012 211 122 | Jul 2016 | AU |
1275215 | Oct 1990 | CA |
2361777 | May 2002 | CA |
2126570 | Jan 1993 | CN |
1115629 | Jan 1996 | CN |
201005966 | Jan 2008 | CN |
101128156 | Feb 2008 | CN |
101208128 | Jun 2008 | CN |
101232858 | Jul 2008 | CN |
101277657 | Oct 2008 | CN |
101312692 | Nov 2008 | CN |
101347346 | Jan 2009 | CN |
101563113 | Oct 2009 | CN |
101670145 | Mar 2010 | CN |
102119006 | Jul 2011 | CN |
102143724 | Aug 2011 | CN |
102178616 | Sep 2011 | CN |
202113484 | Jan 2012 | CN |
103547226 | Jan 2014 | CN |
287651 | Mar 1991 | DE |
202004010659 | Oct 2004 | DE |
102007026973 | Dec 2008 | DE |
0027974 | May 1981 | EP |
1224949 | Jul 2002 | EP |
1278061 | Jan 2003 | EP |
1396230 | Mar 2004 | EP |
1618925 | Jan 2006 | EP |
2181732 | May 2010 | EP |
1278061 | Feb 2011 | EP |
2409727 | Jan 2012 | EP |
2846221 | Jul 2005 | FR |
S57-163208 | Oct 1982 | JP |
2000-139929 | May 2000 | JP |
2001-187058 | Jul 2001 | JP |
2002-505605 | Feb 2002 | JP |
2003-515424 | May 2003 | JP |
2003-532480 | Nov 2003 | JP |
2004-503342 | Feb 2004 | JP |
2005-000642 | Jan 2005 | JP |
2005-87519 | Apr 2005 | JP |
2005-87520 | Apr 2005 | JP |
2005-103276 | Apr 2005 | JP |
2006-516201 | Jun 2006 | JP |
2006-517814 | Aug 2006 | JP |
2007-041267 | Feb 2007 | JP |
2007-100140 | Apr 2007 | JP |
2008-036393 | Feb 2008 | JP |
2008-528207 | Jul 2008 | JP |
2009-502413 | Jan 2009 | JP |
2009-507773 | Feb 2009 | JP |
2009-509671 | Mar 2009 | JP |
2009-172418 | Aug 2009 | JP |
2009-219858 | Oct 2009 | JP |
2009-545382 | Dec 2009 | JP |
2010-000210 | Jan 2010 | JP |
4431637 | Mar 2010 | JP |
2010-515469 | May 2010 | JP |
2010-524591 | Jul 2010 | JP |
2010-525887 | Jul 2010 | JP |
2011-516169 | May 2011 | JP |
2013-526300 | Jun 2013 | JP |
2014-506498 | Mar 2014 | JP |
5944925 | Jul 2016 | JP |
2008-0030553 | Apr 2008 | KR |
2008-0049793 | Jun 2008 | KR |
2010-0135863 | Dec 2010 | KR |
20100135864 | Dec 2010 | KR |
1801391 | Mar 1993 | RU |
2119304 | Sep 1998 | RU |
2289332 | Dec 2006 | RU |
2308873 | Oct 2007 | RU |
2325859 | Jun 2008 | RU |
402497 | Aug 2000 | TW |
200841866 | Nov 2008 | TW |
WO-9322971 | Nov 1993 | WO |
WO-199528896 | Nov 1995 | WO |
WO-9718758 | May 1997 | WO |
WO-9826719 | Jun 1998 | WO |
WO-9857587 | Dec 1998 | WO |
WO-9929243 | Jun 1999 | WO |
WO-0141651 | Jun 2001 | WO |
WO-0185035 | Nov 2001 | WO |
WO-0205890 | Jan 2002 | WO |
WO-02096321 | Dec 2002 | WO |
WO-2004045671 | Jun 2004 | WO |
WO-2004107984 | Dec 2004 | WO |
WO-2005013830 | Feb 2005 | WO |
WO-2005072181 | Aug 2005 | WO |
WO-2005109799 | Nov 2005 | WO |
WO-2006081556 | Aug 2006 | WO |
WO-2006116281 | Nov 2006 | WO |
WO-2006118804 | Nov 2006 | WO |
WO-2007011788 | Jan 2007 | WO |
WO-2007015232 | Feb 2007 | WO |
WO-2007015247 | Feb 2007 | WO |
WO-2007024038 | Mar 2007 | WO |
WO-2007041267 | Apr 2007 | WO |
WO-2007066339 | Jun 2007 | WO |
WO-2007080596 | Jul 2007 | WO |
WO-2007106170 | Sep 2007 | WO |
WO-2008019051 | Feb 2008 | WO |
WO-2008033873 | Mar 2008 | WO |
WO-2008052189 | May 2008 | WO |
WO-2008131302 | Oct 2008 | WO |
WO-2009040493 | Apr 2009 | WO |
WO-2009072711 | Jun 2009 | WO |
WO-2009099988 | Aug 2009 | WO |
WO-2009137288 | Nov 2009 | WO |
WO-2009146053 | Dec 2009 | WO |
WO-2009146068 | Dec 2009 | WO |
WO-2009146072 | Dec 2009 | WO |
WO-2010027188 | Mar 2010 | WO |
WO-2010080014 | Jul 2010 | WO |
WO-2010095456 | Aug 2010 | WO |
WO-2010097790 | Sep 2010 | WO |
WO-2011006009 | Jan 2011 | WO |
WO-2011019859 | Feb 2011 | WO |
WO-2011075676 | Jun 2011 | WO |
WO-2011104875 | Sep 2011 | WO |
WO-2011123218 | Oct 2011 | WO |
WO-2011075676 | Nov 2011 | WO |
WO-2011140497 | Nov 2011 | WO |
WO-2012052986 | Apr 2012 | WO |
WO-2012103483 | Aug 2012 | WO |
WO-2012103488 | Aug 2012 | WO |
WO-2012103492 | Aug 2012 | WO |
WO-2012119131 | Sep 2012 | WO |
WO-2012135828 | Oct 2012 | WO |
WO-2013013196 | Jan 2013 | WO |
WO-2013013199 | Jan 2013 | WO |
WO-2013104414 | Jul 2013 | WO |
WO-2014008470 | Jan 2014 | WO |
WO-2014008481 | Jan 2014 | WO |
WO-2014089488 | Jun 2014 | WO |
WO-2014130359 | Aug 2014 | WO |
WO-2014151104 | Sep 2014 | WO |
WO-2014179729 | Nov 2014 | WO |
WO-2015021434 | Feb 2015 | WO |
WO-2015051164 | Apr 2015 | WO |
WO-2015095675 | Jun 2015 | WO |
WO-2015126926 | Aug 2015 | WO |
WO-2016033584 | Mar 2016 | WO |
WO-2016033586 | Mar 2016 | WO |
WO-2016077759 | May 2016 | WO |
WO-2016127091 | Aug 2016 | WO |
WO-2017139773 | Aug 2017 | WO |
WO-2017172920 | Oct 2017 | WO |
WO-2017192723 | Nov 2017 | WO |
WO-2018057630 | Mar 2018 | WO |
WO-2018057637 | Mar 2018 | WO |
WO-2020097244 | May 2020 | WO |
Entry |
---|
Alsberg, E. et al., Engineering growing tissues, PNAS, 99(19):12025-12030 (2002). |
Banzhaf, C. et al., Spatiotemporal Closure of Fractional Laser-Ablated Channels Imaged by Optical Coherence Tomography and Reflectance Confocal Microscopy, Lasers in Surgery and Medicine, 48:157-165 (2016). |
Bedi, V. et al., The effects of pulse energy variations on the dimensions of microscopic thermal treatment zones in nonablative fractional resurfacinq, Lasers Surg Med, 39(2):145-55 (2007). |
Cevc, Gregor, Drug delivery across the skin, Expert Opinion Investigational Drugs, 6(12):1887-937 (1997). |
Chang, Te-Sheng, An updated review of tyrosinase inhibitors, Int J Mol Sci, 10(6):2440-2475 (2009). |
International Search Report for International Patent Application No. PCT/US2012/022980 dated Aug. 9, 2012. |
International Written Opinion for International Patent Application No. PCT/US2012/022980 dated Aug. 9, 2012. |
Czech, Z. et al., Pressure-sensitive adhesives for medical applications, Wide Spectra of Quality Control, Akyar, 309-332 (2011). |
de las Heras Alarcon et al., Stimuli responsive polymers for biomedical applications, Chem Soc Rev. 34(3):276-85 (2005). |
Dini, G. et al., Grasping leather plies by Bernoulli grippers, CIRP Ann Manuf Technol. 58(1):21-4 (2009). |
Dujardin, J. et al., In vivo assessment of skin electroporation using square wave pulses, J Control Release, 79(1-3):219-27 (2002). |
Dunkin, C. et al., Scarring occurs at a critical depth of skin injury: precise measurement in a graduated dermal scratch in human volunteers, Plast Reconstr Surg, 119(6):1722-32 (2007). |
European Patent Office, Supplementary European Search Report, Application No. EP13813955.5, dated Mar. 18, 2016. |
European Search Report for European Application No. 12739664.6 dated May 20, 2014. |
Extended European Search Report, Application No. 12814711.3, datd Feb. 11, 2015. |
Fernandes, J. et al., Micro-mechanical fractional skin rejuvenation, Plast Reconstr Surg, 130(5S-1):28 (2012). |
Fernandes, J. et al., Micro-mechanical fractional skin rejuvenation, Plast Reconstr Surg, 131(2):216-23 (2013). |
Galaev., ‘Smart’ polymers in biotechnology and medicine, Russ Chem Rev. 64(5):471-489 (1995). |
Hale, G. and Querry, M. , Optical constants of water in the 200-nm to 200-microm wavelength region, Appl Opt, 12(3):555-63 (1973). |
Han, H. et al., Combined, Minimally Invasive, Thread-based Facelift, Archives of Aesthetic Plastic Surgery, 20(3):160-164 (2014). |
Huang, W.M. et al., Shape memory materials, Material Today, 13(7-8):54-61 (2010). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2009/039125, dated Oct. 5, 2010 (6 pages). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2012/022987, dated Jul. 30, 2013 (5 pages). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2012/022993, dated Jul. 30, 2013 (5 pages). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2012/047716, dated Nov. 4, 2014 (4 pages). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2013/049445, dated Jan. 6, 2015 (4 pages). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2014/036638, dated Nov. 3, 2015 (7 pages). |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2014/050426, dated Feb. 9, 2016 (8 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2009/039125, dated Nov. 16, 2009 (9 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/022987, dated Apr. 12, 2012 (6 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/022993, dated May 17, 2012 (6 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2012/047716, dated Oct. 25, 2012 (5 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/049445, dated Oct. 18, 2013 (5 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/016483, dated May 6, 2014 (9 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/036638, dated Oct. 2, 2014 (10 pages). |
International Search Report and Written Opinion for International Patent Application No. PCT/US2014/050426, dated Feb. 4, 2015 (11 pages). |
International Search Report and Written Opinion for PCT/US2011/035613, dated May 6, 2011. |
International Search Report and Written Opinion issued by the Korean Intellectual Property Office as International Searching Authority for International Application No. PCT/US2009/039114 dated Nov. 16, 2009 (10 pages). |
International Search Report and Written Opinion under dated Oct. 18, 2013 in connection with PCT/US2013/049445. |
International Search Report for International Patent Application No. PCT/US2012/047708. |
International Search Report for PCT/US14/71443, 3 pages (dated Mar. 19, 2015). |
International Search Report for PCT/US2015/060685, 3 pages (dated Feb. 2, 2016). |
International Search Report for PCT/US2017/024752, 8 pages (dated Aug. 29, 2017). |
International Search Report for PCT/US2017/052528 (Devices and Methods for Cosmetic Skin Resurfacing, filed Sep. 20, 2017), issued by ISA/US, 5 pages (dated Jan. 4, 2018). |
International Search Report for PCT/US2017/052539 (Rapid Skin Treatment Using Microcoring, filed Sep. 20, 2017), issued by ISA/US, 7 pages (dated Nov. 22, 2017). |
International Searching Report and Written Opinion issued by the Korean Intellectual Property Office as International Search Authority for International Application No. PCT/US2011 /035613 dated Jan. 12, 2012 (6 pages). |
Kakasheva-Mazenkovska, L. et al., Variations of the histomorphological characteristics of human skin of different body regions in subjects of different age, Contributions, 32(2):119-28 (2011). |
Konermann, W. et al., Ultrasonographically guided needle biopsy of benign and malignant soft tissue and bone tumors, J Ultrasound Med, 19(7):465-71 (2000). |
Lemperle, G. et al., A Classification of Facial Wrinkles, Plastic and Reconstructive Surgery, 108(6):1735-1750 (2001). |
Lien, T.K. and Davis, P.G.G., A novel gripper for limp materials based on lateral Coanda ejectors, CIRP Ann Manuf Technol, 57(1 ):33-6 (2008). |
Majid, Imran, Microneedling therapy in atrophic facial scars: an objective assessment, J Cutan Aesthet Surg. 2(1):26-30 (2009). |
Moore, J. et al., Modeling of the Plane Needle Cutting Edge Rake and Inclination Angles for Biopsy, Journal of Manufacturing Science and Engineering, 132:051005-1-051005-8 (2010). |
Narins, R. et al., Validated Assessment Scales for the Lower Face, Dermatology Surgery, 38:333-342 (2012). |
PCT International Preliminary Report on Patentability, PCT/US2014/036638, dated Nov. 3, 2015, 7 pages. |
PCT International Preliminary Report on Patentability, PCT/US2014/050426, dated Feb. 9, 2016, 8 pages. |
PCT International Search Report and Written Opinion, PCT/US2014/036638, dated Oct. 2, 2014, 10 pages. |
PCT International Search Report and Written Opinion, PCT/US2014/050426, dated Feb. 4, 2015, 18 pages. |
Pliquett, U. et al., A propagating heat wave model of skin electroporation, J Theor Biol, 251(2):195-201 (2008). |
Prausnitz, M. et al., Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery, Proc Natl Acad Sci USA, 90(22):10504-8 (1993). |
Salam, G. and Amin, J., The basic Z-plasty, Am Fam Physician, 67(11):2329-32 (2003). |
Written Opinion for International Patent Application No. PCT/US2012/047708. |
Written Opinion for PCT/US14/71443, 4 pages (dated Mar. 19, 2015). |
Written Opinion for PCT/US2014/016483, 6 pages (dated May 6, 2014). |
Written Opinion for PCT/US2015/060685, 4 pages (dated Feb. 2, 2016). |
Written Opinion for PCT/US2017/024752, 11 pages (dated Aug. 29, 2017). |
Written Opinion for PCT/US2017/052528 (Devices and Methods for Cosmetic Skin Resurfacing, filed Sep. 20, 2017), issued by ISA/US, 17 pages (dated Jan. 4, 2018). |
Written Opinon for PCT/US2017/052539 (Rapid Skin Treatment Using Microcoring, filed Sep. 20, 2017), issued by ISA/US, 8 pages (dated Nov. 22, 2017). |
Zhu, J. et al., the Efficacy and Safety of Fractional CO2 Laser Combined with Topical Type A Botulinum Toxin for Facial Rejuvenation: A Randomized Controlled Split-Face Study, BioMed Research International, 7 pages (2016). |
International Search Report for PCT/US2019/060131 (Systems and Methods for Skin Treatment, filed Nov. 6, 2019) received from ISA/EP, 5 pages (dated Mar. 27, 2020). |
Written Opinion for PCT/US2019/060131 (Systems and Methods for Skin Treatment, filed Nov. 6, 2019) received from ISA/EP, 7 pages (dated Mar. 27, 2020). |
Number | Date | Country | |
---|---|---|---|
20160317721 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
61918271 | Dec 2013 | US |