The present invention relates to earpiece devices, and more particularly, to methods and devices for occluding an ear canal with a predetermined sound attenuation characteristic over a frequency band.
People may be exposed to noise pollution from their ambient environment (for example, from traffic, from construction sites, from aircraft, etc.). People may also be intentionally exposed to high sound levels (for example, from cell phones, MP3 players, home theater equipment, rock concerts, etc.). Studies have shown that ear damage, which may lead to permanent hearing impairment, is not only increasing in the general population, but may be increasing at a significantly faster rate in younger populations.
The potential for hearing damage may be a function of both a level and a duration of exposure to a sound stimulus. Studies have also indicated that hearing damage is a cumulative phenomenon. Although hearing damage due to industrial or background noise exposure is more thoroughly understood, there may also be a risk of hearing damage from the exposure to intentional excessive noise, such as with the use of headphones.
Devices which attenuate sound directly to the ear canal are known. Conventional devices typically fit in the ear, around the ear and/or beyond the ear. Examples of these devices include headphones, headsets, earbuds and hearing aids. Earpieces that occlude the ear canal may provide increased attenuation of the ambient environment, offering improved sound isolation. However, conventional in-ear earpieces may be fitted for a cross-section of a population. Conventional in-ear earpieces, thus, may not be properly fitted to the individual user and may not be adequately sealed, leading to reduced sound attenuation of the ambient environment.
The present invention is embodied in an occlusion device configured to occlude an ear canal. The occlusion device includes an insertion element and at least one expandable element disposed on the insertion element. The at least one expandable element is configured to receive a medium via the insertion element, and is configured to expand, responsive to the medium, to contact the ear canal. Physical parameters of the occlusion device are selected to produce a predetermined sound attenuation characteristic over a frequency band, such that sound is attenuated more in a first frequency range of the frequency band than in a second frequency range of the frequency band.
The present invention is also embodied in an earpiece device configured to occlude an ear canal. The earpiece device includes a housing unit and an occlusion section configured to be inserted into the ear canal. The occlusion section includes an insertion element coupled to the housing unit and at least one expandable element disposed on the insertion element. The at least one expandable element is configured to receive a medium, and is configured to expand, responsive to the medium, to contact the ear canal. Physical parameters of the occlusion section are selected to produce a predetermined sound attenuation characteristic over a frequency band, such that sound is attenuated more in a first frequency range of the frequency band than in a second frequency range of the frequency band.
The present invention is further embodied in a method of forming an occlusion device. The method includes selecting physical parameters of at least one expandable element and a medium of the occlusion device to produce a predetermined sound attenuation characteristic over a frequency band associated with an expanded state of the at least one expandable element and disposing the at least one expandable element on an insertion element such that the at least one expandable element is configured to receive the medium via the insertion element. The at least one expandable element is configured to expand to the expanded state, responsive to the medium, to contact an ear canal. In the expanded state, the predetermined sound attenuation characteristic is configured to attenuate sound in a first frequency range of the frequency band more than in a second frequency range of the frequency band.
The invention may be understood from the following detailed description when read in connection with the accompanying drawing. It is emphasized, according to common practice, that various features of the drawings may not be drawn to scale. On the contrary, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. Moreover, in the drawing, common numerical references are used to represent like features. Included in the drawing are the following figures:
Aspects of the present invention include methods and devices for occluding an ear canal which provide a predetermined sound attenuation characteristic over a frequency band, such that sound is attenuated more in one frequency range than in another frequency range of the frequency band. Exemplary earpiece devices of the present invention include an occlusion section having an insertion element coupled to an expandable element. The expandable element is configured to receive a medium and to expand to contact and conform to the ear canal. The sound attenuation characteristic of the earpiece device may be selected based on physical parameters of the occlusion section.
Referring to
Pinna 102 is a cartilaginous region of ear 100 that focuses acoustic information from an ambient environment to ear canal 108. Concha 104 is a bowl shaped region in proximity to ear canal opening, indicated by dashed line 106.
Wall 110 (also referred to herein as ear canal wall 110) of ear canal 108 forms an acoustic chamber, which terminates with tympanic membrane 112. Sound enters ear canal 108 (at dashed line 106) and is subsequently received by tympanic membrane 112. Tympanic membrane 112 is a flexible membrane in the middle ear that couples to components of the inner ear. In general, acoustic information resident in ear canal 108 vibrates tympanic membrane 112. The vibration is converted to a signal (corresponding to the acoustic information) that is provided to an auditory nerve.
Ear canal 108 typically includes cartilaginous region 116 (between dashed lines 106 and 114) and bony region 118 (between dashed line 114 and tympanic membrane 112). Cartilaginous region 116 includes a layer of cartilage underlying the skin layer. Bony region 118 represents an area where bone underlies ear canal wall 110. Vibrations may be conducted through the bone (in bony region 118), pass through ear canal wall 110, and may be radiated as sound into ear canal 108.
In bony region 118, a skin layer of ear canal wall 110 may be sensitive to pressure. In general, the skin layer in bony region 118 is approximately one tenth a thickness of a skin layer in ear cartilaginous region 116. Thus, in bony region 118, there is little tissue separating skin from bone. Accordingly, placement of an object (such as an earplug) in bony region 118 can stimulate nerves (due to skin being pressed against bone), which can be uncomfortable and even induce significant pain.
In contrast to bony region 118, cartilaginous region 116 is a highly flexible region having no substantial rigid structure. Thus, cartilaginous region 116 may be more easily deformed when a force is applied ear canal wall 110 (in cartilaginous region 116). In general, cartilaginous region 116 is much less sensitive to pressure than bony region 118.
In general, application of pressure to ear canal wall 110 (such as by an earplug which occludes ear canal 108), may deform ear canal wall 110. The deformation may, for example, stretch ear canal wall 110 and may place the skin layer under tension. Accordingly, it may be desirable to configure earpiece devices to be inserted within cartilaginous region 116. Earpiece devices may be inserted (and expanded) in cartilaginous region 116 without inducing discomfort and pain.
In general, ear canal 108 may vary substantially in shape and size over the human population. In general, ear canal 108 is not straight or regularly shaped. Although not illustrated in
Because the volume, shape, and length of ear canal 108 may substantially vary, there has been difficulty in providing a system that may effectively seal ear 100, attenuate noise, mitigate the occlusion effect, operate under different environmental conditions, and may fit a majority of the population. For example, hearing aid manufacturers typically generate a full custom earpiece for individuals that include a mold of the patient's ear canal. The ear canal mold is then used to form a hearing aid housing. The procedure to create an ear canal mold is costly, cumbersome, and is not easily adaptable for high volume production.
Referring next to
Occlusion section 202 may include insertion element 206 and expandable element 208. Insertion element 206 may be coupled to expandable element 208 and may be used to position expandable element 208 in ear canal 108. Expandable element 208 is configured to be expanded, via medium 228. In general, expandable element 208 may be configured to form an acoustic seal with a portion of ear canal wall 110. Expandable element 208 may be configured to partially or fully occlude ear canal 108, to provide various degrees of acoustic isolation (i.e., attenuation of one or more frequencies of ambient sound) at tympanic membrane 112.
In operation, expandable element 208 may be inserted in ear canal 108 in a contracted state. After insertion, expandable element 208 may be subsequently expanded (e.g., by being filled with medium 228), such that expandable element 208 conforms to ear canal 108 and forms at least a partial acoustic seal with ear canal 108. To remove earpiece device 200, expandable element 208 may be contracted (e.g., by removing at least part of medium 228) back to the contracted state. Accordingly, earpiece device 200 may then be easily removed from ear canal 108.
Expandable element 208 may be formed from any compliant material that has a low permeability to medium 228. Examples of materials of expandable element 208 include any suitable elastomeric material, such as, without being limited to, silicone, rubber (including synthetic rubber) and polyurethane elastomers (such as Pellethane® and Santoprene™) Materials of expandable element 208 may be used in combination with a barrier layer (for example, a barrier film such as SARANEX™), to reduce the permeability of expandable element 208. In general, expandable element may be formed from any suitable material having a range of Shore A hardness between about 5 A and about 30 A, with an elongation of about 500% or greater.
Medium 228 may include any suitable liquid, gas or gel capable of expanding and contracting expandable element 208 and that would maintain a comfortable level of pressure for a user of earpiece device 200. Examples of medium 228 include, for example, silicone, non or low permeable-based polymers, gels, fully-fluorinated liquids, ethylene glycol, isopropyl alcohol, air or other gasses (for example sulfur hexafluoride (SF6) or hydrogen).
Insertion element 206 may be formed from, for example, thermoplastic elastomer (TPE) materials, materials having an elastomeric property (such as silicone), or other malleable materials capable of conforming to the ear canal. Expandable element 208 may be attached to insertion element 206 via any suitable attachment method, such as, but not limited to, bonding, adherence with an adhesive, thermal bonding, molding and ultrasonic bonding.
Although expandable element 208 is illustrated as being of an annular-disc shape, it is understood that expandable element 208 may be formed of other shapes, such as conical-shaped, or toroidal-shaped. Although
As described further below with respect to
For example, sleep apnea is an example of a noisy environment that can have an impact on the health of the listener. Because snoring typically has a large portion of its power in the lower frequencies in the acoustic range, a listener subjected to snoring could benefit from a high pass filter earpiece that allows higher frequencies of the acoustic signal to be transmitted through the earpiece, while attenuating the lower frequencies.
Housing unit 204 may include inflation management system 210 for controlling the transfer of medium 228 to and from occlusion section 202, for expanding and contracting expandable element 208. Housing unit 204 may also include user interface 212 coupled to inflation management system 210. Inflation management system 210 may be activated responsive to user interface 212, in order to expand and contract expandable element 208. Housing unit 204 may also include further electrical components. Inflation management system may include any suitable system capable of transferring medium 228 to and from expandable element 208. For example, inflation management system may include a pump actuator and a valve housing (not shown).
According to one embodiment, earpiece device 200 may include inflation management system 210 and user interface 212, without any electro-acoustic elements. In this example embodiment, earpiece device 200 may be configured simply as a sound isolation device, with a predetermined sound attenuation characteristic selected according to the physical parameters of occlusion section 202.
According to another embodiment, housing unit 204 may include electrical components as well as one or more electro-acoustical components. For example, housing unit 204 may include speaker 214, controller 220, memory 222, battery 224 and communication unit 226.
Speaker 214, memory 222, communication unit 226, user interface 212 and inflation management system 210 may be controlled by controller 220. Controller 220 may include, for example, a logic circuit, a digital signal processor or a microprocessor.
Communication unit 226 may be configured to receive and/or transmit signals to earpiece device 200. Communication unit 226 may be configured for wired and/or wireless communication with an external device (e.g., an MPEG player or a mobile phone).
Battery 224 may power the electrical and electro-acoustic components in housing unit 204. Battery 224 may include a rechargeable or replaceable battery.
The acoustic seal provided by occlusion section 202 may significantly reduce a sound pressure level at tympanic membrane 112 from an ambient sound field at the entrance to ear canal 108 (to provide sound isolation). For example, occlusion section 202 having a high pass filter characteristic may substantially attenuate lower frequencies. Because of the sound isolation of occlusion section 202, speaker 214 may generate a full range bass response time when reproducing sound in earpiece device 200.
According to another embodiment, housing unit 204 may include an ear canal (EC) microphone 216 located adjacent to speaker 214, which may also be acoustically coupled to ear canal 108. EC microphone 216 may be configured to measure a sound pressure level in ear canal 108. The sound pressure level in ear canal 108 may be used, for example, to test the hearing acuity of a user, to confirm an integrity of the acoustic seal, and/or to confirm the operation of EC microphone 216 and speaker 214.
According to another embodiment, housing unit 204 may include ambient microphone 218, as well as EC microphone 216 and speaker 214. Ambient microphone 218 may be configured to monitor a sound pressure of the ambient environment at the entrance to ear 100. In at least one exemplary embodiment, earpiece device 200 may actively monitor a sound pressure level both inside and outside ear canal 108 and may enhance spatial and timbral sound quality, while maintaining supervision to ensure safe sound reproduction levels. Earpiece device 200, in various embodiments may conduct listening tests, filter sounds in the environment, monitor sounds in the environment, present notification based on the monitored sounds, maintain constant audio content to ambient sound levels, and/or filter sound in accordance with a personalized hearing level.
Earpiece device 200 may be configured to generate an ear canal transfer function (ECTF) to model ear canal 108 (via speaker 214 and EC microphone 216), as well as an outer ear canal transfer function (OETF) (via ambient microphone 218). Earpiece device 200 may be configured to determine a sealing profile with ear 100 to compensate for any acoustic leakage. Earpiece device 200 may be configured to monitor a sound exposure to ear canal 108 (for example, from speaker 214 as well as from ambient noise measured via ambient microphone 218).
Referring to
In at least one exemplary embodiment, insertion element 206 may include at least one acoustic channel (e.g., acoustic channel 304 and/or acoustic channel 306) for receiving or delivering audio content. For example, housing unit 204 may include speaker 214. Insertion element 206 may, thus, include acoustic channel 304 for delivering sound from speaker 214 to ear canal 108. As another example, housing unit 204 may include speaker 214 and EC microphone 216. In this example, insertion element 206 may include acoustic channels 304, 306, respectively coupled to speaker 214 and EC microphone 216. Acoustic channel 306 may deliver sound from ear canal 108 to EC microphone 216.
As described above, expandable element 208 may form an acoustic seal with ear canal wall 110 at a location between the entrance to ear canal 108 and tympanic membrane 112. The acoustic seal by expandable element 208 may substantially attenuate sound in ear canal 108 from the ambient environment (thus providing sound isolation to ear canal 108). Insertion element 206 may also include one or more acoustic channels (e.g., acoustic channel 304 and/or acoustic channel 306) for acoustically coupling sound between ear canal 108 and one or more respective transducers (e.g., speaker 214 and/or EC microphone 216). Accordingly, sound transmitted to and/or from ear canal 108 via acoustic channel 304 (and/or 306) may be substantially isolated from the ambient environment.
Referring next to
Earpiece device 200′ is similar to earpiece device 200 except that earpiece device 200′ includes flange 402 coupled to insertion element 206 of occlusion section 202. Flange 402 may provide sound attenuation (in addition to the sound attenuation by expandable element 208). Flange 402 may also help to seat occlusion section 202 in ear canal 108 (
The selection of physical parameters of occlusion section 202 (
It is often possible and convenient to represent an acoustical system with a lumped element model, as an acoustical circuit analogous to an electrical circuit. For example, an acoustical system may be represented as an acoustic impedance (or acoustic mobility). In acoustic impedance analogs, for example, the sound pressure and volume velocity correspond to voltage and current, respectively. For example, occlusion section 202 (
Referring to
Balloon 502 and medium 510 may each be represented as acoustical elements. Because balloon 502 is within tube 504, the band of balloon material in contact with tube walls 506 does not move. This effectively separates balloon 502 into two parts, upstream face 508 and downstream face 512. It is understood that the acoustical element representation of downstream face 512 is the same as that of upstream face 508. Thus, only upstream face 508 is considered below.
Face 508 of balloon 502 (filled with medium 510) includes a static DC pressure P2 on the outside and a static interior pressure Pg. If the outside pressure is changed to P2′, there will be a change in the static equilibrium of the balloon. Face 508 moves to a new position and may have a different shape (represented as face 508′), sweeping out a volume ΔV. Thus, the interior pressure will change to a new value Pg′. The shape of the balloon face 508 is controlled by the difference in pressure across the material, i.e., PD=P2−Pg and PD′=P2′−Pg′.
Although, in general, the relationship between the change in pressures and the volume of balloon 502 may be complicated, for the acoustical behavior, it is assumed that these changes are very small, so that a simple acoustical representation of balloon 502 may be determined.
For acoustic pressures, the pressures acting on face 508 may be considered to oscillate sinusoidally in time about their static values, and may be represented by complex notation as
P2′=P2+Re{p2eiωt} (2)
Pg′=Pg+Re{pgeiωt} (3)
where Pg and P2 are the (complex) sound pressures on either side of the balloon section, so that
ΔPd=Re{(p2−pg)eiωt} (4)
Similarly, the volume changes harmonically as
ΔV=V′−V=Re{V*eiωt}. (5)
where V is the static volume enclosed by face 508 of the balloon. Thus, the volume velocity U (i.e., the rate change of volume with time) may be represented as
U≡Re{u2eiωt}=dV′/dt=Re{iωV*eiωt} (6)
Accordingly, the sound pressure difference is related to the complex to volume velocity u2, as
where C2 is the acoustical capacitance of one side (for example face 508) of balloon 502. The value of capacitance C2 may be determined by the slope of the tangent line in
Medium 510 may include, for example, a gas or a liquid. The acoustical element representation of medium 510 may be different depending on whether medium 510 is a gas or a liquid. The consideration of medium 510 as a liquid is discussed with respect to
An enclosed volume of gas may store energy in its compressions. Thus, gas 510 (for example, air) within balloon 502 may also be represented as an acoustic capacitance. The volume velocity u2, as defined, acts to compress gas 510 contained within balloon 502. The volume velocity corresponding to face 512 of balloon 502 may be defined in the opposite sense, such that the volume velocity u1 acts to uncompress the air. The net volume velocity (uru1) is related to the sound pressure p9 inside the balloon by:
u2−u1=iωCgpg (8)
where capacitance C9 is given by:
and where Vg is the enclosed volume, Pg• is the static pressure inside balloon 502, and γ is the specific heat ratio.
Referring to
If the lateral dimensions of tube 504 are less than a wavelength of sound, sound waves may propagate along both forward and backward longitudinal directions. Because tube 504 includes anechoic termination 602, there are no reflected sound waves, only forward propagating waves.
Consider pressure p1 and volume velocity u1 at a position in tube 504. For a plane wave traveling in a single direction, the pressure and the volume velocity are in phase and are related as:
p1=Rcu1 (10)
where the characteristic acoustical resistance of tube 504 (at anechoic termination 602) is
Here, A is the internal cross-sectional area of tube 504, ρ is the density of the gas (e.g., air), and c is the sound speed in the gas (e.g., air).
As discussed above, faces 508, 512 of balloon 502 may each be represented as acoustical compliance Cb. Gas 510 within balloon 502 may be represented as acoustical compliance Cg. Finally, tube 504 with anechoic termination 602 may be represented as resistance Rc.
Based on the acoustical elements representing balloon 502, gas 510 and tube 504, acoustical system 600 may be represented as an equivalent electro-acoustical circuit (i.e., an acoustical impedance analog), as shown in
Network methods may be applied to calculate the various quantities of the acoustical elements if values for the various circuit elements are available. Both Rc and Cb may be determined from the expressions provided above.
For a sample calculation, it is assumed that tube 504 has an inner diameter of 9.53 mm (0.375″) and that balloon 502 contains a volume of 0.713 cm3 at an inflation pressure of 300 mbar. Capacitance Cb corresponding to each face of balloon 502 may be determined, for example, based on a calculation of the inflation dynamics of balloon materials, taking into account the Mooney-Rivlin type of stress-strain relationship. In the sample calculation, several different values of capacitance including Cb=0.3Cg, Cb=Cg, and Cb=3Cg are selected. The transmission coefficient of acoustical energy may be determined as:
Referring to
Referring next to
Acoustical system 800 is similar to acoustical system 600 (
Balloons 802-A, 802-B have respective volumes of VA and Vb, with respective sound pressures of PA and Pb. Gap 810 between balloons 802-A, 802-B (at attachment point 806) has volume Vc and sound pressure PC. The motion of the right-hand face of balloon 802-A includes a volume velocity uA. Similarly, the motion of the left-hand face of balloon 802-B includes a volume velocity uB.
Based on the acoustical elements described above for balloon 502 (
Referring to
As shown in
Measurements on several double balloons, however, have revealed a more complicated variation with frequency. This variation may be due to small leaks between balloons 802-A, 802-B.
Referring next to
Leak 1002 may be modeled as a short, circular passage between balloons 802-A, 802-B. The volume velocity entering leak 1002 is represented as uLA and the volume velocity exiting leak 1002 is represented as uLB. A volume of fluid (gas or liquid) that has a length comparable or greater than a wavelength (or a radius that is comparable or smaller than a viscous boundary layer thickness) may not be capable of being treated as a simple volume. Accordingly, a general theory is described below for acoustical propagation along a circular passage (i.e., leak 1002).
Consider that leak 1002 is a hollow, circular passage of radius aL and length l At one end of leak 1002, there is a pressure pA and volume velocity uLA; at the other end, there is a pressure pB and volume velocity uLB. These quantities are related, generally, through a transfer matrix TL as:
where μ represents the coefficient of viscosity of the gas (e.g., air), γ represents the ratio of specific heats, Npr represents the Prandtl number and J0(*), J1(*) represent Bessel functions of the first kind for respective integer orders 0 and 1.
Leak 1002 that is a circular tube, in general, does not have a simple lumped-element representation. However, leak 1002 may be represented as a network block in an electro acoustical circuit. Accordingly, based on the acoustical elements described above, acoustical system 1000 having leak 1002 may also be represented as an equivalent electro-acoustical circuit (i.e., an acoustical impedance analog), as shown in
Referring to
Referring next to
Acoustical system 1200 is similar to acoustical system 600 (
The pressure just inside face 508 of balloon 502 is represented as pA and the pressure just inside face 512 is represented as pB. Let L be the length of the balloon and a, the internal diameter of the constraining tube. The sound pressures (pA, pB) and volume velocities (u1, u2) may be related through a transfer matrix Tliq by:
If a is sufficiently large, viscous and thermal boundary layer effects may be ignored, such that the arguments aα and aβ are also large and Tα≈Tβ≈1. Then,
where k=w/cliq is the wavenumber and Zliq is the characteristic impedance of the liquid, given as
As shown in
If it is further assumed that kL is small, the expressions simplify further, yielding
In eqs. (25) and (26), Lliq represents an inductance and Cliq represents a capacitance, respectively, where:
The inductance Lliq is directly related to the mass of the liquid contained in the volume. The capacitance Cliq is related to the compliance of the liquid.
Accordingly, based on the acoustical elements described above, and the transfer network shown in
Referring to
Referring generally to
It is understood that a predetermined sound attenuation characteristic may also be produced by combining multiple expandable elements 208 (with similar or different materials) filled with different mediums 228. For example, a first expandable element 208 filled with gas (to produce a high pass filter) may be coupled with a second expandable element 208 filled with a liquid (to produce a low pass filter). The combination of the two expandable elements 208 with different mediums 228 may produce a band pass filter.
Referring next to
Referring next to
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 16/101,597, which is a continuation of and claims priority to U.S. patent application Ser. No. 13/805,833, filed on Apr. 15, 2013, which is a National Stage Entry of PCT/US11/41776 filed on Jun. 24, 2011, which claims priority to U.S. Provisional Patent Application Ser. No. 61/358,888 filed Jun. 26, 2010, all of which are herein incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3876843 | Moen | Apr 1975 | A |
4054749 | Suzuki et al. | Oct 1977 | A |
4088849 | Usami et al. | May 1978 | A |
4947440 | Bateman et al. | Aug 1990 | A |
5208867 | Stites, III | May 1993 | A |
5267321 | Langberg | Nov 1993 | A |
5524056 | Killion et al. | Jun 1996 | A |
5903868 | Yuen et al. | May 1999 | A |
6014553 | Kim et al. | Jan 2000 | A |
6021207 | Puthuff et al. | Feb 2000 | A |
6021325 | Hall | Feb 2000 | A |
6163338 | Johnson et al. | Dec 2000 | A |
6163508 | Kim et al. | Dec 2000 | A |
6226389 | Lemelson et al. | May 2001 | B1 |
6298323 | Kaemmerer | Oct 2001 | B1 |
6359993 | Brimhall | Mar 2002 | B2 |
6400652 | Goldberg et al. | Jun 2002 | B1 |
6415034 | Hietanen | Jul 2002 | B1 |
6567524 | Svean et al. | May 2003 | B1 |
RE38351 | Iseberg et al. | Dec 2003 | E |
6661901 | Svean et al. | Dec 2003 | B1 |
6728385 | Kvaloy et al. | Apr 2004 | B2 |
6748238 | Lau | Jun 2004 | B1 |
6754359 | Svean et al. | Jun 2004 | B1 |
6804638 | Fiedler | Oct 2004 | B2 |
6804643 | Kiss | Oct 2004 | B1 |
7072482 | Van Doorn et al. | Jul 2006 | B2 |
7107109 | Nathan et al. | Sep 2006 | B1 |
7113602 | Oinoue | Sep 2006 | B2 |
7209569 | Boesen | Apr 2007 | B2 |
7430299 | Armstrong et al. | Sep 2008 | B2 |
7433714 | Howard et al. | Oct 2008 | B2 |
7450730 | Bertg et al. | Nov 2008 | B2 |
7477756 | Wickstrom et al. | Jan 2009 | B2 |
7562020 | Le et al. | Jun 2009 | B2 |
7756281 | Goldstein et al. | Jul 2010 | B2 |
7756285 | Sjursen et al. | Jul 2010 | B2 |
7778434 | Juneau et al. | Aug 2010 | B2 |
7920557 | Moote | Apr 2011 | B2 |
8047207 | Perez et al. | Nov 2011 | B2 |
8194864 | Goldstein et al. | Jun 2012 | B2 |
8199919 | Goldstein et al. | Jun 2012 | B2 |
8208644 | Goldstein et al. | Jun 2012 | B2 |
8208652 | Keady | Jun 2012 | B2 |
8221861 | Keady | Jul 2012 | B2 |
8229128 | Keady | Jul 2012 | B2 |
8251925 | Keady et al. | Aug 2012 | B2 |
8312960 | Keady | Nov 2012 | B2 |
8437492 | Goldstein et al. | May 2013 | B2 |
8493204 | Wong et al. | Jul 2013 | B2 |
8550206 | Keady et al. | Oct 2013 | B2 |
8554350 | Keady et al. | Oct 2013 | B2 |
8600067 | Usher et al. | Dec 2013 | B2 |
8631801 | Keady | Jan 2014 | B2 |
8657064 | Staab | Feb 2014 | B2 |
8678011 | Goldstein et al. | Mar 2014 | B2 |
8718313 | Keady | May 2014 | B2 |
8750295 | Liron | Jun 2014 | B2 |
8848939 | Keady et al. | Sep 2014 | B2 |
8917880 | Goldstein et al. | Dec 2014 | B2 |
8992710 | Keady | Mar 2015 | B2 |
9037458 | Park et al. | May 2015 | B2 |
9113267 | Usher et al. | Aug 2015 | B2 |
9123323 | Keady | Sep 2015 | B2 |
9123343 | Kurki-Suonio | Sep 2015 | B2 |
9135797 | Couper et al. | Sep 2015 | B2 |
9138353 | Keady | Sep 2015 | B2 |
9185481 | Goldstein et al. | Nov 2015 | B2 |
9216237 | Keady | Dec 2015 | B2 |
9539147 | Keady et al. | Jan 2017 | B2 |
9757069 | Keady et al. | Sep 2017 | B2 |
9781530 | Usher et al. | Oct 2017 | B2 |
9843854 | Keady | Dec 2017 | B2 |
10012529 | Goldstein et al. | Jul 2018 | B2 |
10190904 | Goldstein et al. | Jan 2019 | B2 |
20010046304 | Rast | Nov 2001 | A1 |
20020076057 | Voix | Jun 2002 | A1 |
20020106091 | Furst et al. | Aug 2002 | A1 |
20020118798 | Langhart et al. | Aug 2002 | A1 |
20020143242 | Nemirovski | Oct 2002 | A1 |
20030161097 | Le et al. | Aug 2003 | A1 |
20030165246 | Kvaloy et al. | Sep 2003 | A1 |
20040042103 | Mayer | Mar 2004 | A1 |
20040109668 | Stuckman | Jun 2004 | A1 |
20040125965 | Alberth, Jr. et al. | Jul 2004 | A1 |
20040190737 | Kuhnel et al. | Sep 2004 | A1 |
20040196992 | Ryan | Oct 2004 | A1 |
20040203351 | Shearer et al. | Oct 2004 | A1 |
20050078838 | Simon | Apr 2005 | A1 |
20050123146 | Voix et al. | Jun 2005 | A1 |
20050288057 | Lai et al. | Dec 2005 | A1 |
20060067551 | Cartwright et al. | Mar 2006 | A1 |
20060083395 | Allen et al. | Apr 2006 | A1 |
20060092043 | Lagassey | May 2006 | A1 |
20060195322 | Broussard et al. | Aug 2006 | A1 |
20060204014 | Isenberg et al. | Sep 2006 | A1 |
20070043563 | Comerford et al. | Feb 2007 | A1 |
20070086600 | Boesen | Apr 2007 | A1 |
20070189544 | Rosenberg | Aug 2007 | A1 |
20070291953 | Ngia et al. | Dec 2007 | A1 |
20080037801 | Alves et al. | Feb 2008 | A1 |
20080165988 | Terlizzi et al. | Jul 2008 | A1 |
20090010456 | Goldstein et al. | Jan 2009 | A1 |
20090022353 | Goldstein et al. | Jan 2009 | A1 |
20090024234 | Archibald | Jan 2009 | A1 |
20090028356 | Ambrose et al. | Jan 2009 | A1 |
20090071487 | Keady | Mar 2009 | A1 |
20090264161 | Usher et al. | Oct 2009 | A1 |
20100061564 | Clemow et al. | Mar 2010 | A1 |
20100074451 | Usher et al. | Mar 2010 | A1 |
20100241256 | Goldstein et al. | Sep 2010 | A1 |
20100296668 | Lee et al. | Nov 2010 | A1 |
20110096939 | Ichimura | Apr 2011 | A1 |
20110235843 | Keady et al. | Sep 2011 | A1 |
20110264447 | Visser et al. | Oct 2011 | A1 |
20110293103 | Park et al. | Dec 2011 | A1 |
20130098706 | Keady | Apr 2013 | A1 |
20130149192 | Keady | Jun 2013 | A1 |
20140003644 | Keady et al. | Jan 2014 | A1 |
20140026665 | Keady | Jan 2014 | A1 |
20140373854 | Keady | Dec 2014 | A1 |
20160015568 | Keady | Jan 2016 | A1 |
20160104452 | Guan et al. | Apr 2016 | A1 |
20160192077 | Keady | Jun 2016 | A1 |
20160295311 | Keady et al. | Oct 2016 | A1 |
20170134865 | Goldstein et al. | May 2017 | A1 |
20180054668 | Keady | Feb 2018 | A1 |
20180132048 | Usher et al. | May 2018 | A1 |
20180220239 | Keady et al. | Aug 2018 | A1 |
20190082272 | Goldstein et al. | Mar 2019 | A9 |
20210204058 | Oishi | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1519625 | Mar 2005 | EP |
2006037156 | Apr 2006 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2011/041776, dated Oct. 28, 2011. |
Olwal, A. and Feiner S. Interaction Techniques Using Prosodic Features of Speech and Audio Localization. Proceedings of IUI 2005 (International Conference on Intelligent User Interfaces), San Diego, CA, Jan. 9-12, 2005, p. 284-286. |
Bernard Widrow, John R. Glover Jr., John M. McCool, John Kaunitz, Charles S. Williams, Robert H. Hearn, James R. Zeidler, Eugene Dong Jr, and Robert C. Goodlin, Adaptive Noise Cancelling: Principles and Applications, Proceedings of the IEEE, vol. 63, No. 12, Dec. 1975. |
Mauro Dentino, John M. McCool, and Bernard Widrow, Adaptive Filtering in the Frequency Domain, Proceedings of the IEEE, vol. 66, No. 12, Dec. 1978. |
Number | Date | Country | |
---|---|---|---|
20200260175 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
61358888 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16101597 | Aug 2018 | US |
Child | 16861344 | US | |
Parent | 13805833 | US | |
Child | 16101597 | US |