This application does not claim priority to any other patent application.
The suture passer devices and methods described herein may be used, in particular, with, or as part of any of the suture passer devices and systems described in the following patent applications, each of which is herein incorporated by reference in its entirety. Specifically: U.S. patent application Ser. No. 11/773,388, filed on Jul. 3, 2007, titled “METHODS AND DEVICES FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2009-0012538-A1; U.S. patent application Ser. No. 12/972,222, filed on Dec. 17, 2010, titled “METHODS AND DEVICES FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2011-0087246-A1; U.S. patent application Ser. No. 13/462,760, filed on May 2, 2012, titled “METHODS OF MENISCUS REPAIR,” now Publication No. US-2012-0239062-A1; U.S. patent application Ser. No. 13/006,966, filed on Jan. 14, 2011, titled “METHODS FOR CONTINUOUS SUTURE PASSING,” now Publication No. US-2011-0130773-A1; U.S. patent application Ser. No. 13/090,089, filed on Apr. 19, 2011, titled “METHODS OF MENISCUS REPAIR,” now Publication No. US-2011-0218557-A1; U.S. patent application Ser. No. 12/291,159, filed on Nov. 5, 2008, titled “SUTURE PASSING INSTRUMENT AND METHOD,” now Publication No. US-2010-0331863-A2; U.S. patent application Ser. No. 12/972,168, filed on Dec. 17, 2010, titled “SUTURE PASSING INSTRUMENT AND METHOD,” now Publication No. US-2011-0152892-A1; U.S. patent application Ser. No. 13/062,664, filed on Apr. 19, 2011, titled “KNOTLESS SUTURE ANCHORS,” now Publication No. US-2011-0190815-A1; U.S. patent application Ser. No. 12/620,029, filed on Nov. 17, 2009, titled “METHODS OF SUTURING AND REPAIRING TISSUE USING A CONTINUOUS SUTURE PASSER DEVICE,” now Publication No. US-2010-0130990-A1; U.S. patent application Ser. No. 12/942,803, filed on Nov. 9, 2010, titled “DEVICES, SYSTEMS AND METHODS FOR MENISCUS REPAIR,” now Publication No. US-2011-0112556-A1; U.S. patent application Ser. No. 13/462,728, filed on May 2, 2012, titled “DEVICES, SYSTEMS AND METHODS FOR MENISCUS REPAIR,” now Publication No. US-2012-0265221-A1; U.S. patent application Ser. No. 13/114,983, filed on May 24, 2011, titled “SUTURING AND REPAIRING TISSUE USING IN VIVO SUTURE LOADING,” now Publication No. US-2011-0270280-A1; U.S. patent application Ser. No. 13/347,184, filed on Jan. 10, 2012, titled “IMPLANT AND METHOD FOR REPAIR OF THE ANTERIOR CRUCIATE LIGAMENT,” now Publication No. US-2012-0179254-A1; U.S. patent application Ser. No. 13/247,892, filed on Sep. 28, 2011, titled “MENISCUS REPAIR,” now Publication No. US-2012-0283750-A1; U.S. patent application Ser. No. 13/323,391, filed on Dec. 12, 2011, titled “SUTURE PASSER DEVICES AND METHODS,” now Publication No. US-2012-0283753-A1; and U.S. patent application Ser. No. 13/462,773, filed on May 2, 2012, titled “SUTURE PASSER DEVICES AND METHODS,” now Publication No. US-2012-0283754-A1, each of which is incorporated by reference in its entirety.
Many of the techniques, methods and devices described herein were developed for use with one or more of these suture passer devices, and thus may be particularly well adapted for use with these systems. However, the methods and systems (and particularly the use of a suture following structure such as the threading apertures described herein) may also be used with other suture passers.
All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The present invention relates to suture passers and methods of using them to form knots with sutures while avoiding the unwanted capture of tissue, which may be referred to as “tissue bridging” or “suture bridging.” These methods and systems are of particular use with arthroscopic methods, and particularly arthroscopic repair of the knee (e.g., meniscus), the shoulder (e.g., rotator cuff repair, shoulder labrum repair) and the hip (e.g., hip labrum repair).
Suturing of tissue during surgical procedures is time consuming and can be particularly challenging in difficult to access body regions and regions that have limited clearance, such as regions partially surrounded or covered by bone. For many surgical procedures, it is necessary to make a large opening in the human body to expose the area requiring surgical repair. However, in many cases, accessing the tissue in this manner is undesirable, increasing recovery time, and exposing the patient to greater risk of infection.
Suturing instruments (“suture passers” or “suturing devices”) have been developed to assist in accessing and treating internal body regions, and to generally assist a physician in repairing tissue. Although many such devices are available for endoscopic and/or percutaneous use, these devices suffer from a variety of problems, including limited ability to navigate and be operated within the tight confines of the body, risk of injury to adjacent structures, problems controlling the position and/or condition of the tissue before, during, and after passing the suture, as well as problems with the reliable functioning of the suture passer.
A complete loop of suture may be tightened around tissue so that different regions of tissue may be placed against each other (approximating both sides of a torn or injured tissue) to promote appropriate healing. Passing a loop of suture completely around a torn or damaged tissue, and thereby applying tensioning force across an entire length of the damage tissue, has been shown experimentally to result in superior healing, preventing re-tearing of the tissue.
When using a suture passer to arthroscopically form a loop of suture around damaged tissue, multiple passes of a suture through the tissue are performed by removing the suture passer from the tissue after one or more passes of the suture, requiring the suture passer to be re-inserted to make additional passes of suture and complete the loop. Unfortunately, when a suture passer is withdrawn and then re-inserted into the tissue, additional (non-target) tissue maybe inadvertently entrapped between the ends of the suture, preventing the suture loop from being closed tightly. This is referred to as “tissue bridging” or “suture bridging”.
Although tissue bridging is particularly problematic in arthroscopic surgery, it can occur in other (e.g., open) procedures as well.
This problem is well known in repairing a torn meniscus of the knee. For example, Strobel describes (“Manual of Arthroscopic Surgery” by Michael Strobel, Springer (Heidelberg: 2002), pages 127-129) a method of repairing a complete longitudinal tear of the lateral meniscus using a knot pusher to secure a loop of suture around the tear. Strobel suggests that, if a tissue bridge is formed between the sutures when securing them, the bridging tissue should be transected, or if it cannot be cleared, the suture must be completely removed and a new suture placed. This is undesirable, as it adds additional time and complication to the procedure.
In addition to cutting the bridging tissue or removing (and replacing) the suture, it has been suggested in the prior art that a large-bore cannula may be used to prevent tissue bridging. Unfortunately, such cannula may be difficult to work with, as they may slip and change position, and may limit the maneuverability of the surgical devices during a procedure.
Thus, it would be desirable to provide a device such as a suture passer that may be used to pass a loop of suture without inadvertently capturing non-target tissue, and forming a tissue bridge, even when the suture passer is removed from the patient and reinserted between suture passes. Further, it would be desirable to provide a method of suturing a tissue that prevents and avoids tissue bridging. Described herein are methods and devices, including suture passers, that may address the problems identified above.
When passing multiple lengths of suture through tissue to loop around a target tissue, if the path through the non-target tissue taken by each length of suture to get to the target tissue is not the same for each length of suture passed, the non-target tissue can be entrapped between lengths of suture. This entrapment prevents the central bite of the suture from traveling to the surface of the target tissue, thus compromising the repair. The entrapment of non-target tissue when knotting or closing a loop of suture may be referred to as tissue bridging or suture bridging, and is illustrated in more detail below. Described herein are devices and methods for suturing tissue that prevent the entrapment of non-target tissue when advancing a loop of suture around a target tissue. These methods and devices are particularly (but not exclusively) relevant to arthroscopic procedures, and particularly the arthroscopic repair of the meniscus of the knee. the shoulder rotator cuff, and the hip (e.g., labrium).
For example, described herein are methods of preventing the entrapment of non-target tissue when using a suture passer to pass multiple lengths of suture through a target tissue. This may also be referred to as a method of preventing the formation of tissue bridging or suture bridging, as they prevent the formation of tissue bridges of non-target tissue when arthroscopically passing a loop of suture around a target tissue. Such methods may include: passing a first length of suture through the target tissue so that a first limb of the first length of suture extends from the target tissue; connecting the first limb of the first length of suture through a threading aperture at the distal end region of the suture passer; sliding the threading aperture of the suture passer along the first limb of the first length of suture to guide the suture passer to the target tissue; and passing a second length of suture through the target tissue using the suture passer.
In general, a suture may be passed through a tissue (e.g., target tissue) multiple times. A suture may be referred to as including multiple lengths of suture. Thus, when referring to multiple lengths of suture, this may include multiple lengths of the same suture or multiple lengths of different sutures. For example, a first length of a suture (near the distal end of the suture) may be passed through a target tissue. After passing the suture through the target tissue, the portions of the suture on either side of the target tissue may be referred to as the limbs of the suture. For example, the distal end of a first length of suture passed through a target tissue may be referred to as the limb (e.g., the first limb or the distal limb) of the first length of suture. A region of the suture that is proximal to the first length of suture may form a second length of suture. This second length of suture may also be passed through the tissue (as described in greater detail below) and the proximal region of the second suture length may also be referred to as a limb (a proximal limb or a second limb) of the second length of suture. Additional lengths of suture may be made up of other regions of the elongate length of suture and may also be passed through the tissue. The first and second lengths of suture (or additional lengths of suture) may be formed from different regions of the same elongate suture; alternatively one or more lengths of suture may be formed from different (non-continuous) sutures.
Any appropriate suture material may be used. For example, surgical-grade sutures such as catgut (plain, chromic), silk, polyglycolic acid, polylactic acid, polydioxanone, nylon, polypropylene, ultra high molecular weight polyethylene (UHMWPE), etc.
The general method of preventing tissue bridging described above may be used as part of any appropriate surgical method where it is undesirable to use a cannula, including particularly arthroscopic methods, in any appropriate body region, including shoulder, knee, spine, etc.
For example, described herein are methods of preventing the entrapment of non-target tissue when using a suture passer to arthroscopically pass multiple lengths of suture through a meniscus of a patient knee. These methods may include: passing a first length of suture through the meniscus so that a first limb of the first length of suture extends from the meniscus; connecting the first limb of the first length of suture to a threading aperture at the distal end region of the suture passer; sliding the threading aperture of the suture passer along the first limb of the first length of suture toward the meniscus to position the suture passer near the meniscus; and passing a second length of suture through the meniscus.
Any of these methods may also include arthroscopically inserting the suture passer into the tissue (e.g., knee) and using the suture passer to pass the first length of suture through the target tissue. Any of these methods may also include withdrawing the suture passer from the tissue after passing the first length of suture. The first limb of the suture may be withdrawn with the suture passer. Any of these methods may also include loading the second length of suture into the suture passer when the suture passer is withdrawn from the patient, so that the suture passer may be used to pass the second length of suture through the tissue. For example, the second length of suture may be a proximal region of the suture forming the first length of suture, which may be connected to the suture passer so that it can be passed by a tissue penetrator on the suture passer. Any of these methods may also include loading the second length of suture into a second suture passer such that a different suture passer instrument is used to pass the subsequent length than that used to pass the first. This may be referred to as a suture passer exchange.
In general, the methods described herein use a length (e.g., leg) of suture that has already passed through or around a portion of the target tissue to guide or steer the suture passer in passing a second (or third, fourth, fifth, etc.) length of suture through or around the same target tissue to prevent tissue bridging. Thus any of the methods described herein may use a suture passer that has been adapted to slide along the first length of suture so that it can be guided back to the target tissue. Adaptations that allow the suture passer to slide along the first length of suture from outside of the body to the target tissue region, while preparing to pass the second length of suture through or around the target tissue region may include a so-called threading aperture into which the first (pre-passed) length of suture may be threaded. The first length/leg of suture may then be slid within the threading aperture so that the suture passer can be directed along the same pathway though the body to the target tissue that the first length/leg of suture took when exiting the body from the target tissue.
In some variations, the methods described herein may be used to pass a loop of suture completely around the meniscus from the inferior side of the meniscus, through the meniscus to the superior sides of the meniscus, and back through the meniscus to the inferior side. The suture may be knotted or otherwise secured to close the loop; thus it would be desirable to prevent entrapment of non-target (e.g., non-meniscus in this example) tissue. Thus, passing the first length of suture through the meniscus may include passing the first length of suture between the inferior and superior surfaces of the meniscus. In general, passing the first length of suture through the meniscus may include extending the first limb of the first length of suture out of the patient's body.
The first limb of the first length of suture may be connected to the threading aperture at the distal end region of the suture passer by, e.g., threading the first limb of the first length of suture through the threading aperture.
A threading aperture may be any appropriate opening and/or channel into which the first length of suture may be slid to guide the suture passer to the target tissue. The aperture may be referred to as an opening, a gap, a cleft, a hole, an eyelet, a hook, a channel, or the like. The threading aperture may be any appropriate size, though it is typically relatively small, having an outer diameter that is sufficiently low-profile so that it does not substantially interferer with the overall low-profile of the tissue penetrator jaw(s) and an inner diameter that is sufficiently large to permit relatively easy loading of the first length of suture after it has already been passed through the tissue. The threading aperture may project (e.g., perpendicular to) the tip and/or side of one of the jaws of the suture passer, or it may be formed through a jaw of the suture passer. For example, in some variations connecting the first limb of the first length of suture to the threading aperture comprises passing the first limb of the first length of suture through one or more of: an eyelet, a hook, or a channel. The eyelet, hook or channel may extend distally from the distal end region of a jaw of the suture passer. The threading aperture may be configured and/or adapted to allow and/or enhance sliding over the first length of suture. For example, the opening of the threading aperture may be oriented to allow the suture passer to be readily slid over the length of suture as it is moved towards the target tissue without snagging, tearing, or putting undue force on the length of suture, which may otherwise damage the suture and/or the tissue into which the first length of suture has been passed. For example, the opening or channel through the threading aperture may face distally when the suture passer is moved towards the target tissue. The threading aperture may also be coated or formed of a low-friction material or layer to enhance sliding of the length of suture through the aperture. The aperture of the threading aperture may be completely enclosed (e.g., as in an eyelet) or partially open (as in a hook). If the threading aperture is partially open, the threading aperture may be oriented so that any lateral opening e.g., the gap between the shank and the tip of the hook) is oriented so that the length of suture does not inadvertently fall out of the threading aperture during use.
In use, the first length of the suture (leg) that is threaded into the threading aperture may be held taught when placing the suture passer. For example, when sliding the threading aperture of the suture passer along the first limb of the first length of suture, the first length of the suture may be held taut while sliding.
As mentioned, these methods and devices may be particularly well suited for arthroscopically suturing a meniscus. When passing the first length of suture, a suture passer may be used to arthroscopically pass a first length of suture between the inferior and suture surface of the meniscus, on one side of a tear (radial or lateral) in the meniscus. This may be performed as previously described (see, e.g., U.S. patent application Ser. No. 13/462,773, filed May 2, 2012, published as US-2012-0283754) by first positioning a bending first jaw on the superior side, then axially sliding/extending a second jaw under the inferior surface of the meniscus so that the first and second jaws form an distal-facing opening around the torn meniscus; a tissue penetrator may then pass the distal end of a suture between the inferior and superior sides of the meniscus. After withdrawing the suture passer, the distal end of the first length of suture (the distal leg) extends out of the knee region, and possibly out of the patient. The proximal end of the suture may remain in the suture passer. The suture passer can then be removed from the meniscus (e.g., by reversing the steps used to position it) and reloaded, or it can remain loaded with the rest of the suture proximal to the distal end. The suture passer may be completely removed from the knee. The distal end of the first length of suture (the distal leg) can then be threaded through the treading aperture at the distal end of the device, and the first length of suture can be held taut from outside of the knee while sliding the suture passer, which has also been loaded or prepared to pass a second length of the suture, back into the meniscus on another side of the tear. The first and second jaws can again be positioned on either side of the meniscus and the tissue penetrator extended between them to pass the suture and complete the loop around and through the meniscus so that both ends of the suture are on the same side of the meniscus. A pre-tied knot can then be slid down the suture and the loop of suture closed (knotted). Thus, in this method the second length of suture may be passed through the meniscus by first using the first length of suture to guide the suture passer to the meniscus, so that when knotting the loop of suture, non-target tissue does not get held up by the knot, preventing tissue bridging.
Another example of the method of preventing the entrapment of non-target tissue when using a suture passer to pass multiple lengths of suture through a meniscus of a patient knee comprises: arthroscopically passing a first length of a suture through the meniscus between an inferior surface of the meniscus and a superior surface of the meniscus using a suture passer so that a first limb of the first length of suture extends from the meniscus and out of the patient's body; connecting the first limb of the first length of suture to a threading aperture at the distal end region of the suture passer; holding the first limb of the first length of suture taut; sliding the threading aperture of the suture passer along the first limb of the first length of suture toward the meniscus to position the suture passer near the meniscus; passing a second length of the suture through the meniscus between the inferior surface of the meniscus and the superior surface of the meniscus; withdrawing the suture passer from the meniscus; and sliding a pre-tied knot to knot the first length of suture and the second length of suture through the meniscus.
Suture passer devices are also described herein. In general, suture passer devices configured to prevent entrapment of non-target tissue when forming a loop of suture through or around target tissue include a threading aperture at a distal end region of the device to allow the suture passer to pass a second length of suture by sliding along a first length of suture passed through a target tissue from outside of the patient to the target tissue. In some variations these suture passers are the meniscus suture passers previously described, but including a threading aperture. For example, described herein are suture passer devices configured to prevent the entrapment of non-target tissue when inserting the device into the tissue multiple times to form a loop of suture around a target tissue. These devices may include: a first jaw member extending distally from an elongate body; a second jaw member extending distally from the elongate body, wherein the first jaw member and the second jaw member are configured to form a distal-facing mouth; a threading aperture at the distal end region of the first jaw member and configured to slide along a first length of suture to guide the suture passer to the target tissue; and a tissue penetrator extendable between the distal-facing mouth formed by the first jaw member and the second jaw member to pass a second length of suture between the first jaw member and the second jaw member.
As mentioned above, any appropriate threading aperture may be used, including an eyelet, a hook, a channel, or the like. The first jaw member may be pivotally coupled to the distal end region of the elongate body, and configured to pivot relative to the elongate body. The second jaw member may be slideably extendable distally from the elongate body. In some variations, the second jaw member may be slideably extendable distally from the elongate body to one or more set stop positions. The set stop positions may comprise set positions from which the tissue penetrator may extend across the distal-facing mouth to pass a length of suture between the first jaw member and the second jaw member.
For example, also described herein are suture passer devices configured to prevent the entrapment of non-target tissue when inserting the device into the tissue multiple times to form a loop of suture around a target tissue, the device comprising: a first jaw pivotally coupled to a distal end region of an elongate body, wherein the first jaw is configured to pivot relative to the elongate body; a threading aperture at a distal end region of the first jaw and configured to slide along a first length of suture to guide the suture passer to the target tissue; a second jaw slideably extendable distally from the elongate body, wherein the first jaw and the second jaw are configured to form a distal-facing mouth; and a tissue penetrator configured to extend across the distal-facing mouth to pass a second length of suture between the first and second jaw members.
Described herein are devices and methods for preventing entrapment of non-target tissue (e.g., tissue bridging) when using a suture passer to form a loop (or loops) of suture through and/or around a target tissue. In particular, described herein are devices and systems for passing a loop of suture through and/or around a torn meniscus of the knee without forming a tissue bridge.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
As discussed above, tissue bridging involves the inadvertent capture of non-target tissue by a loop of suture when passing the suture around and/or through a target tissue. This may prevent the target tissue from being secured (e.g., knotted) and is undesirable. Tissue bridging is particularly problematic when suturing arthroscopically, and particularly in difficult-to-access areas such as the meniscus of the knee.
Thus, the meniscus is very difficult to access to repair in the intact knee because of the tight positioning between the femur and the tibia. Recently, suture passers that may be reliably used within the spatial confines of the relatively intact knee have been described, as mentioned above, which may be used to repair the meniscus in the intact or semi-intact knee, and may form a loop of suture through the meniscus from the superior-to-inferior surfaces and back again. However, these suture passers, as well as other prior art suture passers, may still result in tissue bridging, especially when removing the suture passer from the knee between passing lengths of suture. This problem is illustrated in
For example, in
In
Once the first length of suture has been passed, as shown in
As shown in
Described herein are suture passer devices that may address this problem, and be used in methods for forming a loop of suture around/through the target tissue without substantially capturing non-target tissues. One variations of a method of suturing tissue to prevent tissue bridging is illustrated in
As just discussed, and as illustrated in
Suture-Passers Including a Threading Aperture
Any appropriate suture passer may be adapted to prevent tissue bridging as described herein. In particular, a suture passer may include a threading aperture at or near a distal end of the suture passer so that a leg of suture that has already been passed on and/or around a target tissue may be used to guide the suture passer device back near the tissue while avoiding the inadvertent capture of non-target tissue that may arise when the path through non-target tissue is not the same for different lengths of a suture forming a loop around/through the target tissue.
Suture passers having independently controllable jaw members (e.g., an axially retractable jaw member and/or a hinged or bendable jaw member), such as may be used for meniscus repair are one example, as illustrated in
As mentioned above, a threaded aperture may be any shay or configuration, particularly those that allow relatively easy sliding and/or loading onto the suture leg extending from the body after having been passed through the tissue. The threaded apertures therefore typically allow sliding of the suture within the opening without snagging, and may hold the suture securely, or be releasable from the length of suture.
For example, a threading aperture may include an eyelet or ring-shape as illustrated in
In
The threading aperture may be positioned at or near the distal end of the suture passer, including at or near the distal end or distal end region of one of the jaw members of a suture passer, as shown in
Although the description above is broken into parts and includes specific examples of variations of suture passers, any of the features or elements described in any particular example or section may be incorporated into any of the other embodiments. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1037864 | Carlson et al. | Sep 1912 | A |
2738790 | Todt, Sr. et al. | Mar 1956 | A |
2748773 | Vacheresse, Jr. | Jun 1956 | A |
3470875 | Johnson | Oct 1969 | A |
3580256 | Wilkinson et al. | May 1971 | A |
3842840 | Schweizer | Oct 1974 | A |
3901244 | Schweizer | Aug 1975 | A |
4021896 | Stierlein | May 1977 | A |
4109658 | Hughes | Aug 1978 | A |
4164225 | Johnson et al. | Aug 1979 | A |
4236470 | Stenson | Dec 1980 | A |
4345601 | Fukuda | Aug 1982 | A |
4440171 | Nomoto et al. | Apr 1984 | A |
4553543 | Amarasinghe | Nov 1985 | A |
4605002 | Rebuffat | Aug 1986 | A |
4706666 | Sheets | Nov 1987 | A |
4836205 | Barrett | Jun 1989 | A |
4957498 | Caspari et al. | Sep 1990 | A |
4981149 | Yoon et al. | Jan 1991 | A |
5002561 | Fisher | Mar 1991 | A |
5011491 | Boenko et al. | Apr 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5059201 | Asnis | Oct 1991 | A |
5112344 | Petros | May 1992 | A |
5129912 | Noda et al. | Jul 1992 | A |
5156608 | Troidl et al. | Oct 1992 | A |
5193473 | Asao et al. | Mar 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5222962 | Burkhart | Jun 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5250055 | Moore et al. | Oct 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5312422 | Trott | May 1994 | A |
5330488 | Goldrath | Jul 1994 | A |
5336229 | Noda | Aug 1994 | A |
5342389 | Haber et al. | Aug 1994 | A |
5364410 | Failla et al. | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5389103 | Melzer et al. | Feb 1995 | A |
5391174 | Weston | Feb 1995 | A |
5397325 | Della Badia et al. | Mar 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5405532 | Loew et al. | Apr 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5454834 | Boebel et al. | Oct 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5478344 | Stone et al. | Dec 1995 | A |
5478345 | Stone et al. | Dec 1995 | A |
5480406 | Nolan et al. | Jan 1996 | A |
5496335 | Thomason et al. | Mar 1996 | A |
5499991 | Garman et al. | Mar 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5540704 | Gordon et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5562686 | Sauer et al. | Oct 1996 | A |
5569301 | Granger et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571119 | Atala | Nov 1996 | A |
5575800 | Gordon | Nov 1996 | A |
5578044 | Gordon et al. | Nov 1996 | A |
5607435 | Sachdeva et al. | Mar 1997 | A |
5616131 | Sauer et al. | Apr 1997 | A |
5618290 | Toy et al. | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5632751 | Piraka | May 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5645552 | Sherts | Jul 1997 | A |
5653716 | Malo et al. | Aug 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5674229 | Tovey et al. | Oct 1997 | A |
5674230 | Tovey et al. | Oct 1997 | A |
5681331 | de la Torre et al. | Oct 1997 | A |
5690652 | Wurster et al. | Nov 1997 | A |
5713910 | Gordon et al. | Feb 1998 | A |
5728107 | Zlock et al. | Mar 1998 | A |
5728113 | Sherts | Mar 1998 | A |
5730747 | Ek et al. | Mar 1998 | A |
5741278 | Stevens | Apr 1998 | A |
5749879 | Middleman et al. | May 1998 | A |
5755728 | Maki | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5766183 | Sauer | Jun 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5800445 | Ratcliff et al. | Sep 1998 | A |
5814054 | Kortenbach et al. | Sep 1998 | A |
5824009 | Fukuda et al. | Oct 1998 | A |
5827300 | Fleega | Oct 1998 | A |
5843126 | Jameel | Dec 1998 | A |
5865836 | Miller | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5876412 | Piraka | Mar 1999 | A |
5895393 | Pagedas | Apr 1999 | A |
5895395 | Yeung | Apr 1999 | A |
5897563 | Yoon et al. | Apr 1999 | A |
5899911 | Carter | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908428 | Scirica et al. | Jun 1999 | A |
5935138 | McJames, II et al. | Aug 1999 | A |
5938668 | Scirica et al. | Aug 1999 | A |
5944739 | Zlock et al. | Aug 1999 | A |
5947982 | Duran | Sep 1999 | A |
5980538 | Fuchs et al. | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
6042601 | Smith | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6051006 | Shluzas et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
6056771 | Proto | May 2000 | A |
6071289 | Stefanchik et al. | Jun 2000 | A |
6077276 | Kontos | Jun 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6113610 | Poncet | Sep 2000 | A |
6126666 | Trapp et al. | Oct 2000 | A |
6129741 | Wurster et al. | Oct 2000 | A |
6139556 | Kontos | Oct 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6190396 | Whitin et al. | Feb 2001 | B1 |
6221085 | Djurovic | Apr 2001 | B1 |
6238414 | Griffiths | May 2001 | B1 |
6264694 | Weiler | Jul 2001 | B1 |
6277132 | Brhel | Aug 2001 | B1 |
6322570 | Matsutani et al. | Nov 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6355050 | Andreas et al. | Mar 2002 | B1 |
6368334 | Sauer | Apr 2002 | B1 |
6443963 | Baldwin et al. | Sep 2002 | B1 |
6511487 | Oren et al. | Jan 2003 | B1 |
6533795 | Tran et al. | Mar 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6551330 | Bain et al. | Apr 2003 | B1 |
6585744 | Griffith | Jul 2003 | B1 |
6626917 | Craig | Sep 2003 | B1 |
6626929 | Bannerman | Sep 2003 | B1 |
6638283 | Thal | Oct 2003 | B2 |
6638286 | Burbank et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6719765 | Bonutti | Apr 2004 | B2 |
6723107 | Skiba et al. | Apr 2004 | B1 |
6770084 | Bain et al. | Aug 2004 | B1 |
6896686 | Weber | May 2005 | B2 |
6921408 | Sauer | Jul 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6923819 | Meade et al. | Aug 2005 | B2 |
6936054 | Chu | Aug 2005 | B2 |
6984237 | Hatch et al. | Jan 2006 | B2 |
6991635 | Takamoto et al. | Jan 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
6997932 | Dreyfuss et al. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7029480 | Klein et al. | Apr 2006 | B2 |
7029481 | Burdulis, Jr. et al. | Apr 2006 | B1 |
7041111 | Chu | May 2006 | B2 |
7063710 | Takamoto et al. | Jun 2006 | B2 |
7087060 | Clark | Aug 2006 | B2 |
7112208 | Morris et al. | Sep 2006 | B2 |
7118583 | O'Quinn et al. | Oct 2006 | B2 |
7131978 | Sancoff et al. | Nov 2006 | B2 |
7166116 | Lizardi et al. | Jan 2007 | B2 |
7175636 | Yamamoto et al. | Feb 2007 | B2 |
7211093 | Sauer et al. | May 2007 | B2 |
7232448 | Battles et al. | Jun 2007 | B2 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7311715 | Sauer et al. | Dec 2007 | B2 |
7344545 | Takemoto et al. | Mar 2008 | B2 |
7390328 | Modesitt | Jun 2008 | B2 |
7481817 | Sauer | Jan 2009 | B2 |
7491212 | Sikora et al. | Feb 2009 | B2 |
7588583 | Hamilton et al. | Sep 2009 | B2 |
7594922 | Goble et al. | Sep 2009 | B1 |
7632284 | Martinek et al. | Dec 2009 | B2 |
7674276 | Stone et al. | Mar 2010 | B2 |
7722630 | Stone et al. | May 2010 | B1 |
7731727 | Sauer | Jun 2010 | B2 |
7736372 | Reydel et al. | Jun 2010 | B2 |
7749236 | Oberlaender et al. | Jul 2010 | B2 |
7842050 | Diduch et al. | Nov 2010 | B2 |
7879046 | Weinert et al. | Feb 2011 | B2 |
7883519 | Oren et al. | Feb 2011 | B2 |
7951147 | Privitera et al. | May 2011 | B2 |
7951159 | Stokes et al. | May 2011 | B2 |
7972344 | Murray et al. | Jul 2011 | B2 |
8394112 | Nason | Mar 2013 | B2 |
8449533 | Saliman et al. | May 2013 | B2 |
20030023250 | Watschke et al. | Jan 2003 | A1 |
20030065336 | Xiao | Apr 2003 | A1 |
20030065337 | Topper et al. | Apr 2003 | A1 |
20030078599 | O'Quinn et al. | Apr 2003 | A1 |
20030204194 | Bittar | Oct 2003 | A1 |
20030216755 | Shikhman et al. | Nov 2003 | A1 |
20030233106 | Dreyfuss | Dec 2003 | A1 |
20040249392 | Mikkaichi et al. | Dec 2004 | A1 |
20040249394 | Morris et al. | Dec 2004 | A1 |
20040267304 | Zannis et al. | Dec 2004 | A1 |
20050033319 | Gambale et al. | Feb 2005 | A1 |
20050033365 | Courage | Feb 2005 | A1 |
20050080434 | Chung et al. | Apr 2005 | A1 |
20050090837 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050090840 | Gerbino et al. | Apr 2005 | A1 |
20050154403 | Sauer et al. | Jul 2005 | A1 |
20050228406 | Bose | Oct 2005 | A1 |
20050288690 | Bourque et al. | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060047289 | Fogel | Mar 2006 | A1 |
20060084974 | Privitera et al. | Apr 2006 | A1 |
20060282098 | Shelton et al. | Dec 2006 | A1 |
20070032799 | Pantages et al. | Feb 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070250118 | Masini | Oct 2007 | A1 |
20070260260 | Hahn et al. | Nov 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20080086147 | Knapp | Apr 2008 | A1 |
20080091219 | Marshall et al. | Apr 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080140091 | DeDeyne et al. | Jun 2008 | A1 |
20080228204 | Hamilton et al. | Sep 2008 | A1 |
20080234725 | Griffiths et al. | Sep 2008 | A1 |
20080243147 | Hamilton et al. | Oct 2008 | A1 |
20080269783 | Griffith | Oct 2008 | A1 |
20080294256 | Hagan et al. | Nov 2008 | A1 |
20090012538 | Saliman et al. | Jan 2009 | A1 |
20090018554 | Thorne et al. | Jan 2009 | A1 |
20090062816 | Weber | Mar 2009 | A1 |
20090062819 | Burkhart et al. | Mar 2009 | A1 |
20090105751 | Zentgraf | Apr 2009 | A1 |
20090131956 | Dewey et al. | May 2009 | A1 |
20090209998 | Widmann | Aug 2009 | A1 |
20090216268 | Panter | Aug 2009 | A1 |
20090228041 | Domingo | Sep 2009 | A1 |
20090259233 | Bogart et al. | Oct 2009 | A1 |
20090306684 | Stone et al. | Dec 2009 | A1 |
20090306776 | Murray | Dec 2009 | A1 |
20100057109 | Clerc et al. | Mar 2010 | A1 |
20100106169 | Niese et al. | Apr 2010 | A1 |
20100114137 | Vidal et al. | May 2010 | A1 |
20100121352 | Murray et al. | May 2010 | A1 |
20100130990 | Saliman | May 2010 | A1 |
20100145364 | Keren et al. | Jun 2010 | A1 |
20100185232 | Hughett et al. | Jul 2010 | A1 |
20100198235 | Pierce et al. | Aug 2010 | A1 |
20100228271 | Marshall et al. | Sep 2010 | A1 |
20100241142 | Akyuz et al. | Sep 2010 | A1 |
20100249809 | Singhatat et al. | Sep 2010 | A1 |
20100280530 | Hashiba | Nov 2010 | A1 |
20100305581 | Hart | Dec 2010 | A1 |
20100305583 | Baird et al. | Dec 2010 | A1 |
20100331863 | Saliman | Dec 2010 | A2 |
20110028998 | Adams et al. | Feb 2011 | A1 |
20110060350 | Powers et al. | Mar 2011 | A1 |
20110087246 | Saliman et al. | Apr 2011 | A1 |
20110112555 | Overes et al. | May 2011 | A1 |
20110112556 | Saliman | May 2011 | A1 |
20110118760 | Gregoire et al. | May 2011 | A1 |
20110130773 | Saliman et al. | Jun 2011 | A1 |
20110152892 | Saliman et al. | Jun 2011 | A1 |
20110190815 | Saliman | Aug 2011 | A1 |
20110218557 | Saliman | Sep 2011 | A1 |
20110251626 | Wyman et al. | Oct 2011 | A1 |
20110270280 | Saliman | Nov 2011 | A1 |
20120179254 | Saliman | Jul 2012 | A1 |
20120239062 | Saliman et al. | Sep 2012 | A1 |
20120283750 | Saliman et al. | Nov 2012 | A1 |
20120283753 | Saliman et al. | Nov 2012 | A1 |
20120283754 | Murillo et al. | Nov 2012 | A1 |
20120303046 | Stone et al. | Nov 2012 | A1 |
20130072948 | States, III et al. | Mar 2013 | A1 |
20130238040 | Saliman et al. | Sep 2013 | A1 |
20130253647 | Saliman et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
101297765 | Nov 2008 | CN |
0647431 | Apr 1995 | EP |
3032847 | Mar 1991 | JP |
2009138029 | Jun 2009 | JP |
2009538190 | Nov 2009 | JP |
376089 | Apr 1973 | SU |
7288848 | Apr 1980 | SU |
1725847 | Apr 1992 | SU |
WO 9205828 | Apr 1992 | WO |
WO 9513021 | May 1995 | WO |
WO 9831288 | Jul 1998 | WO |
WO 9934744 | Jul 1999 | WO |
WO 9942036 | Aug 1999 | WO |
WO 9947050 | Sep 1999 | WO |
WO0156478 | Aug 2001 | WO |
WO 0207607 | Jan 2002 | WO |
WO 02096296 | Dec 2002 | WO |
WO 03077771 | Sep 2003 | WO |
WO 2006001040 | Jan 2006 | WO |
WO 2010141695 | Dec 2010 | WO |
Entry |
---|
Hendricksen et al.; U.S. Appl. No. 14/265,848 entitled “Suture passer with radiused upper jaw,” filed Apr. 30, 2014. |
Asik et al.; Strength of different meniscus suturing techniques; Knee Sur, Sports Traumotol, Arthroscopy; vol. 5; No. 2; pp. 80-83; (year of publication is sufficiently earlier than the effective U.S. filing date and any foreign priority date) 1997. |
Asik et al.; Failure strength of repair devices versus meniscus suturing techniques; Knee Surg, Sports Traumatol, Arthrosc; vol. 10; No. 1; pp. 25-29; Jan. 2002. |
Arthrex®, Arthrex, Inc., “The Next Generation in Shoulder Repair Technology,” Product Brochure from Arthrex, Inc; Naples, Florida, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2007, 22 pages. |
ArthroCare® Sportsmedicine, Sunnyvale, CA, SmartStitch® Suture Passing System with the PerfectPasserTM, Product brochure, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2006, 4 pages. |
BiPass(TM) Suture Punch, Biomet® Sports Medicine, Inc., accessed Feb. 29, 2008 at <http://www.arthrotek.com/prodpage.cfm?c=0A05&p=090706> 2 pages. |
Boenisch et al.; Pull-out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures; Amer. J. of Sports Med.; vol. 27; No. 5 pp. 626-631; Sep.-Oct. 1999. |
Cayenne Medical; CrossFix® II System (product webpage); 4 pgs.; downloaded Nov. 21, 2011 (www.cayennemedical.com/products/crossfix/). |
Covidien Surgical; Endo Stitch 10 mm Suturing Device; accessed Dec. 4, 2012 at <http://www.autosuture.com/autosuture/pagebuilder.aspx?topicID=7407&breadcrumbs=0:63659,30691:0,309:0> 2pages. |
Depuy Mitek, Inc; Raynham, MA, “Versalok Surgical Technique for Rotator Cuff Repair: The next generation in rotator cuff repair,” Product brochure, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2007, 18 pages. |
Linvatec Conmed Company, Largo, Florida, Product descriptions B17-19, B21; Tissue Repair Systems, Tissue Repair Accessories, and Master Arthroscopy Shoulder Instrument Set, (printed on or before Aug. 2007), 4 pages. |
Ma et al; “Biomechanical Evaluation of Arthroscopic Rotator Cuff Stitches,” J Bone Joint Surg Am, Jun. 2004; vol. 86(6):1211-1216. |
Medsfera; Suturing devices; accessed Dec. 4, 2012 at <http://www.medsfera.ru/shiv.html> 13 pages. |
Nho et al; “Biomechanical fixation in Arthroscopic Rotator Cuff Repair,” Arthroscopy: J of Arthroscop and Related Surg; vol. 23. No. 1, Jan. 2007: pp. 94-102. |
Rimmer et al.; Failure Strength of Different Meniscal Suturing Techniques; Arthroscopy: The Journal of Arthroscopic and Related Surgery; vol. 11; No. 2; pp. 146-150; Apr. 1995. |
Schneeberger, et al; “Mechanical Strength of Arthroscopic Rotator Cuff Repair Techniques: An in Vitro Study,” J Bone Joint Surg Am., Dec. 2002; 84:2152-2160. |
Smith&Nephew; Fast-Fix Meniscal Repair System (product webpage); 4 pgs.; downloaded Nov. 21, 2011 (http://endo.smith-nephew.com/fr/node.asp?NodeId=3562). |
Strobel; Manual of Arthroscopic Surgery (1st Edition); Springer Verlag, Hiedelberg © 2002; pp. 127-129; Dec. 15, 2001. |
USS SportsMedicine ArthoSewTM Single Use Automated Suturing Device with 8.6 mm ArthroPort Cannula Set, Instructions for Use, <http:www.uss-sportsmed.com/imageServer.aspx?contentID=5020&contenttype=application/pdf> accessed Apr. 25, 2007, 2 pages. |
USS SportsMedicine ArthroSewTM Suturing Device, <http://www.uss-sportsmed.com/SportsMedicine/pageBuilder.aspx?webPageID=0&topicID=7141&xsl=xsl/productPagePrint.xsl>, product description, accessed Apr. 25, 2007, 3 pages. |
Hirotsuka et al.; U.S. Appl. No. 13/758,994 entitled “Pre-Tied Surgical Knots for Use With Suture Passers,” filed Feb. 4, 2013. |
Saliman, J.; U.S. Appl. No. 13/759,006 entitled “Suture Passers,” filed Feb. 4, 2013. |
Hendricksen et al.; U.S. Appl. No. 13/844,252 entitled “Suture passers and methods of passing suture,” filed Mar. 15, 2013. |
Duerig, T. et al., “An overview of nitinol medical applications” Materials Science and Engineering A273-275, May 1999. |
Murillo et al.; U.S. Appl. No. 13/893,154 entitled “Suture passer devices and methods,” filed May 13, 2013. |
Nord et al.; Posterior lateral meniscal root tears and meniscal repair; Orthopedics Today; 5 pgs; Nov. 2010; Aug. 21, 2014; retrieved from the internet (http://www.healio.com/orthopedics/arthroscopy/news/print/orthopedics-today/%7B1b52a700-e986-4524-ac7d-6043c9799e15%7D/posterior-lateral-meniscal-root-tears-and-meniscal-repair). |
Saliman; U.S. Appl. No. 14/292,695 entitled “Suture methods for forming locking loops stitches,” filed May 30, 2014. |
Number | Date | Country | |
---|---|---|---|
20140222029 A1 | Aug 2014 | US |