The present invention relates to methods and devices for providing surgical access into a body cavity.
Abdominal laparoscopic surgery gained popularity in the late 1980s, when benefits of laparoscopic removal of the gallbladder over traditional (open) operation became evident. Reduced postoperative recovery time, markedly decreased post-operative pain and wound infection, and improved cosmetic outcome are well established benefits of laparoscopic surgery, derived mainly from the ability of laparoscopic surgeons to perform an operation utilizing smaller incisions of the body cavity wall.
Laparoscopic procedures generally involve insufflation of the abdominal cavity with CO2 gas to a pressure of around 15 mm Hg. The abdominal wall is pierced and a 5-10 mm in diameter straight tubular cannula or trocar sleeve is then inserted into the abdominal cavity. A laparoscopic telescope connected to an operating room monitor is used to visualize the operative field, and is placed through a the trocar sleeve. Laparoscopic instruments (graspers, dissectors, scissors, retractors, etc.) are placed through two or more additional trocar sleeves for the manipulations by the surgeon and surgical assistant(s).
Recently, so-called “mini-laparoscopy” has been introduced utilizing 2-3 mm diameter straight trocar sleeves and laparoscopic instruments. When successful, mini-laparoscopy allows further reduction of abdominal wall trauma and improved cosmesis. Instruments used for mini-laparoscopic procedures are, however, generally more expensive and fragile. Because of their performance limitations, due to their smaller diameter (weak suction-irrigation system, poor durability, decreased video quality), mini-laparoscopic instruments can generally be used only on selected patients with favorable anatomy (thin cavity wall, few adhesions, minimal inflammation, etc.). These patients represent a small percentage of patients requiring laparoscopic procedures. In addition, smaller 2-3 mm incisions may still cause undesirable cosmetic outcomes and wound complications (bleeding, infection, pain, keloid formation, etc.).
Since the benefits of smaller and fewer body cavity incisions are proven, it would be desirable to perform an operation utilizing only a single incision. An umbilicus is well-hidden and the thinnest and least vascularized area of the abdominal wall. The umbilicus is generally a preferred choice of abdominal cavity entry in laparoscopic procedures. An umbilical incision can be easily enlarged (in order to eviscerate a larger specimen) without significantly compromising cosmesis and without increasing the chances of wound complications. One drawback with entry through the umbilicus, however, is that the placement of two or more standard (straight) cannulas and laparoscopic instruments in the umbilicus, next to each other, creates a so-called “chopstick” effect, which describes interference between the surgeon's hands, between the surgeon's hands and the instruments, and between the instruments. This interference greatly reduces the surgeon's ability to perform a described procedure.
Thus, there is a need for instruments and trocar systems which allow laparoscopic procedures to be performed entirely through the umbilicus or a surgical port located elsewhere while at the same time reducing or eliminating the “chopstick effect.”
The present invention generally provides methods and devices for providing surgical access into a body cavity. In one embodiment, a surgical access device is provided that includes a housing having a working channel extending therethrough, and a base coupled to the housing and having first and second sealing elements. The base is configured to rotate relative to the housing, and the first and second sealing elements are each configured to receive an instrument inserted therethrough and into the working channel. Each of the first and second sealing elements are movable independent of another of the first and second sealing elements in a predetermined orbital path.
The first and second sealing elements and the predetermined orbital paths in which they are movable can have any number of variations. For example, each of the first and second sealing elements can be laterally movable in a predetermined orbital path. For another example, the first sealing element with a surgical instrument held in a substantially fixed position therein can be configured to move in a predetermined orbital path in response to movement of the second sealing element in a predetermined orbital path. For yet another example, the predetermined orbital paths of the first and second sealing elements can each have a central axis that is offset from a central axis of the base. For still another example, each of the first and second sealing elements can be disposed within a support that is rotatably disposed within the base, each sealing element being eccentric relative to its respective support. In some embodiments, each of the first and second sealing elements can each be configured to provide a fluid seal with no instrument inserted therethrough.
The device can vary in any other number of ways. For example, the base can include first and second cut-outs formed therein, and perimeters of the first and second cut-outs can respectively define the predetermined orbital paths of the first and second sealing elements. In some embodiments, the device can include a side access port formed in a proximal retractor base configured to be coupled to the housing and configured to receive an instrument inserted therethrough. The side access port can extend in a plane that is offset from a plane containing the base. For yet another example, the device can include a retractor fixedly or rotatably coupled to the housing. The retractor can have a retractor shield disposed therein.
In some embodiments the device can include at least one fixed sealing element fixedly disposed within the base and configured to remain in a fixed position relative to the base. The first and second sealing elements and the at least one fixed sealing element can be positioned radially around a central axis of the base. The at least one fixed sealing element can be disposed in a plane offset from and parallel to a plane containing the first and second sealing elements. The device can include first and second fixed sealing elements, the first fixed sealing element being positioned below a plane containing the first and second sealing elements and the second fixed sealing element being positioned above the plane containing the first and second sealing elements.
In yet another embodiment, a surgical access device is provided that includes a housing defining a working channel. The housing has a base, a support rotatably disposed in the base, and a sealing element disposed in the support at a location offset from a central rotational axis of the support. The sealing element is configured to receive a surgical instrument inserted therethrough and into the working channel. In some embodiments, the housing can have a second support rotatably disposed in the base and a second sealing element disposed at a location offset from a central rotational axis of the second support. The second sealing element can be configured to receive a surgical instrument inserted therethrough and into the working channel. The central rotational axis of the second support can be offset from the central rotational axis of the first support. The sealing element with a surgical instrument held in a substantially fixed position therein can be configured to move in a predetermined orbital path in response to movement of the second sealing element in a predetermined orbital path. The device can have any number of variations. For example, the central rotational axis of the support is offset from a central axis of the base. For another example, the base has at least one fixed sealing element that is configured to remain in a fixed position relative to the base and to move with the base relative to the housing.
In yet another embodiment, a surgical access device is provided that includes a housing having a base rotatably coupled thereto. The base has a plurality of sealing elements including at least one movable sealing element configured to form a seal around an instrument inserted therethrough and being rotatable relative to the base independent of the other sealing elements. Rotation of the at least one movable sealing element relative to the base is effective to change a distance of the at least one movable sealing element from a center-point of the base. In some embodiments, the base can have first and second movable sealing elements. The device can have any number of variations. For example, the base can be circular-shaped and configured to rotate around the center-point of the base. For another example, the at least one movable sealing element can be rotatable in a plane of the base. In some embodiments, the device can include a flexible retractor coupled to the housing. A side access port can be formed in a proximal retractor base of the retractor and configured to receive a retractor inserted therethrough. The base can be configured to rotate relative to the side access port. For another example, the housing can define a working channel extending therethrough between a proximal end of the housing and a distal end of the housing. The base can be located at a proximal end of the housing such that instruments inserted through the sealing elements extend through the working channel. The at least one movable sealing elements can be disposed within a support that is rotatably disposed within a predefined shape formed in the base, the at least one movable sealing element being eccentric relative to its support. The center-point of the base can be spaced apart from the predefined shapes.
In another aspect, a method of providing access through tissue to a body cavity is provided. The method includes positioning a surgical access device within an opening formed through tissue such that the surgical access device forms a working channel extending through the tissue and into a body cavity, inserting a first surgical instrument through a first sealing element in the surgical access device and through the working channel of the surgical access device to position a distal end of the first surgical instrument within the body cavity, and moving the first surgical instrument to cause the first sealing element to move along an orbital path from a first position, in which the first sealing element is located a first distance from a center-point of the surgical access device, to a second position, in which the first sealing element is located a second distance from the center-point of the surgical access device that is different from the first distance. The method can have any number of variations. For example, moving the first surgical instrument can cause rotation of a base of the surgical access device that is coupled to the housing. The rotation of the base can cause a second sealing element in the surgical access device having a second surgical instrument inserted therethrough to move along an orbital path from a third position, in which the second sealing element is located a third distance from the center-point of the surgical access device, to a fourth position, in which the second sealing element is located a fourth distance from the center-point of the surgical access device that is different from the third distance. For another example, the working channel can extend through a housing of the surgical access device, and moving the first surgical instrument can cause a base of the surgical access device that is coupled to the housing to rotate relative to the housing.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Various exemplary methods and devices are provided for providing surgical access into a body cavity. In general, the methods and devices allow multiple surgical instruments to be inserted through independent access ports in a single surgical access device and into a body cavity. The instruments can be collectively rotatable about a central axis of the device, and they can be independently movable with respect to one another, thus allowing for ease of manipulation within a patient's body. In one embodiment, a surgical access device includes a housing having one or more movable access ports or movable sealing ports for receiving surgical instruments. Each movable sealing port can include one or more sealing elements therein for sealing the port and/or forming a seal around a surgical instrument disposed therethrough. The movable sealing ports can each be rotatable relative to the housing and the sealing elements can move around a predetermined orbital path, thereby allowing instruments inserted therethrough and into the body cavity to be optimally positioned. This can help avoid the “chopstick effect” and provide increased working space for instruments within the body cavity. The movable sealing ports can also be configured such that movement of a first surgical instrument inserted through a first movable sealing port can cause movement of a second movable sealing port to allow a second surgical instrument inserted through the second movable sealing port to remain in a fixed position, which can help optimally position the instruments with respect to each other.
The various surgical access devices can also include a wound protector, cannula, ring retractor, or other member for forming a pathway through tissue (hereinafter generally referred to as a retractor). The retractor can extend from the housing and it can be configured to be positioned within an opening in a patient's body, such as the umbilicus. The sealing ports can each define working channels extending through the housing and aligned with the retractor. Any and all of the surgical access devices described herein can also include various other features, such as one or more ventilation ports to allow evacuation of smoke during procedures that utilize cautery, and/or one or more insufflation ports through which the surgeon can insufflate the abdomen to cause pneumoperitenium, as described by way of non-limiting example in U.S. Patent Application No. 2006/0247673 entitled “Multi-port Laparoscopic Access Device” filed Nov. 2, 2006, which is hereby incorporated by reference in its entirety. The insufflation port can be located anywhere on the device, can have any size, and can accept a leur lock or a needle, as will be appreciated by those skilled in the art.
As discussed further below, any and all embodiments of a surgical access device can also include one or more safety shields positioned through, in, and around any of the components and/or tissue to protect the components against puncture or tear by surgical instruments being inserted through the device. In addition, any and all embodiments of a surgical access device can include engagement and release mechanisms that allow certain components of the surgical access device to be removable as needed.
In use, and as also further discussed below, the surgical access devices disclosed herein can be used to provide access to a patient's body cavity. The retractor can be positionable within an opening in a patient's body such that a distal portion of the retractor extends into a patient's body cavity and a proximal portion configured to couple to a housing is positioned adjacent to the patient's skin on an exterior of the patient's body. A lumen in the retractor can form a pathway through the opening in a patient's body so that surgical instruments can be inserted from outside the body to an interior body cavity. The elasticity of the skin of the patient can assist in the retention of the retractor in the body opening or incision made in the body. The retractor can be placed in any opening within a patient's body, whether a natural orifice or an opening made by an incision. In one embodiment, the retractor can be substantially flexible so that it can easily be maneuvered into and within tissue as needed. In other embodiments, the retractor can be substantially rigid or substantially semi-rigid. The retractor can be formed of any suitable material known in the art, e.g., silicone, urethane, thermoplastic elastomer, and rubber.
Typically, during surgical procedures in a body cavity, such as the abdomen, insufflation is provided through the surgical access device to expand the body cavity to facilitate the surgical procedure. Thus, in order to maintain insufflation within the body cavity, most surgical access devices include at least one seal disposed therein to prevent air and/or gas from escaping when surgical instruments are inserted therethrough. Various sealing elements are known in the art, but typically the surgical access device can include at least one instrument seal that forms a seal around an instrument disposed therethrough, but otherwise does not form a seal when no instrument is disposed therethrough; at least one channel seal or zero-closure seal that seals the working channel created by the sealing port when no instrument is disposed therethrough; or a combination instrument seal and channel seal that is effective to both form a seal around an instrument disposed therethrough and to form a seal in the working channel when no instrument is disposed therethrough. A person skilled in the art will appreciate that various seals known in the art can be used including, e.g., duckbill seals, cone seals, flapper valves, gel seals, diaphragm seals, lip seals, iris seals, etc. A person skilled in the art will also appreciate that any combination of seals can be included in any of the embodiments described herein, whether or not the seal combinations are specifically discussed in the corresponding description of a particular embodiment.
In an exemplary embodiment, shown in
The device 10 can also include an insufflation port 28 supported by the base 26, although a person skilled in the art will appreciate that the insufflation port 28 can be located in the housing 16 or in other locations. A person skilled in the art will also appreciate that the insufflation port 28 can have a variety of configurations. Generally, the insufflation port 28 can be configured to pass an insufflation fluid through an insufflation orifice 28a of the insufflation port 28 into and/or out of a body cavity to which the device 10 provides access.
A proximal portion 30 of the surgical access device 10 can, as shown, include the seal base 26, the housing 16 in the form of a lock ring configured to releasably attach the base 26 to the retractor 18, and a spring assembly 32 configured to be disposed between the seal base 26 and the lock ring 30 to form a seat and seal between the base 26 and a distal portion of the device 10, e.g., the retractor 18. The retractor 18, the seal base 26, the housing 30, and the spring assembly 32 can each have various sizes, shapes, and configurations, as discussed further below.
As noted above, the retractor 18 can extend from the housing 16, and it can be configured to be positioned in an opening formed in tissue. The retractor 18 can, as shown in this exemplary embodiment, be a substantially flexible member having a proximal flange 46 and a distal flange 40 with an inner elongate portion 42 extending therebetween. The inner elongate portion 42 can have a diameter less than a diameter of the proximal and distal flanges 46, 40, which can have the same diameter or different diameters from one another. The proximal flange 46 can be configured to be seated within a proximal retractor base 38 in a proximal portion of the retractor 18 and optionally attached thereto using an adhesive, sealant, complementary threads, or any other attachment mechanism, as will be appreciated by a person skilled in the art. A proximal o-ring 48 can be optionally positioned within the proximal flange 46 to help provide structural support to the retractor 18 within the proximal retractor base 38. A distal o-ring 44 can optionally be positioned within the distal flange 40 to provide structural support to the retractor 18 within a patient's body. The proximal and distal o-rings 48, 44 can be substantially flexible or substantially rigid as needed, same or different from one another, for use in a particular application.
The housing 16 can, as illustrated, be a substantially rigid cylindrical or circular member and can have a proximal circumferential sidewall with a diameter less than a diameter of a distal circumferential sidewall of the housing 16. A middle connecting circumferential sidewall 50 can extend between the proximal and distal sidewalls at an angle radially outward from the proximal and distal sidewalls. The middle sidewall 50 can have a size and shape corresponding to a complementary lip 52 formed on and extending radially outward from the seal base 26 such that the middle sidewall 50 can be configured to engage the lip 52 and movably couple the seal base 26 to the housing 16 and the retractor 18 when the housing 16 is attached to the retractor 18.
While any engagement and release mechanism known in the art can be used to releasably mate the housing 16 and the retractor 18 together, as illustrated in the embodiment shown in
With the housing 16 locked to the proximal retractor base 38, the seal base 26 can be rotated in the first direction and in a second opposite direction, e.g., a counter clockwise direction, to rotate the seal base 26 relative to the housing 16 as well as to the retractor 18. While the base 26 can be configured to be rotatable relative to the housing 16 and the retractor 18 in only one of the first and second directions, the base 26 as illustrated is rotatable in both the first and second directions, which can help more effectively position surgical instruments inserted through the seal base 26 with respect to each other.
As indicated above, the spring assembly 32 can be positioned between the seal base 26 and the retractor 18. More particularly, the spring assembly 32 can be coupled between a distal surface of the base's lip 52 and an interior ledge 54 of the proximal retractor base 38. The interior ledge 54 can continuously run circumferentially around the proximal retractor base 38 as shown, or the interior ledge 54 can run around one or more discrete portions of the proximal retractor base 38.
Although the spring assembly 32 can have a variety of sizes, shapes, and configurations as mentioned above, the spring assembly 32 can, as shown, include distal and proximal spring retaining rings 32a, 32c with a seal spring 32b positioned therebetween. To help provide resiliency to the spring assembly 32, the seal spring 32b can be a substantially c-shaped ring having a cut-out 62 formed through one section of its circumference and can have a wavy configuration with alternating proximally extending portions 56a and distally extending portions 56b. The distal and proximal spring retaining rings 32a, 32c can each be a substantially circular ring and can each have a planar configuration but can be configured to engage both the proximally extending portions 56a and the distally extending portions 56b of the seal spring 32b. For non-limiting example, the distal and proximal spring retaining rings 32a, 32c can include respective hemispherical dimples 58, 60. The distal spring retaining ring's dimples 58 can be proximally facing and configured to engage and be positioned under the proximally extending portions 56a of the seal spring 32b, and the proximal spring retaining ring's dimples 60 can be distally facing and configured to engage and be positioned under the distally extending portions 56b of the seal spring 32b. In the illustrated embodiment, the seal spring 32b includes two proximally extending portions 56a and two distally extending portions 56b with the distal and proximal spring retaining rings 32a, 32c each including two dimples 58, 60 corresponding to their respective wavy portions of the seal spring 32b, but a person skilled in the art will appreciate that the seal spring 32b can have any number of proximally and distally extending portions with the distal and proximal spring retaining rings 32a, 32c having any number of corresponding dimples 58, 60 or other stabilizing mechanism. A person skilled in the art will also appreciate that the dimples 58, 60 can be same or different from any of the other simples 58, 60 and that they can each have any size and shape, e.g., hemispherical, a spherical segment, conical, box-shaped, etc. The generally circular shapes of the seal assembly's components can generally conform the shape of the seal assembly 32 to the curved shapes of the seal base 26 and the retractor 18 to which the seal assembly 32 can be mated. While the seal assembly 32 can be configured to prevent vertical movement, e.g., proximal and/or distal movement along the central axis of the working channel, of the base 26 with respect to the retractor 18, the dimples 58, 60 can allow the seal assembly 32 to provide for vertical movement of the base 26 relative to the retractor 18, which can help provide for smoother rotation of the base 26 with respect to the housing 16. The distal and proximal spring retaining rings 32a, 32c can be configured to rotate relative to one another, as shown in this embodiment, which can also help provide for smooth rotation of the base 26 relative to the housing 16. The distal and proximal spring retaining rings 32a, 32c and the seal spring 32b can each be configured to rotate relative to the other elements of the seal assembly 32, as illustrated.
The seal assembly's locking mechanism can have a variety of configurations, and in this embodiment includes at least one tab 66. Although three radially arranged tabs 66 are spaced equidistantly apart around an inner circumference of the illustrated seal assembly 64, a person skilled in the art will appreciate that the seal assembly 64 can include any number of tabs 66 and that the tabs 64 can be arranged in any way. The tabs 66 include c-shaped clamps integrally formed with the proximal spring retaining ring 64c, although the tabs 66 can have any size, shape, and configuration and can be integrally formed with either or both of the spring retaining rings 64a, 64c or can be an independent element configured to couple to the spring retaining rings 64a, 64c. The tabs 66 extend from an inner circumference of the proximal spring retaining ring 64c, through an inner lumen 68 of the seal assembly 64, and to the distal spring retaining ring 64a. Positioning the locking mechanism substantially within the seal assembly's inner lumen 68 can help prevent the locking mechanism from impeding with the seal assembly's fit and rotation within the housing and the retractor to which the seal assembly 64 is mated. Each of the tabs 66 can mate to the distal spring retaining ring 64a with a notch 66a formed in a distal portion of the tab 66 that is configured to seat the distal spring retaining ring 64a therein. Although the tabs 66 are shown as identical to one another, each tab 66 can be the same or different from any other of the tabs 66. A seal assembly can include one or more types of locking mechanisms.
While a surgical access device can include a seal assembly having multiple components, e.g., the seal assembly 32 of
The seal base 26 can have a variety of sizes, shapes, and configurations, as can the fixed and movable sealing ports 12a, 12b, 14a, 14b seated therein. As shown in
As shown in
The port openings 80a, 80b, 80c, 80d can also have any combination of sizes and shapes. As shown, the port openings 80a, 80b, 80c, 80d can each have a shape corresponding to a shape of the sealing port 12a, 12b, 14a, 14b, 28 seated therein, which in this illustrated embodiment is substantially circular for each of the openings 80a, 80b, 80c, 80d. The first port opening 80a for seating the first fixed sealing port 12a can have a first diameter D1 that is larger than a second diameter D2 of the second port opening 80b for seating the second fixed sealing port 12b, and the third and fourth port openings 80c, 80d for respectively seating the movable sealing ports 14a, 14b can each have a third diameter D3 that is larger than both the first and second diameters D1, D2. The insufflation port opening 80e can have any diameter D4. The third diameter D3 of the third and fourth port openings 80c, 80d can define a diameter of an orbital path of first and second movable sealing elements, as discussed further below. For non-limiting example, the base 26 can have a diameter D5 of about 60 mm, the first diameter D1 can be about 15 mm, the second diameter D2 can be about 9 mm, the third diameter D3 can be about 25 mm, and the insufflation diameter D4 can be about 2 mm.
In some embodiments, the proximal base surface of the seal base can be substantially flat with port openings being formed in a same plane with each other, either co-planar parallel to the proximal base surface or recessed in the seal base. In other embodiments, such as the one illustrated in
In this illustrated embodiment, the seal base 26 has one raised or proximally extending housing 96 in which the first port opening 80a is formed. The raised housing 96 can have any height, same or different from any other raised housings, configured to help provide clearance room for the first fixed sealing element 20 seated in the first port opening 80a positioned above the proximal base surface 78 to help prevent the first fixed sealing element from contacting the retractor 18, as discussed below, at least when the surgical access device 10 is in the default position. The raised housing 96 can be rigid, as shown, or it can be flexible to allow the raised housing 96 to move vertically, laterally, and angularly relative to the seal base 26.
The illustrated seal base 26 also has one recessed portion 98 in which the second port opening 80b is formed. The recessed portion 98 can be recessed any depth below the proximal base surface 78, and it can be configured to allow a relatively small sealing element to extend through the base 26 and have its distal end substantially co-planar with distal ends of any other sealing elements extending through the base 26. As illustrated in this embodiment, the recessed portion 98 of the base 26 can be in communication with the cut-out portion 82a formed in the circumferential wall 82 of the proximal base portion 26a, which can allow greater flexibility in angular insertion of a surgical instrument through the second port opening 80b within the recessed portion 98. A circumferential wall 102 of the housing 16 can include one or more cut-out portions (not shown) configured to correspond in radial location to the one or more cut-out portions 82a formed in the base 26 when the housing 16 and the base 26 are attached to the retractor 18 to further ease insertion of surgical instruments through the base 26.
The sealing ports 12a, 12b, 14a, 14b can be attached or mated to the seal base 26 using any attachment or mating mechanism known in the art, but in the illustrated embodiment the fixed sealing ports 12a, 12b each mate with the seal base 26 using engaging pins and holes, while the movable sealing ports 14a, 14b each mate with the seal base 26 through an interference fit between the proximal and distal base portions 26a, 26b. In general, the first and second fixed sealing ports 12a, 12b and the first and second movable sealing ports 14a, 14b can each include a port housing, which can be seated directly or indirectly in one of the port openings 80a, 80b, 80c, 80d in the seal base 26, and a sealing element, which can be positioned within an associated port housing. A sealing element can include at least one instrument seal and/or at least one channel seal, and can generally be configured to contact an instrument inserted through the sealing element's associated sealing port.
As shown in
The various port housings and sealing elements of the fixed and movable sealing ports 12a, 12b, 14a, 14b can have a variety of sizes, shapes, and configurations. A person skilled in the art will appreciate that while channel or zero-closure seals in the form of duckbill seals are shown for each of the distal seals 20, 22, 24a, 24b, any seal, e.g., duckbill seals, cone seals, flapper valves, gel seals, diaphragm seals, lip seals, iris seals, non-linear sealing elements such sealing elements with an S-shaped opening, etc., same or different from any other of the other distal seals 20, 22, 24a, 24b can be used and can be aligned in any way relative to the base 26. Generally, a zero-closure seal can be configured to form a seal in a working channel when no instrument is disposed therethrough to thus prevent the leakage of insufflation gases delivered through the surgical access device to the body cavity. A duckbill seal can generally have opposed flaps that extend at an angle toward one another in a distal direction and that come together at a distal end to form a seal face. The opposed flaps can be movable relative to one another to allow the seal face to move between a closed position, in which no instrument is disposed therethrough and the seal face seals the working channel of the surgical access device, and an open position in which an instrument is disposed therethrough. A duckbill seal can include various other features, as described in more detail in U.S. application Ser. No. 11/771,263, entitled “Duckbill Seal with Fluid Drainage Feature,” filed on Jun. 29, 2007, which is hereby incorporated by reference in its entirety. In addition, the seal face of the duckbill seal can be in any nonlinear shape or configuration known in the art, for example in an S-shaped configuration, as described in more detail in U.S. Pat. No. 5,330,437, entitled “Self Sealing Flexible Elastomeric Valve and Trocar Assembly for Incorporating Same,” filed Nov. 12, 1993, which is hereby incorporated by reference in its entirety.
As mentioned above and as illustrated in
The segments 106, 110 that form the multi-layer seal 104 and the protective member 108 can be held together using various techniques known in the art. As shown in
When fully assembled, the first port housing can be disposed at various locations within the surgical access device 10, e.g., in the first port opening 80a formed in the base 26. As shown in
The second fixed sealing port 12b can generally be configured and used as an instrument seal similar to the first fixed sealing port 12a. In this illustrated embodiment, as shown in
The first movable sealing port 14a can generally be configured and used as an instrument seal similar to the first and second fixed sealing ports 12a, 12b. However, in contrast to the fixed sealing ports 12a, 12b, the first movable sealing port 14a can be configured to be movably rather than fixedly attached to the seal base 26. The first movable sealing port 14a can include the first movable port housing having a circular shape with the first movable sealing element disposed therein. As illustrated in
A proximal movable port assembly including the protective member 138, the proximal cap 140, and the seal retainer 144 can be configured to mate with a distal movable port assembly including an eccentric ring 152 and an eccentric base 154, with the first movable distal seal 24a positioned between the seal retainer 144 and the eccentric base 154. The first movable distal seal 24a having a lip seal 164 positioned on a proximal end thereof can be disposed between opposed seal element openings 176a, 176b respectively formed in the seal retainer 144 and the eccentric base 154. The first movable distal seal 24a and the lip seal 164 coupled to the proximal end thereof, as well as the multi-layer protective member 138, can thereby be eccentric relative to the first movable port housing. The seal element openings 176a, 176b can be in communication with a seal opening 178 formed in the proximal cap 140 to allow a surgical instrument to be inserted through the seal opening 178 in the proximal cap 140 and into the first movable distal seal 24a. The seal element openings 176a, 176b and the seal opening 178 can define a central axis that is offset from a central axis or center-point 81 of the first movable port housing, which corresponds to a central axis or center-point 81 of the third port opening 80c in which the first movable port housing is seated, as illustrated in
The second movable sealing port 14b in the illustrated embodiment can be configured and used similar to the first movable sealing port 14a, although a person skilled in the art will appreciate that the first and second movable sealing ports 14a, 14b can be configured different from one another.
As shown in
As mentioned above, the first and second fixed sealing ports 12a, 12b, including their respective port housings and respective sealing elements, can be configured to be in a fixed position relative to the base 26 and to rotate with the base 26 relative to the housing 16 and the retractor 18. On the other hand, the first and second movable sealing ports 14a, 14b, including their respective port housings and respective movable sealing elements, can be movable within their respective port openings 80c, 80d relative to the base 26 and hence also relative to the fixed sealing ports 12a, 12b. The first and second movable sealing ports 14a, 14b can also be configured to be movable independent of one another and when individually moved can cause rotational movement of the base 26, and/or cause rotational and/or lateral movement of the other one of the movable sealing ports 14a, 14b when a surgical instrument is inserted through the other one of the movable sealing ports 14a, 14b and is held in a substantially fixed position therein.
The first movable sealing port 14a including the first movable port housing and the first movable sealing element can be configured to be rotatably movable relative to the base 26, the housing 16, and the retractor 18 by rotating within the third opening 80c in a first direction M1, e.g., clockwise, and/or in a second, opposite direction M1′, e.g., counterclockwise. Being mated to the seal base 26, the first movable port housing can also be configured to be rotatable around the center-point 94 of the base 26 in a first direction M2, e.g., clockwise, and/or in a second, opposite direction M2′, e.g., counterclockwise. In this way, the first movable sealing port 14a can be configured to have dual rotational motion by being separately or concurrently rotatable around the third port opening's center-point 81 and around the base's center-point 94. The first movable sealing port 14a can thus be configured to independently rotate around the port opening center-points 81 in the first and/or second directions M1, M1′, to independently rotate around the base center-point 94 in the first and/or second directions M2, M2′, and to simultaneously rotate with the base 26 and within third port opening 80c, thereby helping to provide for optimal positioning of a surgical instrument inserted through the first movable sealing port 14a. In the illustrated embodiment, the first movable port housing can rotate 360° in each of the first and second directions M1, M1′, and the base 26 can rotate 360° in each of the first and second directions M2, M2′. Although, a person skilled in the art will appreciate that the first movable port housing can be configured to rotate any number of degrees in either of the directions M1, M1′ and that the base 26 can be configured to rotate any number of degrees in either of the directions M2, M2′.
Because the first movable port housing can be held by interference fit within the base 26, the first movable port housing can be configured to be rotatably movable relative to the base 26, the housing 16, and the retractor 18, e.g., around the center-point 81 of the third port opening 80c and the first movable port housing, but not be laterally movable or orbital relative to the base 26, the housing 16, or the retractor 18. However, the first movable sealing element of the first movable sealing port 14a can be configured to be both rotationally movable and laterally movable relative to the base 26, the housing 16, and the retractor 18. In other words, the first movable sealing element can be configured to rotate within the third port opening 80c as the first movable port housing rotates and thereby laterally move or orbit in a plane parallel to a plane of the base's proximal surface 78. As mentioned above, the first movable sealing port 14a can be configured to not be substantially vertically movable, e.g., distally or proximally movable, within the third port opening 80c, but as will be appreciated by a person skilled in the art, the spring assembly 32, discussed further below, can allow a small amount of vertical movement of the first movable sealing port 14a.
The first movable sealing element can be configured to be laterally movable in a predetermined orbital path defined by the third port opening 80c in which the first movable sealing port 14a is disposed. The predetermined orbital path of the first movable sealing element can have any shape and size, but as shown in this embodiment in
The second movable sealing port 14b can be movable similar to the first movable sealing port 14a. Generally, the second movable port housing of the second movable sealing port 14b can be configured to rotate relative to the base 26, the housing 16, and the retractor 18 with the second movable sealing element of the second movable sealing port 14b also being configured to laterally move or orbit in a predetermined orbital path defined by a perimeter 92d of the fourth port opening 80d.
As mentioned above, the device 10 can be configured such that movement of the base 26 relative to the housing 16 and the retractor 18 and movement of either of the first and second movable sealing ports 14a, 14b, and hence also lateral movement of the respective first and second movable sealing elements, relative to the base 26, the housing 16, and/or the retractor 18 can cause movement of at least one other of the base 26 and the first and second movable sealing ports 14a, 14b relative to at least the retractor 18. Such responsive movement of at least one of the base 26, the first movable sealing port 14a, and the second movable sealing port 14b can allow for surgical instruments inserted through the device 10 into a body cavity to dynamically adjust their positions, thereby helping to reduce the “chopstick effect” of interference between the instruments in the body cavity and to maximize an amount of working space available to each of the instruments.
Although the base 26 can be configured to be movable relative to the housing 16 and the retractor 18 with or without any instruments inserted through any of the ports 12a, 12b, 14a, 14b, e.g., by being manually rotated by hand, the base 26 can also be configured to move relative to the housing 16 and the retractor 18 in response to motion of at least one instrument inserted through one of the ports 12a, 12b, 14a, 14b.
As shown in one embodiment of surgical access device movement in
The second movable sealing port 14b can be configured to rotationally and laterally move similar to the first movable sealing port 14a. In response to movement of the first movable sealing port 14a, the second movable sealing port 14b and/or the base 26 can be configured to rotationally move relative to the housing 16 and the retractor 18, and/or the other movable sealing port 14b with a surgical instrument is inserted therethrough and held in a fixed position therein can be configured to laterally move relative to the base 26. In this illustrated embodiment, the base 26 and the second movable sealing port 14b are in substantially the same position relative to the retractor 18 and the second movable sealing port 14b is in the same position relative to the base 26 when the first movable sealing port 14a is in both the first and second positions, shown in
As shown in another embodiment of surgical access device movement in
In another embodiment of surgical access device movement illustrated in
In use, one or more surgical instruments can be inserted into a body cavity through the surgical access device 10, which can help optimally position the surgical instruments relative to the body cavity through movement of the base 26 and/or movement of one or both of the movable sealing ports 14a, 14b. The device 10 can be positioned within tissue to provide access to a body cavity underlying the tissue in a variety of ways. In one embodiment, the device 10 can be positioned in tissue fully assembled in the default state shown in
As illustrated in one embodiment in
With the retractor 18 positioned in the tissue 180, the spring assembly 32 can be positioned within the proximal retractor base 38 with the distal spring retaining ring 32a engaging the interior ledge 54 of the proximal retractor base 38, as illustrated in
With the retractor 18 positioned in the tissue 180 and the spring assembly 32 positioned in the retractor 18, the seal base 26 and the housing 16 can be attached to the retractor 18 to fully assemble the device 10, as shown in
With the surgical access device 10 assembled and positioned in the tissue 180, one or more surgical instruments can be inserted therethrough and into the body cavity 182 where the instruments can help perform any type of surgical procedure.
As illustrated in
Because of the movable configuration of the movable sealing ports 14a, 14b that allows their respective sealing elements to move relative to the base 26 and the housing 16, instruments inserted through the movable sealing ports 14a, 14b can minimally move vertically and/or horizontally while used in a surgical area that can have a limited working space, particularly in minimally invasive surgical procedures. In the illustrated suture tying procedure, the first grasper handle portion 186a need not be vertically displaced by a significant amount relative to the second grasper handle portion 186b to provide for adequate horizontal displacement of the distal working ends 188a, 188b. The distal working ends 188a, 188b can thus, as illustrated in
In contrast,
At any point before, during, or after a surgical procedure, the housing 16, the base 26, and the spring assembly 32 can be released from the retractor 18, and the retractor 18 can be removed from the tissue 180. To disengage the housing 16 from the retractor 18, the housing 16 can be rotated relative to the housing 16 in the opposite direction from which the housing 16 was rotated to attach the housing 16 to the retractor 18, e.g., in a counter clockwise direction as shown by the dotted directional arrow in
With the housing 16 disengaged from the retractor 18, the base 26 and the spring assembly 32 can be proximally lifted and removed from engagement with the retractor 18, as illustrated in
Generally, the guide ring 201 can be configured to help align the housing 16 with the retractor 18. The guide ring 201 can, as shown in this illustrated embodiment, have a circular shape with a skirt 205 distally extending from the upper outer perimeter 201b of the guide ring 201. The skirt 205 can include a plurality of cut-outs 207 formed therein that are each configured to align with a corresponding one of the slots 36 of the retractor 18 when the base 226 is coupled thereto. The cut-outs 207 can thus each have a size, shape, and position around a perimeter of the guide ring 201 to complement one of the slots 36. One or more of the cut-outs 207, such as each of the cut-outs 207 in this illustrated embodiment, can extend into the guide ring's upper outer perimeter 201b to provide adequate clearance for the bayonet pins 34 on the housing 16 to be disposed in and removed from the slots 36. The seal base 226 can be positioned in a variety of radial configurations with respect to the retractor 18 before and/or after the engagement and release mechanism is engaged to attach the base 226 to the retractor 18, with the cut-outs 207 selectively aligned with any of the slots 36, such as in this illustrated embodiment having four radial configurations about 90° apart using the four equidistantly spaced radial slots 36, pins 34, and cut-outs 207. In this way, the initial position of the seal base 226 can be predictable with respect to the retractor 18 when the housing 16 attaches the seal base 226, which can help desirably position the ports extending through the base 226 with respect to the surgical site.
The device 200 can be assembled with or without a portion of the device 200, e.g., the retractor 18, positioned in tissue. To assemble the device 200, the singular seal member 72 can be seated on the interior ledge 54 of the retractor 18 such that the singular seal member 72 is at least partially disposed within the retractor 18. The seal base 226 can be positioned to engage the retractor 18 with the singular seal member 72 positioned therebetween. As illustrated in
In another exemplary embodiment of a surgical access device 300, illustrated in
In yet another exemplary embodiment of a surgical access device 400, illustrated in
The above exemplary embodiments of surgical access devices 10, 200, 300, 400 can each include a circumferential distal lip, e.g., the lip 52 of the device 10, configured to help provide a seal between the seal base and the retractor to which it is releasably attached. In another embodiment of a surgical access device 500, illustrated in
In some embodiments, a surgical access can have an integrally formed seal base and housing configured to have at least one sealing port and to be removably coupled to a retractor. A surgical access device having an integrally formed seal base and housing can be easier to assemble and disassemble than a device having a separate seal base and housing. As illustrated in one embodiment of a surgical access device 600, shown in
As surgical instruments are inserted through the surgical access device embodiments described herein, a risk can exist that a particularly sharp instrument may tear or puncture a portion of the retractor or nearby tissue. Accordingly, in any and all of the embodiments described herein, a safety shield can optionally be included to reduce the risk of tearing or puncture by a surgical instrument. In general the shield can be of a material that is relatively smooth and with a low coefficient of friction to allow ease of passage of instruments, but resistant to tearing and puncture. For example, the shield can be formed of silicone, urethane, thermoplastic elastomer, rubber, polyolefins, polyesters, nylons, fluoropolymers, and any other suitable materials known in the art. The shield can generally provide a liner for a retractor or tissue and can be detachable from a surgical access device so it can be used as needed in a particular procedure.
In one exemplary embodiment shown in
The shield 719 can have any size, shape, and configuration. In this illustrated embodiment, the shield 719 includes a circumferentially expandable, cylindrically-shaped member having an outer layer 719a and an inner layer 719b configured to be disposed within in the outer layer 719a. The outer and inner layers 719a, 719b can each respectively include a circumferential proximal rim 721a, 721b having a plurality of flanges 723a, 723b extending radially outward therefrom. The outer and inner layers 719a, 719b can include any number of flanges 723a, 723b, and the flanges 723a, 723b can be spaced equidistantly or any other distance apart from one another around their respective proximal rims 721a, 721b. The outer and inner flanges 723a, 723b can each be configured to at least partially overlap to form a continuous proximal flange of the shield 719 that is configured to engage the proximal flange 746. Alternatively, as shown, a portion of the outer and inner flanges 723a, 723b can be configured to engage one another to form a “broken” proximal flange of the shield 719. In other embodiments, none of the outer and inner flanges 723a, 723b can overlap one another when the inner layer 719b is disposed in the outer layer 719a.
The outer and inner layers 719a, 719b of the shield 719 can also include a plurality of respective distal elongate fingers 725a, 725b distally extending from the proximal rim 721a, 721b and configured to at least partially overlap and engage one another when the inner layer 719b is disposed in the outer layer 719a to form a continuous distal surface configured to engage at least a portion of an inner wall of an inner elongate portion 742 of the retractor 718. The distal fingers 725a, 725b can thus be configured to protect the inner elongate portion 742 of the retractor 718 from damage but be configured to be selectively movable when in contact with a surgical instrument such that the surgical instrument can optionally push between the distal fingers 725a, 725b to help provide the surgical instrument with free angular range of motion through the device 700. The distal fingers 725a, 725b can also be configured to be selectively movable when the retractor 718 bends when in position in tissue, if the retractor 718 is flexible.
A shield can include a plurality of layers as discussed above, or a shield can be a singular member, which can make the shield easier to dispose in a retractor.
In the surgical access device embodiments described above, each of the device's surgical access ports can be configured to move relative to the retractor through movement of the seal base and/or movement of a movable sealing port. However, in some surgical procedures it can be advantageous to have at least one surgical access port configured to stay in a fixed radial position relative to the retractor. For example, during a surgical procedure tissue can be retracted away from a surgical site to provide more direct access to the surgical site and to protect the retracted tissue from damage during the surgical procedure. Because the retracted tissue is traditionally retracted in a stable position throughout a surgical procedure, a retractor surgical instrument used to retract tissue also traditionally remains in a stable position throughout a surgical procedure, e.g., by continuous hand holding of the retractor, by mounting a retractor to a wall fixture, etc. Accordingly, in any and all of the embodiments described herein, a side access port can optionally be included to allow a surgical instrument to be inserted through the surgical access device but remain in a fixed radial position relative to the retractor of the surgical access device to, e.g., hold retracted tissue in a stable position even during movement of the seal base or other portion of the surgical access device.
In one exemplary embodiment shown in
The side access port 831 can be formed in the retractor 818 such that the side access port 831 is located at a fixed radial position relative to the retractor 818. In the illustrated embodiment, a body 837 of the side access port 831 angles proximally upwards and outwards from a sidewall of the proximal retractor base 838 such that the side sealing element 820 extending through the body 837 points toward the retractor's working channel 835 to allow the surgical instrument 833 inserted through the side access port 831 to easily access the working channel 835. To accommodate the side access port 831, a proximal retractor base 838 of the retractor 818 can have an extended depth to allow the side access port 831 to be formed in a sidewall thereof at a fixed position around a perimeter thereof and allow the side access port 831 to provide access to a working channel 835 extending through the retractor 818. As shown, the distal spring retaining ring 832a engaging the proximal retractor base 838 can also have an extended depth to accommodate the side access port 831. Being formed in a sidewall of the retractor 818, as illustrated in
The surgical instrument 833 can have a range of motion within the side access port 831 dependent on its angle of insertion through the seal, e.g., in this embodiment a multi-layer protective member 808 disposed on a proximal surface of a conical seal 804 of the side access port 831. For example, as illustrated in
The side access port 831 can also include a seal cap 839 attached to a proximal end thereof. The seal cap 839 can be configured similar to the lip seal 132 of
In some embodiments, a surgical access device can include a side access port that is at a fixed radial position relative to the device's retractor but that is otherwise movable relative to the retractor. As illustrated in one embodiment in
The movable side access port 931 can be configured to be movable relative to the retractor 918 in a variety of ways, such as by using a ball and socket joint as illustrated. The retractor 918 can include a socket 941 configured to seat a ball 943 of the movable side access port 931 that allows the ball 943 to slide or rotate therein. The device 900 can include a releasable locking mechanism configured to lock the ball 943 in a fixed position relative to the socket 941 and the retractor 918 and to be released to allow the ball 943 to move relative to the socket 941 and the retractor 918. The releasable locking mechanism can have a variety of configurations, e.g., engaging pins and holes, threads, a latch, a clamp, etc. In the illustrated embodiment, the releasable locking mechanism includes complementary threads 938a, 947a respectively formed on the proximal retractor base 938 and on a seal cap 947. The ball 943 can be adjusted to a desired position within the socket 941 with the seal cap 947 detached from the retractor 918 or partially threaded onto the retractor 918. When the ball 943 and hence the side access port 931 has been adjusted to a desired position, the seal cap 947 can be tightened onto the proximal retractor base 938, e.g., by rotating the seal cap 947 clockwise relative to the retractor 918, to hold the ball 943 in place until the seal cap 947 is loosened, e.g., by rotating the seal cap 947 counter clockwise relative to the retractor 918. The seal cap 947 can optionally include finger grips 951 and/or other gripping mechanism, e.g., a textured surface, finger loops, etc., to help in rotating the seal cap 947. A seal can be formed between the seal cap 947 and the retractor 918 in any way, e.g., with an o-ring 949 positioned between the seal cap 946 and the proximal retractor base 938.
Allowing movement of the side access port 931 relative to the retractor 918 while maintaining a fixed radial position relative to the retractor 918 can allow an instrument 933 inserted through the movable side access port 931 to have a greater range of available motion. A person skilled in the art will appreciate that while a grasper 933 configured to retract tissue is shown inserted through the side access port 931, any surgical instrument can be inserted through the side access port 931 to retract tissue or perform any other function in a surgical procedure. The surgical instrument 933 can have a range of motion within the side access port 931 dependent on its angle of insertion through a multi-layer protective member 908 disposed on a proximal surface of a conical seal 904 of the side access port 931 and on a rotated position of the ball 943 relative to the socket 941. For example, at a maximum angle of insertion, the instrument 933a can extend through the side access port 931 and engage an inner wall of an inner elongate portion 942 of the retractor 918 on a side opposed to the sidewall of the retractor 918 including the side access port 931. Similarly, at a minimum angle of insertion, the instrument 933b can extend through the side access port 931 and engage the inner wall of the inner elongate portion 942 on a same side as the sidewall of the retractor 918 including the side access port 931. Because a sealing element 920 of the side access port 931 can be configured to move with the ball 943 relative to the retractor 918, the sealing element 920 can maintain a fixed, predictable position such that the instrument 933 inserted through the ball 943 and the sealing element 920 can extend transversely through the ball 943 regardless of the ball's position relative to the retractor 918. If the inner elongate portion 942 is flexible as in this illustrated embodiment, the retractor 918 can be configured to deform or bend in response to pressure from the instrument 933, and/or any other instrument inserted therethrough. For non-limiting example, with the instrument 933 in a maximized insertion position, the retractor 918 can have a first height H1 in one portion of the retractor 918 and a second, larger height H2 in another portion of the retractor 918.
As will be appreciated by those skilled in the art, any and all of the embodiments disclosed herein can be interchangeable with one another as needed. For example, an exemplary surgical access device kit could include multiple housings and seal bases with one or more retractors. Each seal base and housing combination can have different movable sealing port configurations enabling various combinations of movable sealing port movement as needed in particular application. Various release mechanism known in the art can be used to releasably attach the various base members and housings to a retractor.
There are various features that can optionally be included with any and all of the surgical access device embodiments disclosed herein. For example, a component of the device, such as a seal base, housing, retractor, etc., can have one or more lights formed thereon or around a circumference thereof to enable better visualization when inserted within a patient. As will be appreciated, any wavelength of light can be used for various applications, whether visible or invisible. Any number of ports can also be included on and/or through the surgical access devices to enable the use of various surgical techniques and devices as needed in a particular procedure. For example, openings and ports can allow for the introduction of pressurized gases, vacuum systems, energy sources such as radiofrequency and ultrasound, irrigation, imaging, etc. As will be appreciated by those skilled in the art, any of these techniques and devices can be removably attachable to the surgical access device and can be exchanged and manipulated as needed.
The embodiments described herein can be used in any known and future surgical procedures and methods, as will be appreciated by those skilled in the art. For example, any of the embodiments described herein can be used in performing a sleeve gastrectomy and/or a gastroplasty, as described in U.S. application Ser. No. 12/242,765 entitled “Surgical Access Device” filed on Sep. 30, 2008; U.S. application Ser. No. 12/242,711 entitled “Surgical Access Device with Protective Element” filed on Sep. 30, 2008; U.S. application Ser. No. 12/242,721 entitled “Multiple Port Surgical Access Device” filed on Sep. 30, 2008; U.S. application Ser. No. 12/242,726 entitled “Variable Surgical Access Device” filed on Sep. 30, 2008; U.S. application Ser. No. 12/242,333 entitled “Methods and Devices for Performing Gastrectomies and Gastroplasties” filed on Sep. 30, 2008; U.S. application Ser. No. 12/242,353 entitled “Methods and Devices for Performing Gastrectomies and Gastroplasties” filed on Sep. 30, 2008; and U.S. application Ser. No. 12/242,381 entitled “Methods and Devices for Performing Gastroplasties Using a Multiple Port Access Device” filed on Sep. 30, 2008, all of which are hereby incorporated by reference in their entireties.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination, e.g., a seal base, a housing, a proximal retractor base, etc. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
It is preferred that device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam, and a liquid bath (e.g., cold soak).
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
The present application is a continuation of U.S. patent application Ser. No. 16/027,907 (now U.S. Pat. No. 10,470,751) entitled “Methods and Devices for Providing Access into a Body Cavity,” filed on Jul. 5, 2018, which is a divisional of U.S. patent application Ser. No. 15/145,954 (now U.S. Pat. No. 10,039,542) entitled “Methods and Devices for Providing Access into a Body Cavity,” filed on May 4, 2016, which is a continuation of U.S. patent application Ser. No. 14/571,457 (now U.S. Pat. No. 9,351,717) entitled “Methods and Devices for Providing Access into a Body Cavity,” filed Dec. 16, 2014, which is a continuation of U.S. patent application Ser. No. 12/399,625 (now U.S. Pat. No. 8,926,506) entitled “Methods and Devices for Providing Access into a Body Cavity,” filed Mar. 6, 2009, which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3402710 | Paleschuck | Sep 1968 | A |
3654965 | Gramain | Apr 1972 | A |
4112932 | Chiulli | Sep 1978 | A |
4306545 | Ivan et al. | Dec 1981 | A |
2129391 | Frederick | Sep 1983 | A |
4402683 | Kopman | Sep 1983 | A |
4417888 | Cosentino et al. | Nov 1983 | A |
5183471 | Wilk | Feb 1993 | A |
5197955 | Stephens et al. | Mar 1993 | A |
5207213 | Auhll et al. | May 1993 | A |
5209737 | Ritchart et al. | May 1993 | A |
5209741 | Spaeth | May 1993 | A |
5269772 | Wilk | Dec 1993 | A |
5308336 | Hart et al. | May 1994 | A |
5330437 | Durman | Jul 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5385553 | Hart et al. | Jan 1995 | A |
5385560 | Wulf | Jan 1995 | A |
5391154 | Young | Feb 1995 | A |
5443452 | Hart et al. | Aug 1995 | A |
5443484 | Kirsch et al. | Aug 1995 | A |
5480410 | Cuschieri et al. | Jan 1996 | A |
5531758 | Uschold et al. | Jul 1996 | A |
5545179 | Williamson, IV | Aug 1996 | A |
5569205 | Hart et al. | Oct 1996 | A |
5569254 | Carlson et al. | Oct 1996 | A |
5584850 | Hart et al. | Dec 1996 | A |
5634911 | Hermann et al. | Jun 1997 | A |
5634937 | Mollenauer et al. | Jun 1997 | A |
5643301 | Mollenauer | Jul 1997 | A |
5653705 | de la Torre et al. | Aug 1997 | A |
5672168 | de la Torre et al. | Sep 1997 | A |
5676657 | Yoon | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5782812 | Hart et al. | Jul 1998 | A |
5803919 | Hart et al. | Sep 1998 | A |
5814058 | Carlson et al. | Sep 1998 | A |
5827319 | Carlson et al. | Oct 1998 | A |
5843040 | Exline | Dec 1998 | A |
5865807 | Blake, III | Feb 1999 | A |
5891013 | Thompson | Apr 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5957913 | de la Torre et al. | Sep 1999 | A |
5990382 | Fox | Nov 1999 | A |
6024736 | de la Torre et al. | Feb 2000 | A |
RE36702 | Green et al. | May 2000 | E |
6077288 | Shimomura et al. | Jun 2000 | A |
6086603 | Termin et al. | Jul 2000 | A |
6120513 | Bailey et al. | Sep 2000 | A |
6123689 | To et al. | Sep 2000 | A |
6162196 | Hart et al. | Dec 2000 | A |
6217555 | Hart et al. | Apr 2001 | B1 |
6245052 | Orth et al. | Jun 2001 | B1 |
6258069 | Carpentier et al. | Jul 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6319246 | de la Torre et al. | Nov 2001 | B1 |
6348034 | Thompson | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6447489 | Peterson | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6458077 | Boebel et al. | Oct 2002 | B1 |
6488620 | Segermark et al. | Dec 2002 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6551282 | Exline et al. | Apr 2003 | B1 |
6589167 | Shimomura et al. | Jul 2003 | B1 |
6605063 | Bousquet | Aug 2003 | B2 |
6669674 | Macoviak et al. | Dec 2003 | B1 |
6706033 | Martinez et al. | Mar 2004 | B1 |
6706050 | Giannadakis | Mar 2004 | B1 |
6908430 | Caldwell et al. | Jun 2005 | B2 |
6939296 | Ewers et al. | Sep 2005 | B2 |
6945932 | Caldwell et al. | Sep 2005 | B1 |
6972026 | Caldwell et al. | Dec 2005 | B1 |
7014628 | Bousquet | Mar 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7163510 | Kahle et al. | Jan 2007 | B2 |
7214185 | Rosney et al. | May 2007 | B1 |
7338473 | Campbell et al. | Mar 2008 | B2 |
7344547 | Piskun | Mar 2008 | B2 |
8092430 | Richard et al. | Jan 2012 | B2 |
8187178 | Bonadio | May 2012 | B2 |
8328761 | Widenhouse et al. | Dec 2012 | B2 |
8425410 | Murray et al. | Apr 2013 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8821391 | Widenhouse et al. | Sep 2014 | B2 |
8926506 | Widenhouse et al. | Jan 2015 | B2 |
9351717 | Widenhouse et al. | May 2016 | B2 |
20020156432 | Racenet et al. | Oct 2002 | A1 |
20030028179 | Piskun | Feb 2003 | A1 |
20030139756 | Brustad | Jul 2003 | A1 |
20040015185 | Ewers et al. | Jan 2004 | A1 |
20040106942 | Taylor et al. | Jun 2004 | A1 |
20040138528 | Richter et al. | Jul 2004 | A1 |
20040215063 | Bonadio et al. | Oct 2004 | A1 |
20040230160 | Blanco | Nov 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040254426 | Wenchell | Dec 2004 | A1 |
20050020884 | Hart et al. | Jan 2005 | A1 |
20050033342 | Hart et al. | Feb 2005 | A1 |
20050085842 | Eversull et al. | Apr 2005 | A1 |
20050137609 | Guiraudon | Jun 2005 | A1 |
20050148823 | Vaugh et al. | Jul 2005 | A1 |
20050155611 | Vaugh et al. | Jul 2005 | A1 |
20050192483 | Bonadio et al. | Sep 2005 | A1 |
20050209608 | O'Heeron | Sep 2005 | A1 |
20050222582 | Wenchell | Oct 2005 | A1 |
20050267419 | Smith | Dec 2005 | A1 |
20050273132 | Shluzas et al. | Dec 2005 | A1 |
20050277946 | Greenhalgh | Dec 2005 | A1 |
20060020241 | Piskun et al. | Jan 2006 | A1 |
20060020281 | Smith | Jan 2006 | A1 |
20060071432 | Staudner | Apr 2006 | A1 |
20060212062 | Farascioni | Sep 2006 | A1 |
20060224129 | Beasley et al. | Oct 2006 | A1 |
20060224164 | Hart et al. | Oct 2006 | A1 |
20060229501 | Jensen et al. | Oct 2006 | A1 |
20060241651 | Wilk | Oct 2006 | A1 |
20060241671 | Greenhalgh | Oct 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060264706 | Piskun | Nov 2006 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070060939 | Lancial et al. | Mar 2007 | A1 |
20070085232 | Brustad et al. | Apr 2007 | A1 |
20070088202 | Albrecht et al. | Apr 2007 | A1 |
20070088277 | McGinley et al. | Apr 2007 | A1 |
20070118021 | Pokorney | May 2007 | A1 |
20070151566 | Kahle et al. | Jul 2007 | A1 |
20070185453 | Michael et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070255219 | Vaugh et al. | Nov 2007 | A1 |
20080027476 | Piskun | Jan 2008 | A1 |
20080051739 | McFarlane | Feb 2008 | A1 |
20080065021 | Jenkins et al. | Mar 2008 | A1 |
20080119821 | Agnihotri et al. | May 2008 | A1 |
20080161826 | Guiraudon | Jul 2008 | A1 |
20080255519 | Piskun et al. | Oct 2008 | A1 |
20090005799 | Franer et al. | Jan 2009 | A1 |
20090221966 | Richard | Sep 2009 | A1 |
20090227843 | Smith et al. | Sep 2009 | A1 |
20090287163 | Fischvogt et al. | Nov 2009 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100113886 | Piskun et al. | May 2010 | A1 |
20100228090 | Weisenburgh, II et al. | Sep 2010 | A1 |
20100228091 | Widenhouse et al. | Sep 2010 | A1 |
20100228092 | Ortiz et al. | Sep 2010 | A1 |
20100228094 | Ortiz et al. | Sep 2010 | A1 |
20100228096 | Weisenburgh, II et al. | Sep 2010 | A1 |
20100228198 | Widenhouse et al. | Sep 2010 | A1 |
20100274093 | Shelton, IV | Oct 2010 | A1 |
20110028793 | Martin et al. | Feb 2011 | A1 |
20110028794 | Widenhouse et al. | Feb 2011 | A1 |
20150099938 | Widenhouse et al. | Apr 2015 | A1 |
20160242758 | Widenhouse et al. | Aug 2016 | A1 |
20180317901 | Widenhouse et al. | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
0568383 | Nov 1993 | EP |
0646358 | Apr 1995 | EP |
0776231 | Jun 1997 | EP |
0950376 | Oct 1999 | EP |
1219251 | Jul 2002 | EP |
1219252 | Jul 2002 | EP |
1219253 | Jul 2002 | EP |
1350476 | Oct 2003 | EP |
1731105 | Dec 2006 | EP |
2119404 | Nov 2009 | EP |
2168512 | Mar 2010 | EP |
2710270 | Mar 1995 | FR |
2904210 | Feb 2008 | FR |
2006320750 | Nov 2006 | JP |
WO-96002297 | Feb 1996 | WO |
WO-0217800 | Mar 2002 | WO |
WO-05087112 | Sep 2005 | WO |
WO-05094432 | Oct 2005 | WO |
WO-07119232 | Oct 2007 | WO |
WO-08024502 | Feb 2008 | WO |
WO-08121294 | Oct 2008 | WO |
Entry |
---|
European Search Report issued in European Application No. 10250399.2 dated Apr. 28, 2010. |
European Search Report issued in European Application No. 10250401.6 dated May 21, 2010. |
Number | Date | Country | |
---|---|---|---|
20200060672 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15145954 | May 2016 | US |
Child | 16027907 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16027907 | Jul 2018 | US |
Child | 16663808 | US | |
Parent | 14571457 | Dec 2014 | US |
Child | 15145954 | US | |
Parent | 12399625 | Mar 2009 | US |
Child | 14571457 | US |