Methods and devices for providing mechanical ventilation with an open airway interface

Information

  • Patent Grant
  • 8677999
  • Patent Number
    8,677,999
  • Date Filed
    Friday, August 21, 2009
    14 years ago
  • Date Issued
    Tuesday, March 25, 2014
    10 years ago
Abstract
Methods, systems and devices are described for providing mechanical ventilation support of a patient using an open airway patient interface. The system includes gas delivery circuit and patient interface configurations to optimize performance and efficiency of the ventilation system. A ventilation system may include a ventilator for supplying ventilation gas. A patient interface may include distal end in communication with a patient airway, a proximal end in communication with ambient air, and an airflow channel between the distal end and the proximal end. A gas delivery circuit may be adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway. The ventilation gas may entrain air from ambient and from the patient airway.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application further incorporates by reference in their entireties: U.S. Non-Provisional patent application Ser. No. 10/771,803 (U.S. Printed Publication 2005/0034721), filed Feb. 4, 2004, U.S. Non-Provisional patent application Ser. No. 10/870,849 (U.S. Printed Publication 2005/0005936), filed Jun. 17, 2004, and U.S. Non-Provisional patent application Ser. No. 12/239,723 (U.S. Printed Publication 2009/0151724), filed Sep. 26, 2008.


FIELD OF THE INVENTION

The present invention relates to ventilation therapy for persons suffering from respiratory impairment and breathing disorders, such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, acute respiratory distress syndrome (ARDS), neuromuscular impairment, sleep apnea, influenza, various forms of mass casualty, and military use, and/or other breathing and airway impairments. More specifically, the present invention relates to providing mechanical respiratory support to a patient in an open airway ventilation system.


BACKGROUND OF THE INVENTION

There are two general types of mechanical ventilation control modes. A first type delivers gas to a patient based on a frequency selected by the clinician which is independent of patient activity. This type of ventilation, known as controlled mechanical ventilation, is used when the ventilator is needed to breathe for the patient such as when the patient is non-alert, sedated, unresponsive or paralyzed. A second type of ventilation, known as assisted mechanical ventilation, or assisted ventilation, or augmented ventilation, delivers gas to the patient in response to an inspiratory effort generated by the patient. This type of ventilation helps the patient breathe, such as when the patient has respiratory insufficiency such as COPD. There are also ventilators and modes of ventilation that combine the two modes of ventilation described above.


In the use of all ventilators a gas delivery circuit is required to deliver the gas from the ventilator to the patient. Also required is a ventilation patient interface which is in communication with the patient's airway. The gas delivery circuit connects to the patient interface so that the ventilator can deliver air into the patient's airway through the gas delivery circuit and through the patient interface. These interfaces can be non-invasive such as a mask over the nose and/or mouth or a nasal cannula, or can be invasive, such as an endotracheal tube, tracheostomy tube, or transtracheal catheter which is placed into the airway of the patient.


In a more specific case of respiratory support ventilation, the patient receives gas from the ventilator with a patient interface configuration known as an “open airway” system, meaning the patient's respiratory tract is open to atmosphere through their normal upper airway breathing routes (mouth and nose). Open airway ventilation (OAV) when used is typically used with spontaneously breathing patients who need respiratory support; however, OAV can also be used for ventilator dependent patients who cannot breathe. In the former case, the patient may be breathing “spontaneously” or naturally through their upper airway but their breathing is augmented by receiving additional gas from the ventilator through the “open” patient interface. The goal of this therapy is to help the patient's work of breathing with an OAV system, such that the patient is not encumbered with the various problems, limitations, obtrusiveness and side effects of closed airway positive pressure ventilation. This system is described in U.S. Pat. No. 7,487,778 (Freitag) and US Printed Publication 2005/0005936 (Wondka). The ventilation interface described in this prior art is typically a transtracheal ventilation catheter that is placed percutaneously through the patient's neck into the tracheal lumen, or a catheter placed into an existing airway tube, such as an uncuffed tracheostomy tube. Alternatively, the ventilation catheter is placed into a stent or stoma guide, such as a Montgomery T-Tube, or an endotracheal tube, or an airway prosthesis. In OAV, providing mechanical ventilation support to the lungs is not obviously possible, because air delivered from the ventilator has the potential of leaking out of the upper airway if the airway is open, thus rendering the system ineffective and limiting the additive volume that can be delivered to the lung. Therefore, special airflow delivery fluid dynamics are required to make the system efficacious and efficient, and special delivery systems and interface designs are required to accomplish these dynamics.


SUMMARY OF THE INVENTION

The present invention may be directed to methods and systems for providing ventilation mechanical support in an open airway ventilation system. In an embodiment of the present invention, a ventilation system may include a ventilator for supplying ventilation gas. A patient interface may include distal end in communication with a patient airway, a proximal end in communication with ambient air, and an airflow channel between the distal end and the proximal end. A gas delivery circuit may be adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway. The ventilation gas may entrain air from ambient and from the patient airway.


In another embodiment of the present invention, a ventilation system may include a ventilator for supplying ventilation gas. A patient interface may include distal end in communication with a patient airway, a proximal end in communication with ambient air, and an airflow channel between the distal end and the proximal end. A gas delivery circuit may be adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway. The gas delivery circuit may include a nozzle on a distal end of the gas delivery circuit, and wherein the nozzle is positioned outside the patient interface when supplying ventilation gas.


In another embodiment of the present invention, a ventilation system may include a ventilator for supplying ventilation gas. A patient interface may include distal end in communication with a patient airway, a proximal end in communication with ambient air, and an airflow channel between the distal end and the proximal end. The distal end may include one or more fenestrations. A gas delivery circuit may be adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway. The gas delivery circuit may include a nozzle located within the patient interface where the nozzle is positioned in proximity to the one or more fenestrations when supplying ventilation gas.


Embodiments of the present invention may include a ventilation system including a ventilator, a gas delivery circuit and a patient interface, the patient interface including a distal end in communication with a patient airway and a proximal end in communication with ambient air, wherein the gas delivery circuit is adapted to attach to the patient interface without occluding the patient interface to allow ambient air to flow from outside the interface into the patient airway, and wherein the gas delivery circuit is adapted to deliver the ventilator gas into the patient airway through the patient interface. Embodiments of the present invention may also include a ventilation system including a ventilator, a gas delivery circuit, and a patient interface, wherein the patient interface includes a distal end and a proximal end and an airflow channel extending from the proximal end to the distal end, wherein the distal end is in communication with a patient airway, and wherein the proximal end is in communication with ambient air, and wherein: (a) the gas delivery circuit includes a first end connected to the ventilator and a second end connected to the patient interface, and wherein the second end connection to the patient interface does not occlude the airflow channel such that ambient air can flow through the airflow channel into the airway; and (b) wherein the gas delivery circuit delivers gas from the ventilator to the patient airway. Embodiments of the present invention may also include a ventilation system including a ventilator, a gas delivery circuit, and a patient interface, wherein the patient interface includes a distal end and a proximal end and a airflow channel extending from the proximal end to the distal end, wherein the distal end is in communication with a patient airway, and wherein the proximal end is in communication with ambient air, and wherein: (a) the gas delivery circuit includes a first end connected to the ventilator and a second end connected to the patient interface, and wherein the second end connection to the patient interface does not occlude the airflow channel such that ambient air can flow through the airflow channel into the airway, and lung air can flow out of the airflow channel to ambient air; and (b) wherein the gas delivery circuit delivers gas from the ventilator to the patient airway. Embodiments of the present invention may also include a ventilation system including a ventilator and a gas delivery circuit, wherein the gas delivery circuit includes a first end adapted to connect to the ventilator and a second end including a connector adapted to connect to a ventilation patient interface, wherein the second end connector is adapted to connect to the ventilation patient interface so the ventilation patient interface maintains an open channel such that the open channel allows ambient air to flow from ambient through the patient interface into an airway.


Embodiments of the present invention may also include that the ventilator gas is delivered as a volume synchronized with the patient's inspiratory cycle, in which the volume is selected by the user. The ventilator gas may be delivered continuously, cyclically at a rate determined by the ventilator, as a volume cyclically synchronized with the patients breathing, and with a back up rate to deliver a mandatory number of breaths over a period of time, or as a volume cyclically during an inspiratory cycle to reduce the work of breathing, and during an expiratory cycle to create PEEP. The system may be used to treat a lung disease, a breathing disorder, or a neuromuscular disorder. The system may be used with a portable gas supply and used to enhance mobility. The patient interface may be an airway tube, tracheostomy tube, a T-tube, and stomal stent, a stoma, an endotracheal tube, a trans-cricothryoid tube, a trans-laryngectomy tube, a mask, a nasal mask, an oral mask, a nasal-oral mask, a cannula, a transtracheal cannula, a nasal cannula, an oral cannula, or a nasal-pharyngeal cannula.


Embodiments of the present invention may include those where the second end of the gas delivery circuit includes two gas delivery exit ports, and wherein the ventilation patient interface includes a left and right nasal cannula; where the second end of the gas delivery circuit includes a distal tip, wherein the distal tip includes a gas delivery nozzle and is adapted to locate the gas delivery nozzle between a distal end and proximal end of the ventilation patient interface; where the gas delivery circuit distal tip coplanar with entrance of the airway tube; where the gas delivery circuit distal tip is outside of entrance to airway tube; where the gas delivery circuit distal tip is coplanar with transition from straight section to curved section; where the gas delivery circuit connection to the patient interface includes an adjustment to adjust the position of the distal tip of the nozzle.


In certain embodiments, the patient interface may be an airway tube and the airway tube includes a fenestration and the gas delivery circuit distal tip is located near the fenestration; the gas delivery circuit distal tip is low profile, nozzle is side port in gas delivery circuit distal tip; the gas delivery circuit distal tip is angled to point toward distal end opening of airway tube; the gas delivery circuit distal end attaches to patient interface with an elbow connector; the gas delivery circuit distal end attaches to patient interface with an T-shaped connector; the gas delivery circuit distal end attaches to patient interface with an L-shaped connector; the gas delivery circuit distal end attaches to patient interface with an swivel connector; the gas delivery circuit distal attaches to patient interface with a connector which includes a one-way inspiratory valve allowing air flow in the inspired direction; the gas delivery circuit distal end attaches to patient interface with a connector which includes a one-way expiratory valve allowing air flow in the exhaled direction; the gas delivery circuit distal end connection to the patient interface includes a PEEP valve; the gas delivery circuit distal end connection to the patient interface includes a PEEP valve wherein the PEEP valve includes an adjustment; the gas delivery circuit distal end connection to the patient interface includes a PEEP valve wherein the PEEP valve setting is controlled by a pressure signal provided by the ventilator; the gas delivery circuit distal end connection to the patient interface includes an Inspiratory and Expiratory valve; the gas delivery circuit distal end connection to the patient interface includes an Inspiratory and PEEP valve; the gas delivery circuit distal end connection to the patient interface includes a baffle connection; the gas delivery circuit distal end connection to the patient interface includes a Heat moisture exchanger; the gas delivery circuit distal end connection to the patient interface includes a connector with a HME, inspiratory valve, and PEEP valve; the gas delivery circuit distal end connection to the patient interface includes a connector with a side connector; the gas delivery circuit distal end connection to the patient interface includes a connector with two side connectors; the gas delivery circuit distal end connection connects to the inside of the patient interface; or the gas delivery circuit distal end nozzle includes a tapered ID where the tapered ID restricts the ID from a larger dimension to a smaller dimension at the nozzle distal tip.


In certain embodiments, the ventilator gas exits the gas delivery circuit distal end as a Jet, with an exit speed of 50-350 meters per second; the ventilator gas exits the gas delivery circuit distal end as a jet, which entrains ambient air from outside the connector, where the entrainment is 25-300% of the ventilator gas.


In certain embodiments, the system includes sensors to measure the amount of air entrainment, and a control unit to adjust and regulating the amount of entrainment. The system may include humidity delivery, a humidification lumen, or a humidified gas delivery attachment. The gas delivery circuit distal end may include a breath sensor, which may be a breath sensor is a pressure sensing line included of a sensing lumen and sensing port; a sensing port orthogonal to air flow path facing distal direction; a sensing port orthogonal to air flow path facing proximal direction; sensing port parallel with gas flow path; a thermal flow sensor; an airway pressure sensing extension line adapted to extend a distance into the airway tube; an airway pressure sensing channel, and wherein the gas delivery circuit includes sensing connector to connect to the patient interface sensing channel; or a ventilation gas delivery channel, a pressure sensing channel, a humidification delivery channel, an oxygen bleed delivery channel, an oxygen and CO2 sensing channel, and a thermal sensor wire channel.


Embodiments may include those where the ventilation gas is air and oxygen is bled into the airway tube; the ventilation gas is oxygen; the ventilation gas is blended air and oxygen; or an oxygen sensing mechanism; a CO2 sensing mechanism. In certain embodiments the ventilator is adapted to vary the gas output parameters to achieve a desired FIO2; the ventilator is adapted to vary the gas output parameters to achieve a desired airway pressure; the ventilator is adapted to vary the gas output parameters to achieve a desired lung volume; the ventilator is adapted to vary the gas output parameters to achieve a desired inspiratory flow rate; a therapeutic gas is bled into the patient interface, such as helium, NO, HeliOx; output titration algorithms, to adjust the delivery of volume based on patient activity level using biofeedback, such as respiratory rate, inspiratory strength, I:E ratio, exhaled gas composition; output triggering algorithms, to adjust the timing of the delivery of volume based on patient comfort and activity level using biofeedback, such as respiratory rate, inspiratory strength, I:E ratio, exhaled gas composition; delivering blended air and oxygen and wherein the ventilator includes a blender, an external oxygen and air supply, and an external compressor; delivering blended air and oxygen and wherein the ventilator includes a blender, an external oxygen and air supply, and an internal compressor; or delivering blended air and oxygen and wherein the ventilator includes a blender, an external oxygen supply wherein the external oxygen supply is selected from the group of compressed oxygen gas, liquid oxygen or an oxygen concentrator, and an internal compressor, a gas analyzer, a humidifier unit, a microprocessor control system, and a lung volume sensor.


Additional features, advantages, and embodiments of the invention are set forth or apparent from consideration of the following detailed description, drawings and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.





BRIEF DESCRIPTIONS OF THE FIGURES

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate preferred embodiments of the invention and together with the detailed description serve to explain the principles of the invention. In the drawings:



FIG. 1 shows a prior art conventional closed airway ventilation system, using a cuffed endotracheal tube.



FIG. 2 shows a conventional non-invasive ventilation system using a sealing nasal mask.



FIG. 3 shows an overview of an open airway ventilation system of the present invention with an open airway patient interface.



FIG. 4 shows a gas delivery circuit with a ventilation catheter placed into a trach tube patient interface with an open connection, with the ventilation catheter extending part way into the trach tube.



FIG. 5 shows a gas delivery circuit with a ventilation catheter placed into a trach tube patient interface with an open connection, with the ventilation catheter extending to that the distal tip protrudes out of the tip of the trach tube.



FIG. 6 shows a gas delivery circuit and ventilation catheter connected to a fenestrated cuffed trach tube patient interface with a swivel elbow connection, with the ventilation catheter distal tip positioned near the fenestration, and with the swivel elbow connector capped.



FIG. 7 shows a gas delivery circuit and ventilation catheter connected to a fenestrated trach tube patient interface with a swivel elbow connection, with the ventilation catheter distal tip positioned near the fenestration.



FIG. 8 shows a gas delivery circuit connected to an airway tube with a baffled connection, with the nozzle tip located a distance outside of the proximal end of the airway tube.



FIG. 9 shows a gas delivery circuit connected to an airway tube with an open adaptor, and shows the sources of gas being delivered to the airway, and shows a breath sensing extension tube.



FIG. 10 shows a gas delivery circuit connected to an airway tube with an open elbow connector.



FIG. 11 shows a gas delivery circuit connected to an airway tube with an open T connector.



FIG. 12 shows a gas delivery circuit connected to an airway tube with an open swivel elbow connection.



FIG. 13 shows a gas delivery circuit connected to an airway tube with an open adaptor connector with a sliding nozzle adjustment.



FIG. 14 shows a gas delivery circuit connected to an airway tube with an open adaptor connection, with the gas delivery nozzle located slightly inside the airway tube proximal end.



FIG. 15 shows a gas delivery circuit connected to an airway tube with an open adaptor connector, with the gas delivery nozzle located a distance inside of the airway tube.



FIG. 16 shows a gas delivery circuit with a low profile connection connected directly to the proximal end of an airway tube.



FIG. 17 shows a gas delivery circuit connected to an airway tube with a low profile open connection with the connection inside the proximal end of the airway tube.



FIG. 18 shows a gas delivery circuit connected to an airway tube with an open adaptor connection, with an inspiratory valve on the proximal end of the inspiratory valve.



FIG. 19 shows a gas delivery circuit connected to an airway tube with an open elbow adaptor with a side connector, with a HME attached to the side connector and with an inspiratory valve.



FIG. 20 shows a gas delivery circuit connected to an airway tube with an open elbow connection, with a PEEP or exhalation valve attached to the side connection and an inspiratory valve.



FIG. 21 shows a gas delivery circuit connected to an airway tube with an open adaptor and with an extension tube for airway breath sensing and pressure sensing.



FIG. 22 shows a gas delivery circuit connected to an airway tube with an open adaptor where the airway tube has an airway sensing channel, and the circuit has a connection to attach to the sensing channel.



FIG. 23 shows a gas delivery circuit connected to an airway tube with an open adaptor with a humidification delivery attachment.



FIG. 24 shows a gas delivery circuit connected to an airway tube with an open adaptor with a humidification catheter attached.



FIG. 25 shows a gas delivery circuit connected to an airway tube with an open adaptor with integral breath sensing and humidification delivery channels in the gas delivery circuit.



FIG. 26 shows a close up view of the nozzle of the configuration shown in FIG. 25.



FIG. 27 shows a cross sectional side view of the gas delivery circuit shown in FIG. 25.



FIG. 28 shows a gas delivery circuit connected to an airway tube with one or more sensing ports.



FIG. 29 shows a cross section along section A-A of FIG. 28.



FIG. 30 shows a close up view of the nozzle of FIG. 28 with breath sensing ports facing the expiratory flow.



FIG. 31 shows a close up view of the nozzle of FIG. 28 with breath sensing ports facing the inspiratory flow.



FIG. 32 shows a close up view of the nozzle of FIG. 28 with breath sensing ports facing the inspiratory and expiratory flow.



FIG. 33 shows a gas delivery circuit connected to an airway tube with an open adaptor, and with a valve attached to the open adaptor to convert to a closed or partially closed system.



FIG. 34 shows a close up view of the valve shown in FIG. 33.



FIG. 35 shows an adjustable valve which is an alternate to the valve shown in FIG. 33.



FIG. 36 shows a gas delivery circuit connected to a patient interface mask.



FIG. 37 shows a gas delivery circuit connected to a patient interface mask with a nozzle outside the patient interface mask.



FIG. 38 shows a system schematic of the open airway ventilation system when used with an external gas supply.



FIG. 39 shows a system schematic of the open airway ventilation system when used with an internal compressor, a blender an optional external gas supply and an optional humidification unit.



FIG. 40 shows a system schematic of the open airway ventilation system that is converted to a closed or partially closed system, with a gas composition analyzer, an internal blender, external oxygen supply and lung volume sensor.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In some cases, special airflow delivery fluid dynamics can be created by special drive pressures and escape velocities of the ventilation gas, and in other cases the special airflow delivery fluid dynamics can be created by special patient interface configurations. Embodiments of the present invention may include special patient interface configurations and geometries that optimize the efficacy of open system augmented ventilation.



FIG. 1 describes a conventional ventilation system, known as controlled mechanical ventilation (CMV) in which a ventilator 1 is connected to a patient Pt with a dual limb gas delivery circuit 2 and delivers gas to the patient Pt via an inspiratory limb 3 and gas is exhaled from lungs L back to the ventilator 1 through an expiratory limb 4. A typical patient ventilation interface is an endotracheal tube 6 with a cuff 7 within a trachea T such that the patient's lung L is closed off from ambient air, and is only connected to an air source through the ventilator gas delivery circuit 2. Air is forced into the lung L and the ventilator 1 can increase lung volume because it is a closed system, which is not open to ambient.



FIG. 2 describes a conventional ventilation system, typically referred to as a Continuous Positive Airway Pressure (CPAP) system. There is a single limb gas delivery circuit 8 in this case through which the patient inhales and exhales. This system is also a closed ventilation system in that the patient ventilation interface is typically a non-invasive ventilation mask 9 (known as a non-invasive ventilation (NIV) mask), which is sealed against the patient's face so that the respiratory system is closed to ambient air. The non-invasive ventilation mask may include one or more mask exhaust ports 10. In this system the patient is spontaneously breathing, but spontaneously breathing from the gas supply supplied by the ventilator 1. Volume is forced into the lung and the ventilator 1 can increase lung volume because the system is a closed system, not connected to ambient. Airflow may pass through an upper airway UA and/or the oropharyngeal airway PA.



FIG. 3 describes an overview of an exemplary open ventilation system of the present invention in which the patient is inspiring and exhaling naturally through their upper airway. A patient ventilation interface may be a tracheostomy tube, or transtracheal catheter, which is typically connected to a ventilator 20 with a single limb gas delivery circuit 21. The single limb gas delivery circuit 21 may couple to an airway tube 60. An airway tube 60 may be various types of structures, including, but not limited to trach tubes, masks, cannulas, etc. The ventilator 20 in this case may provide ventilation assistance, or augmented ventilation to the patient. If the breathing circuit is large enough the patient can partially exhale through the breathing circuit, or if not, the patient exhales completely through the upper airway.


An open ventilation system is described by Freitag in US Patent Application No. 2005/0003472 and by Wondka in US Patent Application No. 2005/0005936. In these references, the breathing circuit is small for reasons of un-obtrusiveness and convenience to the user, or because of other performance factors such as gas delivery dynamics, and hence the patient exhales completely through their natural breathing route (upper airway), and only receives augmented ventilation through the breathing circuit. Due to special ventilator driving pressures and gas exit fluid dynamics out of the catheter, the ventilator has the potential of increasing lung volume or pressure despite the fact that it is an open upper airway system. Standard gas delivery techniques, such as with oxygen therapy, the lung volume and pressure would not be affected.



FIG. 4 describes a side view of a tracheostomy tube 23 and ventilation catheter 40 combination in which the connection between the ventilation catheter 40 and the trach tube 23 is open at the trach tube proximal end, and in which the catheter distal tip 45 is placed at a location near the mid length of the trach tube 23. This configuration may provide an increase in entrained airflow from ambient air through the trach tube opening. This configuration may enhance entrainment by resembling features of a jet pump. The section of trach tube distal to the catheter tip may be known as the nozzle of a jet pump, and the section proximal to the catheter tip (including the volume inside the trach tube proximal connector and ambient air volume directly outside the trach tube connector) may be considered the vacuum chamber of the jet pump, from which the catheter exit gas entrains the volume. The ventilation catheter 40 can be pre-formed to match with the curvature of the trach tube 23, or can be shaped to be in contact with the superior surface of the inside of the trach tube, or can be shaped to be in contact with the inferior surface of the inside of the trach tube. The distal tip of the ventilation catheter 40 can be angulated to direct the jet exiting the nozzle through a trach tube airflow channel 24 and toward the distal tip 27 opening of the trach tube 23, which is essential in optimizing the jet performance of the system. The ventilation catheter 40 can also be shaped to be in contact with one of the lateral walls of the trach tube 23. The single limb gas delivery channel 21 may be coupled to the trach tube 23 using an airway tube connector 42 in communication with a connector 44, preferably a 15 mm connector, which is also in communication with a trach tube flange 43.



FIG. 5 describes a side view of a tracheostomy tube configuration where the ventilation catheter 40 extends past a tip of the trach tube 23. The gas exiting from the ventilation catheter 40 may entrain upper airway flow from the trachea T as well as some gas from inside the trach tube airflow channel 24 and from proximally outside the trach tube 23. If the connection between the ventilation catheter 40 and the trach tube 23 at the proximal end of the trach tube 23 is closed, there is no additional entrainment of air from ambient through the trach tube airflow channel 24, and the patient cannot breathe through that route. If, however, the trach tube 23/ventilation catheter 40 connection is open, the may be additional entrainment of air from ambient, depending on the exact location of the tip of the catheter, and the patient can breathe through that route as well as the upper airway route.



FIG. 6 describes a side view of a configuration in which the trach tube 23 includes one or more fenestrations 25 along its length. The ventilation catheter distal tip 45 nozzle may be located near the fenestration 25 to entrain air through the fenestration 25. In this case, the vacuum or entrainment chamber of the system may be both (a) the tracheal airway compartment above the fenestration 25 and (b) the trach tube 23 and swivel elbow connector 47 and ambient air outside the trach tube 23. A tracheostomy tube cuff 26 may prevent passage of air from the upper airway past the trach ventilation catheter 40. By adjusting the exact detailed dimensions of the configuration, such as fenestration dimensions and location, catheter tip dimensions and location, trach tube nozzle section dimensions, etc., the amount of entrained air can be increased or decreased for both the tracheal entrained air and the ambient entrained air. Entrainment from the trachea may be preferred in that the entrained air would include naturally humidified air. Sometimes entrained air through the trach tube from ambient can be preferred, for example, in the case of upper airway obstruction or in cases where the patient's upper airway is becoming dry in which case additional entrainment may not be desired. The ventilation gas delivery circuit 21 and ventilation catheter 40 may be attached to the trach tube connector 44 with a swivel elbow connector 47, which may have a female 15 mm distal connector 48 and a male 15 mm proximal connector 49. Optionally the proximal connector of the trach tube or swivel elbow connector can include the attachment of other features as will be described later. A connector cap 29 may seal the swivel elbow connector 47. In the case shown, the distal end of the connector 47 is capped with a cap 49, in which case the jet entrainment occurs through the trach tube fenestration 25 and the patient's spontaneous breathing occurs through the upper airway through the fenestration 25 when the cuff 26 is inflated, and if the cuff 26 is deflated spontaneous breathing occurs through both the fenestration 25 and also around the outside of the trach tube 23.



FIG. 7 describes a side view of a patient interface configuration in which the trach tube 23 is a fenestrated trach tube. In the case shown, the distal end of the connector 47 is not capped with a cap 49. In this case, the patient may spontaneously breathe through the open connector 47.



FIG. 8 describes a side view of an open interface. A gas delivery circuit 21 is attached to an airway tube 60 with a baffle attachment. The airway tube 60 has a hollow cylindrical configuration defined by a central lengthwise axis 1001 and may be an endrotracheal tube, a tracheostomy tube, a laryngectomy tube, or any other airway tube. The airway tube may include an airway tube flange 61. The airway tube 60 may also include an airway tube distal end 63 that is open and defined by an opening axis 1004, which may include a cuff. The tip of the gas delivery circuit may be configured as a gas delivery nozzle 66 and a tip of the gas delivery nozzle 66 may be positioned proximal to or a distance outside of the entrance to the airway tube 60. This end is also open and defined by an opening axis 1006. A baffle connector 64 may be open so that ambient air can be entrained, by the ventilator gas exiting the gas delivery nozzle 66. In FIG. 8, the baffle connector 64 is shown attached to an outside of the airway tube proximal connector 62: however, the baffle connector 64 may be attached to an inside surface of the airway tube 60, or connected to as proximal edge of the airway tube 60. Ideal distance between the gas delivery nozzle 66 and airway tube entrance varies depending on conditions such as type and size of the airway tithe 60, desired therapeutic effect, and ventilator drive pressures, as well as catheter and nozzle dimensions, however, exemplary spacing ranges from 2″ to −2′, and ideally 1.5″ proximal to 0.5″ recessed. The gas delivery nozzle 66 is attached to the baffle connector 64 with a baffle swivel connector 65 so the gas delivery circuit 21 can swivel to route the tubing where most convenient. The gas delivered by the gas delivery circuit 21 can be oxygen, air, air-oxygen mixtures, therapeutic, gases, or drugs as well. Optionally, therapeutic gases can be bled into the system. Additional details about the gas delivery system are described in FIGS. 28 and 38-40.


Embodiments of the present invention may impact efficacy. The location of the tip of the ventilation catheter relative to the tracheostomy tube, or more generically an airway tube, is a key primary contributor to the amount of air entrained, and, therefore, the physical efficiency of the system, and to the amount of volume and pressure that the ventilation system can create in the patient's lung. Increasing pressure or volume in the patient's lung is necessary for the system to be clinically efficacious. For example, an increase of inspiratory lung pressure from an unassisted value of −5 cmH2O to an assisted value of −1 cmH2O may reduce the inspiratory muscle work and provide relief and support to the patient. Or, an increase of lung pressure from an unassisted value of −5 cmH2O to an assisted value of +5 cmH2O may provide relief and even more support to the patient. In a spontaneously breathing patient, these pressure increases can be considered potential increases, as the patient effort may compensate by expending more or less breathing effort based on the sensation of the ventilation support. In a ventilator dependent patient or controlled breath, the pressure increases may apply. The higher the increase in lung pressure caused by the ventilator system, the higher the potential increase in lung volume, which is also efficacious in improving gas exchange. Also, for obstructive lung disease patients, the added support from the ventilation system may shorten inspiratory time, which may provide a longer time for exhalation and reduce dynamic hyperinflation. The work of breathing assistance provided by the potential of increased lung pressure may unload and rest the respiratory muscles, so that they have more strength and reserve which may help re-model the lung mechanics and potentially reduce static hyperinflation. In restrictive lung disease patients the potential for increased lung pressures and lung volumes may help compensate for the restrictive airways and stiff lung, giving the sensation that it is easier to breathe. For neuromuscular patients, the increased lung pressures and volume help compensate for the body's inability to neurologically or mechanically breathe adequately. Other contributors to the physically efficiency and clinical efficacy of the ventilation system include the exit velocity of gas exiting the ventilation catheter, the alignment of the velocity of the gas relative to the tip of the airway tube or the airway lumen, the gas volume surrounding and in the immediate vicinity of the ventilation catheter nozzle.


Three cases may be considered for the location of the tip of the ventilation catheter with respect to the airway tube. In Case A (FIG. 5), the catheter tip may extend to, or past a distal tip of the airway tube. In Case B (FIGS. 4, 6 and 7), the catheter tip may be positioned approximately half way between the proximal and distal end of the airway tube. In Case C (FIG. 8), the catheter tip may be positioned outside of the proximal end of the airway tube.


In Case A, the jet has the opportunity to entrain gas in the airway. In the case that the airway is the trachea or another large airway, this volume of gas in the airway column is substantial. One skilled in the art of jet pump design might expect therefore that the Case A tip position would be the optimal configuration to optimize entrainment, compared to Case B and Case C. However, empirical examination reveals that Case B and Case C result in superior entrainment efficiency over Case A. In Case B, the jet entrains some air from outside the proximal end of the airway tube and this entrainment can exceed the entrainment of Case A. Case C provides the best entrainment efficiency, which may not be intuitive. One skilled in the art may think that the gas exiting the catheter tip outside of the airway tube would create turbulence at the entrance to the airway tube, and significantly degrade performance. However, empirical evaluation reveals that this is not the case and rather, the velocity flow profile is well organized as it enters the entrance to the airway tube, along with the entrained ambient air. Referring back to Case B, where the airway tube has an aperture near the position of the catheter tip, for example, the fenestration in a trach tube, the system has two potential sources of entrainment: (1) ambient air from outside the airway, and (2) airway air through the fenestration. This case can improve the efficiency of Case B, however, is still not as efficient as Case C. Another advantage of Case C is that it is less prone to performance degradation based on misalignment between the catheter tip and the airway tube tip.


Note, however, that Case A and Case B are advantageous over Case C in terms of delivering humidified gas to the lung. Case C delivers the most un-humidified gas because of the high amount of ambient air entrained verses Case A, which delivers the most humidified gas because the entrained gas is from the upper airway which is humidified by the nasal passage. Case B and Case C, however, can be modified by introducing artificial humidification with the ventilation and entrained gas, or by using a heat moisture exchanger. Some exemplary values of Case A, B and C are listed below in Table 1.














TABLE 1








Entrained air







from ambient
Entrained air




Total
outside of
from airway




entrained air
airway tube
above airway




(% of
(% of
tube (% of
Pressure



Ventilator gas
ventilator gas
ventilator gas
ventilator gas
potential


Case
flow rate
delivery)
delivery)
delivery)
increase




















A
15 lpm
93%
56%
37%
0.6 cmH2O


B with
15 lpm
167%
150%
17%
1.4 cmH2O


Fenestrated


Airway tube


B with non-
15 lpm
233%
95%
138%
1.3 cmH2O


fenestrated


Airway tube


C
15 lpm
300%
290%
10%
1.5 cmH2O









The values above are based on a ventilator gas delivery of 15 lpm, which is near the low end of the range of ventilator flow rate in this invention. Typically the ventilator flow rate in this invention may be 15-40 lpm average flow rate, and 20-60 lpm peak flow rate. As the flow rate increases, the entrainment percentage increases in a linear relationship, and the pressure potential increase, increases in a squared relationship. Non-intuitively, the amount of air entrained from the upper airway in Case A is less than the ambient air entrained through the proximal end of the airway tube. Referring back to Case B, it may be beneficial if the axial centerline of the distal tip of the catheter is aligned with the axial centerline of the distal tip of the airway tube, so that the jet exiting the tip of the catheter does not collide with the inner wall of the airway tube. This alignment may preferably be within approximately 10 degrees of perfectly aligned. Entrainment performance may degrade due to turbulence and disorganized air flow velocity profiles occurring between the catheter tip and the airway tube tip.



FIG. 9 describes a side view of an open interface depicting sources of gas flowing into an airway A. Ventilator gas Gv exiting the nozzle may entrain air Ge from outside the airway tube 60. The patient may spontaneously draw in ambient air from outside the airway tube Gsi, and from the upper airway Gsa. The total gas delivered into the lung Gt, is a combination of these four sources. The gas delivery circuit 21 in FIG. 9 is also shown with a breath sensing line 80. The purpose of the breath sensing line 80 is to measure the breathing pressure of the patient, to synchronize the ventilator functions to the patient's breathing and to track the respiratory parameters of the patient. At or near a distal end of the gas delivery circuit 21, the breath sensing line may divide from the catheter and extend deeper into the airway tube 60 than the gas delivery nozzle 66. The deeper extension may allow for more sensitive detection of airway breathing pressures. The extension can extend to the airway tube distal end 63 or beyond the airway tube distal end 63. The breath sensing line 80 can also attach to a lumen in the wall of the airway tube 60 or be integral to the construction of the airway tube 60 to sense the airway pressure. An airway tube adapter 81 may couple the gas delivery circuit 21 and/or breath sensing line 80 to the airway tube 60.



FIG. 10 describes a partial cross-sectional top view of an open interface with an airway tube side connector 82. The airway tube side connector 82 may be attached to a proximal end of the airway tube 60. The proximal end of the airway tube side connector 82, opposite to the airway tube 60, may be open to ambient air so that the gas exiting the gas delivery nozzle 66 entrains ambient air through the airway tube side connector 82. In FIG. 10, the path from ambient air into the airway tube side connector 82 and into the airway tube 60 is a relatively straight path with no or minimal abrupt directional changes of the air required. A side connection 85 of the airway tube side connector 82 may be available for attachment of a respiratory accessory, such as oxygen attachment, etc. Alternatively to the design shown, the proximal side can either be open as shown or closed. Any reasonable configuration of connectors can be used, such as Y-shaped, T-shaped or L-shaped connectors can be used. For example, FIG. 11 describes an open interface with an airway tube T adapter 84, with two open side connections 85 to allow passage of air and for connection of any necessary accessories. The proximal end of the airway tube T adapter 84 opposite the airway tube 60 is shown closed in this example, although it can be open or closed. Also, for example, FIG. 12 describes an open interface with an airway tube elbow connector 83, which preferably swivels. If an accessory is attached to the airway tube elbow connector 83 the swivel may help position it as desired.



FIG. 13 describes an open interface with an adjustable gas delivery nozzle 66. The gas delivery nozzle 66 may move proximally and distally with respect to the airway tube 60 in a guide or nozzle adjustment slot 86 in the airway tube adapter 81. The purpose of being able to adjust the position is to increase or decrease the amount of entrainment, and the resultant airway pressure created, based on the needs of the patient. A signal from a pressure sensing port 87 can be used to determine the appropriate location of the gas delivery nozzle 66. For example, if it is desired to maximize entrainment, the gas delivery circuit 21 can be moved until the signal from the pressure sensing port 87 registers a peak amplitude. A ventilator user interface can indicate this position status to the user. Or, for example, if it is desired to achieve a certain amount of entrainment, the gas delivery circuit 21 position can be moved until the proximal pressure sensing port 87 registers the desired characteristic signal expected for that amount of entrainment.



FIG. 14 describes an open interface with the nozzle of the gas delivery circuit positioned slightly inside a proximal end of the airway tube 60, rather than positioned at a distance outside of the airway tube 60. The gas delivery nozzle 66 may be located in a section of the airway tube that possesses a straight axial cross section, such that rotation of the connection between the gas delivery circuit 21 and the airway tube 60 does not change the alignment of the gas delivery nozzle 66 relative to the airway tube axial centerline. By contrast, if the nozzle tip were positioned at a depth within the airway tube where the airway tube axial centerline is arcuate or angled, rotation of the connection between the gas delivery circuit 21 and the airway tube 60 would cause misalignment of the jet with the airway tube 60 and poor aerodynamics, which would be unfavorable to the therapeutic results. Therefore, this arrangement may allow the user to attach the two pieces without being concerned about rotational alignment, and/or the attachment can include a rotational swivel to allow the gas delivery circuit tubing to be routed away from the patient as desired.



FIG. 15 describes an open interface with the distal tip of the gas delivery nozzle 66 positioned near the transition of the straight section of the airway tube 60 at its proximal end, to the curved section of the airway tube 60.


Previous examples of the open airway interface describe connections to the patient interface that protrude away from the patient. FIGS. 16 and 17 describe an alternative connection that is low profile.



FIG. 16 describes an open interface with the catheter attached to a nozzle connection slot 89 in the proximal end of the airway tube 60. The nozzle connection slot 89 may avoid the need for a bulky connector. The gas delivery circuit 21 can attach directly to the nozzle connection slot 89 with a removably attachable and secure connection. A slotted proximal end of the airway tube 60 can be the tube itself, a 15 mm connector, or an outer cannula or an inner cannula of the airway tube.



FIG. 17 describes an open interface with a low profile gas delivery nozzle 101 and low profile connector 100 coupled to the airway tube 60, with clips 99 engaging the outside and/or inside of a proximal end of the airway tube 60. These low profile connections may be advantageous when the patient is spontaneously breathing and using the therapy when in public, such that the gas delivery circuit 21 and interface can be more concealed. The clips 99 of the low profile connection may occupy as little of the inner diameter of the airway tube 60 as possible so as to not restrict flow through the airway tube 60. The clips 99 can be radially expanding so that the clips 99 engage with adequate force against the inside wall of the airway tube 60 near the proximal end, for example with 2-10 lbs radial force, preferably 4-6 lbs. The clips 99 may hold with a friction fit. The clips 99 can be plastic or metal, for example, ULTEM or nylon, or stainless steel or NITANOL, respectively. The low profile connection can also include one or more external clips that attach to an outside of the proximal end of the airway tube, to pinch the wall of the airway tube to attach to the airway tube 60 with adequate force. To facilitate the low profile design, the gas delivery circuit 21 can include a low profile gas delivery nozzle 101, which may include a ventilation gas delivery port 46 formed into a side wall of the gas delivery nozzle 101 at a tip of the gas delivery circuit 21. The gas flow path may be curved rather than at a right angle flow path near the tip to allow the flow profile of the gas to develop appropriately before exiting the gas delivery nozzle 101.



FIGS. 18 and 19 show an open interface in which the gas delivery circuit 21 is attached to an airway tube 60 with an open airway tube adaptor 81 or airway tube connector with side attachment 82. The airway tube adaptor 81 or airway tube side attachment may include an inspiratory valve 103. FIG. 18 shows the inspiratory valve 103 as part of a straight airway tube adaptor 81 and FIG. 19 describes an airway tube connector with side attachment 82 coupled to an airway tube 60. The airway tube connector with side attachment 82 may include an inspiratory valve 103 at an end of the airway tube connector with side attachment 82 opposite the airway tube 60, and a respiratory accessory attached to the side connector of the airway tube connector with side attachment 82. In the example shown, the accessory is a heat and moisture exchanger (HME) 102, which traps exhaled moisture which can be returned to the patient during inspiration. The inspiratory valve 103 is typically a low resistance, low cracking pressure inspiratory valve, which easily opens to allow entrainment of ambient air with the jet exiting the nozzle. For reference, the inspiratory valve 103 is shown both in the closed state 108 and in the open state 107. The inspiratory valve 103 may include a valve seat 104, a valve port 105, and/or a valve diaphragm 106. Inspired air may be drawn through the inspiratory valve 103, and optionally also through the HME 102. The air entrained by the jet exiting the gas delivery nozzle 66 may help draw humidified air trapped by the HME 102 back into the patient's airway during inspiration. A purpose of the inspiratory valve 103 may be that during exhalation some exhaled air is forced to vent through the upper airway past the larynx, thus enabling phonation. Components other than an HME 102 can be used as will be described later. In the various embodiments described with an inspiratory valve 103, the inspiratory valve 103 may include flow ports that permit venting of exhaled gas such that enough gas can be exhaled while maintaining a back pressure to simulate pursed lips breathing. Cracking pressure of the inspiratory valve 103 may be typically less than 2 cwp, and preferably 0.3-0.8 cwp. Airflow resistance of the inspiratory valve 103 may be typically less than 10 cwp/L/sec, and preferably less than 5 cwp/L/sec.



FIG. 20 describes an open interface with a gas delivery circuit 21 and an airway tube connector with side connection 82 coupled to an airway tube 60. In FIG. 20, an exhalation PEEP valve 109 is attached to the side connection of the airway tube connector with side connection 82 and the side opposite the airway tube 60 includes an inspiratory valve 103. Therefore, the configuration is open to ambient air during inspiration and partially closed to ambient air during exhalation. During exhalation the exhalation PEEP valve 109 allows some exhaled airflow, but with a back pressure to create a desired PEEP level, for example 5 cwp. The resistance of the exhalation PEEP valve 109 may be for example 5-20 cwp/L/sec to create the desired PEEP level. The PEEP level can be adjusted to create the PEEP level desired. In FIG. 20, the exhalation PEEP valve 109 is a ball and cage valve with a spring. The tension on the spring determines the air flow resistance of the exhalation PEEP valve 109. In addition to an exhalation PEEP valve 109, the valve can be an expiratory valve or pressure relief valve, or any combination of the above.



FIGS. 21 and 22 show an open airway system with a gas delivery circuit 21 attached to an airway tube 60 with an airway tube adapter 81, and with an airway sensing extension line 120 extending into the airway tube 60 and/or airway of the patient. In FIG. 21 the airway sensing extension line 120 extends from the airway tube adaptor 81 into a channel of the airway tube 60. The airway sensing extension line 120 can extend partway into the airway tube's length as shown, or can extend to a distal tip of the airway tube 60 or beyond the distal tip of the airway tube 60. The airway sensing extension line 120 may include a distal sensing port 121 at or near the distal tip of the airway sensing extension line 120, and may include a proximal sensing port 122 near the proximal end of the airway sensing extension line 120. The proximal sensing port 122 and distal sensing port 121, when used together can determine air flow through the channel of the airway tube 60 by applying the Hagen-Poiseuille equation. Because the jet typically creates a negative pressure in the zone around the gas delivery nozzle 66, a true pressure measurement may not be possible; however, a microprocessor in the ventilator can apply a correction factor to the measured value to obtain a derived pressure measurement. Using the two pressure sensing ports to determine airflow through the airway tube 60 allows for the system to determine the amount of entrainment and amount of spontaneously inspired air flow through the airway tube. This information can be used to determine total volume delivered and can be used to adjust the ventilator settings to create the desired therapeutic levels.



FIG. 22 describes an alternative configuration to FIG. 21 where an airway tube sensing line 123 is integrated into the airway tube 60. The gas delivery circuit 21 may include a sensing line connector 126 that connects to the airway tube sensing line 123 in the airway tube 60. The airway tube sensing line 123 may extend to the tip of the airway tube 60, or alternatively can terminate in an airway tube distal sensing port 124 positioned somewhere along the length of the airway tube 60, or alternatively the airway tube sensing line 123 can include multiple sensing ports, including an airway tube proximal sensing port 125 and/or the airway tube distal sensing port 124. Alternatively the airway tube 60 or gas delivery circuit 21 can include multiple sensing line extensions.



FIG. 23 describes an open interface with a humidification connector 128 for a humidification delivery hose 129. In this embodiment, heated humidified air may be delivered to the airway tube adapter 81 via a humidification delivery port 127 so that when the patient inspires, or when the Jet exiting the nozzle entrains ambient air, the air being drawn into the interface and patient's airways and lungs is humidified. The artificially humidified air may compensate for the dry air or oxygen being administered by the gas delivery catheter 21, and may also compensate for the drying of the airways that might occur by convective airflow of the ventilation gas along the airway mucosa. The humidity can be generated at the ventilator by a traditional heated humidifier, or can be generated by a vaporizer or aerosolizer or misting system. A temperature sensor (not shown) near the open interface can be provided to send a temperature signal back to the humidifier to adjust or limit the vapor output and maintained the delivered vapor at a safe temperature. The humidified gas can be air, oxygen or blended mixtures.



FIG. 24 describes an open interface with a vapor or mist humidification catheter 140. In this embodiment, the humidification catheter 140 may be attached to the airway tube adapter 81 in addition to the gas delivery circuit 21. The humidification catheter 140 may deliver moisture to the airway in the form of vapor, mist, or water droplets. The moisture can be fed under pressure to exit the distal end of the catheter, or can be entrained out of the distal end of the catheter by the ventilation catheter Jet, or both. The mist catheter can be a portion of the ventilation catheter tubing, or can be separate.



FIG. 25 describes an open interface with a humidification channel 141 and humidification delivery port 127 integral to the gas delivery circuit 21 and gas delivery nozzle 66, rather than a separate attachment for the mist catheter as shown in FIG. 24. FIG. 26 describes an enlarged view of the catheter tip at section B of the system in FIG. 25. FIG. 27 describes a cross section of the ventilation catheter at line A-A of FIG. 26. Moisture is conducted to the distal end of the gas delivery circuit 21 in a humidification channel 141. The source or generation of the moisture can be by heated humidification or aerosolization, and the moisture can be fed to the distal end of the catheter under pressure, or can be entrained out of the distal end by the ventilation catheter Jet, or both. Alternatively, moisture can be brought to the distal end of the catheter in the ventilation gas delivery channel 144, by entraining or mixing moist gas into the ventilation gas delivery channel 144 at some location between the ventilator and the patient. A breath sensing lumen 143 may also be included in the ventilation gas delivery circuit 21.



FIG. 28 describes an embodiment of the invention in which the amount of oxygen delivered by the therapy is adjustable, and/or monitored, and/or controlled. The gas delivery circuit 21 may include an oxygen delivery port 162 or bleed port, an oxygen and/or carbon dioxide sensing port 163, and a pressure sensing port 87. In this embodiment, air rather than oxygen is delivered by the gas delivery nozzle 66 and oxygen is supplied via an oxygen delivery lumen 164 and oxygen bleed port. The oxygen may be delivered into the airway tube adapter 81 where it is entrained by the jet exiting the gas delivery nozzle 66. Optionally, the oxygen is drawn out of the oxygen delivery port 162 and oxygen delivery lumen 164 by being entrained by the ventilation gas jet. An oxygen and/or carbon dioxide sensing port 163 and oxygen and/or carbon dioxide sensing lumen 165 may be used to draw gas from the airway tube adapter 81 back to a sensor, typically at the ventilator, to determine the concentrations of oxygen in the gas in that area, both during exhalation and at other times of the respiratory cycle, to determine to the amount of oxygen in the patient's airway and lungs. The concentration detected can be used to increase or decrease the amount of oxygen being bled into the system, in order to achieve the desired fractional inspired oxygen (FIO2). In addition, the jet amplitude and duration can be varied in order to achieve the desired FIO2. Alternatively, the jet parameters and the oxygen bleed in parameters can be selected from a predetermine set of values in order to achieve the desired FIO2 level. In the example shown the oxygen can be bled in using a lumen in the gas delivery circuit, however, it can also be bled in from a separate catheter or tubing that is attached to the connector. FIG. 28 also describes an optional in line thermal sensor 149 and a reference thermal sensor 161, which can be used to measure respiration by temperature change. An adapter swivel 147 connection is also shown to help orient the airway tube adapter 81 to the airway tube 60 as desired.



FIG. 29 describes a cross sectional view of the system in FIG. 28 at line A-A, showing the ventilation gas delivery channel 144, the oxygen delivery lumen 164, oxygen and/or carbon dioxide sensing lumen 165, a humidification channel 141, a breath sensing lumen 143, and a thermal sensor wire 160 and related lumen.



FIGS. 30-32 describe different locations and configurations of the airway pressure sensing port 87 at a distal tip of the gas delivery circuit 21. FIG. 30 shows the sensing port 145 positioned on the anterior side of the distal tip of the gas delivery circuit 21 and oriented orthogonal to the direction of exhaled airflow. This location may be extra sensitive during exhalation since exhaled gas may impinge on the port without any signal losses or artifacts. FIG. 31 describes the gas delivery circuit 21 with a pressure sensing port 146 facing the direction of inspired air flow. This location may be extra sensitive during inspiration since inspired gas may impinge on the port without any signal losses or artifacts. FIG. 32 describes the gas delivery circuit 21 with two pressure sensing ports, one facing the direction of inspired flow 146 and one facing the direction of exhaled flow 145. This configuration may provide improved sensitivity for both the inspiratory and expiratory phases. The sensing port can also be oriented to be parallel to breathing airflow and can be positioned on the lateral sides, the superior surface or the inferior surface of the nozzle.



FIGS. 33-35 describe an embodiment of the invention in which the open interface can be converted into a closed or partially closed interface. FIG. 33 describes an open interface that is converted to a partially closed interface by attaching a valve assembly to the airway tube adapter 81 of the open interface. The valve assembly may include an inspiratory valve 103 and an exhalation PEEP valve 109. The exhalation PEEP valve 109 may include a PEEP valve and a PEEP/PIP relief valve 180. The inspiratory valve 103 may be a low cracking pressure low resistance valve that allows for entrainment of ambient gas from the ambient side of the inspiratory valve 103 to the airway tube 60 and patient. FIG. 34 describes a detailed view of the valve assembly of the system described in FIG. 33. In the example shown, the exhalation valve 109 is a ball check valve, with an exhalation valve seat 167, an exhalation valve ball 168, an exhalation valve spring 169 to make it a normally closed valve, however, any type of check valve or one way valve can be used, such as a duck bill valve, a diaphragm valve or a leaflet valve. The exhalation valve 109 may include a valve adjustment 181 and/or a valve pilot pressure line 182. During spontaneous breathing, the valve is typically a passive valve and is opened with a light pressure, such as 1-10 cmH2O, preferably 1-3 cmH2O, which allows the gas volume in the patient's lung and airways to exhale. During controlled mechanical ventilation when the patient is not breathing on his or her own, the valve can be switched to an active valve which is cycled open by the ventilator controls when the inspiratory phase is completed. In this case the exhalation valve includes a pilot signal line that transmits a pressure signal from the ventilator to provide the opening or closing control to the valve. FIG. 35 is detailed view of an alternative inspiratory/expiratory valve 166 of the system described in FIG. 34, in which a pilot signal from the ventilator regulates the opening and closing of the exhalation valve 109 and/or the PEEP level that the exhalation valve 109 creates, and in which there is a PEEP adjustment to set the PEEP setting and pressure relief setting. Exhaled air may move from a distal end D to a proximal end P.



FIG. 36 describes an open airway ventilation system in which the gas delivery circuit 21 is connected to a mask-type patient interface, such as a ventilation mask 183. A mask proximal connector 184 may be open to allow ambient air flow in and out of the ventilation mask 183. The distal tip and gas delivery nozzle 66 of the gas delivery circuit 21 may be placed inside the ventilation mask 183 and/or inside the mask proximal connector 184. The system may then provide a positive pressure in the ventilation mask 183 by the jet and entrained ambient air. The patient may breathe spontaneously from the source of positive pressure in the ventilation mask 183 as well as ambient air through the ventilation mask 183. The ventilation mask 183 may include a ventilation mask seal 185 and/or one or more mask strap connections 186.



FIG. 37 describes an open airway ventilation system in which the gas delivery circuit 21 is connected to a mask-type patient interface, such as a ventilation mask 183. A mask proximal connector 184 may be open to allow ambient air flow in and out of the ventilation mask 183. The distal tip and gas delivery nozzle 66 of the gas delivery circuit 21 may be placed outside the ventilation mask 183 and outside the mask proximal connector 184. The gas delivery circuit 21 may be coupled to the ventilation mask 183 and/or the mask proximal connector 184 via a baffle connector 64 and/or baffle swivel connector 65. The system may then provide a positive pressure in the ventilation mask 183 by the jet and entrained ambient air. The patient may breathe spontaneously from the source of positive pressure in the ventilation mask 183 as well as ambient air through the ventilation mask 183. The ventilation mask 183 may include a ventilation mask seal 185 and/or one or more mask strap connections 186.



FIG. 38 describes a system schematic of an embodiment of the overall invention, in which the ventilator 20 is powered by compressed oxygen and delivers a high oxygen concentration to the patient, which would be useful in COPD or ARDS applications in which the patient often requires enriched concentrations of oxygen to be delivered. The gas source can be a variety of sources; the ventilator 20 can be powered by a compressed oxygen supply 200, such as a cylinder or compressed oxygen wall supply, as in a hospital setting. In this case 100% oxygen is delivered to the patient from the ventilator 20, and the resultant FIO2 of the therapy is a result of the 100% oxygen plus the entrained ambient air. For example, if 120 ml of 100% oxygen is delivered, and there is 100% entrainment of ambient gas, i.e., 120 ml of air is entrained, plus there is an additional 120 ml of ambient air inspired spontaneously by the patient, then the total gas received by the lungs is 360 ml at 47.33% FIO2. Optionally, compressed air from a compressed air supply 189 can be connected to the ventilator 20 and blended by a blender 187 coupled to an external compressor 188. The compressed air may be blended with the compressed oxygen before entering the ventilator 20 or blended while inside the ventilator 20 to adjust the oxygen concentration of the ventilation gas being delivered.



FIG. 39 describes a system schematic of an embodiment of the overall invention, in which the ventilator 20 is powered by blended compressed air and oxygen, and delivers a blended concentration of air/oxygen to the patient. In this embodiment, the ventilator 20 may include an internal compressor-turbine 202, which would be useful in a neuromuscular application, in which high oxygen concentrations is often not required by the patient. Optionally, the compressor-turbine may be external. Compressed air and oxygen may be blended using a blender 187 external or internal to the ventilator 20, to select and create the oxygen concentration required for the situation. FIG. 44 also shows humidity being bled into the system from a humidifier unit 201 via a humidification delivery hose 129, as previously described.



FIG. 40 describes a system schematic of an embodiment of the overall invention, in which the ventilator 20 is powered by compressed air, and bleeds in oxygen from a compressed oxygen supply 200 to deliver a blended supply of air/oxygen to the patient. The compressed air is generated by an internal compressor or external compressed air source, or both. In a preferred embodiment, the oxygen is blended into the ventilator gas delivery circuit 21 from an oxygen concentrator 206 or a source of liquid oxygen 207, which can create oxygen out of the surrounding ambient air. This is useful in situations where access to oxygen deliveries is expensive or logistically complicated. The blender 187 can be inside or outside of the ventilator 20. Because the gas being delivered in the gas delivery circuit 21 is typically being delivered at speeds greater than 50 m/sec, the speed may suck the oxygen into the gas delivery circuit 21 if appropriate valves are used. In an optional embodiment, the system may include an airway gas scavenging system in which some gas from the airway tube is conducted away from the airway tube to an oxygen analyzer 203, a carbon dioxide analyzer 204, or a combined device, which is typically inside of the ventilator 20, and which measures oxygen concentration and/or carbon dioxide concentration. This reading may allow the ventilator 20 or caregiver to know the oxygen concentration in the airway tube that is then correlated to the oxygen concentration in the airways and lung, and, therefore, the FIO2. Pulse oximetry may also be used to establish whether or not the proper air/oxygen mixture is being delivered and what if any adjustment needs to be made. FIG. 40 also shows an optional embodiment in which an impedence breathing volume sensor 209, for example, a thoracic impedance sensor, is used to determine the amount of volume entering the lung during inspiration. The one or more sensors may be controlled by a microprocessor control system 209. In this embodiment, the lung volume information is used to determine the effect of the therapy in the open system, i.e., what is the tidal volume in an open ventilation system. The information can be used to titrate and adjust the parameters, for example increase or decrease the amount of entrainment by adjusting the jet parameters. Tidal volume information can obviate the need for oxygen or carbon dioxide sensors in that if the lung volume and ventilator oxygen volume output is known, then the fractional oxygen concentration in the tidal volume can be calculated.


In the various embodiments of the present invention, the therapy can include a ventilator gas output of 21-100% oxygen. Or, supplemental oxygen gas can be delivered at various alternative locations, and at various points within the breath cycle (inspiration, expiration, cyclically and continuously). The ventilator output can be synchronized with all possible alternatives of the inspiratory cycle, such as early delivered early in inspiration, delivered after a delay, at the middle of inspiration, at the end of inspiration, or overlapping with inspiratory/expiratory phase transition.


Embodiments of the present invention may include various patterns and configurations of fenestrations in the airway tube to allow gas from the airway to also be entrained into the airway tube and out the airway tube distal end toward the lungs. The shape of fenestrations may be circular, oval, or any other reasonable shape, and the fenestrations may be located at any location on the airway tube.


The breathing sensors may be part of the ventilation catheter as is typically shown, or may be part of the airway tube, or maybe inside or outside of the airway, or may be a sensor not associated with the catheter or airway tube. These sensors can measure the patient's respiration pattern for synchronization of the ventilator as desired, and can also measure the entrainment, so the system intelligently knows what the entrainment levels are. This later information can be used to alter the configuration to adjust the source and amplitude of the entrainment. One or more pressure taps may be used to measure gas flow through the airway tube.


Although the foregoing description is directed to the preferred embodiments of the invention, it is noted that other variations and modifications will be apparent to those skilled in the art, and may be made without departing from the spirit or scope of the invention. Moreover, features described in connection with one embodiment of the invention may be used in conjunction with other embodiments, even if not explicitly stated above.












Reference Symbols


















Pt.
Patient



T.
Trachea



A.
Airway



UA.
Upper airway



PA.
Oropharyngeal airway



L.
Lungs



D.
Distal



P.
Proximal



I.
Inspiratory airflow



E.
Expiratory airflow



Gv.
Ventilator gas



Gsi.
Inspired air through the interface



Gsa.
Inspired air through the airway



Ge.
Entrained air



Gt.
Total inspired gas



 1.
Prior art Ventilator



 2.
Dual limb gas delivery circuit



 3.
Inspiratory limb



 4.
Expiratory limb



 6.
Endotracheal tube



 7.
Endotracheal tube cuff



 8.
Prior art Single limb gas delivery circuit



 9.
Non-invasive ventilation mask



 10.
NIV mask exhaust ports



 20.
Ventilator



 21.
Single limb gas delivery circuit



 23.
Tracheostomy tube



 24.
Tracheostomy tube airflow channel



 25.
Tracheostomy tube fenestration



 26.
Tracheostomy tube cuff



 27.
Tracheostomy tube distal tip



 29.
Connector Cap



 40.
Ventilation catheter



 41.
Ventilation catheter nozzle



 42.
Airway tube connector



 43.
Tracheostomy tube flange



 44.
15 mm connector



 45.
Ventilation catheter distal tip



 46.
Ventilation gas exit port



 47.
Swivel elbow connector



 48.
Swivel connector 15 mm female connector



 49.
Swivel connector 15 mm male connector



 60.
Airway tube



 61.
Airway tube flange



 62.
Airway tube proximal connector



 63.
Airway tube distal end



 64.
Baffle connector



 65.
Baffle swivel connector



 66.
Gas delivery nozzle



 80.
Breath sensing line



 81.
Airway tube adaptor



 82.
Airway tube connector with side connection



 83.
Airway tube elbow connector



 84.
Airway tube T adaptor



 85.
Side connection



 86.
Nozzle adjustment slot



 87.
Pressure sensing port



 89.
Nozzle connection slot



 99.
Clip



100.
Low profile connector



101.
Low profile gas delivery nozzle



102.
Heat moisture exchanger



103.
Inspiratory valve



104.
Valve seat



105.
Valve port



106.
Valve diaphragm



107.
Open state



108.
Closed state



109.
Exhalation PEEP valve



120.
Airway sensing extension line



121.
Distal sensing port



122.
Proximal sensing port



123.
Airway tube airway sensing line



124.
Airway tube distal sensing port



125.
Airway tube proximal sensing port



126.
Sensing line connector



127.
Humidification delivery port



128.
Humidification connector



129.
Humidification delivery hose



140.
Humidification catheter



141.
Humidification channel



142.
Humidification reservoir



143.
Breath sensing lumen



144.
Ventilator gas delivery channel



145.
Sensing port facing distally



146.
Sensing port facing proximally



147.
Adaptor swivel



149.
Inline thermal sensor



160.
Thermal sensor wire



161.
Reference thermal sensor



162.
Oxygen delivery port



163.
Oxygen CO2 sensing port



164.
Oxygen delivery lumen



165.
Oxygen CO2 sensing lumen



166.
Inspiratory-Expiratory valve



167.
Exhalation valve seat



168.
Exhalation valve ball



169.
Exhalation valve spring



180.
PEEP PIP relief valve



181.
Valve adjustment



182.
Valve pilot pressure line



183.
Ventilation mask



184.
Mask proximal connector



185.
Mask face seal



186.
Mask strap connection



187.
Blender



188.
External compressor



189.
Compressed air supply



200.
Compressed oxygen supply



201.
Humidifier unit



202.
Internal compressor-turbine



203.
Oxygen analyzer



204.
CO2 analyzer



206.
Oxygen concentrator



207.
Liquid oxygen



208.
Impedance breathing volume sensor



209.
Microprocessor control system









Claims
  • 1. A ventilation system comprising: a ventilator for supplying ventilation gas;a patient interface having a generally hollow cylindrical configuration defined by a central lengthwise axis and opposed open ends having substantially equivalent cross-sectional areas and including an open distal end with a distal opening axis coaxial with the central lengthwise axis and being in communication with a patient airway, an opposed open proximal end with a proximal opening axis coaxial with the central lengthwise axis and being in communication with ambient air, and an airflow channel between the distal end and the proximal end;a gas delivery circuit, wherein the gas delivery circuit is adapted to attach to the patient interface in a coaxial relationship to the proximal opening axis of the open proximal end without occluding the patient interface to allow ambient air to flow from outside the patient interface to the patient airway and to allow patient spontaneous breathing to flow from inside, the patient interface to outside along the central lengthwise axis and the proximal opening axis without obstruction; andwherein the ventilation gas entrains air from ambient and from the patient airway.
  • 2. The ventilation system of claim 1, wherein the ambient air flows through the patient interface at least during application of the ventilation gas.
  • 3. The ventilation system of claim 1, wherein the patient interface is selected from the group consisting of: an airway tube; a mask; a cannula; and combinations thereof.
  • 4. The ventilation system of claim 1, wherein the ventilator as is delivered in a cycle selected from the group consisting of: as a volume synchronized with the patient's inspiratory cycle, in which the volume is selected by the user; continuously; as a volume delivered cyclically at a rate determined by the ventilator; as a volume cyclically synchronized with the patients breathing, and with a back up rate to deliver a mandatory number of breaths over a period of time; as a volume cyclically during an inspiratory cycle to reduce the work of breathing, and during an expiratory cycle to create PEEP; and combinations thereof.
  • 5. The ventilation system of claim 1, further comprising one or more fenestrations between the distal end and the proximal end of the patient interface, and a nozzle on a distal end of the as delivery circuit, wherein the nozzle is located within the patient interface, and wherein the nozzle is positioned in proximity to the one or more fenestrations when supplying ventilation gas.
  • 6. The ventilation system of claim 5, wherein the ambient air flows through the patient interface at least during application of the ventilation gas.
  • 7. The ventilation system of claim 5, wherein the patient interface is selected from the group consisting of: an airway tube; a mask; a cannula; and combinations thereof.
  • 8. The ventilation system of claim 5, wherein the ventilator gas is delivered in a cycle selected from the group consisting of: as a volume synchronized with the patient's inspiratory cycle, in which the volume is selected by the user; continuously as a volume delivered cyclically at a rate determined by the ventilator as a volume cyclically synchronized with the patients breathing, and with a back up rate to deliver a mandatory number of breaths over a period of time; as a volume Cyclically murine an inspiratory cycle to reduce the work of breathing, and during an expiratory cycle to create PEEP; and combinations thereof.
  • 9. The ventilation system of claim 5, wherein the ventilation system is used to treat a disorder selected from the group consisting of: lung disease; a breathing disorder; a neuromuscular disorder; and combinations thereof.
  • 10. The ventilation system of claim 5, wherein the ventilation system is used with a portable as supply.
  • 11. The ventilation system of claim 5, wherein a distal tip of the gas delivery circuit is a low profile nozzle.
  • 12. The ventilation system of claim 5, wherein a distal tip of the gas delivery circuit is angled to direct the ventilation gas toward an opening at the distal end of the patient interface.
  • 13. The ventilation system of claim 5, wherein the gas delivery circuit is coupled to the patient interface with a baffle connection.
  • 14. The ventilation system o claim 5, further comprising a heat moisture exchanger.
  • 15. The ventilation system of claim 5, wherein the ventilation gas exits the gas delivery circuit distal end as a jet with an exit speed of approximately 50-approximately 350 meters per second.
  • 16. The ventilation system of claim 5, wherein the entrained air is approximately 25-approximately 300% of the ventilation gas.
  • 17. The ventilation system of claim 5, further comprising one or more sensors.
  • 18. The ventilation system of claim 5, wherein humidity is delivered to the patient airway.
  • 19. The ventilation system of claim 5, wherein the ventilation gas is selected from the group consisting of: air, oxygen, helium, NO, HeliOx, and combinations thereof.
  • 20. The ventilation system of claim 5, wherein the ventilator is adapted to vary the gas output parameters to achieve a result selected from the group consisting of: to achieve a desired FI02; to achieve a desired airway pressure; to achieve a desired lung volume: to achieve a desired inspiratory flow rate; and combinations thereof.
  • 21. The ventilation system of claim 5, wherein a distal tip of the gas delivery circuit is approximately 0-1.5 inches from the proximal end of the patient interlace.
  • 22. The ventilation system of claim 5, wherein the gas delivery circuit contacts an inner surface of the patient interface, and a distal tip of the gas delivery circuit is angled to direct the ventilation gas toward the distal end of the patient interface.
  • 23. The ventilation system of claim 5, further comprising one or more pressure taps for measuring flow through the patient interface.
  • 24. The ventilation system of claim 5, further comprising one or more sensors for measuring oxygen concentration, and wherein the ventilation gas is adjusted based upon measurements from the one or more sensors.
  • 25. The ventilation system of claim wherein the ventilation system is used to treat a disorder selected from the group consisting of: lung disease; a breathing disorder; a neuromuscular disorder; and combinations thereof.
  • 26. The ventilation system of claim 1, wherein the ventilation system is used with portable gas supply.
  • 27. The ventilation system of claim 1, wherein a distal end of the gas delivery circuit comprises two gas delivery exit ports, and wherein the patient interface comprises a left and right nasal cannula.
  • 28. The ventilation system of claim 1, wherein a distal tip of the gas delivery circuit is a low profile nozzle.
  • 29. The ventilation system of claim 1, wherein a distal tip of the gas delivery circuit is angled to direct the ventilation gas toward an opening at the distal end of the patient interface.
  • 30. The ventilation system of claim 1, wherein the gas delivery circuit is coupled to the patient interface with a baffle connection.
  • 31. The ventilation system of claim 1, further comprising a heat moisture exchanger.
  • 32. The ventilation system of claim 1, wherein the ventilation gas exits a distal end of the gas delivery circuit as a jet with an exit speed of approximately 50-approximately 350 meters per second.
  • 33. The ventilation system of claim 1, wherein the entrained air is approximately 25-approximately 300% of the ventilation gas.
  • 34. The ventilation system of claim 1, further comprising one or more sensors.
  • 35. The ventilation system of claim 1, wherein humidity is delivered to the patient airway.
  • 36. The ventilation system of claim 1, wherein the ventilation gas is selected from the group consisting of: air, oxygen, helium, NO, HeliOx, and combinations thereof.
  • 37. The ventilation system of claim 1, wherein the ventilator is adapted to vary the gas output parameters to achieve a result selected from the group consisting of: to achieve a desired FI02; to achieve a desired airway pressure; to achieve a desired lung volume to achieve a desired inspiratory flow rate; and combinations thereof.
  • 38. The ventilation system of claim 1, wherein a distal tip of the gas delivery circuit approximately 0-1.5 inches from the proximal end of the patient interface.
  • 39. The ventilation system of claim 1, the gas delivery circuit contacts an inner surface of the patient interface, and a distal tip of the gas delivery circuit is angled to direct the ventilation gas toward the distal end of the patient interface.
  • 40. The ventilation system of claim 1, further comprising one or more pressure taps for measuring flow through the patient interface.
  • 41. The ventilation system of claim 1, further comprising one or more sensors for measuring oxygen concentration, and where in the ventilation gas is adjusted based upon measurements from the one or more sensors.
PRIORITY APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/091,198, filed Aug. 22, 2008 and U.S. Provisional Patent Application Ser. No. 61/136,269, filed Aug. 22, 2008; the disclosures of which are hereby incorporated by reference in their entireties.

US Referenced Citations (998)
Number Name Date Kind
50641 Stone Oct 1865 A
428592 Chapman May 1890 A
697181 Smith Apr 1902 A
718785 McNary Jan 1903 A
853439 Clark May 1907 A
859156 Warnken Jul 1907 A
909002 Lambert Jan 1909 A
1125542 Humphries Jan 1915 A
1129619 Zapf Feb 1915 A
1331297 Walker Feb 1920 A
2178800 Lombard Nov 1939 A
2259817 Hawkins Oct 1941 A
2552595 Seeler May 1951 A
2663297 Turnberg Dec 1953 A
2693800 Caldwell Nov 1954 A
2735432 Hudson Feb 1956 A
2792000 Richardson May 1957 A
2843122 Hudson Jul 1958 A
2859748 Hudson Nov 1958 A
2931358 Sheridan Apr 1960 A
2947938 Bennett Aug 1960 A
3172407 Von Pechmann Mar 1965 A
3267935 Andreasen et al. Aug 1966 A
3319627 Windsor May 1967 A
3357424 Schreiber Dec 1967 A
3357427 Wittke et al. Dec 1967 A
3357428 Carlson Dec 1967 A
3437274 Apri Apr 1969 A
3460533 Riú Plá Aug 1969 A
3493703 Finan Feb 1970 A
3513844 Smith May 1970 A
3610247 Jackson Oct 1971 A
3625206 Charnley Dec 1971 A
3625207 Agnew Dec 1971 A
3631438 Lewin Dec 1971 A
3643660 Hudson et al. Feb 1972 A
3657740 Cialone Apr 1972 A
3682171 Dali et al. Aug 1972 A
3721233 Montgomery et al. Mar 1973 A
3726275 Jackson et al. Apr 1973 A
3727606 Sielaff Apr 1973 A
3733008 Churchill et al. May 1973 A
3741208 Jonsson et al. Jun 1973 A
3754552 King Aug 1973 A
3794026 Jacobs Feb 1974 A
3794072 Diedrich et al. Feb 1974 A
3802431 Farr Apr 1974 A
3831596 Cavallo Aug 1974 A
3881480 Lafourcade May 1975 A
3896800 Cibulka Jul 1975 A
3903881 Weigl Sep 1975 A
3905362 Eyrick et al. Sep 1975 A
3949749 Stewart Apr 1976 A
3951143 Kitrilakis et al. Apr 1976 A
3961627 Ernst et al. Jun 1976 A
3972327 Ernst et al. Aug 1976 A
3985131 Buck et al. Oct 1976 A
3991790 Russell Nov 1976 A
4003377 Dahl Jan 1977 A
4036253 Fegan et al. Jul 1977 A
4054133 Myers Oct 1977 A
4067328 Manley Jan 1978 A
4106505 Salter et al. Aug 1978 A
4146885 Lawson, Jr. Mar 1979 A
4206754 Cox et al. Jun 1980 A
4211086 Leonard et al. Jul 1980 A
4216769 Grimes Aug 1980 A
4231363 Grimes Nov 1980 A
4231365 Scarberry Nov 1980 A
4256101 Ellestad Mar 1981 A
4261355 Glazener Apr 1981 A
4263908 Mizerak Apr 1981 A
4265237 Schwanbom et al. May 1981 A
4266540 Panzik et al. May 1981 A
4273124 Zimmerman Jun 1981 A
4274162 Joy et al. Jun 1981 A
4278082 Blackmer Jul 1981 A
4282869 Zidulka Aug 1981 A
4306567 Krasner Dec 1981 A
4323064 Hoenig et al. Apr 1982 A
4354488 Bartos Oct 1982 A
4365636 Barker Dec 1982 A
4367735 Dali Jan 1983 A
4377162 Staver Mar 1983 A
4393869 Boyarsky et al. Jul 1983 A
4406283 Bir Sep 1983 A
4411267 Heyman Oct 1983 A
4413514 Bowman Nov 1983 A
4421113 Gedeon et al. Dec 1983 A
4422456 Tiep Dec 1983 A
4449523 Szachowicz et al. May 1984 A
4454880 Muto et al. Jun 1984 A
4462398 Durkan et al. Jul 1984 A
4469097 Kelman Sep 1984 A
4481944 Bunnell Nov 1984 A
4488548 Agdanowski Dec 1984 A
4495946 Lemer Jan 1985 A
4506666 Durkan Mar 1985 A
4506667 Ansite Mar 1985 A
4519387 Durkan et al. May 1985 A
4520812 Freitag et al. Jun 1985 A
4527557 DeVries et al. Jul 1985 A
4535766 Baum Aug 1985 A
4537188 Phuc Aug 1985 A
4539984 Kiszel et al. Sep 1985 A
4548590 Green Oct 1985 A
4559940 McGinnis Dec 1985 A
4570631 Durkan Feb 1986 A
4571741 Guillaumot Feb 1986 A
4584996 Blum Apr 1986 A
4590951 O'Connor May 1986 A
4592349 Bird Jun 1986 A
4621632 Bartels et al. Nov 1986 A
4630606 Weerda et al. Dec 1986 A
4630614 Atlas Dec 1986 A
4644947 Whitwam et al. Feb 1987 A
4648395 Sato et al. Mar 1987 A
4648398 Agdanowski et al. Mar 1987 A
4658832 Brugnoli Apr 1987 A
4660555 Payton Apr 1987 A
4682591 Jones Jul 1987 A
4684398 Dunbar et al. Aug 1987 A
4686974 Sato et al. Aug 1987 A
4686975 Naimon et al. Aug 1987 A
4688961 Shioda et al. Aug 1987 A
4705034 Perkins Nov 1987 A
4744356 Greenwood May 1988 A
4747403 Gluck et al. May 1988 A
4753233 Grimes Jun 1988 A
4773411 Downs Sep 1988 A
4776333 Miyamae Oct 1988 A
4782832 Trimble et al. Nov 1988 A
4784130 Kenyon et al. Nov 1988 A
4803981 Vickery Feb 1989 A
4807616 Adahan Feb 1989 A
4807617 Nesti Feb 1989 A
4808160 Timmons et al. Feb 1989 A
4813431 Brown Mar 1989 A
4817897 Kreusel Apr 1989 A
4818320 Weichselbaum Apr 1989 A
4823788 Smith et al. Apr 1989 A
4825859 Lambert May 1989 A
4827922 Champain et al. May 1989 A
4832014 Perkins May 1989 A
4838255 Lambert Jun 1989 A
4841953 Dodrill Jun 1989 A
4848333 Waite Jul 1989 A
4850350 Jackson Jul 1989 A
4865586 Hedberg Sep 1989 A
4869718 Brader Sep 1989 A
4899740 Napolitano Feb 1990 A
4905688 Vicenzi et al. Mar 1990 A
4915103 Visveshwara et al. Apr 1990 A
4915105 Lee Apr 1990 A
4919128 Kopala et al. Apr 1990 A
4919132 Miser Apr 1990 A
4938212 Snook et al. Jul 1990 A
4944310 Sullivan Jul 1990 A
4967743 Lambert Nov 1990 A
4971049 Rotariu et al. Nov 1990 A
4982735 Yagata et al. Jan 1991 A
4986269 Hakkinen Jan 1991 A
4989599 Carter Feb 1991 A
4990157 Roberts et al. Feb 1991 A
5000175 Pue Mar 1991 A
5002050 McGinnis Mar 1991 A
5005570 Perkins Apr 1991 A
5018519 Brown May 1991 A
5022394 Chmielinski Jun 1991 A
5024219 Dietz Jun 1991 A
5025805 Nutter Jun 1991 A
5038771 Dietz Aug 1991 A
5042478 Kopala et al. Aug 1991 A
5046491 Derrick Sep 1991 A
5046492 Stackhouse et al. Sep 1991 A
5048515 Sanso Sep 1991 A
5048516 Soderberg Sep 1991 A
5052400 Dietz Oct 1991 A
5054484 Hebeler, Jr. Oct 1991 A
5058580 Hazard Oct 1991 A
5074299 Dietz Dec 1991 A
5076267 Pasternack Dec 1991 A
5090408 Spofford et al. Feb 1992 A
5097827 Izumi Mar 1992 A
5099836 Rowland et al. Mar 1992 A
5099837 Russel, Sr. et al. Mar 1992 A
5101820 Christopher Apr 1992 A
5103815 Siegel et al. Apr 1992 A
5105807 Kahn et al. Apr 1992 A
5107830 Younes Apr 1992 A
5107831 Halpern et al. Apr 1992 A
5113857 Dickerman et al. May 1992 A
5117818 Palfy Jun 1992 A
5117819 Servidio et al. Jun 1992 A
5127400 DeVries et al. Jul 1992 A
5134995 Gruenke et al. Aug 1992 A
5134996 Bell Aug 1992 A
5140045 Askanazi et al. Aug 1992 A
5148802 Sanders et al. Sep 1992 A
5161525 Kimm et al. Nov 1992 A
5165397 Arp Nov 1992 A
5181509 Spofford et al. Jan 1993 A
5184610 Marten et al. Feb 1993 A
5186167 Kolobow Feb 1993 A
5193532 Moa et al. Mar 1993 A
5193533 Body et al. Mar 1993 A
5199424 Sullivan et al. Apr 1993 A
5211170 Press May 1993 A
5217008 Lindholm Jun 1993 A
5233978 Callaway Aug 1993 A
5233979 Strickland Aug 1993 A
5239994 Atkins Aug 1993 A
5239995 Estes et al. Aug 1993 A
5243972 Huang Sep 1993 A
5245995 Sullivan et al. Sep 1993 A
5255675 Kolobow Oct 1993 A
5258027 Berghaus Nov 1993 A
5269296 Landis Dec 1993 A
5271388 Whitwam et al. Dec 1993 A
5271391 Graves Dec 1993 A
5275159 Griebel Jan 1994 A
5279288 Christopher Jan 1994 A
5287852 Arkinstall Feb 1994 A
5303698 Tobia et al. Apr 1994 A
5303700 Weismann et al. Apr 1994 A
5318019 Celaya Jun 1994 A
5331995 Westfall et al. Jul 1994 A
5335656 Bowe et al. Aug 1994 A
5339809 Beck, Jr. et al. Aug 1994 A
5349946 McComb Sep 1994 A
5368017 Sorenson et al. Nov 1994 A
5370112 Perkins Dec 1994 A
5373842 Olsson et al. Dec 1994 A
5375593 Press Dec 1994 A
5388575 Taube Feb 1995 A
5394870 Johansson Mar 1995 A
5398676 Press et al. Mar 1995 A
5398682 Lynn Mar 1995 A
5400778 Jonson et al. Mar 1995 A
5419314 Christopher May 1995 A
5438979 Johnson, Jr. et al. Aug 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5460174 Chang Oct 1995 A
5460613 Ulrich et al. Oct 1995 A
5474062 DeVires et al. Dec 1995 A
5477852 Landis et al. Dec 1995 A
5485850 Dietz Jan 1996 A
5490502 Rapoport et al. Feb 1996 A
5503146 Froehlich et al. Apr 1996 A
5503497 Dudley et al. Apr 1996 A
5507282 Younes Apr 1996 A
5509409 Weatherholt Apr 1996 A
5513628 Coles et al. May 1996 A
5513631 McWilliams May 1996 A
5513635 Bedi May 1996 A
5522382 Sullivan et al. Jun 1996 A
5526806 Sansoni Jun 1996 A
5529060 Salmon et al. Jun 1996 A
5533506 Wood Jul 1996 A
5535738 Estes et al. Jul 1996 A
5537997 Mechlenburg et al. Jul 1996 A
5538002 Boussignac et al. Jul 1996 A
5542415 Brody Aug 1996 A
5546935 Champeau Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5551419 Froehlich et al. Sep 1996 A
5558086 Smith et al. Sep 1996 A
5564416 Jones Oct 1996 A
5575282 Knoch et al. Nov 1996 A
5582164 Sanders Dec 1996 A
5593143 Ferrarin Jan 1997 A
5595174 Gwaltney Jan 1997 A
5598837 Sirianne, Jr. et al. Feb 1997 A
5598840 Iund et al. Feb 1997 A
5603315 Sasso, Jr. Feb 1997 A
5605148 Jones Feb 1997 A
5626131 Chua et al. May 1997 A
5632269 Zdrojkowski May 1997 A
5636630 Miller et al. Jun 1997 A
5645053 Remmers et al. Jul 1997 A
5645054 Cotner et al. Jul 1997 A
5647351 Weismann et al. Jul 1997 A
5669377 Fenn Sep 1997 A
5669380 Garry et al. Sep 1997 A
5676132 Tillotson et al. Oct 1997 A
5676135 McClean Oct 1997 A
5682878 Ogden Nov 1997 A
5682881 Winthrop et al. Nov 1997 A
5687713 Bahr et al. Nov 1997 A
5687714 Kolobow et al. Nov 1997 A
5687715 Landis et al. Nov 1997 A
5690097 Howard et al. Nov 1997 A
5692497 Schnitzer et al. Dec 1997 A
5697361 Smith Dec 1997 A
5697364 Chua et al. Dec 1997 A
5704345 Berthon-Jones Jan 1998 A
5711296 Kolobow Jan 1998 A
5715812 Deighan et al. Feb 1998 A
5715815 Lorenzen et al. Feb 1998 A
5720278 Lachmann et al. Feb 1998 A
5735268 Chua et al. Apr 1998 A
5735272 Dillon et al. Apr 1998 A
5740796 Skog Apr 1998 A
5752511 Simmons et al. May 1998 A
5762638 Shikani et al. Jun 1998 A
5791337 Coles et al. Aug 1998 A
5819723 Joseph Oct 1998 A
5826579 Remmers et al. Oct 1998 A
5845636 Gruenke et al. Dec 1998 A
5865173 Froehlich Feb 1999 A
5865174 Kloeppel Feb 1999 A
5881723 Wallace et al. Mar 1999 A
5904648 Arndt et al. May 1999 A
5906204 Beran et al. May 1999 A
5911756 Debry Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915381 Nord Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5921942 Remmers et al. Jul 1999 A
5921952 Desmond, III et al. Jul 1999 A
5927276 Rodriguez Jul 1999 A
5928189 Phillips et al. Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5931162 Christian Aug 1999 A
5937853 Strom Aug 1999 A
5937855 Zdrojkowski et al. Aug 1999 A
5938118 Cooper Aug 1999 A
5954050 Christopher Sep 1999 A
5957136 Magidson et al. Sep 1999 A
5964223 Baran Oct 1999 A
5975077 Hofstetter et al. Nov 1999 A
5975081 Hood et al. Nov 1999 A
5979440 Honkonen et al. Nov 1999 A
5989193 Sullivan Nov 1999 A
6000396 Melker et al. Dec 1999 A
6019101 Cotner et al. Feb 2000 A
6039696 Bell Mar 2000 A
6050260 Daniell et al. Apr 2000 A
6076519 Johnson Jun 2000 A
6085747 Axe et al. Jul 2000 A
6091973 Colla et al. Jul 2000 A
6093169 Cardoso Jul 2000 A
6105575 Estes et al. Aug 2000 A
6109264 Sauer Aug 2000 A
6112746 Kwok et al. Sep 2000 A
6119694 Correa et al. Sep 2000 A
6120460 Abreu Sep 2000 A
6123668 Abreu Sep 2000 A
6131571 Lampotang et al. Oct 2000 A
6135970 Kadhiresan et al. Oct 2000 A
6152132 Psaros Nov 2000 A
6152134 Webber et al. Nov 2000 A
6158432 Biondi et al. Dec 2000 A
6192883 Miller, Jr. Feb 2001 B1
6203502 Hilgendorf et al. Mar 2001 B1
6213119 Brydon et al. Apr 2001 B1
6213955 Karakasoglu et al. Apr 2001 B1
6220244 McLaughlin Apr 2001 B1
6224560 Gazula et al. May 2001 B1
6227200 Crump et al. May 2001 B1
6247470 Ketchedjian Jun 2001 B1
6269811 Duff et al. Aug 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273859 Remmers et al. Aug 2001 B1
6286508 Remmers et al. Sep 2001 B1
D449376 McDonald et al. Oct 2001 S
D449883 McDonald et al. Oct 2001 S
6298850 Argraves Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6314957 Boissin et al. Nov 2001 B1
6315739 Merilainen et al. Nov 2001 B1
D451598 McDonald et al. Dec 2001 S
6328038 Kessler et al. Dec 2001 B1
6328753 Zammit Dec 2001 B1
6332463 Farrugia et al. Dec 2001 B1
6345619 Finn Feb 2002 B1
6357438 Hansen Mar 2002 B1
6357440 Hansen et al. Mar 2002 B1
6360741 Truschel Mar 2002 B2
6360745 Wallace et al. Mar 2002 B1
6363933 Berthon-Jones Apr 2002 B1
6367474 Berthon-Jones et al. Apr 2002 B1
6369838 Wallace et al. Apr 2002 B1
6371114 Schmidt et al. Apr 2002 B1
6378520 Davenport Apr 2002 B1
6390091 Banner et al. May 2002 B1
6394088 Frye et al. May 2002 B1
6398739 Sullivan et al. Jun 2002 B1
6418928 Bordewick et al. Jul 2002 B1
6422240 Levitsky et al. Jul 2002 B1
6423001 Abreu Jul 2002 B1
6427690 McCombs et al. Aug 2002 B1
6431172 Bordewick Aug 2002 B1
6439228 Hete et al. Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6439234 Curti et al. Aug 2002 B1
6439235 Larquet et al. Aug 2002 B1
6450164 Banner et al. Sep 2002 B1
6450166 McDonald et al. Sep 2002 B1
6457472 Schwartz et al. Oct 2002 B1
6467477 Frank et al. Oct 2002 B1
6478026 Wood Nov 2002 B1
6494202 Farmer Dec 2002 B2
6494206 Bergamaschi et al. Dec 2002 B1
6505623 Hansen Jan 2003 B1
6505624 Campbell, Sr. Jan 2003 B1
6516801 Boussignac Feb 2003 B2
6520176 Dubois et al. Feb 2003 B1
6520183 Amar Feb 2003 B2
6530373 Patron et al. Mar 2003 B1
6532958 Buan et al. Mar 2003 B1
6532960 Yurko Mar 2003 B1
6536432 Truschel Mar 2003 B2
6536436 McGlothen Mar 2003 B1
6550478 Remmers et al. Apr 2003 B2
6553992 Berthon-Jones et al. Apr 2003 B1
6561188 Ellis May 2003 B1
6561193 Noble May 2003 B1
6564797 Mechlenburg et al. May 2003 B1
6564800 Olivares May 2003 B1
6568391 Tatarek et al. May 2003 B1
6571794 Hansen Jun 2003 B1
6571796 Banner et al. Jun 2003 B2
6571798 Thornton Jun 2003 B1
6575159 Frye et al. Jun 2003 B1
6575944 McNary et al. Jun 2003 B1
6584973 Biondi et al. Jul 2003 B1
6588422 Berthon-Jones et al. Jul 2003 B1
6588423 Sinderby Jul 2003 B1
6591834 Colla et al. Jul 2003 B1
6591835 Blanch Jul 2003 B1
6595207 McDonald et al. Jul 2003 B1
6595215 Wood Jul 2003 B2
6609517 Estes et al. Aug 2003 B1
6622726 Du Sep 2003 B1
6626174 Genger et al. Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6629525 Hill et al. Oct 2003 B2
6629527 Estes et al. Oct 2003 B1
6629529 Arnott Oct 2003 B2
6631919 West et al. Oct 2003 B1
6634356 O'Dea et al. Oct 2003 B1
6635021 Sullivan et al. Oct 2003 B1
6640806 Yurko Nov 2003 B2
6644305 MacRae et al. Nov 2003 B2
6644311 Truitt et al. Nov 2003 B1
6644315 Ziaee Nov 2003 B2
6651653 Honkonen et al. Nov 2003 B1
6651656 Demers et al. Nov 2003 B2
6651658 Hill et al. Nov 2003 B1
6655382 Kolobow Dec 2003 B1
6655385 Curti et al. Dec 2003 B1
6666208 Schumacher et al. Dec 2003 B1
6668828 Figley et al. Dec 2003 B1
6668829 Biondi et al. Dec 2003 B2
6669712 Cardoso Dec 2003 B1
6675796 McDonald Jan 2004 B2
6675801 Wallace et al. Jan 2004 B2
6679265 Strickland et al. Jan 2004 B2
6681764 Honkonen et al. Jan 2004 B1
6684883 Burns Feb 2004 B1
6691702 Appel et al. Feb 2004 B2
6691707 Gunaratnam et al. Feb 2004 B1
6694973 Dunhao et al. Feb 2004 B1
6694978 Bennarsten Feb 2004 B1
6698423 Honkonen et al. Mar 2004 B1
6705314 O'Dea Mar 2004 B1
6705315 Sullivan et al. Mar 2004 B2
6722360 Doshi Apr 2004 B2
6722362 Hete et al. Apr 2004 B2
6742517 Frye et al. Jun 2004 B1
6745768 Colla et al. Jun 2004 B2
6752150 Remmers et al. Jun 2004 B1
6752151 Hill Jun 2004 B2
6752152 Gale et al. Jun 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6758217 Younes Jul 2004 B1
6761172 Boussignac et al. Jul 2004 B2
6763832 Kirsch et al. Jul 2004 B1
6769432 Keifer Aug 2004 B1
6776162 Wood Aug 2004 B2
6776163 Dougill et al. Aug 2004 B2
6789539 Martinez Sep 2004 B2
6796305 Banner et al. Sep 2004 B1
6799575 Carter Oct 2004 B1
6805126 Dutkiewicz Oct 2004 B2
6807966 Wright Oct 2004 B2
6807967 Wood Oct 2004 B2
6810876 Berthon-Jones Nov 2004 B2
6814073 Wickham Nov 2004 B2
6814077 Eistert Nov 2004 B1
6823866 Jafari et al. Nov 2004 B2
6827340 Austin et al. Dec 2004 B2
6837238 McDonald Jan 2005 B2
6840240 Berthon-Jones et al. Jan 2005 B1
6843247 Frye et al. Jan 2005 B2
6848446 Noble Feb 2005 B2
6854462 Berthon-Jones et al. Feb 2005 B2
6863069 Wood Mar 2005 B2
6866041 Hardy, Jr. et al. Mar 2005 B2
6877511 DeVries et al. Apr 2005 B2
6880556 Uchiyama et al. Apr 2005 B2
6910480 Berthon-Jones Jun 2005 B1
6910482 Bliss et al. Jun 2005 B2
6910510 Gale et al. Jun 2005 B2
6913601 St. Goar et al. Jul 2005 B2
6915803 Berthon-Jones et al. Jul 2005 B2
6920875 Hill et al. Jul 2005 B1
6920877 Remmers et al. Jul 2005 B2
6920878 Sinderby et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6938619 Hickle Sep 2005 B1
6938620 Payne, Jr. Sep 2005 B2
6941950 Wilson et al. Sep 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6951217 Berthon-Jones Oct 2005 B2
6971382 Corso Dec 2005 B1
6986353 Wright Jan 2006 B2
6994089 Wood Feb 2006 B2
6997177 Wood Feb 2006 B2
6997881 Green et al. Feb 2006 B2
7000612 Jafari et al. Feb 2006 B2
7004170 Gillstrom Feb 2006 B1
7007692 Aylsworth et al. Mar 2006 B2
7011091 Hill et al. Mar 2006 B2
7013892 Estes et al. Mar 2006 B2
7013898 Rashad et al. Mar 2006 B2
7017574 Biondi et al. Mar 2006 B2
7017575 Yagi et al. Mar 2006 B2
7024945 Wallace Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7044129 Truschel et al. May 2006 B1
7047969 Noble May 2006 B2
7047974 Strickland et al. May 2006 B2
7051735 Mechlenburg et al. May 2006 B2
7055522 Berthon-Jones Jun 2006 B2
7059328 Wood Jun 2006 B2
7066173 Banner et al. Jun 2006 B2
7066178 Gunaratnam et al. Jun 2006 B2
7077132 Berthon-Jones Jul 2006 B2
7077133 Yagi et al. Jul 2006 B2
7080645 Genger et al. Jul 2006 B2
7080646 Wiesmann et al. Jul 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100609 Berthon-Jones et al. Sep 2006 B2
7117438 Wallace et al. Oct 2006 B2
7121277 Strom Oct 2006 B2
7128578 Lampotang et al. Oct 2006 B2
7152598 Morris et al. Dec 2006 B2
7152604 Hickle et al. Dec 2006 B2
7156090 Nomori Jan 2007 B2
7156097 Cardoso Jan 2007 B2
7162296 Leonhardt et al. Jan 2007 B2
7168429 Matthews et al. Jan 2007 B2
7188621 DeVries et al. Mar 2007 B2
7188624 Wood Mar 2007 B2
7195016 Loyd et al. Mar 2007 B2
7195018 Goldstein Mar 2007 B1
7201169 Wilkie et al. Apr 2007 B2
7201269 Buscher et al. Apr 2007 B2
D542912 Gunaratnam et al. May 2007 S
7222623 DeVries et al. May 2007 B2
7225811 Ruiz et al. Jun 2007 B2
7234465 Wood Jun 2007 B2
7237205 Sarel Jun 2007 B2
7246620 Conroy, Jr. Jul 2007 B2
D549323 Kwok et al. Aug 2007 S
7255103 Bassin Aug 2007 B2
7255107 Gomez Aug 2007 B1
7267122 Hill Sep 2007 B2
7267123 Aylsworth et al. Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7270128 Berthon-Jones et al. Sep 2007 B2
7296569 Frye et al. Nov 2007 B2
7296573 Estes et al. Nov 2007 B2
D557802 Miceli, Jr. et al. Dec 2007 S
7302950 Berthon-Jones et al. Dec 2007 B2
7305987 Scholler et al. Dec 2007 B2
7318437 Gunaratnam et al. Jan 2008 B2
7320321 Pranger et al. Jan 2008 B2
7328703 Tiep Feb 2008 B1
7353826 Sleeper et al. Apr 2008 B2
7367337 Berthon-Jones et al. May 2008 B2
7370652 Matula, Jr. et al. May 2008 B2
7373939 DuBois et al. May 2008 B1
7406966 Wondka Aug 2008 B2
7418965 Fukunaga et al. Sep 2008 B2
7422015 Delisle et al. Sep 2008 B2
7431035 Mizuta et al. Oct 2008 B2
7451762 Chua et al. Nov 2008 B2
7455717 Sprinkle Nov 2008 B2
7461656 Gunaratnam et al. Dec 2008 B2
7468040 Hartley et al. Dec 2008 B2
7469697 Lee et al. Dec 2008 B2
7472702 Beck et al. Jan 2009 B2
7478641 Rousselet Jan 2009 B2
7481219 Lewis et al. Jan 2009 B2
7481221 Kullik et al. Jan 2009 B2
7487774 Acker Feb 2009 B2
7487778 Freitag Feb 2009 B2
7490605 Frye et al. Feb 2009 B2
D588258 Judson et al. Mar 2009 S
D589139 Guney et al. Mar 2009 S
7500482 Biederman Mar 2009 B2
7509957 Duquette et al. Mar 2009 B2
D591419 Chandran et al. Apr 2009 S
7533670 Freitag et al. May 2009 B1
7556038 Kirby et al. Jul 2009 B2
7559327 Hernandez Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7562659 Matarasso Jul 2009 B2
7578294 Pierro et al. Aug 2009 B2
7588033 Wondka Sep 2009 B2
7591265 Lee et al. Sep 2009 B2
7631642 Freitag et al. Dec 2009 B2
7640934 Zollinger et al. Jan 2010 B2
7658189 Davidson et al. Feb 2010 B2
D614288 Judson et al. Apr 2010 S
7721733 Hughes et al. May 2010 B2
7721736 Urias et al. May 2010 B2
7740013 Ishizaki et al. Jun 2010 B2
7743770 Curti et al. Jun 2010 B2
7762253 Acker et al. Jul 2010 B2
7766009 Frye et al. Aug 2010 B2
7787946 Stahmann et al. Aug 2010 B2
7814906 Moretti Oct 2010 B2
7819120 Taylor et al. Oct 2010 B2
D626646 Lubke et al. Nov 2010 S
D627059 Wood et al. Nov 2010 S
7832400 Curti et al. Nov 2010 B2
7837761 Bliss et al. Nov 2010 B2
7841343 Deane et al. Nov 2010 B2
7845350 Kayyali et al. Dec 2010 B1
7849854 DeVries et al. Dec 2010 B2
7856982 Matula, Jr. et al. Dec 2010 B2
7866318 Bassin Jan 2011 B2
7874290 Chalvignac Jan 2011 B2
7874291 Ging et al. Jan 2011 B2
7874293 Gunaratnam et al. Jan 2011 B2
7878980 Ricciardelli Feb 2011 B2
7882834 Gradon et al. Feb 2011 B2
7886740 Thomas et al. Feb 2011 B2
7891353 Chalvignac Feb 2011 B2
7891357 Carron et al. Feb 2011 B2
7896958 Sermet et al. Mar 2011 B2
7900627 Aylsworth et al. Mar 2011 B2
7900628 Matula, Jr. et al. Mar 2011 B2
7900635 Gunaratnam et al. Mar 2011 B2
7901361 Rapoport et al. Mar 2011 B2
7905231 Chalvignac Mar 2011 B2
7913691 Farrugia Mar 2011 B2
7914459 Green et al. Mar 2011 B2
7918226 Acker et al. Apr 2011 B2
7926486 Childers Apr 2011 B2
7926487 Drew et al. Apr 2011 B2
7931023 Berthon-Jones et al. Apr 2011 B2
7934499 Berthon-Jones May 2011 B2
7938114 Matthews et al. May 2011 B2
7942150 Guney et al. May 2011 B2
7942380 Bertinetti et al. May 2011 B2
7958892 Kwok et al. Jun 2011 B2
7975694 Ho Jul 2011 B2
7980245 Rice et al. Jul 2011 B2
7987847 Wickham et al. Aug 2011 B2
7987850 Zollinger et al. Aug 2011 B2
7987851 Blom et al. Aug 2011 B2
7992557 Nadjafizadeh et al. Aug 2011 B2
7997270 Meier Aug 2011 B2
7997271 Hickle et al. Aug 2011 B2
7997272 Isaza Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645557 Scheiner et al. Sep 2011 S
8011365 Douglas et al. Sep 2011 B2
8011366 Knepper Sep 2011 B2
8015971 Kwok Sep 2011 B2
8015974 Christopher et al. Sep 2011 B2
8020558 Christopher et al. Sep 2011 B2
8025052 Matthews et al. Sep 2011 B2
RE42843 Strickland et al. Oct 2011 E
8042535 Kenyon et al. Oct 2011 B2
8042537 Mechlenburg et al. Oct 2011 B2
8042539 Chandran et al. Oct 2011 B2
8042546 Gunaratnam et al. Oct 2011 B2
8061354 Schneider et al. Nov 2011 B2
8066004 Morris et al. Nov 2011 B2
20010035185 Christopher Nov 2001 A1
20010035186 Hill Nov 2001 A1
20010042548 Boussignac Nov 2001 A1
20020014241 Gradon et al. Feb 2002 A1
20020017300 Hickle et al. Feb 2002 A1
20020020930 Austin et al. Feb 2002 A1
20020026941 Biondi et al. Mar 2002 A1
20020043264 Wickham Apr 2002 A1
20020046751 MacRae et al. Apr 2002 A1
20020046755 De Voss Apr 2002 A1
20020046756 Laizzo et al. Apr 2002 A1
20020053346 Curti et al. May 2002 A1
20020055685 Levitsky et al. May 2002 A1
20020059935 Wood May 2002 A1
20020066452 Kessler et al. Jun 2002 A1
20020078957 Remmers et al. Jun 2002 A1
20020092527 Wood Jul 2002 A1
20020112730 Dutkiewicz Aug 2002 A1
20020153010 Rozenberg et al. Oct 2002 A1
20020157673 Kessler et al. Oct 2002 A1
20020159323 Makabe et al. Oct 2002 A1
20020179090 Boussignac Dec 2002 A1
20030000522 Lynn et al. Jan 2003 A1
20030047185 Olsen et al. Mar 2003 A1
20030069489 Abreu Apr 2003 A1
20030079749 Strickland et al. May 2003 A1
20030094178 McAuley et al. May 2003 A1
20030111081 Gupta Jun 2003 A1
20030116163 Wood Jun 2003 A1
20030121519 Estes et al. Jul 2003 A1
20030145852 Schmidt et al. Aug 2003 A1
20030145853 Muellner Aug 2003 A1
20030145856 Zdrojkowski et al. Aug 2003 A1
20030150455 Bliss et al. Aug 2003 A1
20030159696 Boussignac et al. Aug 2003 A1
20030159697 Wallace Aug 2003 A1
20030168067 Dougill et al. Sep 2003 A1
20030213488 Remmers et al. Nov 2003 A1
20030221687 Kaigler Dec 2003 A1
20030230308 Linden Dec 2003 A1
20040020493 Wood Feb 2004 A1
20040025881 Gunaratnam et al. Feb 2004 A1
20040035431 Wright Feb 2004 A1
20040040560 Euliano et al. Mar 2004 A1
20040050387 Younes Mar 2004 A1
20040074494 Frater Apr 2004 A1
20040159323 Schmidt et al. Aug 2004 A1
20040206352 Conroy Oct 2004 A1
20040221848 Hill Nov 2004 A1
20040221854 Hete et al. Nov 2004 A1
20040226566 Gunaratnam et al. Nov 2004 A1
20040231674 Tanaka Nov 2004 A1
20040237963 Berthon-Jones Dec 2004 A1
20040254501 Mault Dec 2004 A1
20040255943 Morris et al. Dec 2004 A1
20050005938 Berthon-Jones et al. Jan 2005 A1
20050010125 Joy et al. Jan 2005 A1
20050011524 Thomlinson et al. Jan 2005 A1
20050016534 Ost Jan 2005 A1
20050033247 Thompson Feb 2005 A1
20050034724 O'Dea Feb 2005 A1
20050061318 Faram Mar 2005 A1
20050061322 Freitag Mar 2005 A1
20050061326 Payne Mar 2005 A1
20050072430 Djupesland Apr 2005 A1
20050081849 Warren Apr 2005 A1
20050087190 Jafari et al. Apr 2005 A1
20050098179 Burton et al. May 2005 A1
20050103343 Gosweiler May 2005 A1
20050121033 Starr et al. Jun 2005 A1
20050121037 Wood Jun 2005 A1
20050121038 Christopher Jun 2005 A1
20050150498 McDonald Jul 2005 A1
20050161049 Wright Jul 2005 A1
20050166924 Thomas et al. Aug 2005 A1
20050199242 Matula et al. Sep 2005 A1
20050205096 Matula et al. Sep 2005 A1
20050247308 Frye et al. Nov 2005 A1
20050257793 Tatsumoto Nov 2005 A1
20050274381 Deane et al. Dec 2005 A1
20060005834 Aylsworth et al. Jan 2006 A1
20060005842 Rashad et al. Jan 2006 A1
20060011199 Rashad et al. Jan 2006 A1
20060027234 Gradon et al. Feb 2006 A1
20060048781 Nawata Mar 2006 A1
20060054169 Han et al. Mar 2006 A1
20060070625 Ayappa et al. Apr 2006 A1
20060079799 Green et al. Apr 2006 A1
20060096596 Occhialini et al. May 2006 A1
20060107958 Sleeper May 2006 A1
20060112959 Mechlenburg et al. Jun 2006 A1
20060124131 Chandran et al. Jun 2006 A1
20060124134 Wood Jun 2006 A1
20060137690 Gunaratnam et al. Jun 2006 A1
20060144396 DeVries et al. Jul 2006 A1
20060149144 Lynn et al. Jul 2006 A1
20060150972 Mizuta et al. Jul 2006 A1
20060150973 Chalvignac Jul 2006 A1
20060150982 Wood Jul 2006 A1
20060174877 Jagger et al. Aug 2006 A1
20060180149 Matarasso Aug 2006 A1
20060185669 Bassovitch Aug 2006 A1
20060196510 McDonald et al. Sep 2006 A1
20060201504 Singhal et al. Sep 2006 A1
20060213518 DeVries et al. Sep 2006 A1
20060213519 Schmidt et al. Sep 2006 A1
20060225737 Iobbi Oct 2006 A1
20060237013 Kwok Oct 2006 A1
20060243278 Hamilton et al. Nov 2006 A1
20060249155 Gambone Nov 2006 A1
20060266361 Hernandez Nov 2006 A1
20060283447 Dhuper et al. Dec 2006 A1
20070000490 DeVries et al. Jan 2007 A1
20070000495 Matula et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070056590 Wolfson Mar 2007 A1
20070062529 Choncholas et al. Mar 2007 A1
20070068528 Bohm et al. Mar 2007 A1
20070074724 Duquette et al. Apr 2007 A1
20070084465 Heinrich et al. Apr 2007 A1
20070089743 Hoffman Apr 2007 A1
20070089745 Gabriel et al. Apr 2007 A1
20070095347 Lampotang et al. May 2007 A1
20070107728 Ricciardelli et al. May 2007 A1
20070107732 Dennis et al. May 2007 A1
20070107737 Landis et al. May 2007 A1
20070113850 Acker et al. May 2007 A1
20070113856 Acker et al. May 2007 A1
20070125379 Pierro et al. Jun 2007 A1
20070137653 Wood Jun 2007 A1
20070163600 Hoffman Jul 2007 A1
20070173705 Teller et al. Jul 2007 A1
20070181125 Mulier Aug 2007 A1
20070193705 Hsu Aug 2007 A1
20070199568 Diekens et al. Aug 2007 A1
20070209662 Bowen et al. Sep 2007 A1
20070215156 Kwok Sep 2007 A1
20070232950 West Oct 2007 A1
20070240716 Marx Oct 2007 A1
20070251528 Seitz et al. Nov 2007 A1
20070272249 Chandran et al. Nov 2007 A1
20080000475 Hill Jan 2008 A1
20080006271 Aylsworth et al. Jan 2008 A1
20080011298 Mazar et al. Jan 2008 A1
20080011301 Qian Jan 2008 A1
20080041371 Freitag Feb 2008 A1
20080041386 Dodier et al. Feb 2008 A1
20080045815 Derchak et al. Feb 2008 A1
20080047559 Fiori Feb 2008 A1
20080051674 Davenport et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080053447 Ratajczak et al. Mar 2008 A1
20080060646 Isaza Mar 2008 A1
20080060657 McAuley et al. Mar 2008 A1
20080066753 Martin et al. Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078392 Pelletier et al. Apr 2008 A1
20080078407 Sherman Apr 2008 A1
20080092904 Gunarathnam et al. Apr 2008 A1
20080092905 Gunarathnam et al. Apr 2008 A1
20080092906 Gunarathnam et al. Apr 2008 A1
20080099024 Gunarathnam et al. May 2008 A1
20080099027 Gunarathnam et al. May 2008 A1
20080105264 Gunarathnam et al. May 2008 A1
20080110462 Chekal et al. May 2008 A1
20080121230 Cortez et al. May 2008 A1
20080135044 Freitag et al. Jun 2008 A1
20080142019 Lewis et al. Jun 2008 A1
20080161653 Lin et al. Jul 2008 A1
20080173304 Zaiser et al. Jul 2008 A1
20080178880 Christopher et al. Jul 2008 A1
20080178881 Whitcher et al. Jul 2008 A1
20080178882 Christopher et al. Jul 2008 A1
20080185002 Berthon-Jones et al. Aug 2008 A1
20080185007 Sleeper et al. Aug 2008 A1
20080190429 Tatarek Aug 2008 A1
20080190436 Jaffe et al. Aug 2008 A1
20080196715 Yamamori Aug 2008 A1
20080196723 Tilley Aug 2008 A1
20080196728 Ho Aug 2008 A1
20080202528 Carter et al. Aug 2008 A1
20080216834 Easley et al. Sep 2008 A1
20080216838 Wondka Sep 2008 A1
20080216841 Grimes et al. Sep 2008 A1
20080223369 Warren Sep 2008 A1
20080245369 Matula et al. Oct 2008 A1
20080251079 Richey Oct 2008 A1
20080264417 Manigel et al. Oct 2008 A1
20080283060 Bassin Nov 2008 A1
20080295846 Han et al. Dec 2008 A1
20080302364 Garde et al. Dec 2008 A1
20080308104 Blomberg et al. Dec 2008 A1
20090007911 Cleary et al. Jan 2009 A1
20090020121 Bassin Jan 2009 A1
20090044808 Guney et al. Feb 2009 A1
20090056708 Stenzler et al. Mar 2009 A1
20090078255 Bowman et al. Mar 2009 A1
20090078258 Bowman et al. Mar 2009 A1
20090095298 Gunaratnam et al. Apr 2009 A1
20090095300 McMorrow Apr 2009 A1
20090095303 Sher et al. Apr 2009 A1
20090099471 Broadley et al. Apr 2009 A1
20090101147 Landis et al. Apr 2009 A1
20090101154 Mutti et al. Apr 2009 A1
20090107502 Younes Apr 2009 A1
20090118632 Goepp May 2009 A1
20090120437 Oates et al. May 2009 A1
20090126739 Ng et al. May 2009 A1
20090133699 Nalagatla et al. May 2009 A1
20090139527 Ng et al. Jun 2009 A1
20090145435 White et al. Jun 2009 A1
20090151719 Wondka et al. Jun 2009 A1
20090151724 Wondka et al. Jun 2009 A1
20090151726 Freitag Jun 2009 A1
20090151729 Judson et al. Jun 2009 A1
20090156953 Wondka et al. Jun 2009 A1
20090165799 Duquette et al. Jul 2009 A1
20090173347 Berthon-Jones Jul 2009 A1
20090173349 Hernandez et al. Jul 2009 A1
20090183739 Wondka Jul 2009 A1
20090199855 Davenport Aug 2009 A1
20090205662 Kwok et al. Aug 2009 A1
20090241947 Bedini et al. Oct 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090250066 Daly Oct 2009 A1
20090255533 Freitag et al. Oct 2009 A1
20090260625 Wondka Oct 2009 A1
20090277452 Lubke et al. Nov 2009 A1
20090293877 Blanch et al. Dec 2009 A1
20090301495 Pierro et al. Dec 2009 A1
20090308395 Lee et al. Dec 2009 A1
20090320851 Selvarajan et al. Dec 2009 A1
20100043786 Freitag et al. Feb 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100083968 Wondka et al. Apr 2010 A1
20100108073 Zollinger et al. May 2010 A1
20100132716 Selvarajan et al. Jun 2010 A1
20100132717 Davidson et al. Jun 2010 A1
20100163043 Hart et al. Jul 2010 A1
20100170512 Kuypers et al. Jul 2010 A1
20100170513 Bowditch et al. Jul 2010 A1
20100192957 Hobson et al. Aug 2010 A1
20100218766 Milne Sep 2010 A1
20100224196 Jablons Sep 2010 A1
20100252037 Wondka et al. Oct 2010 A1
20100252039 Cipollone et al. Oct 2010 A1
20100252040 Kapust et al. Oct 2010 A1
20100252041 Kapust et al. Oct 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100252043 Freitag Oct 2010 A1
20100252044 Duquette et al. Oct 2010 A1
20100269834 Freitag et al. Oct 2010 A1
20100275920 Tham et al. Nov 2010 A1
20100275921 Schindhelm et al. Nov 2010 A1
20100282251 Calluaud et al. Nov 2010 A1
20100282810 Hawes Nov 2010 A1
20100288279 Seiver et al. Nov 2010 A1
20100288289 Nasir Nov 2010 A1
20100300445 Chatburn et al. Dec 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100307487 Dunsmore et al. Dec 2010 A1
20100307495 Kepler et al. Dec 2010 A1
20100307499 Eger et al. Dec 2010 A1
20100307500 Armitstead Dec 2010 A1
20100307502 Rummery et al. Dec 2010 A1
20100313891 Veliss et al. Dec 2010 A1
20100313898 Richard et al. Dec 2010 A1
20100319703 Hayman et al. Dec 2010 A1
20100326441 Zucker et al. Dec 2010 A1
20100326446 Behlmaier Dec 2010 A1
20110000489 Laksov et al. Jan 2011 A1
20110009763 Levitsky et al. Jan 2011 A1
20110011402 Berthon-Jones Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110034819 Desforges et al. Feb 2011 A1
20110036352 Estes et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110041855 Gunaratnam et al. Feb 2011 A1
20110061647 Stahmann et al. Mar 2011 A1
20110067704 Kooij et al. Mar 2011 A1
20110067709 Doshi et al. Mar 2011 A1
20110071444 Kassatly et al. Mar 2011 A1
20110073107 Rodman et al. Mar 2011 A1
20110073116 Genger et al. Mar 2011 A1
20110087123 Choncholas et al. Apr 2011 A9
20110088690 Djupesland et al. Apr 2011 A1
20110094518 Cipollone et al. Apr 2011 A1
20110100365 Wedler et al. May 2011 A1
20110114098 McAuley et al. May 2011 A1
20110125052 Davenport et al. May 2011 A1
20110126841 Matula, Jr. et al. Jun 2011 A1
20110132363 Chalvignac Jun 2011 A1
20110139153 Chalvignac Jun 2011 A1
20110146687 Fukushima Jun 2011 A1
20110155140 Ho et al. Jun 2011 A1
20110162650 Miller et al. Jul 2011 A1
20110162655 Gunaratnam et al. Jul 2011 A1
20110178419 Wood et al. Jul 2011 A1
20110180068 Kenyon et al. Jul 2011 A1
20110197885 Wondka et al. Aug 2011 A1
20110209705 Freitag Sep 2011 A1
20110214676 Allum et al. Sep 2011 A1
20110220105 Meier Sep 2011 A1
20110232642 Bliss et al. Sep 2011 A1
20110247625 Boussignac Oct 2011 A1
20110253147 Gusky et al. Oct 2011 A1
20110259327 Wondka et al. Oct 2011 A1
20110265796 Amarasinghe et al. Nov 2011 A1
20110277765 Christopher et al. Nov 2011 A1
20110284003 Douglas et al. Nov 2011 A1
Foreign Referenced Citations (109)
Number Date Country
19626924 Jan 1998 DE
29902267 Jul 1999 DE
19841070 May 2000 DE
19849571 May 2000 DE
10337138.9 Mar 2005 DE
10 2006 023 637.8 Nov 2007 DE
0125424 Nov 1984 EP
0692273 Jan 1996 EP
0778035 Jun 1997 EP
1359961 Nov 2003 EP
2377462 Nov 2010 EP
2174609 Nov 1986 GB
2201098 Aug 1988 GB
1055148 Jun 1989 GB
2338420 Dec 1999 GB
S63-57060 Mar 1998 JP
2002-204830 Jul 2002 JP
WO-9211054 Jul 1992 WO
WO-9801176 Jan 1998 WO
WO-9904841 Feb 1999 WO
WO-0064521 Nov 2000 WO
WO-0176655 Oct 2001 WO
WO-02062413 Aug 2002 WO
WO-2004009169 Jan 2004 WO
WO-2005014091 Feb 2005 WO
WO-2005018524 Mar 2005 WO
WO-2006138580 Dec 2006 WO
WO-2007035804 Mar 2007 WO
WO-2007139531 Dec 2007 WO
WO-2007142812 Dec 2007 WO
WO-2008014543 Feb 2008 WO
WO-2008019102 Feb 2008 WO
WO-2008052534 May 2008 WO
WO-2008112474 Sep 2008 WO
WO-2008138040 Nov 2008 WO
WO-2008144589 Nov 2008 WO
WO-2008144669 Nov 2008 WO
WO-2009042973 Apr 2009 WO
WO-2009042974 Apr 2009 WO
WO-2009059353 May 2009 WO
WO-2009064202 May 2009 WO
WO-2009074160 Jun 2009 WO
WO-2009082295 Jul 2009 WO
WO-2009087607 Jul 2009 WO
WO-2009092057 Jul 2009 WO
WO-2009103288 Aug 2009 WO
WO-2009109005 Sep 2009 WO
WO-2009115944 Sep 2009 WO
WO-2009115948 Sep 2009 WO
WO 2009115949 Sep 2009 WO
WO-2009129506 Oct 2009 WO
WO-2009136101 Nov 2009 WO
WO-2009139647 Nov 2009 WO
WO-2009149351 Dec 2009 WO
WO-2009149353 Dec 2009 WO
WO-2009149355 Dec 2009 WO
WO-2009149357 Dec 2009 WO
WO-2009151344 Dec 2009 WO
WO-2009151791 Dec 2009 WO
WO-2010000135 Jan 2010 WO
WO-2010021556 Feb 2010 WO
WO-2010022363 Feb 2010 WO
WO-2010039989 Apr 2010 WO
WO-2010041966 Apr 2010 WO
WO-2010044034 Apr 2010 WO
WO-2010057268 May 2010 WO
WO-2010059049 May 2010 WO
WO-2010060422 Jun 2010 WO
WO-2010068356 Jun 2010 WO
WO-2010070493 Jun 2010 WO
WO-2010070497 Jun 2010 WO
WO-2010070498 Jun 2010 WO
WO-2010076711 Jul 2010 WO
WO-2010081223 Jul 2010 WO
WO-2010091157 Aug 2010 WO
WO-2010099375 Sep 2010 WO
WO-2010102094 Sep 2010 WO
WO-2010115166 Oct 2010 WO
WO-2010115168 Oct 2010 WO
WO-2010115169 Oct 2010 WO
WO-2010115170 Oct 2010 WO
WO-2010116275 Oct 2010 WO
WO-2010132853 Nov 2010 WO
WO-2010136923 Dec 2010 WO
WO-2010139014 Dec 2010 WO
WO-2010150187 Dec 2010 WO
WO-2011002608 Jan 2011 WO
WO-2011004274 Jan 2011 WO
WO-2011006184 Jan 2011 WO
WO-2011006199 Jan 2011 WO
WO-2011014931 Feb 2011 WO
WO-2011017033 Feb 2011 WO
WO-2011017738 Feb 2011 WO
WO-2011021978 Feb 2011 WO
WO-2011022779 Mar 2011 WO
WO-2011024383 Mar 2011 WO
WO-2011029073 Mar 2011 WO
WO-2011029074 Mar 2011 WO
WO-2011035373 Mar 2011 WO
WO-2011038950 Apr 2011 WO
WO-2011038951 Apr 2011 WO
WO-2011044627 Apr 2011 WO
WO-2011057362 May 2011 WO
WO 2011059346 May 2011 WO
WO-2011061648 May 2011 WO
WO-2011062510 May 2011 WO
WO-2011086437 Jul 2011 WO
WO-2011086438 Jul 2011 WO
WO-2011112807 Sep 2011 WO
Non-Patent Literature Citations (127)
Entry
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Dec. 2, 2008, 2 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Nov. 7, 2008, 2 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 10/771,803, dated Oct. 31, 2008, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance dated in re: U.S. Appl. No. 10/771,803, dated Oct. 20, 2008, 8 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 10/771,803, dated Nov. 2, 2007, 2 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/771,803, dated Jun. 14, 2007, 12 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/271,484, dated Feb. 9, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 12/754,437, dated Aug. 16, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Non-Final Office Action dated in re: U.S. Appl. No. 10/567,746, dated Oct. 5, 2009, 9 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiner's Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 16, 2009, 10 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 11/523,519, dated Jan. 13, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Jul. 11, 2008, 13 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 11/523,519, dated Apr. 10, 2008, 3 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/523,519, dated Nov. 26, 2007, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/523,519, dated Mar. 7, 2007, 11 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 11/523,518, dated Dec. 30, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Aug. 21, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 11/798,965, dated Jul. 17, 2009, 5 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 11/798,965, dated Apr. 9, 2009, 6 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 11/798,965, dated Jul. 29, 2008, 12 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/578,283, dated Oct. 19, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 11/882,530, dated Apr. 27, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Supplemental Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 16, 2009, 2 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated Jun. 3, 2009, 4 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/870,849, dated May 14, 2009, 8 pages.
In the U.S. Patent and Trademark Office, Restriction in re: U.S. Appl. No. 10/870,849, dated Nov. 16, 2007, 5 pages.
In the U.S. Patent and Trademark Office, Examiner's Interview Summary in re: U.S. Appl. No. 10/870,849, dated Jul. 27, 2007, 2 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/870,849, dated Feb. 22, 2007, 13 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/493,677, dated Aug. 5, 2011, 5 pages.
In the U.S. Patent and Trademark Office, Restriction/Election Requirement in re: U.S. Appl. No. 12/153,423, dated Oct. 6, 2011, 8 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance in re: U.S. Appl. No. 10/922,054, dated Feb. 12, 2008, 6 pages.
In the U.S. Patent and Trademark Office, Final Office Action in re: U.S. Appl. No. 10/922,054, dated Nov. 27, 2007, 9 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Mar. 14, 2007, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 10/922,054, dated Sep. 7, 2006, 21 pages.
In the U.S. Patent and Trademark Office, Restriction Requirement in re: U.S. Appl. No. 10/922,054, dated May 17, 2006, 5 pages.
In the U.S. Patent and Trademark Office, Notice of Allowance and Examiner's Interview Summary in re: U.S. Appl. No. 12/076,062, dated Nov. 2, 2011, 8 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/076,062, dated Jan. 13, 2011, 14 pages.
In the U.S. Patent and Trademark Office, Office Action in re: U.S. Appl. No. 12/355,753, dated Sep. 28, 2011, 32 pages.
In the U.S. Patent and Trademark Office, Ex Parte Quayle Office Action in re: U.S. Appl. No. 29/388,700, dated Oct. 7, 2011, 5 pages.
“AARC Clinical Practice Guideline: Oxygen Therapy in the Home or Extended Care Facility,” Resp. Care, 1992: 37(8), pp. 918-922.
“ATS Statement: Guidelines for the Six-Minute Walk Test,” Am. J. Respir. Crit. Care Med., 2002: 166, pp. 111-117.
“Passy-Muir Speaking Valves,” Respiratory, Nov. 13, 1998, 7 pages.
Ambrosino, “Exercise and noninvasive ventilatory support,” Monaldi Arch Chest Dis., 2000: 55(3): 242-246.
Ambrosino, “Weaning and Respiratory Muscle Dysfunction: The Egg Chicken Dilemma,” Chest, 2005: 128(2), pp. 481-483.
Bach et al., “Intermittent Positive Pressure Ventilation via Nasal Access in The Management of Respiratory Insufficiency,” Chest, 1987: 92(1), pp. 168-170.
Banner et al., “Extubating at a Pressure Support Ventilation Level Corresponding to Zero Imposed Work of Breathing,” Anesthesiology, Sep. 1994: 81(3A), p. A271.
Banner et al., “Imposed Work of Breathing and Methods of Triggering a Demand-Flow, Continuous Positive Airway Pressure System,” Critical Care Medicine, 1993: 21(2), pp. 183-190.
Banner et al., “Site of Pressure Measurement During Spontaneous Breathing with Continuous Positive Airway Pressure: Effect on Calculating Imposed Work of Breathing,” Critical Care Medicine, 1992: 20(4), pp. 528-533.
Barakat et al., “Effect of noninvasive ventilatory support during exercise of a program in pulmonary rehabilitation in patients with COPD,” Int. J. Chron. Obstruct. Pulmon. Dis., 2007: 2(4), pp. 585-591.
Barreiro et al., “Noninvasive ventilation,” Crit Care Clin., 2007; 23(2): 201-22.
Bauer et al., “ADAM Nasal CPAP Circuit Adaptation: A Case Report,” Sleep, 1991: 14(3), pp. 272-273.
Blanch, “Clinical Studies of Tracheal Gas Insufflation,” Resp. Care, 2001: 45(2), pp. 158-166.
Borghi-Silva et al., “Non-invasive ventilation improves peripheral oxygen saturation and reduces fatigability of quadriceps in patients with COPD,” Respirology, 2009, 14:537-546.
Bossi et al., “Continuous Positive Airway Pressure in the Spontaneously Breathing Newborn by Means of Bilateral Nasal Cannulation,” Monatsschr Kinderheilkd, 1975: 123(4), pp. 141-146.
Boussarsar et al., “Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome,” Intensive Care Med., 2002: 28(4): 406-13.
Chang et al., “Reduced Inspiratory Muscle Endurance Following Successful Weaning From Prolonged Mechanical Ventilation,” Chest, 2005: 128(2), pp. 553-559.
Charlotte Regional Medical Center, “Application of the Passy-Muir Tracheostomy and Ventilator,” Speech-Language Pathology Department, Jan. 1995, 8 pages.
Christopher et al., “Preliminary Observations of Transtracheal Augmented Ventilation for Chronic Severe Respiratory Disease,” Resp. Care, 2001: 46(1), pp. 15-25.
Christopher, et al., “Transtracheal Oxygen Therapy for Refractory Hypoxemia,” JAMA, 1986: 256(4), pp. 494-497.
Ciccolella et al.; “Administration of High-Flow, Vapor-phased, Humidified Nasal Cannula Air (HF-HNC) Decreases Work of Breathing (WOB) in Healthy Subjects During Exercise,” AmJRCCM, Apr. 2001: 163(5), Part 2, pp. A622. (Abstract Only).
Clini et al., “The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary disease patients,” Eur. Respir. J., 2002, 20(3): 529-538.
Costa et al., “Influence of noninvasive ventilation by BiPAP® on exercise tolerance and respiratory muscle strength in chronic obstructive pulmonary disease patients (COPD),” Rev. Lat. Am. Enfermagem., 2006: 14(3), pp. 378-382.
Díaz et al., “Breathing Pattern and Gas Exchange at Peak Exercise in COPD Patients With and Without Tidal Flow Limitation at Rest,” European Respiratory Journal, 2001: 17, pp. 1120-1127.
Enright, “The six-minute walk test,” Resp. Care, 2003: 8, pp. 783-785.
Ferreira et al., “Trigger Performance of Mid-level ICU Mechanical Ventilators During Assisted Ventilation: A Bench Study,” Intensive Care Medicine, 2008,34:1669-1675.
Fink, “Helium-Oxygen: An Old Therapy Creates New Interest,” J. Resp. Care. Pract. now RT for Decision Makers in Respiratory Care, 1999, pp. 71-76.
Gaughan et al., “A Comparison in a Lung Model of Low- and High-Flow Regulators for Transtracheal Jet Ventilation,” Anesthesiology, 1992: 77(1), pp. 189-199.
Gregoretti, et al., “Transtracheal Open Ventilation in Acute Respiratory Failure Secondary to Severe Chronic Obstructive Pulmonary Disease Exacerbation,” Am. J. Resp. Crit. Care. Med., 2006: 173(8), pp. 877-881.
Haenel et al., “Efficacy of Selective Intrabronchial Air Insufflation in Acute Lobar Colapse,” Am. J. Surg., 1992: 164(5), pp. 501-505.
Keilty et al., “Effect of inspiratory pressure support on exercise tolerance and breathlessness in patients with severe stable chronic obstructive pulmonary disease,” Thorax, 1994, 49(10): 990-994.
Köhnlein et al., “Noninvasive ventilation in pulmonary rehabilitation of COPD patients,” Respir. Med., 2009, 103: 1329-1336.
Koska et al., “Evaluation of a Fiberoptic System for Airway Pressure Monitoring,” J. Clin. Monit., 1993: 10(4), pp. 247-250.
Lewis, “Breathless No More, Defeating Adult Sleep Apnea,” FDA Consumer Magazine, Jun. 1992, pp. 33-37.
Limberg et al., “Changes in Supplemental Oxygen Prescription in Pulmonary Rehabilitation,” Resp. Care, 2006:51(11), p. 1302.
Macinryre, “Long-Term Oxygen Therapy: Conference Summary,” Resp. Care, 2000: 45(2), pp. 237-245.
Macintyre et al., “Acute exacerbations and repiratory failure in chronic obstructive pulmonary disease,” Proc. Am. Thorac. Soc., 2008: 5(4), pp. 530-535.
Massie et al., “Clinical Outcomes Related to Interface Type in Patients With Obstructive Sleep Apnea/Hypopnea Syndrome Who are Using Continuous Positive Airway Pressure,” Chest, 2003: 123(4), pp. 1112-1118.
McCoy, “Oxygen Conservation Techniques and Devices,” Resp. Care, 2000: 45(1), pp. 95-104.
McGinley, “A nasal cannula can be used to treat obstructive sleep apnea”; Am. J. Resp. Crit. Care Med., 2007: 176(2), pp. 194-200.
Menadue et al., “Non-invasive ventilation during arm exercise and ground walking in patients with chronic hypercapnic respiratory failure,” Respirology, 2009, 14(2): 251-259.
Menon et al., “Tracheal Perforation. A Complication Associated with Transtracheal Oxygen Therapy,” Chest, 1993: 104(2), pp. 636-637.
Messinger et al., “Using Tracheal Pressure to Trigger the Ventilator and Control Airway Pressure During Continuous Positive Airway Pressure Decreases Work of Breathing,” Chest, 1995: vol. 108(2), pp. 509-514.
Mettey, “Use of CPAP Nasal Cannula for Aids of the Newborns in Tropical Countries,” Medecine Tropicale, 1985: 45(1), pp. 87-90.
Nahmias et al., “Treatment of the Obstructive Sleep Apnea Syndrome Using a Nasopharyngeal Tube”, Chest, 1988:94(6), pp. 1142-1147.
Nava et al., “Non-invasive ventilation,” Minerva Anestesiol., 2009: 75(1-2), pp. 31-36.
Passy-Muir Inc., “Clinical Inservice Outline”, Apr. 2004, 19 pages.
Peters et al., “Combined Physiological Effects of Bronchodilators and Hyperoxia on Exertional Dyspnea in Normoxic COPD,” Thorax, 2006: 61, pp. 559-567.
Polkeyet al., “Inspiratory pressure support reduces slowing of inspiratory muscle relations rate during exhaustive treadmill walking in sever COPD,” Am. J. Resp. Crit. Care Med., 1996: 154(4, 10), pp. 1146-1150.
Porta et al., “Mask proportional assist vs pressure support ventilation in patients in clinically stable condition with chronic venilatory failure,” Chest, 2002: 122(2), pp. 479-488.
Prigent et al., “Comparative Effects of Two Ventilatory Modes on Speech in Tracheostomized Patients with Neuromuscular Disease,” Am. J. Resp. Crit. Care Med., 2003: 167(8), pp. 114-119.
Puente-Maestu et al., “Dyspnea, Ventilatory Pattern, and Changes in Dynamic Hyperinflation Related to the Intensity of Constant Work Rate Exercise in COPD,” Chest, 2005: 128(2), pp. 651-656.
Ram et al., “Non-invasive positive pressure ventilation for treatment of respiratory failure due to exacerbations of chroic obstructive pulmonary disease,” Cochrane Database Syst Rev., 2004(3):1-72.
Rothe et al., “Near Fatal Complication of Transtracheal Oxygen Therapy with the SCOOP(R) System,” Pneumologie, 1996: 50(10), pp. 700-702. (English Abstract provided.).
Rothfleisch et al., “Facilitation of fiberoptic nasotracheal intubation in a morbidly obese patient by simultaneous use of nasal CPAP,” Chest, 1994, 106(1): 287-288.
Sanders et al., “CPAP Via Nasal Mask: A Treatment for Occlusive Sleep Apnea,” Chest, 1983: 83(1), pp. 144-145.
Sinderby et al., “Neural control of mechanical ventilation in respiratory failure,” Nat. Med., 1999: 5(12), pp. 1433-1436.
Somfay et al., “Dose-Response Effect of Oxygen on Hyperinflation and Exercise Endurance in Nonhypoxaemic COPD Patients,” Eur. Resp. J., 2001: 18, pp. 77-84.
Sullivan et al., “Reversal of Obstructive Sleep Apnoea by Continuous Positive Airway Pressure Applied Through the Nares,” The Lancet, 1981: 1(8225), pp. 862-865.
Sullivan, “Home treatment of obstructive sleep apnoea with continuous positive airway pressure applied through a nose-mask,” Bull Eur Physiopathol Respir., 1984: 20(1), pp. 49-54.
Tiep et al., “Pulsed nasal and transtracheal oxygen delivery,” Chest, 1990: 97, pp. 364-368.
Tsuboi et al., “Ventilatory Support During Exercise in Patients With Pulmonary Tuberculosis Sequelae,” Chest, 1997: 112(4), pp. 1000-1007.
VHA/DOD Clinical Practice Guideline, “Management of Chronic Obstructive Pulmonary Disease,” Aug. 1999, Ver. 1.1a, Updated Nov. 1999.
Wijkstra et al., “Nocturnal non-invasive positive pressure ventilation for stable chronic obstructive pulmonary disease,” Cochrane Database Syst. Rev., 2002, 3: 1-22.
Yaeger et al., “Oxygen Therapy Using Pulse and Continuous Flow With a Transtracheal Catheter and a Nasal Cannula,” Chest, 1994: 106, pp. 854-860.
Walsh, “McGraw Hill Pocket reference Machinists' and Metalworker' Pocket Reference,” New York McGraw-Hill, 2000, pp. 3-67, submitting 3 pages.
International Preliminary Report and Written Opinion on Patentability for PCT/DE2004/001646, dated Jul. 3, 2006.
European patent Office Search Report issued Oct. 19, 2007 in co-pending EP 04762494.
International Search Report and Written Opinion for PCT/US04/26800 issued Jun. 22, 2006.
International Search Report and Written Opinion for PCT/US07/12108, dated Aug. 8, 2008.
International Search Report and Written Opinion for PCT/US07/17400, dated Apr. 28, 2008.
International Search Report and Written Opinion for PCT/US08/64015, dated Sep. 26, 2008.
International Search Report and Written Opinion for PCT/US08/64164, dated Sep. 29, 2008.
International Search Report and Written Opinion for PCT/US08/78031, dated Nov. 24, 2008.
International Search Report and Written Opinion for PCT/US08/78033, dated Dec. 3, 2008.
International Search Report and Written Opinion for PCT/US09/054673, dated Oct. 8, 2009.
International Search Report and Written Opinion for PCT/US09/41027, dated Dec. 14, 2009.
International Search Report and Written Opinion for PCT/US09/59272, dated Dec. 2, 2009.
International Search Report and Written Opinion for PCT/US2006/036600, dated Apr. 3, 2007.
International Search Report and Written Opinion for PCT/US2009/031355 issued Mar. 11, 2009.
International Search Report and Written Opinion for PCT/US2009/041034, dated Jun. 10, 2009.
International Search Report and Written Opinion for PCT/US2010/029871, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/029873, dated Jun. 28, 2010.
International Search Report and Written Opinion for PCT/US2010/029874, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/029875, dated Jul. 12, 2010.
International Search Report and Written Opinion for PCT/US2010/047920, dated Nov. 1, 2010.
International Search Report and Written Opinion for PCT/US2010/047921, dated Jan. 27, 2011.
International Search Report for PCT/DE2004/001646, dated Jan. 17, 2005.
Related Publications (1)
Number Date Country
20100071693 A1 Mar 2010 US
Provisional Applications (2)
Number Date Country
61091198 Aug 2008 US
61136269 Aug 2008 US