All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Paravalvular leak is a complication associated with the implantation of a prosthetic heart valve (e.g., a replacement mitral valve), whether implanted surgically or with a transcatheter approach. Paravalvular leak refers to blood flowing through a channel or space between the implanted valve and cardiac tissue as a result of a lack of appropriate sealing. Paravalvular leaks are generally considered more common with replacement mitral valves than with replacement aortic valves. Some leaks may be characterized as small, non-significant leaks, but larger leaks can lead to heart failure and increased risk of infectious endocarditis. Significant leaks are currently treated either surgically or using the transcatheter deployment of occlusion devices, such as plugs. Existing techniques can be complicated because the follow up corrective procedure manipulates tissue adjacent the replacement valve, which can cause disruption or dislodgement of the replacement valve. Alternative methods and devices for minimizing or reducing paravalvular leakage associated with the implantation of a replacement heart valve are therefore needed.
Some embodiments are methods of reducing paravalvular leakage associated with a replacement mitral valve, comprising: monitoring for paravalvular leakage between a replacement mitral valve and tissue proximate the mitral valve annulus; if a sufficient amount of paravalvular leakage is observed, deploying a tissue reshaping device at least partially within a coronary sinus; remodeling coronary sinus tissue with the tissue reshaping device to remodel at least one of mitral valve annulus tissue, at least one mitral valve leaflet, and left atrium tissue in an attempt to reduce the paravalvular leakage; and monitoring for a reduction in paravalvular leakage after the remodeling step.
After monitoring for a reduction in paravalvular leakage after the remodeling step, if the monitored paravalvular leakage has been sufficiently reduced, the methods can include maintaining the remodeling of the coronary sinus with the tissue reshaping device and maintaining the remodeling of the at least one of the mitral valve annulus tissue, mitral valve leaflets, and left atrium tissue to maintain the reduced paravalvular leakage. The maintaining step can comprise releasing the tissue reshaping device from a delivery device to implant the tissue reshaping device. The method can further comprise releasing the replacement mitral valve from a delivery device.
The methods can further comprise, if the monitored paravalvular leakage has been sufficiently reduced, releasing the tissue reshaping device from a delivery device.
The methods can further comprise, if the monitored paravalvular leakage has been sufficiently reduced, releasing the replacement mitral valve from a delivery device. The methods can further comprise monitoring paravalvular leakage after releasing the replacement mitral valve from the device to determine if paravalvular leakage increased to an undesired amount as a result of releasing the replacement mitral valve from the delivery device, and if so, repeating the remodeling and monitoring steps.
The methods can further comprise, after monitoring for paravalvular leakage after the remodeling step, if the paravalvular leakage has not been reduced by a desired amount, further remodeling coronary sinus tissue with the tissue reshaping device to further remodel at least one of mitral valve annulus tissue, mitral valve leaflets, and left atrium tissue in an attempt to reduce paravalvular leakage, and further monitoring paravalvular leakage. If paravalvular leakage has not been sufficiently reduced, the methods can repeat the further remodeling and further monitoring steps until the paravalvular leakage has been reduced by a desired amount. If the paravalvular leakage has been reduced by a desired amount, the methods can include releasing the tissue reshaping device from a delivery device to thereby implant the tissue reshaping device and maintain the reduced paravalvular leakage. If the paravalvular leakage has been reduced by a desired amount, the methods can include releasing the mitral valve replacement from a delivery device.
Remodeling coronary sinus tissue with the tissue reshaping device can comprise plicating coronary sinus tissue with the tissue reshaping device. Deploying a tissue reshaping device can comprise anchoring a first anchor of the tissue reshaping device within the coronary sinus, and wherein plicating coronary sinus tissue can comprise proximally pulling on the tissue reshaping device after the first anchor is anchored within the coronary sinus. The methods can further comprise anchoring a second anchor of the tissue reshaping device against tissue when the monitored paravalvular leakage has been reduced to a desired amount. Deploying a tissue reshaping device can comprise anchoring first and second anchors, and wherein plicating coronary sinus tissue can comprise proximally pulling on a portion of the tissue reshaping device after the first and second anchors are anchored.
Remodeling coronary sinus tissue with the tissue reshaping device can comprise reducing the curvature of at least a portion of the coronary sinus.
Remodeling coronary sinus tissue with the tissue reshaping device can comprise increasing the curvature of at least a portion of the coronary sinus.
Remodeling coronary sinus tissue with the tissue reshaping device can be at least partially caused by pulling on the tissue reshaping device.
Remodeling coronary sinus tissue with the tissue reshaping device can be at least partially caused by straightening at least a portion of the tissue reshaping device.
Remodeling coronary sinus tissue with the tissue reshaping device can be at least partially caused by increasing the curvature of at least a portion of the tissue reshaping device.
The methods can further comprise, prior to the first monitoring step, expanding the replacement mitral valve into contact with at least one of left atrial tissue, mitral valve annulus tissue, native mitral valve leaflet tissue, and left ventricular tissue. The expanded replacement mitral valve can remain secured to a delivery device when the remodeling step is initiated.
If a certain degree of paravalvular leakage is observed after the first monitoring step, the methods can further comprise delivering the tissue reshaping device to the coronary sinus.
Monitoring for paravalvular leakage between the replacement mitral valve and tissue proximate the mitral valve annulus can comprise monitoring blood flow between the replacement mitral valve and tissue using an imaging modality, such as fluoroscopy.
The disclosure herein describes methods and devices for reducing paravalvular leakage associated with a replacement heart valve, and generally a replacement mitral valve. There may, however, be ways in which the methods and devices herein can be utilized to reduce paravalvular leakage associated with other types of replacement heart valves. When used herein, “leakage,” or any derivative of “leakage,” refers to paravalvular leakage.
The methods herein monitor for paravalvular leakage associated with the deployment of a replacement heart valve. The monitoring may occur during the procedure in which a replacement heart valve is implanted, or it may occur subsequent to the procedure that implants the replacement heart valve. For example, leakage may be monitored subsequent to the procedure if, for example, the patient presents with post-procedure symptoms suggestive of leakage, even if leakage was not observed during the implantation procedure.
The methods herein may be used to reduce any degree of leakage, whether it is considered significant or non-significant leakage.
The methods herein include at least one step to reduce the monitored paravalvular leakage if a sufficient amount of paravalvular leakage has been observed. The amount of leakage that is determined to be significant enough to warrant a subsequent leakage reducing step may depend on a variety of factors, such as a subjective analysis of the physician observing the leakage. When the disclosure herein refers to taking one or more steps to reduce leakage if a sufficient amount of leakage is observed, the disclosure is not indefinite or vague, but merely refers to the fact that some degree of leakage will lead to a decision to carry out a subsequent step to attempt to reduce the leakage. Physicians currently trained to monitor for paravalvular leakage, whether during a replacement valve implantation procedure or otherwise, can make, for example, a subjective assessment about whether a sufficient amount of leakage has been observed. In some instances, the amount of leakage that is determined to be sufficient to warrant intervention may be minimal or non-significant, but in some instances the amount of leakage that is determined to be sufficient to warrant intervention may be considered significant.
Methods herein include, if a sufficient amount of paravalvular leakage is observed, deploying a tissue reshaping device at least partially within a coronary sinus, and remodeling coronary sinus tissue with the tissue reshaping device to remodel at least one of mitral valve annulus tissue, at least one mitral valve leaflet, and left atrium tissue in an attempt to reduce the paravalvular leakage. The methods utilize a device positioned at least partially within the coronary sinus to attempt to reduce leakage. This is partly due to the proximity between a portion of the coronary sinus and the mitral valve annulus. If the method is used for a heart valve other than the mitral valve, the method generally includes deploying a device in proximity to a replacement heart valve, and using the device to remodel annulus tissue or tissue proximate to the native valve annulus.
After remodeling at least one of mitral valve annulus tissue, at least one mitral valve leaflet, and left atrium tissue in an attempt to reduce the paravalvular leakage, the method includes monitoring for a reduction in paravalvular leakage. This monitoring step determines whether any observed leakage has been sufficiently reduced, or if additional steps should be taken to further reduce the leakage. Again, whether any observed leakage has been sufficiently reduced may be determined using a variety of methods, and may be a subjective determination. The specification and claims herein are not indefinite or vague when referring to a sufficient amount of reduction, but are rather describing that there is some amount of reduction that will lead to a determination (automatically or not) that some monitored leakage has been sufficient reduced.
Exemplary replacement valves and methods of delivery and implantation that can be part of methods herein (but without limitation) can be found in the following references, which are incorporated by reference herein: U.S. Pat. Nos. 9,039,757; 8,795,356; 9,084,676; and 9,370,418.
If the monitoring step occurs during the replacement valve implantation procedure, monitoring for paravalvular leakage may be performed using fluoroscopy, such as with contrast dye, which is known in the art. The physician can look for dye movement between the replacement valve and tissue, indicating paravalvular leakage. If a sufficient amount of leakage is observed, one or more steps can then be taken in an attempt to reduce the leakage, examples of which are provided below.
The monitoring step may occur in a separate procedure subsequent to the replacement heart valve implantation procedure. For example, after the replacement heart valve procedure, a patient may present with symptoms suggestive of paravalvular leakage, and a procedure may be performed to monitor for leakage. Exemplary known techniques that can be used to monitor for paravalvular leakage include, for example, transthoracic echocardiography (“TTE”) and transesophageal echocardiography (“TEE”), which produce images of the heart. If a sufficient amount of leakage is observed, one or more steps can then be taken to reduce the leakage, examples of which are provided below.
The exemplary method in
Device 50 is delivered to coronary sinus 20 within delivery device 60 with anchors 52 and 56 in delivery configurations. Depending on when the monitoring step occurs, device 50 can be initially delivered to the coronary sinus at any time before, during or after the implantation of replacement valve 30, including during a subsequent procedure.
After delivery device 60 is positioned in the coronary sinus, it is moved proximally to expose first anchor 52, allowing first anchor 52 to expand, as shown in
After some remodeling has occurred, as shown in
If, after this monitoring step, it is determined that paravalvular leakage has been sufficiently reduced (e.g., through a subjective assessment, through an automatic assessment, etc.), the method can then include maintaining the remodeling of the coronary sinus with the tissue reshaping device and maintaining the remodeling of the at least one of the mitral valve annulus tissue, at least one mitral valve leaflet, and left atrium tissue to maintain the reduced paravalvular leakage. In this embodiment, maintaining the remodeling of tissue comprises releasing second anchor 56 and anchoring it in place in the coronary sinus, as is shown in
Method steps that can be performed during the use and deployment of a tissue reshaping device according to the methods herein can be found in any of U.S. Pat. Nos. 6,976,995; 6,960,229; 7,351,260; 8,062,358; 7,311,729; 7,837,729; and U.S. Pub. No. 2006/0276891, all of which are incorporated by reference herein. Additional exemplary details of a tissue reshaping device that can be incorporated into device 50 can also be found in U.S. Pat. Nos. 6,976,995; 6,960,229; 7,351,260; 8,062,358; 7,311,729; 7,837,729; U.S. Pub. No. 2006/0276891.
In some embodiments, the remodeling to reduce leakage may take place during the procedure that implants the replacement valve, and in some cases the replacement mitral valve remains secured to its own delivery system until a sufficient degree of leakage reduction has occurred. The replacement valve may then be released from its own delivery system, and further monitoring for leakage may occur. Releasing the replacement valve may cause some slight movement with respect to the native valve, possibly causing some leakage to occur that did not exist prior to the release of the replacement valve. Monitoring for leakage and optional further remodeling can thus take place at any point during or after the replacement valve implantation procedure. The disclosure herein thus includes methods that can monitor and attempt to reduce leakage (including a further reduction in leakage) at any time during a replacement valve implantation procedure, of thereafter.
If, after the remodeling step (such as shown in
The remodeling step, an example of which is shown in
The manner in which the coronary sinus is remodeled may depend on the tissue reshaping device and/or the manner in which it is deployed.
In some embodiments, remodeling coronary sinus tissue with a tissue reshaping device comprises reducing the curvature of at least a portion of the coronary sinus. Exemplary methods of remodeling the coronary sinus that can reduce the curvature of at least a portion of the coronary sinus can be found in, for example, U.S. Pat. No. 6,976,995, which is incorporated by reference herein.
In some embodiments, remodeling coronary sinus tissue with the tissue reshaping device comprises increasing the curvature of at least a portion of the coronary sinus. Exemplary methods of remodeling the coronary sinus that can increase the curvature of at least a portion of the coronary sinus can be found in, for example, U.S. Pat. No. 6,569,198, which is incorporated by reference herein.
In some embodiments, remodeling coronary sinus tissue with the tissue reshaping device is at least partially caused by pulling on, or tensioning, the tissue reshaping device. Examples of tensioning a reshaping device can be found in, for example, U.S. Pat. No. 7,351,260, which is incorporated by reference herein.
In some embodiments, remodeling coronary sinus tissue with the tissue reshaping device is at least partially caused by straightening at least a portion of the tissue reshaping device. Examples of at least partially straightening device can be found in, for example, U.S. Pat. No. 6,976,995.
In some embodiments, remodeling coronary sinus tissue with the tissue reshaping device is at least partially caused by increasing the curvature of at least a portion of the tissue reshaping device, examples of which can be found in, at least, U.S. Pat. No. 7,351,260.
The act of delivering the tissue reshaping device to the coronary sinus can occur at any time relative to when the replacement valve is initially positioned within the native annulus. For example, the tissue reshaping device can be delivered to the coronary sinus before the replacement heart valve is delivered to the native annulus, after the replacement heart is initially expanded but before the replacement valve is released from a delivery system, or even after the replacement valve has been implanted and optionally released from a delivery system.
Device 50 shown in
In some embodiments the methods can include monitoring for paravalvular leakage between an existing replacement heart valve and a second, or subsequently-delivered, replacement device configured to interface with the first replacement heart valve (optionally within the first replacement heart valve). That is, the methods herein can monitor for and reduce paravalvular leakage between two or more separate, non-native structures.
Number | Name | Date | Kind |
---|---|---|---|
3620212 | Fannon, Jr. et al. | Nov 1971 | A |
3786806 | Johnson et al. | Jan 1974 | A |
3890977 | Wilson | Jun 1975 | A |
3974526 | Dardik et al. | Aug 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4164046 | Cooley | Aug 1979 | A |
4485816 | Krumme | Dec 1984 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4588395 | Lemelson | May 1986 | A |
4830023 | de Toledo et al. | May 1989 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5099838 | Bardy | Mar 1992 | A |
5104404 | Wolff | Apr 1992 | A |
5197978 | Hess | Mar 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5265601 | Mehra | Nov 1993 | A |
5344426 | Lau et al. | Sep 1994 | A |
5350420 | Cosgrove et al. | Sep 1994 | A |
5411549 | Peters | May 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5454365 | Bonutti | Oct 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5474557 | Mai | Dec 1995 | A |
5507295 | Skidmore | Apr 1996 | A |
5507802 | Imran | Apr 1996 | A |
5514161 | Limousin | May 1996 | A |
5554177 | Kieval et al. | Sep 1996 | A |
5562698 | Parker | Oct 1996 | A |
5575818 | Pinchuk | Nov 1996 | A |
5584867 | Limousin et al. | Dec 1996 | A |
5601600 | Ton | Feb 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5676671 | Inoue | Oct 1997 | A |
5733325 | Robinson et al. | Mar 1998 | A |
5733328 | Fordenbacher | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5800519 | Sandock | Sep 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5836882 | Frazin | Nov 1998 | A |
5871501 | Leschinsky et al. | Feb 1999 | A |
5891193 | Robinson et al. | Apr 1999 | A |
5895391 | Farnholtz | Apr 1999 | A |
5899882 | Waksman et al. | May 1999 | A |
5908404 | Elliot | Jun 1999 | A |
5928258 | Khan et al. | Jul 1999 | A |
5935161 | Robinson et al. | Aug 1999 | A |
5954761 | Machek et al. | Sep 1999 | A |
5961545 | Lentz et al. | Oct 1999 | A |
5978705 | KenKnight et al. | Nov 1999 | A |
5984944 | Forber | Nov 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007519 | Rosselli | Dec 1999 | A |
6015402 | Sahota | Jan 2000 | A |
6022371 | Killion | Feb 2000 | A |
6027517 | Crocker et al. | Feb 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6053900 | Brown et al. | Apr 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6077295 | Limon et al. | Jun 2000 | A |
6077297 | Robinson et al. | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6086611 | Duffy et al. | Jul 2000 | A |
6096064 | Routh | Aug 2000 | A |
6099549 | Bosma et al. | Aug 2000 | A |
6099552 | Adams | Aug 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6159220 | Gobron et al. | Dec 2000 | A |
6162168 | Schweich, Jr. et al. | Dec 2000 | A |
6171320 | Monassevitch | Jan 2001 | B1 |
6183512 | Howanec et al. | Feb 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6200336 | Pavcnik et al. | Mar 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6228098 | Kayan et al. | May 2001 | B1 |
6241757 | An et al. | Jun 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6267783 | Letendre et al. | Jul 2001 | B1 |
6275730 | KenKnight et al. | Aug 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6312446 | Huebsch et al. | Nov 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6342067 | Mathis et al. | Jan 2002 | B1 |
6345198 | Mouchawar et al. | Feb 2002 | B1 |
6352553 | van der Burg et al. | Mar 2002 | B1 |
6352561 | Leopold et al. | Mar 2002 | B1 |
6358195 | Green et al. | Mar 2002 | B1 |
6368345 | Dehdashtian et al. | Apr 2002 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6442427 | Boute et al. | Aug 2002 | B1 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6478776 | Rosenman et al. | Nov 2002 | B1 |
6503271 | Duerig et al. | Jan 2003 | B2 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6556873 | Smits | Apr 2003 | B1 |
6562066 | Martin | May 2003 | B1 |
6562067 | Mathis | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6589208 | Ewers et al. | Jul 2003 | B2 |
6599314 | Mathis et al. | Jul 2003 | B2 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6623521 | Steinke et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629994 | Gomez et al. | Oct 2003 | B2 |
6643546 | Mathis et al. | Nov 2003 | B2 |
6648881 | KenKnight et al. | Nov 2003 | B2 |
6652538 | Kayan et al. | Nov 2003 | B2 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6676702 | Mathis | Jan 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6709425 | Gambale et al. | Mar 2004 | B2 |
6716158 | Raman et al. | Apr 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6721598 | Helland et al. | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6733521 | Chobotov et al. | May 2004 | B2 |
6743219 | Dwyer et al. | Jun 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6773446 | Dwyer et al. | Aug 2004 | B1 |
6776784 | Ginn | Aug 2004 | B2 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6793673 | Kowalsky et al. | Sep 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6798231 | Iwasaki et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6824562 | Mathis et al. | Nov 2004 | B2 |
6827690 | Bardy | Dec 2004 | B2 |
6881220 | Edwin et al. | Apr 2005 | B2 |
6890353 | Cohn et al. | May 2005 | B2 |
6899734 | Castro et al. | May 2005 | B2 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6926690 | Renati | Aug 2005 | B2 |
6935404 | Duerig et al. | Aug 2005 | B2 |
6949122 | Adams et al. | Sep 2005 | B2 |
6955689 | Ryan et al. | Oct 2005 | B2 |
6960229 | Mathis et al. | Nov 2005 | B2 |
6964683 | Kowalsky et al. | Nov 2005 | B2 |
6966926 | Mathis | Nov 2005 | B2 |
6976995 | Mathis et al. | Dec 2005 | B2 |
7004958 | Adams et al. | Feb 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7175653 | Gaber | Feb 2007 | B2 |
7179282 | Alferness et al. | Feb 2007 | B2 |
7270676 | Alferness et al. | Sep 2007 | B2 |
7276078 | Spenser | Oct 2007 | B2 |
7309354 | Mathis et al. | Dec 2007 | B2 |
7311729 | Mathis et al. | Dec 2007 | B2 |
7316708 | Gordon et al. | Jan 2008 | B2 |
7364588 | Mathis et al. | Apr 2008 | B2 |
7452375 | Mathis et al. | Nov 2008 | B2 |
7503931 | Kowalsky et al. | Mar 2009 | B2 |
7591826 | Alferness et al. | Sep 2009 | B2 |
7608102 | Adams et al. | Oct 2009 | B2 |
7635387 | Reuter et al. | Dec 2009 | B2 |
7637946 | Solem et al. | Dec 2009 | B2 |
7674287 | Alferness et al. | Mar 2010 | B2 |
7758639 | Mathis | Jul 2010 | B2 |
7814635 | Gordon | Oct 2010 | B2 |
7828841 | Mathis et al. | Nov 2010 | B2 |
7828842 | Nieminen et al. | Nov 2010 | B2 |
7828843 | Alferness et al. | Nov 2010 | B2 |
7837728 | Nieminen et al. | Nov 2010 | B2 |
7837729 | Gordon et al. | Nov 2010 | B2 |
7887582 | Mathis et al. | Feb 2011 | B2 |
7955384 | Rafiee et al. | Jun 2011 | B2 |
8006594 | Hayner et al. | Aug 2011 | B2 |
8062358 | Mathis et al. | Nov 2011 | B2 |
8075608 | Gordon et al. | Dec 2011 | B2 |
8172898 | Alferness et al. | May 2012 | B2 |
8182529 | Gordon et al. | May 2012 | B2 |
8250960 | Hayner et al. | Aug 2012 | B2 |
8439971 | Reuter et al. | May 2013 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8974525 | Nieminen et al. | Mar 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9320600 | Nieminen et al. | Apr 2016 | B2 |
9370418 | Pintor et al. | Jun 2016 | B2 |
9408695 | Mathis et al. | Aug 2016 | B2 |
9474608 | Mathis et al. | Oct 2016 | B2 |
9526616 | Nieminen et al. | Dec 2016 | B2 |
9597186 | Nieminen et al. | Mar 2017 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010041899 | Foster | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20010049558 | Liddicoat et al. | Dec 2001 | A1 |
20020016628 | Langberg et al. | Feb 2002 | A1 |
20020042621 | Liddicoat et al. | Apr 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020049468 | Streeter et al. | Apr 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020065554 | Streeter | May 2002 | A1 |
20020095167 | Liddicoat et al. | Jul 2002 | A1 |
20020138044 | Streeter et al. | Sep 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020156526 | Hlavka et al. | Oct 2002 | A1 |
20020161377 | Rabkin et al. | Oct 2002 | A1 |
20020161393 | Demond et al. | Oct 2002 | A1 |
20020183837 | Streeter et al. | Dec 2002 | A1 |
20020183838 | Liddicoat et al. | Dec 2002 | A1 |
20020183841 | Cohn et al. | Dec 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20020193827 | McGuckin et al. | Dec 2002 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030040771 | Hyodoh et al. | Feb 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083613 | Schaer | May 2003 | A1 |
20030088305 | Van Schie et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030135267 | Solem et al. | Jul 2003 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040098116 | Callas et al. | May 2004 | A1 |
20040102839 | Cohn et al. | May 2004 | A1 |
20040102840 | Solem et al. | May 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040148019 | Vidlund et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040153147 | Mathis | Aug 2004 | A1 |
20040158321 | Reuter et al. | Aug 2004 | A1 |
20040172046 | Hlavka | Sep 2004 | A1 |
20040176840 | Langberg | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040193260 | Alferness et al. | Sep 2004 | A1 |
20040220654 | Mathis et al. | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040260342 | Vargas et al. | Dec 2004 | A1 |
20040260384 | Allen | Dec 2004 | A1 |
20050004667 | Swinford et al. | Jan 2005 | A1 |
20050027351 | Reuter et al. | Feb 2005 | A1 |
20050033419 | Alferness et al. | Feb 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050085903 | Lau | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050107810 | Morales et al. | May 2005 | A1 |
20050137449 | Nieminen et al. | Jun 2005 | A1 |
20050137450 | Aronson et al. | Jun 2005 | A1 |
20050137451 | Gordon et al. | Jun 2005 | A1 |
20050149182 | Alferness et al. | Jul 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050197692 | Pai et al. | Sep 2005 | A1 |
20050197693 | Pai et al. | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050209690 | Mathis et al. | Sep 2005 | A1 |
20050216077 | Mathis et al. | Sep 2005 | A1 |
20050222678 | Lashinski et al. | Oct 2005 | A1 |
20050261704 | Mathis | Nov 2005 | A1 |
20050272969 | Alferness et al. | Dec 2005 | A1 |
20060030882 | Adams et al. | Feb 2006 | A1 |
20060041305 | Lauterjung | Feb 2006 | A1 |
20060116758 | Swinford et al. | Jun 2006 | A1 |
20060142854 | Alferness et al. | Jun 2006 | A1 |
20060161169 | Nieminen et al. | Jul 2006 | A1 |
20060167544 | Nieminen et al. | Jul 2006 | A1 |
20060271174 | Nieminen et al. | Nov 2006 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070066879 | Mathis et al. | Mar 2007 | A1 |
20070073391 | Bourang et al. | Mar 2007 | A1 |
20070173926 | Bobo, Jr. et al. | Jul 2007 | A1 |
20070239270 | Mathis et al. | Oct 2007 | A1 |
20080015407 | Mathis et al. | Jan 2008 | A1 |
20080015679 | Mathis et al. | Jan 2008 | A1 |
20080015680 | Mathis et al. | Jan 2008 | A1 |
20080071364 | Kaye et al. | Mar 2008 | A1 |
20080221673 | Bobo et al. | Sep 2008 | A1 |
20100030330 | Bobo et al. | Feb 2010 | A1 |
20100280602 | Mathis | Nov 2010 | A1 |
20110066234 | Gordon et al. | Mar 2011 | A1 |
20110106117 | Mathis et al. | May 2011 | A1 |
20120123532 | Mathis | May 2012 | A1 |
20120197389 | Alferness et al. | Aug 2012 | A1 |
20140275757 | Goodwin | Sep 2014 | A1 |
20160338832 | Mathis et al. | Nov 2016 | A1 |
20160338833 | Mathis et al. | Nov 2016 | A1 |
20160374806 | Mathis et al. | Dec 2016 | A1 |
20160374807 | Mathis et al. | Dec 2016 | A1 |
20160374808 | Mathis et al. | Dec 2016 | A1 |
20160374809 | Mathis et al. | Dec 2016 | A1 |
20160374810 | Mathis et al. | Dec 2016 | A1 |
20170079796 | Nieminen et al. | Mar 2017 | A1 |
20170165058 | Rothstein | Jun 2017 | A1 |
20170189185 | Nieminen et al. | Jul 2017 | A1 |
20170296341 | Nieminen et al. | Oct 2017 | A1 |
20180078365 | Zhang | Mar 2018 | A1 |
20180243091 | Nieminen et al. | Aug 2018 | A1 |
20180243092 | Mathis et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
0893133 | Jan 1999 | EP |
0903110 | Mar 1999 | EP |
0968688 | Jan 2000 | EP |
1050274 | Nov 2000 | EP |
1095634 | May 2001 | EP |
1177779 | Feb 2002 | EP |
2181670 | May 2010 | EP |
0741604 | Dec 1955 | GB |
2754067 | Mar 1998 | JP |
2000-308652 | Nov 2000 | JP |
2001-503291 | Mar 2001 | JP |
2003-503101 | Jan 2003 | JP |
2003-521310 | Jul 2003 | JP |
9902455 | Dec 2000 | SE |
WO9856435 | Dec 1998 | WO |
WO0044313 | Aug 2000 | WO |
WO0060995 | Oct 2000 | WO |
WO0074603 | Dec 2000 | WO |
WO0100111 | Jan 2001 | WO |
WO0119292 | Mar 2001 | WO |
WO0150985 | Jul 2001 | WO |
WO0154618 | Aug 2001 | WO |
WO0187180 | Nov 2001 | WO |
WO0200099 | Jan 2002 | WO |
WO0201999 | Jan 2002 | WO |
WO0205888 | Jan 2002 | WO |
WO0219951 | Mar 2002 | WO |
WO0234118 | May 2002 | WO |
WO0247539 | Jun 2002 | WO |
WO02053206 | Jul 2002 | WO |
WO02060352 | Aug 2002 | WO |
WO02062263 | Aug 2002 | WO |
WO02062270 | Aug 2002 | WO |
WO02062408 | Aug 2002 | WO |
WO02076284 | Oct 2002 | WO |
WO02078576 | Oct 2002 | WO |
WO02096275 | Dec 2002 | WO |
WO03015611 | Feb 2003 | WO |
WO03037171 | May 2003 | WO |
WO03049647 | Jun 2003 | WO |
WO03049648 | Jun 2003 | WO |
WO03055417 | Jul 2003 | WO |
WO03059198 | Jul 2003 | WO |
WO03063735 | Aug 2003 | WO |
WO2004045463 | Jun 2004 | WO |
WO2004084746 | Oct 2004 | WO |
WO2005046531 | May 2005 | WO |
WO2005058206 | Jun 2005 | WO |
WO2006002492 | Jan 2006 | WO |
Entry |
---|
Zohair Al Halees, 2011, An additional maneuver to repair mitral paravalvular leak, European Journal of Cardio-Thoracic Surgery 39, pp. 410-411, 2011. |
El-Maasarany et al.; The coronary sinus conduit function: Anatomical study (relationship to adjacent structures); http://europace.oxfordjournals.org/cge/content/full/7/5/475. (accessed Sep. 9, 2008). |
Gray, H. Anatomy of the Human Body. The Systemic Veins. Philadelphia: Lea & Febiger, 1918; Bartleby.com. 2000. Available at www.bartleby.com/107/. Accessed Jun. 7, 2006. |
Heartsite.com. Echocardiogram, 1999; p. 1-4. A.S.M. Systems Inc. Available at: http://www.heartsite.com/html/echocardiogram.html. Accessed Jul. 1, 2005. |
Papageorgiou, P., et al. Coronary Sinus Pacing Prevents Induction of Atrial Fibrillation. Circulation. Sep. 16, 1997; 96(6): 1893-1898. |
Pelton et al. Medical uses of nitinol; Material Science Forum; vols. 327-328; pp. 63-70; 2000 (held in Kanazawa, Japan, May 1999). |
Pijls et al.; Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses; The New England J. of Med.; vol. 334; No. 26; pp. 1703-1708; Jun. 27, 1996. |
Pai, Suresh; U.S. Appl. No. 60/329,694 entitled “Percutaneous cardiac support structures and deployment means,” filed Oct. 16, 2001. |
Webb, et al. Percutaneous transvenous mitral annuloplasty initial human experience with device implantation in the coronary sinus. Circulation. Feb. 14, 2006; 851-855. |
Yamanouchi, et al.; Activation Mapping from the coronary sinus may be limited by anatomic variations; vol. 21 pp. 2522-2526; Nov. 1998. |
Number | Date | Country | |
---|---|---|---|
20180256330 A1 | Sep 2018 | US |