This invention relates to devices and methods for local drug delivery, and in particular is directed to an implantable system for targeted delivery of a nerve blocking agent to the periarterial space of the renal artery for the purpose of blocking the renal nerve plexus, methods for implanting same, and methods and devices for treating diseases. The invention directs the nerve-blocking agent towards the nerve, prevents dissipation of the agent in the surrounding tissue and provides fixation of the drug delivery mechanism in the surrounding tissue.
Hypertension (HTN) and congestive heart failure (CHF) are the most important problems in contemporary cardiology. These chronic diseases account for most cardiovascular morbidity and mortality, and, despite much progress, remain therapeutic challenges. The cornerstone of therapy for both HTN and CHF includes the use primarily oral and intravenous drugs acting directly or indirectly on the kidney, such as angiotensin converting enzyme (ACE) inhibitors and diuretics, with the amount of each drug used dependent on the stage of the disease. While drug therapy is effective in the earliest stages of HTN and CHF, there is no truly effective drug treatment for the mid-to-later stages of these diseases.
HTN and CHF have many different initial causes. Irrespective of initial cause, both diseases follow a common pathway in their progression to end-stage disease, primarily as the result of excessive activity of the renal nerve. It has been shown in accepted animal models that renal denervation can control HTN and improve symptoms and slow down the progression of CHF. However, no drug or device therapies currently exist that can provide long-term, clinically usable blocking of renal nerve activity in humans. The only available clinical method of renal denervation is an invasive surgical procedure, technically difficult and of limited use, as the nerve quickly regenerates.
Of particular significance for this invention is the CHF condition that develops in many patients following a myocardial infarction (MI). Coronary artery disease causes approximately 70% of congestive heart failure. Acute MI due to obstruction of a coronary artery is a common initiating event that can lead ultimately to heart failure. This process by which this occurs is referred to as remodeling and is described in the text Heart Disease, 5th ed., E. Braunwald, Ch. 37 (1997). Remodeling after a myocardial infarction involves two distinct types of physical changes to the size, shape and thickness of the left ventricle. The first, known as infarct expansion, involves a localized thinning and stretching of the myocardium in the infarct zone. This myocardium can go through progressive phases of functional impairment, depending on the severity of the infarction. These phases reflect the underlying myocardial wall motion abnormality and include an initial dyssynchrony, followed by hypokinesis, akinesis, and finally, in cases that result in left ventricular aneurysm, dyskinesis. This dyskinesis has been described as “paradoxical” motion because the infarct zone bulges outward during systole while the rest of the left ventricle contracts inward. Consequently, end-systolic volume in dyskinetic hearts increases relative to nondyskinetic hearts.
The second physical characteristic of a remodeling left ventricle is the attempted compensation of noninfarcted region of myocardium for the infarcted region by becoming hyperkinetic and expanding acutely, causing the left ventricle to assume a more spherical shape. This helps to preserve stroke volume after an infarction. These changes increase wall stress in the myocardium of the left ventricle. It is thought that wall tension is one of the most important parameters that stimulate left ventricular remodeling. In response to increased wall tension or stress, further ventricular dilatation ensues. Thus, a vicious cycle can result, in which dilatation leads to further dilatation and greater functional impairment. On a cellular level, unfavorable adaptations occur as well. This further compounds the functional deterioration.
Takashi Nozawa et al reported the effects of renal denervation in “Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats” published in Heart Vessels (2002) 16:51-56 Springer-Verlag. In rats the bilateral renal nerves were surgically denervated (cut) (RD) two days before MI was induced by coronary artery legation. Four weeks later, left ventricular (LV) function and sodium excretion were determined. In MI rats, RD improved the reduced sodium excretion. MI RD rats revealed lower LV end-diastolic pressure and greater maximum dP/dt as compared with those of MI innervation (INN) rats. LV end-diastolic and end-systolic dimensions were significantly smaller and LV fractional shortening was greater in MI RD rats than in MI INN rats.
Inventors described novel methods and devices for reversible minimally invasive modulation of the renal nerve in copending applications. This application describes novel drug delivery methods and integrated physiological drug delivery and sensing systems that provide a significantly more effective method of blocking the renal nerve for the purpose of treating HTN and CHF than are currently available. The objective of this invention is a fully implantable device that blocks renal nerve activity of at least one kidney that 1) can be placed in a minimally invasive manner and 2) requires minimal intervention by the patient and physician; and will greatly increase patient compliance leading to a higher overall effectiveness of these therapies. In addition, to HTN and CHF, this method may be applicable to other major diseases such as slowing the progression of chronic renal failure and reducing the number of patients requiring chronic hemodialysis.
Nerve blocking in humans is known and practiced mostly in the field of local anesthesia and pain control. While compounds utilized as general anesthetics reduce pain by producing a loss of consciousness, local anesthetics act via a loss of sensation in the localized area of administration in the body. The mechanism by which local anesthetics induce their effect, while not having been determined definitively, is generally thought to be based upon the ability to locally interfere with the initiation and transmission of a nerve impulse, e.g., interfering with the initiation and/or propagation of a depolarization wave in a localized area of nerve tissue. The actions of local anesthetics are general, and any tissue where nerve conduction, e.g., cell membrane depolarization occurs can be affected by these drugs. Thus, nervous tissue mediating both sensory and motor functions can be similarly affected by local anesthetics. Neurotoxins are the chemicals that when applied to nerve tissue in extremely small amounts can block a nerve for a period of time that significantly exceeds that achieved with local anesthetics. They are also more toxic and potentially more dangerous to the patient than local anesthetics.
Different devices and formulations are known in the art for administration of local anesthetics. For example, local anesthetics can be delivered in solution or suspension by means of injection, infusion, infiltration, irrigation, topically and the like. Injection or infusion can be carried out acutely, or if prolonged local effects are desired, localized anesthetic agents can be administered continuously by means of a gravity drip or infusion pump. Thus, local anesthetics such as bupivacaine have been administered by continuous infusion, e.g., for prolonged epidural or intrathecal (spinal) administration. For prolonged control of pain fully implantable pumps have been proposed and implemented. These pumps can store a certain amount of drug and a physician periodically refills those. Several authors proposed drug eluting implants for control of pain and muscle spasms that slowly release an anesthetic agent at the site of implantation.
The duration of action of a local anesthetic is proportional to the time during which it is in actual contact with the nervous tissues. Consequently, procedures or formulations that maintain localization of the drug at the nerve greatly prolong anesthesia. Local anesthetics are potentially toxic, both locally and via systemic absorption, yet must be present long enough to allow sufficient time for the localized pain to subside. Therefore, it is of great importance that factors such as the choice of drug, concentration of drug, and rate and site of administration of drug be taken into consideration when contemplating their use for the application to block renal nerve. Charles Berde in “Mechanisms of Local Anesthetics” (Anesthesia, 5th addition, R. D. Miller, editor, Churchill-Livingstone, Philadelphia 2000, pp. 491-521) stipulated that only 1-2% of the total amount of local anesthetic, when delivered by traditional methods, ever reaches the nerve. The rest of the drug is dissipated by circulation of blood that takes the drug away, not towards the nerve. It is therefore the purpose of this invention to maximize the amount of drug directed towards the nerve so as to achieve the effective blockade of the renal nerve with the minimal amount of drug.
Theoretically, a suitable commercially available implantable drug pump such as a Syncromed pump made by Medtronic Inc. (Shoreview, Minn.) can be used to block the renal nerve in a human. The pump can deliver common commercially available solution of a local anesthetic agent such as bupivacaine to the tissue surrounding the renal nerve via an attached catheter. Although feasible, such embodiment of the renal nerve block will have practical limitations. To block a peripheral nerve (for example, for the purpose of a commonly performed brachial plexus block) using conventional techniques the physician typically infiltrates 10-50 ml of bupivacaine or similar anesthetic into the tissue surrounding the targeted nerve. This usually achieves adequate blocking of both sensory and motor signals for 2 to 6 hours. Commercially available bupivacaine marketed as Marcaine or Sensorcaine is available in concentrations of 0.25 to 0.1%. For peripheral (single nerve) blocks concentrations of 0.5 to 0.75% are typically used. There are several reasons why local anesthetics are so diluted. An amino-amide compound such as bupivacaine can be toxic both locally (it is an irritant) and systemically (it depresses the heart). It is generally perceived that a local anesthetic will not be effective below certain minimum concentration and will be toxic above certain maximum concentration.
Implantable drug pumps are commonly equipped with an internal drug storage reservoir of 30 to 50 ml. Bigger reservoirs are possible but impose severe limitations on the physical and clinical acceptability of the implant. If the continuous. (24 hour a day 7 days a week) block of the patient's renal nerve is desired, and a conventional peripheral nerve blocking technique is used, the implanted pump reservoir will need to be refilled every day or even more frequently. This is possible but not practical, since refilling of the pump is associated with the skin puncture, causing pain and leading to the risk of local and systemic infection. Also, daily infusion of a large amount of drug can result in a serious risk to the patient's health, especially if the patient has a weak heart. Notably the same drug bupivacaine is effective in a much lower doze when delivered directly to the targeted nerve tissue in the patient's spine. For example, an effective intrathecal (spinal) pain block can be achieved with 2-5 ml of bupivacaine. This observation shows that more targeted delivery of the same drug to the nerve tissue can result in 10 times or more reduction of the amount of drug needed for nerve blocking.
It is therefore the purpose of this invention to provide novel methods and implantable devices that will effectively block renal nerve by targeting the delivery of the selected drug to the nerve, reducing dissipation of the drug into the surrounding tissue, reducing the amount of drug stored in the device and increasing the time interval between the refilling or replacement of the device. It is also the purpose of this invention to enable testing of the effectiveness of the renal nerve blockade and to perform the renal block automatically, intermittently and/or periodically in the clinical scenarios where the continuous block is not desired.
Surgical denervation of the kidney in experimental animals suggested multiple immediate and long-term benefits for patients with cardiac and renal diseases. The most significant potential beneficial effects are: slowing of the progression of CHF, resolution of fluid overload in CHF by induction or enhancement of diuresis, reduction of remodeling after a myocardial infarct, reduction of hypertension and slowing of the progression of chronic renal disease to dialysis. The benefits are achieved via the reduction of the systemic sympathetic tone causing vasoconstriction of blood vessels, reduction of the load on the heart and the direct effects of denervation on the kidney. Both single kidney denervation and bilateral denervation have potential benefits. Surgical denervation has been previously performed in animals and in few humans to control pain. It requires a major surgery, and is ineffective in long term, since renal nerves eventually grow back. Additionally, after the surgical denervation, the renal nerve can re-grow in a pathological way and can cause pain and other serious side effects. Since fibrotic changes at the site of denervation make repeat surgical denervation impossible, patients face the possibility of the removal of the kidney to control the pain.
The inventors suggest an alternative method of reducing or blocking the renal nerve activity in patients by minimally invasive renal nerve modulation. Renal nerve modulation is achieved by controlled infusion of a nerve-blocking agent into the periarterial space of the renal artery of the kidney. The periarterial space is the area surrounding the renal arteries and veins, extending from the aorta and vena cava to and including the area around the kidney itself. Since renal nerves follow the external surface of the renal artery, when an effective concentration of the nerve-blocking agent is present in this periarterial space, the renal nerve activity is substantially reduced or stopped. Methods and devices for both continuous and intermittent periodic blocking of the renal nerve are proposed. These methods and devices provide effective, reversible nerve blocking for a clinically relevant duration of time, while avoiding major surgery and irreparable damage to the nerve that characterize the previously used surgical denervation.
The preferred embodiment devices can be implantable drug pumps or drug eluting implants. Both classes of local drug delivery devices are known. Implanted pumps have been successfully used previously for control of pain by infusion of local anesthetics into the patient's spine. Implantable pumps range from simple reservoirs (ports) implanted under the skin with an attached catheter to sophisticated microprocessor driven programmable devices similar to pacemakers. Drug eluting implants have been used to deliver birth control agents and to prevent restenosis of coronary arteries.
Implanted pumps can also be refilled with drug without surgery using a transdermal port accessible with a needle, though it is preferable to extend the time between refillings to minimize pain and the risk of infection. The programmable implantable pump embodiment also has an advantage of the periodic drug delivery that can be adjusted up or down using a remote communication link. This is particularly significant in treatment of chronic diseases such as CHF where the continuous constant nerve blocking can result in adaptation (resting of the physiologic gain or compensation) and the loss of therapeutic effect.
Drug eluting implants work primarily by diffusion. Drug eluting implants are advantageous in the treatment of a temporary condition such as infarct expansion following acute MI where an implant that blocks the nerve for approximately 30 days and then dissolves on its own can be the best embodiment of the invention.
A preferred embodiment and best mode of the invention is illustrated in the attached drawings that are described as follows:
For the proposed clinical use, the capability of the invention is to block the sympathetic activity of the renal nerve of the kidney by controlled local delivery of a nerve-blocking agent with the goal of improving the patient's renal and cardiac function. Elements of the invention are useful for blocking nerves for the purpose other than treating cardiorenal disease and can be applied in other anatomic locations.
A nerve blocking agent is a drug that reduces or blocks conduction of signals by renal nerves. The nerve blocking agents used can be selected from different groups including (1) local anesthetics, (2) ketamine (a well known sedative with nerve blocking properties), (3) tricyclic antidepressants such as amitriptyline, (4) neurotoxins such as tetrodotoxin and saxitoxin or (5) any other class or type of agent that transiently or permanently, partially or completely alters nerve conduction. The terms nerve blocking agent and nerve blocking drug are interchangeable.
Cardiorenal disease is defined as a condition, chronic or acute, that involves both the heart and the kidney. Examples of cardiorenal diseases are hypertension and CHF. Cardiorenal diseases are characterized by the elevated activity of the renal nerve.
For the purpose of this invention, the renal nerve is defined as any individual nerve or plexus of nerves and ganglia that conducts a nerve signal to and/or from the kidney and is anatomically located on the surface of the renal artery, parts of aorta where the renal artery branches from the aorta and/or on branches of the renal artery. The renal nerve generally enters the kidney in the area of the hilum of the kidney, but may enter in any location where a renal artery or branch of the renal artery enters the kidney.
Periarterial space is defined as the space immediately surrounding the renal arteries, renal veins and their branches between the aorta and the hilum of the kidney. The renal fat pad is defined as the adipose tissue or fat that fills the periarterial space and surrounds the renal artery, renal vein, renal nerves and the kidney itself. The renal fascia is the layer of connective tissue that surrounds, envelopes and contains the renal artery, renal vein, renal fatpad and the kidney itself.
An implantable or implanted device (commonly termed an “implant”) is an artificial device fully enclosed in the patient's body. It is significant that implants allow the natural skin of the patient to serve as a barrier against infection. An implant can be, for example, a complex electromechanical pump, catheter and port or a drug-releasing polymer. Implantation can be achieved by open surgery, minimally invasive surgery or a transcatheter intervention, whether extravascular, intravascular or combination of any of the above. During the implantation procedure, a surgical instrument or catheter is used to cross the skin, penetrating into the patient's body. The implant is positioned at the desired site and the pathway used to access the site is closed. The site heals and the device is now fully implanted.
An implantable pump is an implantable device that is inserted under the patient's skin and can be refilled using a transdermal needle access. An implantable pump may have an integral catheter or can be equipped with a separate catheter that delivers medication to the periarterial space. Depending on the desired treatment modality, a preferred implantable pump can be programmable, patient controlled or a constant rate device.
A drug eluting implant is a device that is fully implanted in the body that slowly elutes the nerve-blocking agent into the target space. One example of such a space is the renal periarterial space. Another example is inside the renal capsule, or the virtual space between the kidney tissue and the fibrous sheath surrounding the kidney tissues itself. Drug eluting implants work by diffusion and can be biodegradable or not. An osmotic pump is also a drug eluting implant. Different matrixes that serve to slow down the diffusion of the drug into a target space are all called drug eluting implants for the purpose of this invention. These include gels, patches, injectable microspheres, suspensions, solutions or any other matrix that may hold sufficient drug to cause the intended effect.
It is significant that the catheter 106 can be introduced into the periarterial space under the CT guidance without surgery. The spatial resolution of modern imaging modalities such as CT, CT Fluoroscopy, Ultrasound and MRI allows an interventional radiologist to position the catheter within a millimeter from the renal artery of a human. The procedure is performed using a needle, an exchange guidewire and similar techniques commonly used in interventional radiology. The distal end of the catheter can be left outside of the body for the test period or the entire treatment if the treatment requires only a short duration. Later, if the renal nerve blocking therapy is clinically successful, an implanted pump or a simple subcutaneous port such as a commercially available Port-A-Cath device can be connected to the already implanted catheter for repeat infusions of the nerve-blocking drug.
Programmable implantable infusion devices (also called implantable pumps) that actively meter the drug into an associated drug delivery catheter are described in the U.S. Pat. Nos. 4,692,147; 5,713,847; 5,711,326; 5,458,631; 4,360,019; 4,487,603; and 4,715,852. Alternatively, implantable infusion devices can control drug delivery by means of a rate-limiting element positioned between the drug reservoir and the delivery catheter as described in the U.S. Pat. No. 5,836,935, or by only releasing drug from the reservoir upon application of pressure to a subcutaneously positioned control device as described in U.S. Pat. Nos. 4,816,016 and 4,405,305. Implantable infusion devices have been used for intravenous, intraarterial, intrathecal, intraperitoneal, intraspinal and epidural drug delivery but not for periarterial drug infusion.
Known infusion pumps described above can be used to block the renal nerve for the purpose of treating cardiac diseases but they lack certain features needed in practical application. It is important for the physician to be able to determine that the nerve is in fact effectively blocked. In pain control applications of local anesthetics, the disappearance of the pain by itself is an indicator of an effective block. There is no natural indication of the renal nerve activity that can be simply measured. To address that problem, the pump 105 is equipped with a test electrode 412 on the tip 304 of the catheter 106. The electrode can be a single ring or multiple electrodes made of a conductive metal such as gold, stainless steel or titanium. The electrode 412 is connected to the control circuitry of the pump 409 by a conductive wire 413 integrated inside the catheter body 106. Except for the tip electrode 412 the wire is electrically insulated from the patient.
To test the effectiveness of the renal nerve block the control circuitry initiates an electric pulse to the electrode. To close the electric circuit the metal case 402 of the pump can be used as a second return electrode. Alternatively the catheter 106 can be equipped with more than one electrode. Low electric current pulse that can be in the range of 5-10 milliamps is passed through the tissue surrounding the electrode 412. If the nerve block is effective, patient will have no sensation of tingling or minor electric shock. If the block is ineffective, the nerves in the surrounding tissue will conduct the pulse, causing pain that the patient then reports to the physician and the physician will be able to make adjustments to therapy such as, for example, increase the dose of drug delivered by the pump.
This aspect is similar to the surgical technique used by anesthesiologists to establish short term invasive nerve blocks during surgery. Before the start of the surgery, the anesthesiologist places a needle precisely on the nerve or plexus. To do this, a specially designed electrical nerve stimulator is used. The nerve stimulator delivers a very small electrical current, too small to be felt, to the nerve, which causes twitching of the particular muscles supplied by that nerve or plexus of nerves. In this example, the nerve serves as nothing more than a sophisticated “electrical wire”, which is now conducting the current delivered by an electrical device to the muscles, in place of the normally conducted current originating from the brain. The patient will therefore experience small muscle twitches in the muscles supplied by that nerve similar to when your eye is twitching. This technique has never been previously applied to an implanted device. In the proposed invention, the physician will be able to perform the nerve block test in their office, without sophisticated surgical techniques and sterile environment. The external programmer device will initiate a command sequence that will be received by the electronics of the implanted pump using RF waves.
In an alternate embodiment, the catheter can have two or more sets of electrodes, at least one set proximal to and at least one set distal to the area of renal nerve blockade. Each set of electrodes is in sufficient proximity to the renal nerve so that it can either sense intrinsic nerve activity or stimulate nerve activity. It is clear that if the pump control circuitry initiates and electrical pulse to a one set of electrodes on one side of the block and does not record a corresponding and appropriately timed signal on the opposite side of the block, then the drug is effective in creating the nerve block. Conversely, if the electrical activity is sensed, more drug must be infused to create the desired block. It is also clear that this information can be used as feedback by the control circuitry to automatically adjust the timing and/or amount of drug released.
Renal nerve 501 is shown schematically as a branching network attached to the external surface of the renal artery 107. Anatomically, the renal nerve forms one or more plexi on the external surface of the renal artery. Fibers contributing to these plexi arise from the celiac ganglion, the lowest splanchnic nerve, the aorticorenal ganglion and aortic plexus. The plexi are distributed with branches of the renal artery to vessels of the kidney, the glomeruli and tubules. The nerves from these sources, fifteen or twenty in number, have a few ganglia developed upon them. They accompany the branches of the renal artery into the kidney; some filaments are distributed to the spermatic plexus and, on the right side, to the inferior vena cava.
A fibrous connective tissue layer, called the renal capsule, encloses each kidney. Around the renal capsule is a dense deposit of adipose tissue, the renal fat pad, which protects the kidney from mechanical shock. The kidneys and the surrounding adipose tissue are anchored to the abdominal wall by a thin layer of connective tissue, the renal fascia. The periarterial space of the renal artery is externally limited by renal fascia 502 that extends between the kidney and the aorta and contains renal vessels and nerves. Renal fascia presents a natural barrier to the dissipation of the infused drug 504 that is emitted from the tip of the catheter 106. Fat fills the space between the fascia and the renal artery. In particular, there is a fat tissue layer 503 in the hilum of the kidney that surrounds the renal pedicle where arteries, nerves and veins enter the kidney. The catheter tip 304 is shown penetrating the renal fascia and the renal fat and the anesthetic drug is infused into the fatpad tissue. Although shown in the hilum of the kidney, the tip can be placed anywhere in the renal periarterial space as long as the position allows the spread of the nerve blocking agent to at least a sufficient area of nerve to achieve the required level of nerve blockade. In practice, there is an advantage to placing the tip at a location in continuity with the periarterial space fat. Anesthetic drugs such as amino ester and amino amide local anesthetics such as bupivacaine have high lipid solubility. The invention takes advantage of this. A single bolus of bupivacaine, after being infused into these areas, will be adsorbed by fat and retained at the location of the renal nerve. In this manner, the renal fat serves as storage of drug that will then be slowly released from the renal fat, and in this way, obtains the desired prolonged nerve blocking action.
Implants for long-term drug delivery are known. For example, such implants have been used or proposed for delivering a birth control drug systemically (into circulation) or a chemotherapeutic agent to a localized breast tumor. Examples of such implantable drug delivery devices include implantable diffusion systems (see, e.g., implants such as Norplant for birth control and Zoladex for the treatment of prostate cancer) and other such systems, described of example in U.S. Pat. Nos. 5,756,115; 5,429,634; 5,843,069. Norplant is an example of a class of the drug eluting implants also called controlled release systems comprising a polymer for prolonged delivery of a therapeutic drug. Norplant is a subdermal reservoir implant comprised of a polymer can be used to release a contraceptive steroid, such as progestin, in amounts of 25-30 mg/day for up to sixty months. Norplant uses the DURIN biodegradable implant technology that is a platform for controlled delivery of drugs for periods of weeks to six months or more. DURIN can be adopted for delivery of an anesthetic into the periarterial space. The technology is based on the use of biodegradable polyester excipients, which have a proven record of safety and effectiveness in approved drug delivery and medical device products. DURIN technology is available from the DURECT Corporation of Cupertino, Calif.
Drug eluting implants generally operate by simple diffusion, e.g., the active agent diffuses through a polymeric material at a rate that is controlled by the characteristics of the active agent formulation and the polymeric material. An alternative approach involves the use of biodegradable implants, which facilitate drug delivery through degradation or erosion of the implant material that contains the drug (see, e.g., U.S. Pat. No. 5,626,862). Alternatively, the implant may be based upon an osmotically-driven device to accomplish controlled drug delivery (see, e.g., U.S. Pat. Nos. 3,987,790, 4,865,845, 5,057,318, 5,059,423, 5,112,614, 5,137,727, 5,234,692; 5,234,693; and 5,728,396). These osmotic pumps generally operate by imbibing fluid from the outside environment and releasing corresponding amounts of the therapeutic agent. Osmotic pumps suitable for the renal nerve blocking application are available from ALZA Corporation of Mountain View, Calif. under the brand name of Alzet Osmotic Pumps and the Duros implant. Duos implant is a miniature cylinder made from a titanium alloy, which protects and stabilizes the drug inside. Water enters into one end of the cylinder through a semipermeable membrane; the drug is delivered from a port at the other end of the cylinder at a controlled rate appropriate to the specific therapeutic agent. The advantage of drug eluting implants is that they can store a common anesthetic agent in concentration much higher than that used for common local anesthetic injections. Accurate delivery of small amounts of the drug via diffusion enables storage of the many months supply of the nerve-blocking agent in the implant and eliminates the need for frequent refills typical of an implanted drug pump. It is also clear that more than one drug can be released from the implant, that function in either in a complementary or inhibiting manner, to enhance or block the activity of each other.
Patches and gels containing local anesthetics have been previously used for topical application to numb skin at the site of irritation or burn as well as for example during cataract eye surgery. One applicable gel is described in the U.S. Pat. No. 5,589,192 to Okabe, et al. “Gel pharmaceutical formulation for local anesthesia.”
Injectable microparticles or microspheres or microcapsules loaded with drugs are also known. Injectable microspheres are made of degradable materials, such as lactic acid-glycolic acid copolymers, polycaprolactones and cholesterol among others. For example, U.S. Pat. No. 5,061,492 related to prolonged release microcapsules of a water-soluble drug in a biodegradable polymer matrix which is composed of a copolymer of glycolic acid and a lactic acid. The injectable preparation is made by preparing a water-in-oil emulsion of aqueous layer of drug and drug retaining substance and an oil layer of the polymer, thickening and then water-drying. In addition, controlled release microparticles containing glucocorticoid (steroid) agents are described, for example, by Tice et al. in U.S. Pat. No. 4,530,840. In another embodiment, the implanted microspheres are stable and do not degrade on their own. In this case, the microspheres are broken via external, directed application of an energy source, such as ultrasound, temperature or radiation. Breaking of the microspheres release the encapsulated drug and provide the desired physiologic effect, in this case, nerve blockade.
U.S. Pat. No. 5,700,485 to Berde, et al. titled “Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid” describes in sufficient detail methods of manufacturing and application of biodegradable controlled release microspheres for the prolonged administration of a local anesthetic agent. The microspheres are formed of biodegradable polymers polyanhydrides, polylactic acid-glycolic acid copolymers. Local anesthetics are incorporated into the polymer. Prolonged release is obtained by incorporation of a glucocorticoid into the polymeric matrix or by co-administration of the glucocorticoid with the microspheres. Significantly U.S. Pat. No. 6,238,702 to the same authors entitled “High load formulations and methods for providing prolonged local anesthesia” described the polymer matrix that contained significantly higher concentration of local anesthetic than is normally used for injections. Since the periarterial space can anatomically accommodate an implant of substantial size nerve blocking for at least 30 days and more preferably several years is possible. U.S. Pat. No. 5,618,563 to Berde, et al. titled “Biodegradable polymer matrices for sustained delivery of local anesthetic agents” further elaborates on the biodegradable controlled release system consisting of a polymeric matrix incorporating a local anesthetic for the prolonged administration of the local anesthetic agent, and a method for the manufacture thereof.
The human body acts spontaneously to reject or encapsulate any foreign object, which has been introduced into the body or a specific bodily organ. In some cases, encapsulation will impede or halt drug infusion. In others, the delivery fluid will reflux from the tissue through a space opened between the exterior of the catheter and the tissue of the bore in which the catheter is received. Either of these results will greatly diminish the effect of direct infusion of medicaments on affected body tissue. Thus, the body's own natural defense systems thus tend to frustrate the procedure. The reaction of living tissue to an implant can take a number of different forms. For example, the initial response to the surgical trauma of implantation is usually called the acute inflammatory reaction and is characterized by an invasion of polymorphonuclear leukocytes (PMNs). The acute inflammatory reaction is followed by the chronic inflammatory reaction, which is characterized by the presence of numerous macrophages and lymphocytes, some monocytes and granulocytes. Fibroblasts also begin accumulating in the vicinity of the implant and begin producing a matrix of collagen. The fibroblasts and collagen form a connective tissue capsule around the implant and the chronic inflammatory cells to effectively isolate the implant and these cells from the rest of the body. Connective tissue consisting of a fine network of collagen with active producing fibroblasts accompanied by chronic inflammatory cells, capillaries and blood vessels is referred to collectively as granulation tissue.
Thus, when a material is implanted into a soft tissue bed of a living organism such as a human or an animal, a granulation tissue capsule is formed around the implant material consisting of inflammatory cells, immature fibroblasts and blood vessels. This tissue capsule usually increases in thickness with time and contracts around the implant, deforming the implantation site, and possibly the implant itself depending upon the rigidity of the implant.
Implant illustrated by
The embodiment illustrated by
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 14/878,371, filed Oct. 8, 2015, now U.S. Pat. No. 9,968,511, which is a continuation of U.S. application Ser. No. 14/221,536, filed Mar. 21, 2014, now U.S. Pat. No. 9,192,715, which is a continuation of U.S. application Ser. No. 11/133,925, filed May 20, 2005, now U.S. Pat. No. 8,771,252, which is a continuation of U.S. application Ser. No. 10/900,199, filed Jul. 28, 2004, now U.S. Pat. No. 6,978,174, which is a continuation-in-part of U.S. application Ser. No. 10/408,665, filed Apr. 8, 2003, now U.S. Pat. No. 7,162,303, which claims priority to the following commonly-owned applications: U.S. Provisional Application No. 60/370,190, filed Apr. 8, 2002, entitled “Modulation Of Renal Nerve To Treat CHF”, U.S. Provisional Application No. 60/415,575, filed Oct. 3, 2002, entitled “Modulation Of Renal Nerve To Treat CHF”, and U.S. Provisional Application No. 60/442,970, filed Jan. 29, 2003, entitled “Treatment Of Renal Failure And Hypertension”. The entirety of each of these applications is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2130758 | Rose | Sep 1938 | A |
2276995 | Milinowski | Mar 1942 | A |
2276996 | Milinowski | Mar 1942 | A |
3043310 | Milinowski | Jul 1962 | A |
3127895 | Kendall et al. | Apr 1964 | A |
3181535 | Milinowski | May 1965 | A |
3270746 | Kendall et al. | Sep 1966 | A |
3329149 | Kendall et al. | Jul 1967 | A |
3522811 | Schwartz et al. | Aug 1970 | A |
3563246 | Puharich et al. | Feb 1971 | A |
3650277 | Sjostrand et al. | Mar 1972 | A |
3670737 | Pearo | Jun 1972 | A |
3752162 | Newash | Aug 1973 | A |
3760812 | Timm et al. | Sep 1973 | A |
3774620 | Hansjurgens et al. | Nov 1973 | A |
3794022 | Nawracaj et al. | Feb 1974 | A |
3800802 | Berry et al. | Apr 1974 | A |
3803463 | Cover | Apr 1974 | A |
3894532 | Morey | Jul 1975 | A |
3895639 | Rodler et al. | Jul 1975 | A |
3897789 | Blanchard | Aug 1975 | A |
3911930 | Hagfors et al. | Oct 1975 | A |
3952751 | Yarger | Apr 1976 | A |
3987790 | Eckenhoff et al. | Oct 1976 | A |
4011861 | Enger | Mar 1977 | A |
4026300 | DeLuca et al. | May 1977 | A |
4055190 | Tany et al. | Oct 1977 | A |
4071033 | Nawracaj et al. | Jan 1978 | A |
4105017 | Ryaby et al. | Aug 1978 | A |
4141365 | Fischell et al. | Feb 1979 | A |
4266532 | Ryaby et al. | May 1981 | A |
4266533 | Ryaby et al. | May 1981 | A |
4305115 | Armitage et al. | Dec 1981 | A |
4315503 | Ryaby et al. | Feb 1982 | A |
4360019 | Portner et al. | Nov 1982 | A |
4379462 | Borkan et al. | Apr 1983 | A |
4405305 | Stephen et al. | Sep 1983 | A |
4454883 | Fellus et al. | Jun 1984 | A |
4467808 | Brighton et al. | Aug 1984 | A |
4487603 | Harris | Dec 1984 | A |
4530840 | Tice et al. | Jul 1985 | A |
4587975 | Salo et al. | May 1986 | A |
4602624 | Naples et al. | Jul 1986 | A |
4608985 | Crish et al. | Sep 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4671286 | Renault | Jun 1987 | A |
4674482 | Waltonen et al. | Jun 1987 | A |
4692147 | Duggan | Sep 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4715852 | Reinicke et al. | Dec 1987 | A |
4774967 | Zanakis et al. | Oct 1988 | A |
4791931 | Slate | Dec 1988 | A |
4816016 | Schulte et al. | Mar 1989 | A |
4824436 | Wolinsky | Apr 1989 | A |
4852573 | Kennedy | Aug 1989 | A |
4865845 | Eckenhoff et al. | Sep 1989 | A |
4890623 | Cook et al. | Jan 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4979511 | Terry, Jr. | Dec 1990 | A |
4981146 | Bertolucci | Jan 1991 | A |
4998532 | Griffith | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5014699 | Pollack et al. | May 1991 | A |
5019034 | Weaver et al. | May 1991 | A |
5057318 | Magruder et al. | Oct 1991 | A |
5058584 | Bourgeois et al. | Oct 1991 | A |
5059423 | Magruder et al. | Oct 1991 | A |
5061492 | Okada et al. | Oct 1991 | A |
5087244 | Wolinsky et al. | Feb 1992 | A |
5094242 | Gleason et al. | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5111815 | Mower | May 1992 | A |
5112614 | Magruder et al. | May 1992 | A |
5125928 | Parins et al. | Jun 1992 | A |
5131409 | Lobarev et al. | Jul 1992 | A |
5137727 | Eckenhoff | Aug 1992 | A |
5188837 | Domb | Feb 1993 | A |
5193048 | Kaufman et al. | Mar 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5199428 | Obel et al. | Apr 1993 | A |
5203326 | Collins et al. | Apr 1993 | A |
5213098 | Bennett et al. | May 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5234692 | Magruder et al. | Aug 1993 | A |
5234693 | Magruder et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5251643 | Osypka et al. | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5282468 | Klepinski | Feb 1994 | A |
5282785 | Shapland et al. | Feb 1994 | A |
5286254 | Shapland et al. | Feb 1994 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5304120 | Crandell et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5306250 | March et al. | Apr 1994 | A |
5317155 | King | May 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5326341 | Lew et al. | Jul 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5338662 | Sadri | Aug 1994 | A |
5344395 | Whalen et al. | Sep 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5370680 | Proctor | Dec 1994 | A |
5389069 | Weaver | Feb 1995 | A |
5397308 | Ellis et al. | Mar 1995 | A |
5397338 | Grey et al. | Mar 1995 | A |
5400784 | Durand et al. | Mar 1995 | A |
5405367 | Schulman et al. | Apr 1995 | A |
5419767 | Eggers et al. | May 1995 | A |
5419777 | Hofling | May 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5429634 | Narciso, Jr. | Jul 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5439440 | Hofmann | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5458568 | Racchini et al. | Oct 1995 | A |
5458626 | Krause | Oct 1995 | A |
5458631 | Xavier | Oct 1995 | A |
5464395 | Faxon et al. | Nov 1995 | A |
5470352 | Rappaport | Nov 1995 | A |
5472406 | de la Torre et al. | Dec 1995 | A |
5478303 | Foley-Nolan et al. | Dec 1995 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5494822 | Sadri | Feb 1996 | A |
5498238 | Shapland et al. | Mar 1996 | A |
5499971 | Shapland et al. | Mar 1996 | A |
5505700 | Leone et al. | Apr 1996 | A |
5507724 | Hofmann et al. | Apr 1996 | A |
5507791 | Sit'ko et al. | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5538504 | Linden et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5553611 | Budd et al. | Sep 1996 | A |
5560360 | Filler et al. | Oct 1996 | A |
5569198 | Racchini | Oct 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5573552 | Hansjurgens et al. | Nov 1996 | A |
5584863 | Rauch et al. | Dec 1996 | A |
5588960 | Edwards et al. | Dec 1996 | A |
5588962 | Nicholas et al. | Dec 1996 | A |
5588964 | Imran et al. | Dec 1996 | A |
5589192 | Okabe et al. | Dec 1996 | A |
5590654 | Prince | Jan 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5618563 | Berde et al. | Apr 1997 | A |
5626576 | Janssen | May 1997 | A |
5626862 | Brem et al. | May 1997 | A |
5628730 | Shapland et al. | May 1997 | A |
5634462 | Tyler et al. | Jun 1997 | A |
5634899 | Shapland et al. | Jun 1997 | A |
5667490 | Keith et al. | Sep 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5688266 | Edwards et al. | Nov 1997 | A |
5689877 | Grill, Jr. et al. | Nov 1997 | A |
5690691 | Chen et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5700485 | Berde et al. | Dec 1997 | A |
5704908 | Hofmann et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5709874 | Hanson et al. | Jan 1998 | A |
5711326 | Thies et al. | Jan 1998 | A |
5713847 | Howard, III et al. | Feb 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5723001 | Pilla et al. | Mar 1998 | A |
5725563 | Klotz et al. | Mar 1998 | A |
5728396 | Peery et al. | Mar 1998 | A |
5747060 | Sackler et al. | May 1998 | A |
5755750 | Petruska et al. | May 1998 | A |
5756115 | Moo-Young et al. | May 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5792187 | Adams | Aug 1998 | A |
5800464 | Kieval | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5814079 | Kieval | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5824087 | Aspden et al. | Oct 1998 | A |
5836935 | Ashton et al. | Nov 1998 | A |
RE35987 | Harris et al. | Dec 1998 | E |
5843016 | Lugnani et al. | Dec 1998 | A |
5843069 | Butler et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5861021 | Thome et al. | Jan 1999 | A |
5865787 | Shapland et al. | Feb 1999 | A |
5865801 | Houser | Feb 1999 | A |
5871449 | Brown | Feb 1999 | A |
5876374 | Alba et al. | Mar 1999 | A |
5891181 | Zhu et al. | Apr 1999 | A |
5893885 | Webster et al. | Apr 1999 | A |
5906636 | Casscells, III et al. | May 1999 | A |
5906817 | Moullier et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916154 | Hobbs et al. | Jun 1999 | A |
5916227 | Keith et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919187 | Guglielmi et al. | Jul 1999 | A |
5922340 | Berde et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5924997 | Campbell | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5935075 | Casscells et al. | Aug 1999 | A |
5938670 | Keith et al. | Aug 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5954719 | Chen et al. | Sep 1999 | A |
5983131 | Weaver et al. | Nov 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
5989208 | Nita | Nov 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010613 | Walters et al. | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6026326 | Bardy | Feb 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6041252 | Walker et al. | Mar 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6058328 | Levine et al. | May 2000 | A |
6058331 | King | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6073048 | Kieval et al. | Jun 2000 | A |
6077227 | Miesel et al. | Jun 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6122548 | Starkebaum et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6171306 | Swanson et al. | Jan 2001 | B1 |
6178349 | Kleval | Jan 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6192889 | Morrish | Feb 2001 | B1 |
6205361 | Kuzma et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6211247 | Goodman | Apr 2001 | B1 |
6214032 | Loeb et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231516 | Keilman et al. | May 2001 | B1 |
6238702 | Berde et al. | May 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6245045 | Stratienko | Jun 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6251130 | Dobak, III et al. | Jun 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6259952 | Sluijter et al. | Jul 2001 | B1 |
6269269 | Ottenhoff et al. | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6272383 | Grey et al. | Aug 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6280377 | Talpade | Aug 2001 | B1 |
6283947 | Mirzaee | Sep 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6287608 | Levin et al. | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6302870 | Jacobsen et al. | Oct 2001 | B1 |
6304777 | Ben-Haim et al. | Oct 2001 | B1 |
6304787 | Kuzma et al. | Oct 2001 | B1 |
6306423 | Donovan et al. | Oct 2001 | B1 |
6309379 | Willard et al. | Oct 2001 | B1 |
6314325 | Fitz | Nov 2001 | B1 |
6322558 | Taylor et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6326020 | Kohane et al. | Dec 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6334069 | George et al. | Dec 2001 | B1 |
6347247 | Dev et al. | Feb 2002 | B1 |
6353763 | George et al. | Mar 2002 | B1 |
6356786 | Rezai et al. | Mar 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6366808 | Schroeppel et al. | Apr 2002 | B1 |
6366815 | Haugland et al. | Apr 2002 | B1 |
6379373 | Sawhney et al. | Apr 2002 | B1 |
6389314 | Feiring | May 2002 | B2 |
6393324 | Gruzdowich et al. | May 2002 | B2 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6405079 | Ansarinia | Jun 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6415183 | Scheiner et al. | Jul 2002 | B1 |
6415187 | Kuzma et al. | Jul 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6442424 | Ben-Haim et al. | Aug 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6450942 | Lapanashvili et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6464687 | Ishikawa et al. | Oct 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6482619 | Rubinsky et al. | Nov 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6506189 | Rittman, III et al. | Jan 2003 | B1 |
6508774 | Acker et al. | Jan 2003 | B1 |
6514226 | Levin et al. | Feb 2003 | B1 |
6514236 | Stratienko | Feb 2003 | B1 |
6516211 | Acker et al. | Feb 2003 | B1 |
6517811 | John et al. | Feb 2003 | B2 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6522932 | Kuzma et al. | Feb 2003 | B1 |
6524274 | Rosenthal et al. | Feb 2003 | B1 |
6524607 | Goldenheim et al. | Feb 2003 | B1 |
6534081 | Goldenheim et al. | Mar 2003 | B2 |
6536949 | Heuser | Mar 2003 | B1 |
6542781 | Koblish et al. | Apr 2003 | B1 |
6558382 | Jahns et al. | May 2003 | B2 |
6562034 | Edwards et al. | May 2003 | B2 |
6564096 | Mest | May 2003 | B2 |
6571127 | Ben-Haim et al. | May 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6595959 | Stratienko | Jul 2003 | B1 |
6599256 | Acker et al. | Jul 2003 | B1 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6601459 | Jenni et al. | Aug 2003 | B1 |
6605084 | Acker et al. | Aug 2003 | B2 |
6613045 | Laufer et al. | Sep 2003 | B1 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6620151 | Blischak et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623452 | Chien et al. | Sep 2003 | B2 |
6623453 | Guibert et al. | Sep 2003 | B1 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6640120 | Swanson et al. | Oct 2003 | B1 |
6654636 | Dev et al. | Nov 2003 | B1 |
6666845 | Hooper et al. | Dec 2003 | B2 |
6669655 | Acker et al. | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6672312 | Acker | Jan 2004 | B2 |
6676657 | Wood | Jan 2004 | B2 |
6681136 | Schuler et al. | Jan 2004 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6689086 | Nita et al. | Feb 2004 | B1 |
6689148 | Sawhney et al. | Feb 2004 | B2 |
6690971 | Schauerte et al. | Feb 2004 | B2 |
6692738 | MacLaughlin et al. | Feb 2004 | B2 |
6695830 | Vigil et al. | Feb 2004 | B2 |
6697670 | Chomenky et al. | Feb 2004 | B2 |
6706011 | Murphy-Chutorian et al. | Mar 2004 | B1 |
6711444 | Koblish | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6723064 | Babaev | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6738663 | Schroeppel et al. | May 2004 | B2 |
6749598 | Keren et al. | Jun 2004 | B1 |
6752805 | Maguire et al. | Jun 2004 | B2 |
6767544 | Brooks et al. | Jul 2004 | B2 |
6786904 | Doscher et al. | Sep 2004 | B2 |
6788977 | Fenn et al. | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6830568 | Kesten et al. | Dec 2004 | B1 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6862479 | Whitehurst et al. | Mar 2005 | B1 |
6865416 | Dev et al. | Mar 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6885888 | Rezai | Apr 2005 | B2 |
6893414 | Goble et al. | May 2005 | B2 |
6916656 | Walters et al. | Jul 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6923808 | Taimisto | Aug 2005 | B2 |
6927049 | Rubinsky et al. | Aug 2005 | B2 |
6936047 | Nasab et al. | Aug 2005 | B2 |
6939345 | KenKnight et al. | Sep 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6958060 | Mathiesen et al. | Oct 2005 | B2 |
6969388 | Goldman et al. | Nov 2005 | B2 |
6972013 | Zhang et al. | Dec 2005 | B1 |
6978174 | Gelfand et al. | Dec 2005 | B2 |
6985774 | Kieval et al. | Jan 2006 | B2 |
6991617 | Hektner et al. | Jan 2006 | B2 |
6994700 | Elkins et al. | Feb 2006 | B2 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7004911 | Tu et al. | Feb 2006 | B1 |
7054685 | Dimmer et al. | May 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7066904 | Rosenthal et al. | Jun 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7081115 | Taimisto | Jul 2006 | B2 |
7083614 | Fjield et al. | Aug 2006 | B2 |
7122019 | Kesten et al. | Oct 2006 | B1 |
7127284 | Seward | Oct 2006 | B2 |
7141041 | Seward | Nov 2006 | B2 |
7155284 | Whitehurst et al. | Dec 2006 | B1 |
7162303 | Levin et al. | Jan 2007 | B2 |
7191015 | Lamson et al. | Mar 2007 | B2 |
7197354 | Sobe | Mar 2007 | B2 |
7241273 | Maguire et al. | Jul 2007 | B2 |
7241736 | Hunter et al. | Jul 2007 | B2 |
7273469 | Chan et al. | Sep 2007 | B1 |
7297475 | Koiwai et al. | Nov 2007 | B2 |
7326235 | Edwards | Feb 2008 | B2 |
7329236 | Kesten et al. | Feb 2008 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7364566 | Elkins et al. | Apr 2008 | B2 |
7373204 | Gelfand et al. | May 2008 | B2 |
7407671 | McBride et al. | Aug 2008 | B2 |
7413556 | Zhang et al. | Aug 2008 | B2 |
7444183 | Knudson et al. | Oct 2008 | B2 |
7465298 | Seward et al. | Dec 2008 | B2 |
7481803 | Kesten et al. | Jan 2009 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7507235 | Keogh et al. | Mar 2009 | B2 |
7529589 | Williams et al. | May 2009 | B2 |
7540870 | Babaev | Jun 2009 | B2 |
7558625 | Levin et al. | Jul 2009 | B2 |
7563247 | Maguire et al. | Jul 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7640046 | Pastore et al. | Dec 2009 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7666163 | Seward et al. | Feb 2010 | B2 |
7691080 | Seward et al. | Apr 2010 | B2 |
7706882 | Francischelli et al. | Apr 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7744584 | Seward et al. | Jun 2010 | B2 |
7756583 | Demarais et al. | Jul 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7837720 | Mon | Nov 2010 | B2 |
7905862 | Sampson | Mar 2011 | B2 |
7917208 | Yomtov et al. | Mar 2011 | B2 |
8016786 | Seward et al. | Sep 2011 | B2 |
8027740 | Altman et al. | Sep 2011 | B2 |
8119183 | O'Donoghue et al. | Feb 2012 | B2 |
8131371 | Demarais et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8257724 | Cromack et al. | Sep 2012 | B2 |
8257725 | Cromack et al. | Sep 2012 | B2 |
8263104 | Ho et al. | Sep 2012 | B2 |
8317776 | Ferren et al. | Nov 2012 | B2 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8396548 | Perry et al. | Mar 2013 | B2 |
8399443 | Seward | Mar 2013 | B2 |
8403881 | Ferren et al. | Mar 2013 | B2 |
8465752 | Seward | Jun 2013 | B2 |
8562573 | Fischell | Oct 2013 | B1 |
8663190 | Fischell et al. | Mar 2014 | B2 |
8708995 | Sewards et al. | Apr 2014 | B2 |
8721590 | Seward et al. | May 2014 | B2 |
8740849 | Fischell et al. | Jun 2014 | B1 |
8975233 | Stein et al. | Mar 2015 | B2 |
9011879 | Seward | Apr 2015 | B2 |
9033917 | Magana et al. | May 2015 | B2 |
9055956 | McRae et al. | Jun 2015 | B2 |
9056184 | Stein et al. | Jun 2015 | B2 |
9056185 | Fischell et al. | Jun 2015 | B2 |
9108030 | Braga | Aug 2015 | B2 |
9114123 | Azamian et al. | Aug 2015 | B2 |
9131983 | Fischell et al. | Sep 2015 | B2 |
9179962 | Fischell et al. | Nov 2015 | B2 |
9199065 | Seward | Dec 2015 | B2 |
9237925 | Fischell et al. | Jan 2016 | B2 |
9254360 | Fischell et al. | Feb 2016 | B2 |
9278196 | Fischell et al. | Mar 2016 | B2 |
9301795 | Fischell et al. | Apr 2016 | B2 |
9320850 | Fischell et al. | Apr 2016 | B2 |
9526827 | Fischell et al. | Dec 2016 | B2 |
9539047 | Fischell et al. | Jan 2017 | B2 |
9554849 | Fischell et al. | Jan 2017 | B2 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20010044596 | Jaafar | Nov 2001 | A1 |
20020002329 | Avitall | Jan 2002 | A1 |
20020026222 | Schauerte et al. | Feb 2002 | A1 |
20020026228 | Schauerte | Feb 2002 | A1 |
20020032468 | Hill et al. | Mar 2002 | A1 |
20020038137 | Stein | Mar 2002 | A1 |
20020040204 | Dev et al. | Apr 2002 | A1 |
20020045853 | Dev et al. | Apr 2002 | A1 |
20020065541 | Fredricks et al. | May 2002 | A1 |
20020072782 | Osorio et al. | Jun 2002 | A1 |
20020077592 | Barry | Jun 2002 | A1 |
20020082552 | Ding et al. | Jun 2002 | A1 |
20020103445 | Rahdert et al. | Aug 2002 | A1 |
20020107553 | Hill et al. | Aug 2002 | A1 |
20020116030 | Rezai | Aug 2002 | A1 |
20020120304 | Mest | Aug 2002 | A1 |
20020139379 | Edwards et al. | Oct 2002 | A1 |
20020165532 | Hill et al. | Nov 2002 | A1 |
20020165586 | Hill et al. | Nov 2002 | A1 |
20020169413 | Keren et al. | Nov 2002 | A1 |
20020177846 | Mulier et al. | Nov 2002 | A1 |
20020183682 | Darvish et al. | Dec 2002 | A1 |
20020183684 | Dev et al. | Dec 2002 | A1 |
20020188325 | Hill et al. | Dec 2002 | A1 |
20020198512 | Seward | Dec 2002 | A1 |
20030004549 | Hill et al. | Jan 2003 | A1 |
20030009145 | Struijker-Boudier et al. | Jan 2003 | A1 |
20030018367 | DiLorenzo | Jan 2003 | A1 |
20030040774 | Terry et al. | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030050635 | Truckai et al. | Mar 2003 | A1 |
20030050681 | Pianca et al. | Mar 2003 | A1 |
20030060848 | Kieval et al. | Mar 2003 | A1 |
20030060857 | Perrson et al. | Mar 2003 | A1 |
20030060858 | Kieval et al. | Mar 2003 | A1 |
20030069619 | Fenn et al. | Apr 2003 | A1 |
20030074039 | Puskas | Apr 2003 | A1 |
20030082225 | Mason | May 2003 | A1 |
20030100924 | Foreman et al. | May 2003 | A1 |
20030114791 | Rosenthal et al. | Jun 2003 | A1 |
20030120270 | Acker | Jun 2003 | A1 |
20030125790 | Fastovsky et al. | Jul 2003 | A1 |
20030150464 | Casscells | Aug 2003 | A1 |
20030158584 | Cates et al. | Aug 2003 | A1 |
20030181897 | Thomas et al. | Sep 2003 | A1 |
20030181963 | Pellegrino et al. | Sep 2003 | A1 |
20030199747 | Michlitsch et al. | Oct 2003 | A1 |
20030199767 | Cespedes et al. | Oct 2003 | A1 |
20030199768 | Cespedes et al. | Oct 2003 | A1 |
20030199806 | Kieval | Oct 2003 | A1 |
20030199863 | Swanson et al. | Oct 2003 | A1 |
20030204161 | Ferek-Petric | Oct 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030220521 | Reitz et al. | Nov 2003 | A1 |
20030229340 | Sherry et al. | Dec 2003 | A1 |
20030233099 | Danaek et al. | Dec 2003 | A1 |
20030236443 | Cespedes et al. | Dec 2003 | A1 |
20040010289 | Biggs et al. | Jan 2004 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040019364 | Kieval et al. | Jan 2004 | A1 |
20040019371 | Jaafar et al. | Jan 2004 | A1 |
20040043030 | Griffiths et al. | Mar 2004 | A1 |
20040062852 | Schroeder et al. | Apr 2004 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064091 | Keren et al. | Apr 2004 | A1 |
20040064093 | Hektner et al. | Apr 2004 | A1 |
20040065615 | Hooper et al. | Apr 2004 | A1 |
20040073238 | Makower | Apr 2004 | A1 |
20040082978 | Harrison et al. | Apr 2004 | A1 |
20040101523 | Reitz et al. | May 2004 | A1 |
20040106953 | Yomtov et al. | Jun 2004 | A1 |
20040111080 | Harper et al. | Jun 2004 | A1 |
20040127942 | Yomtov et al. | Jul 2004 | A1 |
20040162590 | Whitehurst et al. | Aug 2004 | A1 |
20040163655 | Gelfand et al. | Aug 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040176699 | Walker et al. | Sep 2004 | A1 |
20040176757 | Sinelnikov et al. | Sep 2004 | A1 |
20040186468 | Edwards | Sep 2004 | A1 |
20040193228 | Gerber | Sep 2004 | A1 |
20040215186 | Cornelius et al. | Oct 2004 | A1 |
20040220511 | Scott et al. | Nov 2004 | A1 |
20040243102 | Berg et al. | Dec 2004 | A1 |
20040243206 | Tadlock | Dec 2004 | A1 |
20040249416 | Yun et al. | Dec 2004 | A1 |
20040253304 | Gross et al. | Dec 2004 | A1 |
20040254616 | Rossing et al. | Dec 2004 | A1 |
20050010263 | Schauerte | Jan 2005 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050038409 | Segal et al. | Feb 2005 | A1 |
20050049542 | Sigg et al. | Mar 2005 | A1 |
20050065562 | Rezai | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065574 | Rezai | Mar 2005 | A1 |
20050075681 | Rezai et al. | Apr 2005 | A1 |
20050080409 | Young et al. | Apr 2005 | A1 |
20050080459 | Jacobson et al. | Apr 2005 | A1 |
20050096647 | Steinke et al. | May 2005 | A1 |
20050096710 | Kieval | May 2005 | A1 |
20050149173 | Hunter et al. | Jul 2005 | A1 |
20050149175 | Hunter et al. | Jul 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154418 | Kieval et al. | Jul 2005 | A1 |
20050154445 | Hunter et al. | Jul 2005 | A1 |
20050154453 | Hunter et al. | Jul 2005 | A1 |
20050154454 | Hunter et al. | Jul 2005 | A1 |
20050165467 | Hunter et al. | Jul 2005 | A1 |
20050171523 | Rubinsky et al. | Aug 2005 | A1 |
20050171574 | Rubinsky et al. | Aug 2005 | A1 |
20050171575 | Dev et al. | Aug 2005 | A1 |
20050175661 | Hunter et al. | Aug 2005 | A1 |
20050175662 | Hunter et al. | Aug 2005 | A1 |
20050177103 | Hunter et al. | Aug 2005 | A1 |
20050181004 | Hunter et al. | Aug 2005 | A1 |
20050182479 | Bonsignore et al. | Aug 2005 | A1 |
20050186242 | Hunter et al. | Aug 2005 | A1 |
20050186243 | Hunter et al. | Aug 2005 | A1 |
20050187579 | Danek et al. | Aug 2005 | A1 |
20050192638 | Gelfand et al. | Sep 2005 | A1 |
20050197624 | Goodson et al. | Sep 2005 | A1 |
20050209548 | Dev et al. | Sep 2005 | A1 |
20050209642 | Palti | Sep 2005 | A1 |
20050228286 | Messerly et al. | Oct 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050234523 | Levin et al. | Oct 2005 | A1 |
20050240126 | Foley et al. | Oct 2005 | A1 |
20050240173 | Palti | Oct 2005 | A1 |
20050240228 | Palti | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050245882 | Elkins et al. | Nov 2005 | A1 |
20050245892 | Elkins et al. | Nov 2005 | A1 |
20050251212 | Kieval et al. | Nov 2005 | A1 |
20050261672 | Deem et al. | Nov 2005 | A1 |
20050267010 | Goodson et al. | Dec 2005 | A1 |
20050267556 | Shuros et al. | Dec 2005 | A1 |
20050282284 | Rubinsky et al. | Dec 2005 | A1 |
20050283195 | Pastore et al. | Dec 2005 | A1 |
20060004417 | Rossing et al. | Jan 2006 | A1 |
20060004430 | Rossing et al. | Jan 2006 | A1 |
20060018949 | Ammon, Jr. et al. | Jan 2006 | A1 |
20060025821 | Gelfand et al. | Feb 2006 | A1 |
20060030814 | Valencia et al. | Feb 2006 | A1 |
20060036218 | Goodson et al. | Feb 2006 | A1 |
20060041277 | Deem et al. | Feb 2006 | A1 |
20060041283 | Gelfand et al. | Feb 2006 | A1 |
20060067972 | Kesten et al. | Mar 2006 | A1 |
20060069323 | Elkins et al. | Mar 2006 | A1 |
20060074453 | Kieval et al. | Apr 2006 | A1 |
20060079859 | Elkins et al. | Apr 2006 | A1 |
20060085046 | Rezai et al. | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060089674 | Walters et al. | Apr 2006 | A1 |
20060095029 | Young et al. | May 2006 | A1 |
20060100667 | Machado et al. | May 2006 | A1 |
20060106429 | Libbus et al. | May 2006 | A1 |
20060111672 | Seward | May 2006 | A1 |
20060111754 | Rezai et al. | May 2006 | A1 |
20060116720 | Knoblich | Jun 2006 | A1 |
20060121016 | Lee | Jun 2006 | A1 |
20060121610 | Rubinsky et al. | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060136004 | Cowan et al. | Jun 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060155344 | Rezai et al. | Jul 2006 | A1 |
20060167437 | Valencia | Jul 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060167499 | Palti | Jul 2006 | A1 |
20060189941 | Seward et al. | Aug 2006 | A1 |
20060189960 | Kesten et al. | Aug 2006 | A1 |
20060190044 | Libbus et al. | Aug 2006 | A1 |
20060206149 | Yun | Sep 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060212076 | Demarais et al. | Sep 2006 | A1 |
20060212078 | Demarais et al. | Sep 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060235474 | Demarais | Oct 2006 | A1 |
20060240070 | Cromack et al. | Oct 2006 | A1 |
20060263393 | Demopulos et al. | Nov 2006 | A1 |
20060265014 | Demarais et al. | Nov 2006 | A1 |
20060265015 | Demarais et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20060276852 | Demarais et al. | Dec 2006 | A1 |
20060280858 | Kokish | Dec 2006 | A1 |
20070066957 | Demarais et al. | Mar 2007 | A1 |
20070066959 | Seward | Mar 2007 | A1 |
20070066972 | Ormsby et al. | Mar 2007 | A1 |
20070078620 | Seward et al. | Apr 2007 | A1 |
20070083239 | Demarais et al. | Apr 2007 | A1 |
20070100318 | Seward et al. | May 2007 | A1 |
20070106249 | Seward et al. | May 2007 | A1 |
20070106250 | Seward et al. | May 2007 | A1 |
20070106251 | Seward et al. | May 2007 | A1 |
20070106255 | Seward et al. | May 2007 | A1 |
20070106256 | Seward et al. | May 2007 | A1 |
20070106257 | Seward et al. | May 2007 | A1 |
20070118107 | Francischelli et al. | May 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070129761 | Demarais et al. | Jun 2007 | A1 |
20070135875 | Demarais et al. | Jun 2007 | A1 |
20070142864 | Libbus et al. | Jun 2007 | A1 |
20070156200 | Kornet et al. | Jul 2007 | A1 |
20070173899 | Levin et al. | Jul 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070208134 | Hunter et al. | Sep 2007 | A1 |
20070208382 | Yun | Sep 2007 | A1 |
20070219576 | Cangialosi | Sep 2007 | A1 |
20070248639 | Demopulos et al. | Oct 2007 | A1 |
20070254833 | Hunter et al. | Nov 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20070269385 | Yun et al. | Nov 2007 | A1 |
20070278103 | Hoerr et al. | Dec 2007 | A1 |
20070282376 | Shuros et al. | Dec 2007 | A1 |
20070288070 | Libbus et al. | Dec 2007 | A1 |
20070299043 | Hunter et al. | Dec 2007 | A1 |
20080004596 | Yun et al. | Jan 2008 | A1 |
20080004673 | Rossing et al. | Jan 2008 | A1 |
20080015659 | Zhang et al. | Jan 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080039904 | Bulkes et al. | Feb 2008 | A1 |
20080045890 | Seward et al. | Feb 2008 | A1 |
20080086072 | Bonutti et al. | Apr 2008 | A1 |
20080091255 | Caparso et al. | Apr 2008 | A1 |
20080140150 | Zhou et al. | Jun 2008 | A1 |
20080208162 | Joshi | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20080317818 | Griffiths et al. | Dec 2008 | A1 |
20080319513 | Pu et al. | Dec 2008 | A1 |
20090024195 | Rezai et al. | Jan 2009 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090062873 | Wu et al. | Mar 2009 | A1 |
20090074828 | Alexis et al. | Mar 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090105631 | Kieval | Apr 2009 | A1 |
20090142306 | Seward et al. | Jun 2009 | A1 |
20090156988 | Ferren et al. | Jun 2009 | A1 |
20090157057 | Ferren et al. | Jun 2009 | A1 |
20090216317 | Cromack et al. | Aug 2009 | A1 |
20090221955 | Babaev | Sep 2009 | A1 |
20100010567 | Deem et al. | Jan 2010 | A1 |
20100057150 | Demarais et al. | Mar 2010 | A1 |
20100069837 | Rassat et al. | Mar 2010 | A1 |
20100087782 | Ghaffari et al. | Apr 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100137952 | Demarais et al. | Jun 2010 | A1 |
20100168731 | Wu et al. | Jul 2010 | A1 |
20100168739 | Wu et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100217162 | Hissong et al. | Aug 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100222854 | Demarais et al. | Sep 2010 | A1 |
20100228122 | Keenan et al. | Sep 2010 | A1 |
20100249702 | Magana et al. | Sep 2010 | A1 |
20100249773 | Clark et al. | Sep 2010 | A1 |
20100268307 | Demarais et al. | Oct 2010 | A1 |
20100324472 | Wulfman | Dec 2010 | A1 |
20110060324 | Wu et al. | Mar 2011 | A1 |
20110086257 | Pitteloud et al. | Apr 2011 | A1 |
20110104060 | Seward | May 2011 | A1 |
20110104061 | Seward | May 2011 | A1 |
20110112400 | Emery et al. | May 2011 | A1 |
20110137155 | Weber et al. | Jun 2011 | A1 |
20110137298 | Nguyen et al. | Jun 2011 | A1 |
20110182912 | Evans et al. | Jul 2011 | A1 |
20110184337 | Evans et al. | Jul 2011 | A1 |
20110200171 | Beetel et al. | Aug 2011 | A1 |
20110202098 | Demarais et al. | Aug 2011 | A1 |
20110257564 | Demarais et al. | Oct 2011 | A1 |
20110257622 | Salahieh et al. | Oct 2011 | A1 |
20110264011 | Wu et al. | Oct 2011 | A1 |
20110264075 | Leung et al. | Oct 2011 | A1 |
20120172837 | Demarais | Jul 2012 | A1 |
20120259269 | Meyer | Oct 2012 | A1 |
20120271277 | Fischell et al. | Oct 2012 | A1 |
20120271301 | Fischell et al. | Oct 2012 | A1 |
20130053792 | Fischell et al. | Feb 2013 | A1 |
20130053821 | Fischell et al. | Feb 2013 | A1 |
20130053822 | Fischell et al. | Feb 2013 | A1 |
20130096604 | Hanson et al. | Apr 2013 | A1 |
20130172815 | Perry et al. | Jul 2013 | A1 |
20130204131 | Seward | Aug 2013 | A1 |
20130252932 | Seward | Sep 2013 | A1 |
20130274673 | Fischell et al. | Oct 2013 | A1 |
20130274674 | Fischell et al. | Oct 2013 | A1 |
20130287698 | Seward | Oct 2013 | A1 |
20130296853 | Sugimoto et al. | Nov 2013 | A1 |
20140012231 | Fischell | Jan 2014 | A1 |
20140046298 | Fischell et al. | Feb 2014 | A1 |
20140107478 | Seward et al. | Apr 2014 | A1 |
20140121641 | Fischell et al. | May 2014 | A1 |
20140121644 | Fischell et al. | May 2014 | A1 |
20140135661 | Garrison et al. | May 2014 | A1 |
20140236103 | Fischell et al. | Aug 2014 | A1 |
20140271717 | Goshayeshgar et al. | Sep 2014 | A1 |
20140276621 | Braga | Sep 2014 | A1 |
20140296279 | Seward et al. | Oct 2014 | A1 |
20140303569 | Seward et al. | Oct 2014 | A1 |
20140316351 | Fischell et al. | Oct 2014 | A1 |
20140358079 | Fischell et al. | Dec 2014 | A1 |
20140378906 | Fischell et al. | Dec 2014 | A1 |
20150005719 | Fischell et al. | Jan 2015 | A1 |
20150132409 | Stein et al. | May 2015 | A1 |
20150202220 | Stein et al. | Jul 2015 | A1 |
20150224289 | Seward | Aug 2015 | A1 |
20150231386 | Meyer | Aug 2015 | A1 |
20150245863 | Fischell et al. | Sep 2015 | A1 |
20150335384 | Fischell et al. | Nov 2015 | A1 |
20150343156 | Fischell et al. | Dec 2015 | A1 |
20150343175 | Braga | Dec 2015 | A1 |
20160008387 | Stein et al. | Jan 2016 | A9 |
20160051465 | Azamian et al. | Feb 2016 | A1 |
20160058489 | Fischell et al. | Mar 2016 | A1 |
20160095862 | Gelfand et al. | Apr 2016 | A1 |
20160120587 | Fischell et al. | May 2016 | A1 |
20160235464 | Fischell et al. | Aug 2016 | A1 |
20160242661 | Fischell et al. | Aug 2016 | A1 |
20160310200 | Wang | Oct 2016 | A1 |
20160354137 | Fischell et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2384866 | Apr 2001 | CA |
2575458 | Feb 2006 | CA |
3151180 | Aug 1982 | DE |
233100 | Aug 1987 | EP |
497041 | Aug 1992 | EP |
0599567 | Jun 1994 | EP |
0811395 | Dec 1997 | EP |
774991 | Oct 2003 | EP |
1782852 | May 2007 | EP |
2092957 | Aug 2009 | EP |
2352542 | Aug 2011 | EP |
2429641 | Mar 2012 | EP |
2528649 | Dec 2012 | EP |
2656807 | Oct 2013 | EP |
2675458 | Dec 2013 | EP |
2694150 | Feb 2014 | EP |
2747688 | Jul 2014 | EP |
2885041 | Jun 2015 | EP |
2911735 | Sep 2015 | EP |
2914326 | Sep 2015 | EP |
3060148 | Aug 2016 | EP |
3132828 | Feb 2017 | EP |
3158866 | Apr 2017 | EP |
H0341967 | Feb 1991 | JP |
2003510126 | Mar 2003 | JP |
2004016333 | Jan 2004 | JP |
2004503294 | Feb 2004 | JP |
WO-1985001213 | Mar 1985 | WO |
WO-1991004725 | Apr 1991 | WO |
WO-1992020291 | Nov 1992 | WO |
WO-1993002740 | Feb 1993 | WO |
WO-1993007803 | Apr 1993 | WO |
WO-1994000188 | Jan 1994 | WO |
WO-1994007446 | Apr 1994 | WO |
WO-1994011057 | May 1994 | WO |
WO-1995025472 | Sep 1995 | WO |
WO-1995031142 | Nov 1995 | WO |
WO-1995033514 | Dec 1995 | WO |
WO-1996000039 | Jan 1996 | WO |
WO-1996004957 | Feb 1996 | WO |
WO-1996011723 | Apr 1996 | WO |
1996041616 | Dec 1996 | WO |
1997003604 | Feb 1997 | WO |
WO-1997013463 | Apr 1997 | WO |
WO-1997013550 | Apr 1997 | WO |
WO-1997036548 | Oct 1997 | WO |
1997042990 | Nov 1997 | WO |
WO-1997049453 | Dec 1997 | WO |
WO-1998037926 | Sep 1998 | WO |
WO 1998042403 | Oct 1998 | WO |
WO-1998042403 | Oct 1998 | WO |
WO-1998043700 | Oct 1998 | WO |
WO-1998043701 | Oct 1998 | WO |
WO-1998048888 | Nov 1998 | WO |
WO-1999000060 | Jan 1999 | WO |
WO-1999033407 | Jul 1999 | WO |
WO-1999051286 | Oct 1999 | WO |
WO-1999052424 | Oct 1999 | WO |
WO-2001022897 | Apr 2001 | WO |
WO-2001026729 | Apr 2001 | WO |
WO-2001070114 | Sep 2001 | WO |
2001095832 | Dec 2001 | WO |
WO-2002009808 | Feb 2002 | WO |
2002026318 | Apr 2002 | WO |
WO-2002026314 | Apr 2002 | WO |
WO-2002053207 | Jul 2002 | WO |
2002058549 | Aug 2002 | WO |
WO-2002070039 | Sep 2002 | WO |
WO-2002070047 | Sep 2002 | WO |
WO-2002085192 | Oct 2002 | WO |
WO-2002085448 | Oct 2002 | WO |
2003024311 | Mar 2003 | WO |
WO-2003018108 | Mar 2003 | WO |
WO-2003022167 | Mar 2003 | WO |
WO-2003028802 | Apr 2003 | WO |
WO-2003063692 | Aug 2003 | WO |
WO-2003071140 | Aug 2003 | WO |
WO-2003076008 | Sep 2003 | WO |
WO-2003082080 | Oct 2003 | WO |
WO-2003082080 | Oct 2003 | WO |
WO-2003082403 | Oct 2003 | WO |
WO-2004026370 | Apr 2004 | WO |
WO-2004026371 | Apr 2004 | WO |
WO-2004026374 | Apr 2004 | WO |
WO 2004030718 | Apr 2004 | WO |
WO-2004032791 | Apr 2004 | WO |
2004011055 | May 2004 | WO |
2004049976 | Jun 2004 | WO |
2004028583 | Aug 2004 | WO |
WO-2004107965 | Dec 2004 | WO |
2005007000 | Jan 2005 | WO |
WO-2005014100 | Feb 2005 | WO |
WO-2005016165 | Feb 2005 | WO |
WO-2005032646 | Apr 2005 | WO |
WO-2005030072 | Apr 2005 | WO |
WO-2005041748 | May 2005 | WO |
WO-2005065284 | Jul 2005 | WO |
WO-2005084389 | Sep 2005 | WO |
WO-2005097256 | Oct 2005 | WO |
WO-2005110528 | Nov 2005 | WO |
WO-2005123183 | Dec 2005 | WO |
WO-2006007048 | Jan 2006 | WO |
2006022790 | Feb 2006 | WO |
WO-2006018528 | Feb 2006 | WO |
2006022790 | Mar 2006 | WO |
WO-2006022790 | Mar 2006 | WO |
WO-2006031899 | Mar 2006 | WO |
WO-2006041847 | Apr 2006 | WO |
WO-2006041881 | Apr 2006 | WO |
WO-2006105121 | Oct 2006 | WO |
WO 2007008954 | Jan 2007 | WO |
WO-2007035537 | Mar 2007 | WO |
WO-2007078997 | Jul 2007 | WO |
WO-2007086965 | Aug 2007 | WO |
WO-2007103879 | Sep 2007 | WO |
WO-2007103881 | Sep 2007 | WO |
WO-2007121309 | Oct 2007 | WO |
WO-2007146834 | Dec 2007 | WO |
WO-2008003058 | Jan 2008 | WO |
WO-2008049084 | Apr 2008 | WO |
WO-2008061150 | May 2008 | WO |
WO-2008061152 | May 2008 | WO |
WO-2008070413 | Jun 2008 | WO |
2009088678 | Jul 2009 | WO |
2010042653 | Apr 2010 | WO |
WO-2010078175 | Jul 2010 | WO |
2011094367 | Aug 2011 | WO |
2011133724 | Oct 2011 | WO |
2012161875 | Nov 2012 | WO |
2013028781 | Feb 2013 | WO |
2013059735 | Apr 2013 | WO |
2013063331 | May 2013 | WO |
2013112844 | Aug 2013 | WO |
2013169741 | Nov 2013 | WO |
2013188689 | Dec 2013 | WO |
2014031167 | Feb 2014 | WO |
2014070820 | May 2014 | WO |
2014070999 | May 2014 | WO |
2014078301 | May 2014 | WO |
2014189887 | Nov 2014 | WO |
Entry |
---|
2003 European Society of Hypertension—European Society of Cardiology guidelines for the management of arterial hypertension, Guidelines Committee, Journal of Hypertension 2003, vol. 21, No. 6, pp. 1011-1053. |
Aars, H. and S. Akre, Reflex Changes in Sympathetic Activity and Arterial Blood Pressure Evoked by Afferent Stimulation of the Renal Nerve, Feb. 26, 1999, Acta physiol. Scand., vol. 78, 1970, pp. 184-188. |
Abramov, G.S. et al., Alteration in sensory nerve function following electrical shock, Burns vol. 22, No. 8, 1996 Elsevier Science Ltd., pp. 602-606. |
Achar, Suraj, M.D., and Suriti Kundu, M.D., Principles of Office Anesthesia: Part I. Infiltrative Anesthesia, Office Procedures, American Family Physician, Jul. 1, 2002, vol. 66, No. 1, pp. 91-94. |
Advanced Neuromodulation Systems' Comparison Chart, Dec. 16, 2008 pp. 1. |
Advances in the role of the sympathetic nervous system in cardiovascular medicine, 2001 SNS Report, No. 3, Springer, Published with an educational grant from Servier, pp. 1-8. |
Aggarwal, A. et al., Regional sympathetic effects of low-dose clonidine in heart failure. Hypertension. 2003;41:553-7. |
Agnew, William F. et al., Evolution and Resolution of Stimulation-Induced Axonal Injury in Peripheral Nerve, May 21, 1999, Muscle & Nerve, vol. 22, Oct. 1999, John Wiley & Sons, Inc. 1999, pp. 1393-1402. |
Ahadian, Farshad M., M.D., Pulsed Radiofrequency Neurotomy: Advances in Pain Medicine, Current Pain and Headache Reports 2004, vol. 8, 2004 Current Science Inc., pp. 34-40. |
Alexander, B.T. et al., Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion; Hypertension, 2005; 45 (part 2): pp. 754-758. |
Alford, J. Winslow, M.D. and Paul D. Fadale, M.D., Evaluation of Postoperative Bupivacaine infusion for Pain Management After Anterior Cruciate Ligament Recontruction, The Journal of Arthroscopic and Related Surgery, vol. 19, No. 8, Oct. 2003 Arthroscopy Association of North America, pp. 855-861. |
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140. |
Amersham Health. Hypaque-Cysto, 2003, 6 pages. |
Andrews, B.T. et al., The use of surgical sympathectomy in the treatment of chronic renal pain. Br J Urol. 1997; 80: 6-10. |
Antman, Elliott M. and Eugene Braunwald, Chapter 37—Acute Myocardial Infarction, Heart Disease—A Textbook of Cardiovascular Medicine, 5th Edition, vol. 2, 1997, Edited by Eugene Braunwald, pp. 1184-1288. |
Archer, Steffen et al., Cell Reactions to Dielectrophoretic Manipulation, Mar. 1, 1999, Biochemical and Biophysical Research Communications, 1999 Academic Press, pp. 687-698. |
Arentz, T. et al., Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. European Heart Journal. 2003. 24; pp. 963-969. |
Arias, M.D., Manuel J., Percutaneous Radio-Frequency Thermocoagulation with Low Temperature in the Treatment of Essential Glossopharyngeal Neuralgia, Surg. Neurol. 1986, vol. 25, 1986 Elsevier Science Publishing Co., Inc., pp. 94-96. |
Aronofsky, David H., D.D.S., Reduction of dental postsurgical symptoms using nonthermal pulsed high-peak-power electromagnetic energy, Oral Surg., Nov. 1971, vol. 32, No. 5, pp. 688-696. |
Aspelin, Peter, M.D., Ph.D. et al., Nephrotoxic Effects in High-Risk Patients Undergoing Angiography, Feb. 6, 2003, New England Journal of Medicine 2003, vol. 348, No. 6, 2003 Massachusetts Medical Society, pp. 491-499. |
Atrial Fibrillation Heart and Vascular Health on Yahoo! Health. 2 pgs. <URL: http://health.yahoo.com/topic/heart/overview/article/healthwise/hw160872;_ylt=AiBT43Ey74HQ7ft3jAb4C.sPu7cF> Feb. 21, 2006. |
Augustyniak, Robert A. et al., Sympathetic Overactivity as a Cause of Hypertension in Chronic Renal Failure, Aug. 14, 2001, Journal of Hypertension 2002, vol. 20, 2002 Lippincott Williams & Wilkins, pp. 3-9. |
Awwad, Ziad M., FRCS and Bashir A. Atiyat, GBA, JBA, Pain relief using continuous bupivacaine infusion in the paravertebral space after loin incision, May 15, 2004, Saudi Med J 2004, vol. 25 (10), pp. 1369-1373. |
Badyal, D. K., H. Lata and A.P. Dadhich, Animal Models of Hypertension and Effect of Drugs, Aug. 19, 2003, Indian Journal of Pharmacology 2003, vol. 35, pp. 349-362. |
Baker, Carol E. et al., Effect of pH of Bupivacaine on Duration of Repeated Sciatic Nerve Blocks in the Albino Rat, Anesth Analg, 1991, vol. 72, The International Anesthesia Research Society 1991, pp. 773-778. |
Balazs, Tibor, Development of Tissue Resistance to Toxic Effects of Chemicals, Jan. 26, 1974, Toxicology, 2 (1974), Elsevier/North-Holland, Amsterdam, pp. 247-255. |
Barajas, L. Innervation of the renal cortex. Fex Proc. 1978;37:1192-201. |
Barrett, Carolyn J. et al., Long-term control of renal blood flow: what is the role of the renal nerves?, Jan. 4, 2001, Am J Physiol Regulatory Integrative Comp Physiol 280, 2001, the American Physiological Society 2001, pp. R1534-R1545. |
Barrett, Carolyn J. et al., What Sets the Long-Term Level of Renal Sympathetic Nerve Activity, May 12, 2003, Integrative Physiology, Circ Res. 2003, vol. 92, 2003 American Heart Association, pp. 1330-1336. |
Bassett, C. Andrew L. et al., Augmentation of Bone Repair by Inductively Coupled Electromagnetic Fields, May 3, 1974, Science, vol. 184, pp. 575-577. |
Bassett, C. Andrew L., Fundamental and Practical Aspects of Therapeutic Uses of Pulsed Electromagnetic Fields (PEMFs), Critical Reviews in Biomedical Engineering, vol. 17, Issue 5, 1989, pp. 451-514. |
Beebe, Stephen J. et al., Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms, Apr. 8, 2004, Physiol. Meas. 25, 2004, IOP Publishing Ltd. 2004, pp. 1077-1093. |
Beebe, Stephen J., et al., Nanosecond Pulsed Electric Field (nsPEF) Effects on Cells and Tissues: Apoptosis Induction and Tumor Growth Inhibition, Oct. 11, 2001, IEEE Transactions on Plasma Science, vol. 30, No. 1, Feb. 2002, IEEE 2002, pp. 286-292. |
Bello-Reuss, E. et al., Acute unilateral renal denervation in rats with extracellular volume expansion, Departments of Medicine and Physiology, University of North Carolina School of Medicine. F26-F32 Jul. 1975. |
Bello-Reuss, E. et al., Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption, J Clin Invest, 1976;57:1104-1107. |
Bello-Reuss, E. et al., Effects of Acute Unilateral Renal Denervation in the Rat, J Clin Invest, 1975;56:208-217. |
Berde, C. et al., Local Anesthetics, Anesthesia, Chapter 13, 5th addition, Churchill-Livingston, Philadelphia 2000, pp. 491-521. |
Bhadra, Niloy and Kevin L. Kilgore, Direct Current Electrical Conduction Block of Peripheral Nerve, Feb. 25, 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 3. Sep. 2004, pp. 313-324. |
Bhandari, A. and Ellias, M., Loin pain hematuria syndrome: Pain control with RFA to the Splanchanic plexus, The Pain Clinic, 2000, vol. 12, No. 4, pp. 323-327. |
Bhatt, Deepak L. et al., Rhabdomyolysis Due to Pulsed Electric Fields, May 11, 1989, Plastic and Reconstructive Surgery Jul. 1990, pp. 1-11 |
Bichet, D., et al., Renal intracortical blood flow and renin secretion after denervation by 6-hydroxydopamine Can J Physiol Pharmacol. 1982;60:184-92. |
Bigler, D. et al., Tachyphylaxis during postoperative epidural analgesia—new insights, Apr. 15, 1987, Letter to the Editor, Acta Anaesthesiol Scand. 1987, vol. 31, pp. 664-665. |
Binder, Allan et al., Pulsed Electromagnetic Field Therapy of Persistent Rotator Cuff Tendinitis, The Lancet, Saturday Mar. 31, 1984, The Lancet Ltd., pp. 695-698. |
Black, M.D., Henry R., Resistant Hypertension 2004, presentation at Rush University Medical Center, Jul. 15, 2004, 40 pages. |
Blad, B., et al., An Electrical Impedance index to Assess Electroporation in Tissue, Tissue and Organ (Therapy), 2001, Oslo, www.bl.uk <http://www.bl.uk> British Library, pp. 31-34. |
Blair, M. L. et al, Sympathetic activation cannot fully account for increased plasma renin levels during water deprivation, Sep. 23, 1996, Am. J. Physiol., vol. 272, 1997, the American Physioiogical Society 1997, pp. R1197-R1203. |
Blomberg, S.G., M.D., PhD, Long-Term Home Self-Treatment with High Thoracic Epidural Anesthesia in Patients with Severe Coronary Artery Disease, Mar. 29, 1994, Anesth Analg 1994, vol. 79, 1994 International Anesthesia Research Society, pp. 413-421. |
Boehmer, J.P., Resynchronization Therapy for Chronic CHF: Indications, Devices and Outcomes. Penn State College of Medicine: Penn State Heart and Vascular Institute, Transcatheter Cardiovascular Therapeutics 2005, 31 slides. |
Bourge, R.C., Heart Failure Monitoring Devices: Rationale and Status 28 pages, Feb. 2001. |
Braunwald, E., Heart Disease, A Textbook of Cardiovascular Medicine, 5th Ed., vol. 2, 1997, pp. 480-481, 824-825, 1184-1288 and 1923-1925, W.B. Saunders Company. |
Bravo, E.L., et al., Renal denervation for resistant hypertension, American Journal of Kidney Diseases, 2009, 3 pgs. |
Bunch, Jared T. et al. Mechanisms of Phrenic Nerve Injury During Radiofrequency Ablation at the Pulmonary Vein Orifice. Journal of Cardiovascular Electrophysiclody. vol. 16, No. 12. pp. 1318-1325. Dec. 2005. |
Burkhoff, D., Interventional Device-Based Therapy for CHF Will Redefine Current Treatment Paradigms. Columbia University. 2004. 32 slides. |
Burns, J. et al., Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation. 2007;115:1999-2005. |
Cahana, A. et al., Acute Differential Modulation of Synaptic Transmission and Cell Survival During Exposure to Pulsed and Continuous Radiofrequency Energy, May 2003, The Journal of Pain, vol. 4, No. 4, © 2003 by the American Pain Society, pp. 197-202. |
Cahana, Alex, M.D., Pulsed Radiofrequency: A Neurobiologic and Clinical Reality, May 17, 2005, Anesthesiology 2005, vol. 103, No. 6, Dec. 2005, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., p. 1311. |
Calaresu, F.R. et al., Haemodynamic Responses and Renin Release During Stimulation of Afferent Renal Nerves in the Cat, Aug. 12, 1975, J. Physiol. 1976, vol. 255, pp. 687-700. |
Cameron, Tracy. Micromodular Implants to Provide Electrical Stimulation of Paralyzed Muscles and Limbs. IEEE Transactions on Biomedical Engineering, vol. 44, No. 9, Sep. 1997. pp. 781-790. |
Campese, V.M. et al., Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878-82. |
Campese, V.M. et al., Renal Afferent Denervation Prevents the Progression of Renal Disease in the Renal Ablation Model of Chronic Renal Failure in the Rat, Am J Kidney Dis. 1995;26:861-5. |
Campese, V.M., A new model of neurogenic hypertension caused by renal injury: pathophysiology and therapeutic implications, Clin Exp Nephrol (2003) 7: 167-171, Japanese Society of Nephrology 2003. |
Campese, V.M., Neurogenic factors and hypertension in chronic renal failure, Journal of Nephrology vol. 10, No. 4, 1997, Societa Italiana di Nefrologia, pp. 184-187. |
Campese, V.M., Neurogenic factors and hypertension in renal disease. Kidney Int. 2000;57 Suppl. 75:S2-3. |
Canbaz, S. et al., Electrophysiological evaluation of phrenic nerve injury during cardiac surgery—a prospective, controlled clinical study. BioMed Central. 5 pgs. 2004. |
Cardiac Glycosides, Heart Disease—A Textbook of Cardiovascular Medicine vol. 2, Edited by Eugene Braunwald, 5th Edition, 1997 WB Saunders Company, pp. 480-481. |
Carls, G. et al., Electrical and magnetic stimulation of the intercostal nerves: a comparative study, Electromyogr, clin. Neurophysiol. 1997, vol. 37, pp. 509-512. |
Carlson, Scott H. and J. Michael Wyss, e-Hypertension—Opening New Vistas, Introductory Commentary, Hypertension 2000, vol. 35, American Heart Association, Inc. 2000, p. 538. |
Carson, P., Device-based Treatment for Chronic Heart Failure: Electrical Modulation of Myocardial Contractility. Transcatheter Cardiovascular Therapeutics 2005, 21 slides. |
Chang, Donald C., Cell poration and cell fusion using an oscillating electric field, Biophysical Journal. vol. 56, Oct. 1989. Biophysical Society, pp. 641-652. |
Chen, S.A. et al., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablataion, Circulation, 1999, 100:1879-1886. |
Chin, J.L. et al., Renal autotransplantation for the loin pain-hematuria syndrome: long term follow up of 26 cases, J Urol, 1998, vol. 160, pp. 1232-1236. |
Chiou, C.W. et al., Efferent Vagal Innervation of the Canine Atria and Sinus and Atrioventricular Nodes. Circulation. Jun. 1997. 95(11):2573-2584. Abstract only. 2 pgs. |
Chobanian, Aram V. et al., Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, Nov. 6, 2003, Hypertension 2003, vol. 42, 2003 American Heart Association, Inc., pp. 1206-1252. |
Clinical Trials in Hypertension and Renal Diseases, Slide Source, www.hypertensiononline.org, 33 pages Aug. 13, 2001. |
Conradi, E. and Ines Helen Pages, Effects of Continous and Pulsed Microwave Irradiation on Distribution of Heat in the Gluteal Region of Minipigs, Scand J Rehab Med, vol. 21, 1989, pp. 59-62. |
Converse, R.L., Jr. et al., Sympathetic Overactivity in Patients with Chronic Renal Failure, N Engl J Med. Dec. 31, 1992, vol. 327 (27), pp. 1912-1918. |
Cosman, E.R., Jr. et al., Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes, Pain Medicine, vol. 6, No. 6, 2005, American Academy of Pain Medicine, pp. 405-424. |
Cosman, E.R., Ph.D., A Comment on the History of the Pulsed Radiofrequency Technique for Pain Therapy, Anesthesiology Dec. 2005, vol. 103, No. 6, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., p. 1312. |
Crawford, William H. et al., Pulsed Radio Frequency Therapy of Experimentally Induced Arthritis in Ponies, Dec. 18, 1989, Can. J. Vet. Res. 1991, vol. 55, pp. 76-85. |
Curtis, J.J. et. al., Surgical therapy for persistent hypertension after renal transplantation, Transplantation, 1981, 31(2):125-128. |
Dahm, Peter et al., Efficacy and Technical Complications of Long-Term Continuous Intraspinal Infusions of Opiod and/or Bupivacaine in Refractory Nonmalignant Pain . . . , Oct. 6, 1997, The Clinical Journal of Pain, vol. 14, No. 1, 1998, Lippincott-Raven Publishers 1998, pp. 4-16. |
Dahm, Peter O. et al., Long-Term Intrathecal Infusion of Opiod and/or Bupivacaine in the Prophylaxis and Treatment of Phantom Limb Pain, Neuromodulation, vol. 1, No. 3, 1998, International Neuromodulation Society 1998, pp. 111-128. |
Dang, Nicholas C. et al., A Novel Approach to Increase Total Urine Output in Heart Failure: Renal Nerve Blockade, ACC 2005 poster; 1 page. |
Daniel, Alan and Honig, Carl R. Does Histamine influence Vasodilation Caused by Prolonged Arterial Occlusion or Heavy Exercise? The Journal of Pharmacology and Experimental Therapeutics. vol. 215 No. 2. Aug. 21, 1980. pp. 533-538. |
Davalos, R. et al., Electrical Impedance Tomography for Imaging Tissue Electroporation, Jul. 25, 2003, IEEE Transactions on Biomedical Engineering, vol. 51, No. 5, May 2004, IEEE 2004, pp. 761-767. |
Davalos, R.V. et al., Tissue Ablation with Irreversible Electroporation, Sep. 7, 2004, Annals of Biomedical Engineering, Feb. 2005, vol. 33, No. 2, 2005 Biomedical Engineering Society, pp. 223-231. |
De Leeuw, Peter W. et al., Renal Vascular Tachyphylaxis to Angiotensin II: Specificity of the Response for Angiotensin, Dec. 28, 1981, Life Sciences, vol. 30, 1982 Pergamon Press Ltd., pp. 813-819. |
Deng, Jingdong et al., The Effects of Intense Submicrosecond Electrical Pulses on Cells, Nov. 26, 2002, Biophysical Journal, vol. 84, Apr. 2003, Biophysical Society 2003, pp. 2709-2714. |
Denton, Kate M. et al., Differential Neural Control of Glomerular Ultrafiltration, Jan. 30, 2004, Proceedings of the Australian Physiological and Pharmacological Society Symposium: Hormonal, Metabolic and Neural Control of the Kidney, Clinical and Experimental Pharmacology and Physiology (2004) 31, pp. 380-386. |
Dev, Nagendu B., Ph.D. et al., Intravascular Electroporation Markedly Attenuates Neointima Formation After Balloon Injury of the Carotid Artery in the Rat, Journal of Interventional Cardiology, vol. 13, No. 5, 2000, pp. 331-338. |
Dev, Nagendu B., Ph.D. et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, May 5, 1998, Cathterization and Cardiovascular Diagnosis, vol. 45, 1998, Wiley-Liss, Inc. 1998, pp. 337-345. |
Devereaux, R.B. et al., Regression of Hypertensive Left Ventricular Hypertrophy by Losartan Compared With Atenolol: The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) Trial, Circulation, 2004, vol. 110, pp. 1456-1462. |
Dibona, Gerald F. and Linda L. Sawin, Role of renal nerves in sodium retention of cirrhosis and congestive heart failure, Sep. 27, 1990, Am. J. Physiol. 1991, vol. 260, 1991 the American Physioiogical Society, pp. R298-R305. |
Dibona, Gerald F. and Susan Y. Jones, Dynamic Analysis of Renal Nerve Activity Responses to Baroreceptor Denervation in Hypertensive Rats, Sep. 19, 2000, Hypertension Apr. 2001, American Heart Association, Inc. 2001, pp. 1153-1163. |
Dibona, Gerald F. and Ulla C. Kopp, Neural Control of Renal Function, Physiological Reviews, vol. 77, No. 1, Jan. 1997, the American Physiological Society 1997, pp. 75-197. |
Dibona, Gerald F. and Ulla C. Kopp, Role of the Renal Sympathetic Nerves in Pathophysiological States, Neural Control of Renal Function, vol. 77, pp. 142-197 Jan. 1997. |
Dibona, Gerald F., Functionally Specific Renal Sympathetic Nerve Fibers: Role in Cardiovascular Regulation, Mar. 6, 2001, American Journal of Hypertension, 2001, vol. 14, 2001 American Journal of Hypertension, Ltd. Published by Elsevier Science Inc., pp. 163S-170S. |
Dibona, Gerald F., L.L. Sawin, Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat,: 1982, American Physiological Society, F576-F580, 5 pgs. |
Dibona, Gerald F., Nervous Kidney—Interaction Between Renal Sympathetic Nerves and the Renin-Angiotensin System in the Control of Renal Function, Jun. 21, 2000, Hypertension 2000, vol. 36, 2000 American Heart Association, Inc., pp. 1083-1088. |
Dibona, Gerald F., Neural Control of the Kidney—Past, Present and Future, Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part 2, 2002 American Heart Association, Inc., pp. 621-624. |
Dibona, Gerald F., Neural Control of the Kidney: Functionally Specific Renal Sympathetic Nerve Fibers, Starling Lecture, Am J Physiol Regulatory Integrative Comp Physiol, 2000, 279, 2000 The American Physiological Society, pp. R1517-R1524. |
Dibona, Gerald F., Peripheral and Central Interactions between the Renin-Angiotensin System and the Renal Sympathetic Nerves in Control of Renal Function, Annals New York Academy of Sciences, pp. 395-406 Jan. 25, 2006. |
Dibona, Gerald F., Renal Innervation and Denervation: Lessons from Renal Transplantation Reconsidered, Artificial Organs, vol. 11, No. 6, Raven Press, Ltd., 1987 International Society for Artificial Organs, pp. 457-462. |
Dibona, Gerald F., Sympathetic Nervous System and the Kidney in Hypertension, Current Opinion in Nephrology and Hypertension 2002, vol. 11, 2002 Lippincott Williams & Wilkins, pp. 197-200. |
Dibona, Gerald F., The Sympathetic Nervous System and Hypertension, Dec. 4, 2003, Hypertension Highlights, Hypertension Feb. 2004, vol. 43, 2004 American Heart Association, Inc., pp. 147-150. |
Dibona, Gerald, LL Sawin, Effect of renal denervation on dynamic autoregulation of renal blood flow, Feb. 12, 2004, AmJ Physiol Renal Physiol 286, pp. F1209-F1218. |
Dong, Jun et al. Incidence and Predictors of Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation Using the Anatomic Pulmonary Vein Ablation Approach: Results from Paired Magnetic Resonance Imaging. Journal of Cardiovascular Electrophysiology. vol. 16, No. 8, Aug. 2005. pp. 845-852. |
Dorros, Gerald, M.D., Renal Artery Stenting State of the Art, presentation, TCT, Washington D.C., Sep. 2003, 27 pages. |
Dueck, Ron, M.D., Noninvasive Cardiac Output Monitoring, The Cardiopulmonary and Critical Care Journal, Chest, vol. 120, sec. 2, Aug. 2001, American College of Chest Physicians 2005, pp. 339-341, 5 pages. |
Dunn, Matthew D. et al., Laparoscopic Nephrectomy in Patients With End-Stage Renal Disease and Autosomal Dominant Polycystic Kidney Disease, Oct. 25, 1999, American Journal of Kidney Diseases, vol. 35, No. 4 Apr. 2000, National Kidney Foundation, Inc. 2000, pp. 720-725. |
Durand, D.M., Electric Field Effects in Hyperexcitable Neural Tissue: A Review, Radiation Protection Dosimetry, vol. 106, No. 4, 2003 Nuclear Technology Publishing, pp. 325-331. |
Effects of Renal Failure on the Cardiovascular System, 5th Edition Heart Disease, A Textbook of Cardiovascular Medicine, vol. 2, Edited by Eugene Braunwald, 1997, W.B. Saunders Company, pp. 1923-1925. |
Electrical Stimulation for the Treatment of Chronic Wounds, Radiation Protection Standard, Maximum Exposure Levels to Radiofrequency Fields—3 KHz to 300 GHz, Radiation Protection Series No. 3, Australian Radiation Protection and Nuclear Safety Agency, Apr. 1996, 322 pgs. |
Electropermeabilization (Electroporation), Cyto Pulse Sciences, Inc., http://www.cytopulse.com/electroporation.html (last accessed Mar. 3, 2005), 3 pgs. |
Electroporation based Technologies and Treatments, ESPE Newsletter No. 6, QLK 02002-2003, Jan. 2005, www.cliniporator.com, 4 pgs. |
End-stage renal disease payment policies in traditional Medicare, Chapter 8, Report to the Congress: Medicare Payment Policy, Mar. 2001, Medpac, pp. 123-138. |
Epidemiology of Renal Disease in Hypertension, slide presentation by hypertensiononline.org, 21 pages Mar. 30, 2001. |
Erdine, Serap and Alev Arat-Ozkan, Resistant Hypertension, European Society of Hypertension Scientific Newsletter: Update on Hypertension Management 2003, vol. 4, No, 15, 2 pages. |
Esler; M. et al., Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8:S39-43. |
Esler, M. et al., Noradrenaline release and the pathophysiology of primary human hypertension. Am J Hypertens. 1989; 2:140S-146S. |
Esler, M. et al., Sympathetic nerve biology in essential hypertension, Clin and Exp Pharmacology and Physiology, 2001, 28:986-989. |
European Examination Report; European Patent Application No. 07799148.7; Applicant: Ardian, Inc.; dated Jan. 19, 2010, 4 pgs. |
European Examination Report; European Patent Application No. 09156661.2; Applicant: Ardian, Inc.; dated Jan. 19, 2010, 6 pgs. |
European Search Report; European Patent Application No. 05806045.0; Applicant: Ardian, Inc.; dated Sep. 22, 2009, 8 pgs. |
European Search Report; European Patent Application No. 05811851.4; Applicant: Ardian, Inc.; dated Oct. 1, 2009, 7 pgs. |
European Search Report; European Patent Application No. 06847926.0; Applicant: Ardian, Inc.; dated Feb. 10, 2010, 6 pgs. |
European Search Report; European Patent Application No. 07757925.8; Applicant: Ardian, Inc.; dated Apr. 29, 2010, 9 pgs. |
European Search Report; European Patent Application No. 07798341.9; Applicant: Ardian, Inc.; dated Aug. 4, 2011; 6 pgs. |
European Search Report; European Patent Application No. 07799148.7; Applicant: Ardian, Inc.; dated Jul. 23, 2009, 6 pgs. |
European Search Report; European Patent Application No. 07868755.5; Applicant: Ardian, Inc.; dated Jul. 28, 2010, 7 pgs. |
European Search Report; European Patent Application No. 09156661.2; Applicant: Ardian, Inc.; dated Jul. 23, 2009, 6 pgs. |
European Search Report; European Patent Application No. 09167937.3; Applicant: Ardian, Inc.; dated Nov. 11, 2009, 6 pgs. |
European Search Report; European Patent Application No. 09168202.1; Applicant: Ardian, Inc.; dated Nov. 11, 2009, 5 pgs. |
European Search Report; European Patent Application No. 09168204.7; Applicant: Ardian, Inc.; dated Nov. 19, 2009, 6 pgs. |
Evelyn, K.A. et al., Effect of thoracolumbar sympathectomy on the clinical course of primary (essential) hypertension, Am J Med, 1960;28:188-221. |
Ex parte Quayle Office Action; U.S. Appl. No. 11/144,173; Mailed on May 28, 2009, 4 pgs. |
Fact Book Fiscal Year 2003, National Institutes of Health National Heart, Lung, and Blood Institute, Feb. 2004, 197 pgs. |
Fajardo, J. et al., Effect of chemical sympathectomy on renal hydroelectrolytic handling in dogs with chronic caval constriction. Clin Physiol Biochem. 1986;4:252-6. |
Fareed, Jawed, Ph.D. et al., Some Objective Considerations for the Use of Heparins and Recombinant Hirudin in Percutaneous Transluminal Coronary Angoplasty, Seminars in Thrombosis and Hemostasis 1991, vol. 17, No. 4, 1991 by Thieme Medical Publishers, Inc., pp. 455-470. |
Ferguson, D.R. et al., Responses of the pig isolated renal artery to transmural electrical stimulation and drugs, Dec. 7, 1984, Br. J. Pharmac. 1985, vol. 84, The Macmillan Press Ltd. 1985, pp. 879-882. |
Fernandez-Ortiz, Antonio, et al., A New Approach for Local Intravascular Drug Delivery—Iontophoretic Balloon, Intravascular Iontophoretic Local Delivery, Circulation, vol. 89, No. 4, Apr. 1994, pp. 1518-1522. |
Fields, Larry E. et al., The Burden of Adult Hypertension in the United States 1999 to 2000—A Rising Tide, May 18, 2004, American Heart Association 2004, Hypertension Oct. 2004, pp. 1-7. |
Final Office Action; U.S. Appl. No. 11/233,814; dated Jan. 29, 2009, 11 pgs. |
Final Office Action; U.S. Appl. No. 11/266,993; dated Jan. 8, 2010, 7 pgs. |
Final Office Action; U.S. Appl. No. 11/363,867; dated May 1, 2009, 8 pgs. |
Final Office Action; U.S. Appl. No. 11/451,728; dated Jan. 13, 2009, 7 pgs. |
Final Office Action; U.S. Appl. No. 11/599,649; dated Jan. 15, 2009, 10 pgs. |
Final Office Action; U.S. Appl. No. 11/599,723; dated Apr. 5, 2010, 17 pgs. |
Final Office Action; U.S. Appl. No. 11/599,890; dated Mar. 29, 2009, 9 pgs. |
Fischell, Tim A. et al., Ultrasonic Energy: Effects on Vascular Function and Integrity, Circulation: Journal of the American Heart Association. 1991. 84;pp. 1783-1795. |
Freeman, Scott A. et al., Theory of Electroporation of Planar Bilayer Membranes: Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation, Feb. 23, 1994. Biophysical Journal, Jul. 1994, vol. 67, 1994 by the Biophysical Society, pp. 42-56. |
Fukuoka, Yuko et al., Imaging of neural conduction block by neuromagnetic recording, Oct. 16, 2002, Clinical Neurophysiology, vol. 113, 2002, Elsevier Science Ireland Ltd. 2002, pp. 1985-1992. |
Fuster, Valentin et al. ACC/AHA/ESC Practice Guidelines: ACA/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation. JACC vol. 48, No. 4, Aug. 15, 2006. |
Gami, Apoor S., M.D. and Vesna D. Garovic, M.D., Contrast Nephropathy After Coronary Angiography, Mayo Clin Proc. 2004, vol. 79, 2004 Mayo Foundation for Medical Education and Research, pp. 211-219. |
Gattone II, Vincent H. et al., Contribution of Renal Innervation to Hypertension in Polycystic Kidney Disease in the Rat, University of Chicago Section of Urology, 16 pages, Mar. 17, 2008. |
Gaylor, D.C. et al., Significance of Cell Size and Tissue Structure in Electrical Trauma, Jan. 26, 1988, J. theor. Biol. 1988, vol. 133, 1988 Academic Press Limited, pp. 223-237. |
Gazdar, A.F. and G.J. Dammin, Neural degeneration and regeneration in human renal transplants, NEJM, Jul. 30, 1970, 283:222-244. |
Gehl, Julie et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biophysica Acta, 1428, 1999, Elsevier Science B.V. 1999, pp. 233-240, www.elsevier.com/locate/bba <http:www.elsevier.com/locate/bba>. |
Getts, R.T. et al., Regression of left ventricular hypertrophy after bilateral nephrectomy, Nephrol Dial Transplant, 2006, vol. 21, pp. 1089-1091. |
Ghoname, El-sayed A. et al., Percutaneous electrical nerve stimulation: an alternative to TENS in the management of sciatica, Apr. 26, 1999, Pain 1999, vol. 83, 1999 International Association for the Study of Pain / Published by Elsevier Science B.V., pp. 193-199. |
Gimple, M.D., Lawrence et al., Effect of Chronic Subcutaneous or Intramural Administration of Heparin on Femoral Artery Restenosis After Balloon Angioplasty in Hypercholesterolemic Rabbits, Laboratory Investigation, Circulation, vol. 86, No. 5, Nov. 1992, pp. 1536-1546. |
Goldberger, Jeffrey J. et al., New technique for vagal nerve stimulation, Jun. 2, 1999, Journal of Neuroscience Methods 91, 1999, Elsevier Science B.V. 1999, pp. 109-114. |
Gorbunov, F.E. et al., The Use of Pulsed and Continuous Short Wave Diathermy (Electric Field) in Medical Rehabilitation of the Patients with Guillan-Barre Syndrome and Other Peripheral Myelinopathies, May 6, 1994, 5 pages (most of article in Russian language). |
Gottschalk, C.W., Renal nerves and sodium excretion, Ann. Rev. Physiol., 1979, 41:229-240. |
Greenwell, T.J. et al., The outcome of renal denervation for managing loin pain haematuria syndrome. BJU International, 2004; 4 pgs. |
Gruberg, Luis, M.D. et al., The Prognostic Implications of Further Renal Function Deterioration Within 48 h of Interventional Coronary Procedures in Patients with Pre-existent Chronic Renal Insufficiency, Jun. 19, 2000, Journal of the American College of Cardiology 2000, vol. 36, No. 5, 2000 by the American College of Cardiology, pp. 1542-1548. |
Guimaraes, Sarfim. Vascular Adrenoceptors: An Update. pp. 319-356, Jun. 1, 2001. |
Haissaguerre, M. et al., Spontaneous initiation of atrial fibrillation by ectopic beats orginating in the pulmonary veins, New England Journal of Medicine, 1998, 339: 659-666. |
Hajjar, Ihab, M.D., M.S. and Theodore A. Kotchen, M.D., Trends in Prevalence, Awareness, Treatment, and Control of Hypertension in the United States, 1988-2000, JAMA, Jul. 9, 2003, vol. 290, No. 2, pp. 199-206. |
Hammer, Leah W. Differential Inhibition of Functional Dilation of Small Arterioles by Indomethacin and Glibenclamide. Hypertension, Feb. 2001 Part II, pp. 599-603. |
Hampers, C.L. et al., A hemodynamic evaluation of bilateral nephrectomy and hemodialysis in hypertensive man, Circulation. 1967;35:272-288. |
Hamza, M.D., Mohamed A. et al., Effect of the Duration of Electrical Stimulation on the Analgesic Response in Patients with Low Back Pain, Anesthesiology, vol. 91, No. 6, Dec. 1999, American Society of Anesthesiologists, Inc. 1999, pp. 1622-1627. |
Han, Hyo-Kyung and Gordon L. Amidon, Targeted Prodrug Design to Optimize Drug Delivery, Mar. 21, 2000, AAPS Pharmsci 2000, 2 (1) article 6, pp. 1-11. |
Hansen, J.M. et al., The transplanted human kidney does not achieve functional reinnervation, Clin Science, 1994, vol. 87, pp. 13-20. |
Hasking, G.J. et al., Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615-21. |
Hausberg, M. et al., Sympathetic nerve activity in end-stage renal disease, Circulation, 2002, 106: 1974-1979. |
Heart Arrhythmia Heart and Vascular Health on Yahoo! Health. 13 pgs. <URL: http://health.yahoo.com/topic/heart/overview/article/mayoclinic/21BBE2B0-128D-4AA2-A5CE215065586678;_ylt=Aqd9M5rNyHD0sbPOmHXFhLcPu7cF> Feb. 16, 2005. |
Heart Disease and Stroke Statistics—2004 Update, American Heart Association, American Stroke Association, Dallas, Texas, 2003 American Heart Association, 52 pgs. |
Heida, Tjitske, et al., Investigating Membrane Breakdown of Neuronal Cells Exposed to Nonuniform Electric Fields by Finite-Element Modeling and Experiments, May 9, 2002, IEEE Transactions on Biomedical Engineering, vol. 49, No. 10, Oct. 2002, IEEE 2002, pp. 1195-1203. |
Heuer, G.J., The surgical treatment of essential hypertension, Annals of Surgery, 1936; 104 (4): 771-786. |
Higuchi, Yoshinori, M.D., Ph.D. et al, Exposure of the Dorsal Root Ganglion in Rats to Pulsed Radiofrequency Currents Activates Dorsal Horn Lamina I and II Neurons, Dec. 4, 2001, Experimental Studies, Neurosurgery, vol. 50, No. 4, Apr. 2002, pp. 850-856. |
Hildebrand, Keith R., D.V.M., Ph.D. et al., Stability, Compatibility, and Safety of Intrathecal Bupivacaine Administered Chronically via an Implantable Delivery System, May 18, 2001, The Clinical Journal of Pain, vol. 17, No. 3, 2001 Lippincott Williams & Wilkins, Inc., pp. 239-244. |
Hing, Esther, M.P.H. and Kimberly Middleton, B.S.N., M.P.H., National Hospital Ambulatory Medical Care Survey: 2001 Outpatient Department Summary, Aug. 5, 2003, Advance Data from Vital and Health Statistics, No. 338, CDC, 32 pages. |
Hodgkin, Douglas D. et al., Electrophysiologic Characteristics of a Pulsed Iontophoretic Drug-Delivery System in Coronary Arteries, Journal of Cardiovascular Pharmacology. 29(1):pp. 39-44, Jan. 1997, Abstract, 2 pgs. |
Hopp, F.A. et al., Respiratory Responses to Selective Blockade of Carotid Sinus Baroreceptors in the Dog, Jun. 22, 2005, Am J Physiol Regul Integr Comp Physiol 1998, vol. 275, 2005 American Physiological Society, pp. R10-R18. |
Hortobagyi, Gabriel N., Randomized Trial of High-Dose Chemotherapy and Blood Cell Autographs for High-Risk Primary Breast Carcinoma, Journal of the National Cancer Institute, vol. 92, No. 3, Feb. 2, 2000, pp. 225-233. |
Horwich, Tamara, M.D., New Advances in the Diagnosis and Management of Acute Decompensated Heart Failure, the heart.org satellite program, Rapid Review, CME Symposium presented on Nov. 8, 2004 at the Sheraton New Orleans Hotel, 4 pages. |
Huang, Wann-Chu et al. Renal Denervation Prevents and Reverses Hyperinsulinemia-Induced Hypertension in Rats, Mar. 25, 1998, Hypertension 1998, vol. 32, 1998 American Heart Association, pp. 249-254. |
Huang, Yifei et al., Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural and cellular responses, Jan. 8, 2004, Am J Physiol. Heart Circ. Physiol. 2004, vol. 286, 2004 the American Physiological Society, pp. H2141-H2150. |
Hughes, Gordon B., M.D. et al., A Comparative Study of Neuropathologic Changes Following Pulsed and Direct Current Stimulation of the Mouse Sciatic Nerve, Jun. 27, 1980, American Journal of Otolaryngology, Nov. 1980, vol. 1, No. 5, pp. 378-384. |
Hypertension and Renal Disease: Mechanisms, Slide Show by www.hypertensiononline.org, 22 pages Mar. 30, 2001. |
Hypertension Incidence and Prevalence, Age-Specific Rates, by Gender, B.C., 2001/2002, Graph, Chronic Disease Management, May 2003, British Columbia Ministry of Health Services, 1 page. |
Implantable Neurostimulation Systems, Medtronic Neurological, http://medtronic.com/neuro/paintherapies/pain_treatment_ladder/pdf/implantable_brochure.pdf; 1999, 6 pages. |
Implantable Pump—The Medtronic MiniMed 2007 Implantable Insulin Pump System, Medtronic MiniMed, 2006, 5 pgs. |
International Search Report and Written Opinion for PCT/US2009/069334; Applicant: Ardian, Inc.; dated Mar. 1, 2010, 10 pgs. |
International Search Report and Written Opinion, PCT/US05/35693, dated Mar. 8, 2006, Applicant: Ardian, Inc., 29 pgs. |
International Search Report and Written Opinion, PCT/US05/35757, dated Dec. 27, 2006, Applicant: Ardian, Inc., 8 pgs. |
International Search Report and Written Opinion, PCT/US06/36120, dated Jun. 25, 2008, Applicant: Ardian, Inc., 10 pgs. |
International Search Report and Written Opinion, PCT/US06/41889, dated Oct. 20, 2008, Applicant: Ardian, Inc., 7 pgs. |
International Search Report and Written Opinion, PCT/US06/48822, dated Aug. 15, 2008, Applicant: Ardian, Inc., 12 pgs. |
International Search Report and Written Opinion, PCT/US07/63322, dated Mar. 3, 2008, Applicant: Ardian, Inc., 10 pgs. |
International Search Report and Written Opinion, PCT/US07/63324, dated Oct. 10, 2008, Applicant: Ardian, Inc., 10 pgs. |
International Search Report and Written Opinion, PCT/US07/66539, dated Jan. 28, 2008, Applicant: Ardian, Inc., 6 pgs. |
International Search Report and Written Opinion, PCT/US07/70799, dated Jul. 2, 2008, Applicant: Ardian, Inc., 7 pgs. |
International Search Report and Written Opinion, PCT/US07/72396, dated Aug. 27, 2008, Applicant: Ardian, Inc., 9 pgs. |
International Search Report and Written Opinion, PCT/US07/84701, dated Aug. 21, 2008, Applicant: Ardian, Inc., 11 pgs. |
International Search Report and Written Opinion, PCT/US07/84705, dated Jul. 28, 2008, Applicant: Ardian, Inc., 12 pgs. |
International Search Report and Written Opinion, PCT/US07/84708, dated Aug. 11, 2008, Applicant: Ardian, Inc., 9 pgs. |
International Search Report, PCT/US02/0039, dated Sep. 11, 2002, Applicant: Advanced Neuromodulation Systems, Inc. |
International Search Report, PCT/US02/25712, dated Apr. 23, 2003, Applicant: Cyberonics, Inc. |
International Search Report, PCT/US03/08014, dated Sep. 23, 2003, Applicant: The General Hospital Corporation. |
International Search Report, PCT/US03/09764, dated Oct. 28, 2003, Applicant: CVRX, Inc. |
International Search Report, PCT/US04/38498, dated Feb. 18, 2005, Applicant: G & L Consulting, LLC, 4 pgs. |
Introduction to Autonomic Pharmacology, Chapter 3, Part 2 Autonomic Pharmacology, pp. 18-26, May 24, 2002. |
Isovue: Data Sheet. Regional Health Limited. 8 pgs. Mar. 11, 2003. |
Israili, Z.H., Clinical pharmacokinetics of angiotensin II (AT) receptor blockers in hypertension, Journal of Human Hypertension, 2000, Macmillan Publishers Ltd., vol. 14, pp. S73-S86. |
Janda, J., Impact of the electrical stimulation apparatus rebox on the course of ischemic renal damage in rats, British Library—The world's knowledge pp. 252-254 (translated and untranslated versions) 1996. |
Janssen, Ben J.A. et al., Effects of complete renal denervation and selective afferent renal denervation on the hypertension induced by intrarenal norepinephrine infusion in conscious rats, Jan. 4, 1989, Journal of Hypertension 1989, vol. 7, No. 6, Current Science Ltd, pp. 447-455. |
Jia, Jianping et al., Cold injury to nerves is not due to ischaemia alone, Brain. 121;pp. 989-1001. 1998. |
Jia, Jianping et al.., The pathogenesis of non-freezing cold nerve injury: Observations in the rat, Brain. 120; pp. 631-646. 1997. |
Jin, Yuanzhe et al., Pulmonary Vein Stenosis and Remodeling After Electrical Isolation for Treatment of Atrial Fibrillation: Short- and Medium-Term Follow-Up, PACE, vol. 27., Oct. 2004, pp. 1362-1370. |
Johansson, Bjorn, Electrical Membrane Breakdown, A Possible Mediator of the Actions of Electroconvulsive Therapy, Medical Hypotheses 1987, vol. 24, Longman Group UK Ltd 1987, pp. 313-324. |
Joles, J.A. et al., Causes and Consequences of Increased Sympathetic Activity in Renal Disease. Hypertension. 2004;43:699-706. |
Jorgensen, William A. et al., Electrochemical Therapy of Pelvic Pain: Effects of Pulsed Electromagnetic Fields (PEMF) on Tissue Trauma, Eur J Surg 1994, Suppl 574, vol. 160, 1994 Scandinavian University Press, pp. 83-86. |
Joshi, R. P. and K. H. Schoenbach, Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions, Nov. 11, 2002, Physical Review E 66, 2002, The American Physical Society 2002, pp. 052902-1-052901-4. |
Joshi, R. P. et al., Improved energy model for membrane electroporation in biological cells subjected to electrical pulses, Apr. 9, 2002, Physical Review E, vol. 65, 041920-1, 2002 The American Physical Society, 8 pages. |
Joshi, R. P. et al., Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses, Jun. 21, 2001, Physical Review E, vol. 64, 011913, 2001 The American Physcial Society, pp. 1-10. |
Kanduser, Masa et al., Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F, Aug. 20, 2002, Colloids and Surfaces A: Physicochem. Eng. Aspects 214, 2003, Elsevier Science B.V. 2002, pp. 205-217. |
Kassab, S. et al., Renal denervation attenuates the sodium retention and hypertension associated with obesity, Hypertension, 1995, 25:893-897. |
Katholi, R.E. et al., Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension, Hypertension, 1982, 4 (suppl II): II-166-II-174. |
Katholi, R.E. et al., Role of the renal nerves in the pathogenesis of one-kidney renal hypertension in the rat, Hypertension, 1981, 3(4) 404-409. |
Katholi, R.E., Renal nerves and hypertension: an update, Fed Proc., 1985, 44:2846-2850. |
Katholi, Richard E., Renal nerves in the pathogenesis of hypertension in experimental animals and humans, Am. J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14. |
Kaye, D.M. et al., Functional and neurochemical evidence for partial cardiac sympathetic reinnervation after cardiac transplantation in humans, Circulation, 1993, vol. 88, pp. 1101-1109. |
Kelleher, Catherine L. et al., Characteristics of Hypertension in Young Adults with Autosomal Dominant Polycystic Kidney Disease Compared with the General U.S. Population, Jun. 9, 2004, American Journal of Hypertension 2004, pp. 1029-1034. |
King, Ronald W. P., Nerves in a Human Body Exposed to Low-Frequency Electromagnetic Fields, Jun. 7, 1999, IEEE Transactions on Biomedical Engineering, vol. 46, No. 12, Dec. 1999, IEEE 1999, pp. 1426-1431. |
Kinney, Brian M., M.D., High-Tech Healing—The evolution of therapeutic electromagnetic fields in plastic surgery, Plastic Surgery Products, Jun. 2004, pp. 32-36, 3 pages. |
Kirchheim, H. et al., Sympathetic modulation of renal hemodynamics, renin release and sodium excretion, Klin Wochenschr, 1989, 67:858-864. |
Klein, K. et al., Impaired autofeedback regulation of hypothalamic norepinephrine release in experimental uremia. J Am Soc Nephrol. 2005;16:2081-7. |
Knot, H. J. et al., Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. The Journal of Physiology. 1998. 508; pp. 199-209. |
Kok, Lai Chow et al. Effect of Heating on Pulmonary Veins: How to Avoid Pulmonary Vein Stenosis. Journal of Cardiovascular Electrophysiology. vol. 14, No. 3, Mar. 2003. pp. 250-254. |
Kok, R. J. et al., Specific Delivery of Captopril to the Kidney with the Prodrug Captopril-Lysozyme, Aug. 16, 1998, Journal of Pharmacology and Experimental Therapeutics, vol. 288, No. 1, 1999 by The American Socieity for Pharmacology and Experimental Therapeutics, pp. 281-285. |
Kon, V. Neural Control of Renal Circulation, Miner Electrolyte Metab. 1989;15:33-43. |
Koomans, H.A., et al., Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol. 2004;15:524-37. |
Kopp, U. et al., Dietary sodium loading increases arterial pressure in afferent renal-denervated rats, Hypertension, 2003, 42:968-973. |
Kopp, U.C. et al., Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1561-72. |
Koyama, Shozo et al., Relative Contribution of Renal Nerve and Adrenal Gland to Renal Vascular Tone During Prolonged Canine Hemorrhagic Hypotension, Sep. 24, 1992, Circulatory Shock 1993, vol. 39, Wiley-Liss, Inc. 1993, pp. 269-274. |
Kozak, Lola Jean, Ph.D et al., National Hospital Discharge Survey: 2001 Annual Summary with Detailed Diagnosis and Procedure Data, Vital and Health Statistics, Serices 13 No. 156, Jun. 2004, CDC, 206 pages. |
Kumagai, K. et al. New Approach to Pulmonary Vein Isolation for Atrial Fibrillation Using a Muitielectrode Basket Catheter. Circulation Journal. 2006;70:88-93. |
Lafayette, Richard A., M.D., How Does Knocking Out Angiotensin II Activity Reduce Renal Injury in Mice?, Jun. 14, 1999, Journal Club, American Journal of Kidney Diseases, vol. 35, No. 1, Jan. 2000, National Kidney Foundation, Inc. 2000, pp. 166-172. |
Lavie, Peretz, Ph.D. and Victor Hoffstein, M.D., Sleep Apnea Syndrome: A Possible Contributing Factor to Resistant Hypertension, Jun. 2001, Sleep 2001, vol. 24, No. 6, pp. 721-725. |
Le Noble, J.L. et al., Pharmacological evidence for rapid destruction of efferent renal nerves in rats by intrarenal infusion of 6-hydroxydopamine. J Hypertens Suppl. 1985;3:S137-40. |
Lee, Michael A. (editor). SPORTSMed. Connecticut State Medical Society Committee on the Medical Aspects of Sports. Fall/Winter 2005. 10 pgs. |
Lee, Raphael C. et al., Biophysical Injury Mechanisms in Electronic Shock Trauma, Annu. Rev. Biomed. Eng., 2000, vol. 2, Copyright ® 2000 by Annual Reviews, pp. 477-509. |
Lee, Raphael C. et al., Clinical Sequelae Manifested in Electrical Shock Survivors, Presentation by the Electrical Trauma Research Program, The University of Chicago, 37 pages Dec. 24, 2004. |
Lee, Raphael C. et al., Membrane Biology and Biophysics, Chapter 25, Surgical Research, 2001 Academic Press, pp. 297-305. |
Lee, Raphael C., M.D., Sc.D. and Michael S. Kolodney, S.B., Electrical Injury Mechanisms: Electrical Breakdown of Cell Membranes, Oct. 1, 1986, Plastic and Reconstructive Surgery, Nov. 1987, vol. 80, No. 5, pp. 672-679. |
Lenoble, L.M. et al., Selective efferent chemical sympathectomy of rat kidneys. Am J Physiol. 1985;249:R496-501. |
Ligtenberg, Gerry M.D. et al., Reduction of Sympathetic Hyperactivity by Enalapril in Patients with Chronic Renal Failure, Apr. 29, 1999, New England Journal of Medicine 1999, vol. 340, No. 17, 1999 Massachusetts Medical Society, pp. 1321-1328. |
Lin, Vernon W. H. et al., High intensity magnetic stimulation over the lumbosacral spine evokes antinociception in rats, Apr. 16, 2002, Clinical Neurophysiology, vol. 113, 2002 Elsevier Science Ireland Ltd., pp. 1006-1012. |
Lipfert, Peter, M.D. et al., Tachyphylaxis to Local Anesthetics Does Not Result form Reduced Drug Effectiveness at the Nerve Itself, Aug. 3, 1988, Anesthesiology 1989, vol. 70, pp. 71-75. |
Lohmeier, Thomas E. and Drew A. Hildebrandt, Renal Nerves Promote Sodium Excretion in Angiotensin-Induced Hypertension, Oct. 20, 1997, Hypertension 1998, vol. 31, part 2, 1998 American Heart Association, Inc., pp. 429-434. |
Lohmeier, Thomas E. et al., Prolonged Activation of the Baroreflex Produces Sustained Hypotension, Harry Goldblatt Award, Nov. 26, 2003, Hypertension 2004, vol. 43, Part 2, 2004 American Heart Association, Inc., pp. 306-311. |
Lohmeier, Thomas E. et al., Renal Nerves Promote Sodium Excretion During Long-Term Increases in Salt Intake, Oct. 23, 1998, Hypertension 1999, vol. 33, part II, 1999 American Heart Association, Inc., pp. 487-492. |
Lohmeier, Thomas E. et al., Sustained influence of the renal nerves to attenuate sodium retention in angiotensin hypertension, Apr. 13, 2001, Am J Physiol Regulatory Integrative Comp Physiol, vol. 281, 2001 the American Physiological Society, pp. R434-R443. |
Lohmeier, Thomas E., et al., Baroreflexes prevent neurally induced sodium retention in angiotensin hypertension, American Journal Physiol Regulatory Integrative Comp Physiol, vol. 279, 2000 the American Physiological Society, pp, R1437-R1448. |
Lohmeier, Thomas E., Interactions Between Angiotensin II and Baroreflexes in Long-Term Regulation of Renal Sympathetic Nerve Activity, Circulation Research, Jun. 27, 2003, American Heart Association, Inc.2003, pp. 1282-1284. |
Luff, S.E. et al., Two types of sympathetic axon innervating the juxtaglomerular arterioles of the rabbit and rat kidney differ structurally from those supplying other arteries, May 1, 1991, Journal of Neurocytology 1991, vol. 20, 1991 Chapman and Hall Ltd., pp. 781-795. |
Luippold, G. et al., Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats, Nephrol Dial Transplant (2004) 19:342-347. |
Lundborg, C. et al., Clinical experience using intrathecal (IT) bupivacaine infusion in three patients with complex regional pain syndrome type I (CRPS-I), Acta Anaesthesiol Scand 1999, vol. 43, pp. 667-678. |
Maeder, Micha, M.D. et al., Constrast Nephropathy: Review Focusing on Prevention, Jun. 22, 2004, Journal of the American College of Cardiology Nov. 2, 2004, vol. 44, No. 9, 2004 by the American College of Cardiology Foundation, pp. 1763-1771. |
Malpas, Simon C., What sets the long-term level of sympathetic nerve activity: is there a role for arterial baroreceptors?, Invited Review, Am J Physiol Regul Integr Comp Physiol 2004, vol. 286, 2004 the American Physiological Society, pp. R1-R12. |
Mancia, G., Grassi, G., Giannattasio, C., Seravalle, G., Sympathetic actrivation of pathogenesis of hypertension and progression of organ damage, Hypertension 1999, 34 (4 Pt 2): 724-728. |
Marenzi, Giancarlo, M.D. et al., The Prevention of Radiocontrast-Agent-Induced Nephropathy by Hemofiltration, New England Journal of Medicine, Oct. 2, 2003, vol. 349 (14), 2003 Massachusetts Medical Society, pp. 1333-1340. |
Market for infusion pumps grows with an aging population, NWL 97-01, The BBI Newsletter, vol. 20, No. 2, Feb. 1, 1997, American Health Consultants, Inc., pp. 6. |
Martin, Jason B. et al., Gene Transfer to Intact Mesenteric Arteries by Electroporation, Mar. 27, 2000, Journal of Vascular Research 2000, vol. 37, 2000 S. Karger AG, Basel, pp. 372-380. |
McCreery, Douglas B. et al., Charge Density and Charge Per Phase as Cofactors in Neural Injury Induced by Electrical Stimulation, IEEE Transactions on Biomedical Engineering, vol. 17, No. 10, Oct. 1990, pp. 996-1000. |
McCullough, Peter A., M.D., MPH et al., Acute Renal Failure after Coronary Intervention: Incidence, Risk Factors and Relationship to Mortality, Apr. 14, 1997, Am J Med. 1997, vol. 103, 1997 Excerpta Medica, Inc., pp. 368-375. |
McMurray, John J.V., M.D. and Eileen O'Meara, M.D., Treatment of Heart Failure with Spironolactone—Trial and Tribulations, Aug. 5, 2004, New England Journal of Medicine, vol. 351, No. 6, 2004 Massachusetts Medical Society, pp. 526-526. |
McRobbie, D. and M.A. Foster, Thresholds for biological effects of time-varying magnetic fields, Dec. 16, 1983, Clin. Phys. Physiol, Meas. 1984, vol. 5, No. 2, 1984 The Institute of Physics, pp. 67-78. |
Medtronic Neurostimulation Systems, Expanding the Array of Pain Control Solutions, informational pamphlet, 1999 Medtronic, Inc., 6 pages. |
Medtronic, Spinal Cord Stimulation, Patient Management Guidelines for Clinicians, Medtronic, Inc. 1999, 115 pages. |
Medtronic, SynchroMed Infusion System—Clinical Reference Guide for Pain Therapy, Medtronic, Inc. 1998, 198 pages. |
Mehran, Roxana, Renal insufficiency and contrast nephropathy: The most common, least understood risk factor, Cardiovascular Research Foundation, Columbia University Medical Center, 2005, 86 slides. |
Mess, Sarah A., M.D. et al., Implantable Baclofen Pump as an Adjuvant in Treatment of Pressure Sores, Mar. 1, 2003, Annals of Plastic Surgery, vol. 51, No. 5, Nov. 2003, Lippincott Williams & Wilkins 2003, pp. 465-467. |
Micro ETS Hyperhidrosis USA Hyperhidrosis USA. 2 pgs, <URL: http://www.hyperhidrosis-usa.com/Index.html>. Nov. 6, 2006. |
Mihran, Richard T. et al., Temporally-Specific Modification of Myelinated Axon Excitability in Vitro Following a Single Ultrasound Pulse, Sep. 25, 1989, Ultrasound in Med. & Biol. 1990, vol. 16, No. 3, pp. 297-309. |
Miklav{hacek over (c)}i{hacek over (c)}, D. et al, A Validated Model of in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta, 1523, 2000, pp. 73-83, <http:www.elsevier.com/locate/bba>. |
Mitchell, G. A. G., The Nerve Supply of the Kidneys, Aug. 20, 1949, Acta Anatomica, vol. X, Fasc. ½, 1950, pp. 1-37. |
Morrisey, D.M. et al., Sympathectomy in the treatment of hypertension: Review of 122 cases, Lancet. 1953;1:403-408. |
Moss, Nicholas G., Renal function and renal afferent and efferent nerve activity, Am. J. Physiol. 1982, vol. 243, 1982 the American Physiological Society, pp. F425-F433. |
Munglani, Rajesh, The longer term effect of pulsed radiofrequency for neuropathic pain, Jun. 8, 1998. Pain 80, 1999, International Association for the Study of Pain 1999, Published by Elsevier Science B.V., pp. 437-439. |
Naropin (ropivacaine HCI) Injection, RX only Description, AstraZeneca 2001, 3 pages. |
National High Blood Pressure Education Program, 1995 Update of the Working Group Reports on Chronic Renal Failure and Renovascular Hypertension, presentation, 13 pages. |
National Kidney Foundation, Are You at Increased Risk for Chronic Kidney Disease?, 2002 National Kidney Foundation, Inc., 14 pages. |
Nelson, L. et al., Neurogenic Control of Renal Function in Response to Graded Nonhypotensive Hemorrahage in Conscious Dogs, Sep. 13, 1992, Am J. Physiol. 264, 1993, American Physiological Society 1993, pp. R661-R667. |
Nikolsky, Eugenia, M.D. et al., Radiocontrast Nephropathy: Identifying the High-Risk Patient and the Implications of Exacerbating Renal Function, Rev Cardiovasc Med. 2003, vol. 4, Supp. 1, 2003 MedReviews, LLC, pp. S7-S14. |
Non-Final Office Action; U.S. Appl. No. 10/408,665; dated Mar. 21, 2006, 14 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated May 18, 2007, 10 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated Sep. 10, 2007, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated Oct. 6, 2006, 30 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/133,925; dated Oct. 8, 2008, 41 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/144,173; dated Apr. 5, 2007, 33 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/144,173; dated Sep. 10, 2007, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Oct. 29, 2009, 8 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Apr. 5, 2007, 33 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Sep. 10, 2007, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Dec. 29, 2008, 7 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/145,122; dated Apr. 11, 2007, 33 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/145,122; dated Sep. 10, 2007, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/189,563; dated May 28, 2009, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/233,814; dated Jun. 17, 2008, 12 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/252,462; dated Feb. 22, 2010, 6 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/266,993; dated Jul. 8, 2009, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/266,993; dated Dec. 30, 2008, 7 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/363,867; dated Sep. 25, 2008, 10 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/368,553; dated May 18, 2010, 4 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/368,553; dated Oct. 7, 2009, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/368,809; dated Dec. 3, 2009, 4 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/368,949; dated Jun. 11, 2010, 6 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/368,971; dated Aug. 24, 2010, 9 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Jun. 12, 2008, 41 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Jul. 2, 2009, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Dec. 28, 2009, 7 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/504,117; dated Mar. 31, 2009, 10 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/599,649; dated Mar. 30, 2009, 10 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/599,649; dated Jun. 23, 2008, 9 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/599,723; dated Jun. 26, 2009, 17 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/599,723; dated Oct. 15, 2010, 16 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/599,882; dated Jul. 6, 2009, 13 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/688,178; dated Jun. 28, 2010, 5 pgs. |
Non-Final Office Action; U.S. Appl. No. 11/840,142; dated Apr. 3, 2009, 13 pgs. |
Non-Final Office Action; U.S. Appl. No. 12/567,521; dated Sep. 3, 2010, 9 pgs. |
Non-Final Office Action; U.S. Appl. No. 12/616,708; dated Sep. 16, 2010, 10 pgs. |
Non-Final Office Action; U.S. Appl. No. 12/725,375; dated Oct. 12, 2010, 14 pgs. |
Nozawa, T.et al., Effects of Long Term Renal Sympathetic Denervation on Heart Failure After Myocardial Infarction in Rats, Sep. 22, 2001, Heart Vessels, 2002, 16, Springer-Verlag 2002, pp. 51-56. |
O'Hagan, K.P. et al., Renal denervation decreases blood pressure in DOCA-treated miniature swine with established hypertension, Am J Hypertens., 1990, 3:62-64. |
Onesti, G. et al., Blood pressure regulation in end-stage renal disease and anephric man, Circ Res Suppl., 1975, 36 & 37: 145-152. |
Osborn, et al., Effect of renal nerve stimulation on renal blood flow autoregulation and antinatriuresis during reductions in renal perfusion pressure, in Proceedings of the Society for Experimental Biology and Medicine, vol. 168, 77-81, 1981. (Abstract). |
Packer, Douglas L. et al., Clinical Presentation, Investigation, and Management of Pulmonary Vein Stenosis Complication Ablation for Atrial Fibrillation, Circulation: Journal of the American Heart Association. Feb. 8, 2005. pp. 546-554. |
Page, I.H., et al., The Effect of Renal Efficiencyof Lowering Arterial Blood Pressure in Cases of Essential Nephritis, Hospital of the Rockefeller Institue, Jul. 12, 1934, 7 pgs. |
Palmer, Biff, F., M.D., Managing Hyperkalemia Caused by Inhibitors of the Renin-Angiotensin-Aldosterone System, Aug. 5, 2004, The New England Journal of Medicine 2004, vol. 351;6, 2004 Massachusetts Medical Society, pp. 585-592. |
Pappone, Carlo et al., [2005][P2-70] Safety Report of Circumferential Pulmonary Vein Ablation. A 9-Year Single-Center Experience on 6,442 Patients with Atrial Fibrillation, Abstract only. 1 page, May 2005. |
Pappone, Carlo et al., [2004][759] Pulmonary Vein Denervation Benefits Paroxysmal Atrial Fibrillation Patients after Circumferential Ablation, Abstract only. 1 page, Jan. 5, 2004. |
Pappone, Carol and Santinelli, Vincenzo. Multielectrode basket catheter: A new tool for curing atrial fibrillation? Heart Rhythm, vol. 3, Issue 4, pp. 385-386. Apr. 2006. |
Peacock, J.M. and R. Orchardson, Action potential conduction block of nerves in vitro by potassium citrate, potassium tartrate and potassium oxalate, May 6, 1998, Journal of Clinical Periodontology, Munksgaard 1999, vol. 26, pp. 33-37. |
Petersson, M. et al., Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26:906-13. |
Pettersson, A. et al., Renal interaction between sympathetic activity and ANP in rats with chronic ischaemic heart failure, Nov. 25, 1988, Acta Physiol Scand 1989, 135, pp. 487-492. |
PHCL 762 Pharmacology of the Autonomic Nervous System, Chapter 2 and 6.8 in Mosby, http://www.kumc.edu/research/medicine/pharmacology/CAI/phcl762.html, last accessed Aug. 24, 2004, 14 pgs. |
Pitt, B. et al., Effects of Eplerenone, Enalapril, and Eplerenone/Enalapril in Patients With Essential Hypertension and Left Ventricular Hypertrophy: The 4E-Left Ventricular Hypertrophy Study, Circulation, 2003, vol. 108, pp. 1831-1838. |
Pliquett, U., Joule heating during solid tissue electroporation, Oct. 22, 2002, Med. Biol. Eng. Comput., 2003, vol. 41, pp. 215-219. |
Podhajsky R.J. et al, The Histologic Effects of Pulsed and Continuous Radiofrequency Lesions at 42 C to Rat Dorsal Root Ganglion and Sciatic Nerve, SPINE, vol. 30, No. 9, 2005, Lippincott Williams & Wilkins Inc., pp. 1008-1013. |
Pope, Jill. Fixing a Hole: Treating Injury by Repairing Cells. The New York Academy of Sciences. Jul. 6, 2006. 6 pgs. |
Popovic, Jennifer R. and Margaret J. Hall, 1999 National Hospital Discharge Survey, Apr. 24, 2001, Advance Data, No. 319, CDC, pp. 1-17 & 20. |
Practice Guidelines Writing Committee and ESH/ESC Hypertension Guidelines Committee, Practice Guidelines for Primary Care Physicians: 2003 ESH/ESC Hypertension Guidelines, Published in Journal of Hypertension 2003, vol. 21, No. 10: 1011-1053, European Society of Hypertension 2003, pp. 1779-1786. |
Programmable Infusion System, Pumps and Pump Selection, Medtronic Pain Therapies, Medtronic, Inc, Sep. 5, 2001, 2 pgs. |
Pucihar, Gorazd et al., The influence of medium conductivity on electropermeabilization and survival of cells in vitro, May 31, 2001, Bioelectrochemistry, vol. 54, 2001, Elsevier Science B.V. 2001, pp. 107-115. |
Pulmonary Concepts in Critical Care Breath Sounds, http://mbob.tripod.com/breath.htm, last accessed Aug. 23, 2004, 5 pages. |
Pulmonary Function Testing, http://jan.ucc.nau.edu/˜daa/lecture/pft.htm, last accessed Aug. 23, 2004, 8 pages. |
Purerfellner, Helmut and Martinek, Martin. Pulmonary vein stenosis following catheter ablation of atrial fibrillation. Current Opinion in Cardiology. 20; pp. 484-490. 2005. |
Purerfellner, Helmut et al., Pulmonary Vein Stenosis by Ostial Irrigated-Tip Ablation: Incidence, Time Course, and Prediction, Journal of Cardiovascular Electrophysiology. vol. 14, No. 2. Feb. 2003. pp. 158-164. |
Raji, A. R. M. and R. E. M. Bowden, Effects of High-Peak Pulsed Electromagnetic Field on the Degeneration and Regeneration of the Common Peroneal Nerve in Rats, The Journal of Bone and Joint Surgery Aug. 1983, vol. 65-B, No. 4, 1983 British Editorial Society of Bone and Joint Surgery, pp. 478-492. |
Ram, C. Venkata S., M.D., Understanding refractory hypertension, May 15, 2004, Patient Care May 2004, vol. 38, pp. 12-16, 7 pages from http://www.patientcareonline.com/patcare/content/printContentPopup.jsp?id=108324. |
Ravalia, A. et al., Tachyphylaxis and epidural anaesthesia, Edgware General Hospital, Correspondence, p. 529, Jun. 1989. |
Renal Parenchymal Disease, Ch. 26, 5th Edition Heart Disease, A Textbook of Cardiovascular Medicine vol. 2, Edited by Eugene Braunwald, WB Saunders Company, pp. 824-825 1997. |
Ribstein, Jean and Michael H. Humphreys, Renal nerves and cation excretion after acute reduction in functioning renal mass in the rat, Sep. 22, 1983, Am. J. Physiol., vol. 246, 1984 the American Physiological Society, pp. F260-F265. |
Richebe, Philippe, M.D. et al., Immediate Early Genes after Pulsed Radiofrequency Treatment: Neurobiology in Need of Clinical Trials, Oct. 13, 2004, Anesthesiology Jan. 2005, vol. 102, No. 1, 2004 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., pp. 1-3. |
Rihal, Charanjit S. et al., Incidence and Prognostic Importance of Acute Renal Failure After Percutaneous Coronary Intervention, Mar. 6, 2002, Circulation May 14, 2002, vol. 10, 2002 American Heart Association, Inc., pp. 2259-2264. |
Rosen, S.M. et al., Relationship of Vascular Reactivity to Plasma Renin Concentration in Patients with Terminal Renal Failure, Proc. Dialysis Transplant Forum 1974, pp. 45-47. |
Roth, Bradley J. and Peter J. Basser, A Model of the Stimulation of a Nerve Fiber by Electromagnetic Induction, IEEE Transactions on Biomedical Engineering, vol. 37, No. 6, Jun. 1990, pp. 588-597. |
Rudin, Asa, M.D. et al., Postoperative Epidural or Intravenous Analgesia after Major Abdominal or Thoraco-Abdominal Surgery, The Journal of the American Society of Anesthesiologists, Inc., Anesthesiology 2001, vol. 95, A-970, 1 page. |
Rudnick, Michael R. et al., Contrast-induced nephropathy: How it develops, how to prevent it, Cleveland Clinic Journal of Medicine Jan. 2006, vol. 73, No. 1, pp. 75-87. |
Rump, L.C., The Role of Sympathetic Nervous Activity in Chronic Renal Failure, J Clinical Basic Cardiology 2001, vol. 4, pp. 179-182. |
Ruohonen, Jarmo et al., Modeling Peripheral Nerve Stimulation Using Magnetic Fields, Journal of the Peripheral Nervous System, vol. 2, No. 1, 1997, Woodland Publications 1997, pp. 17-29. |
Saad, Eduardo B, et al., Pulmonary Vein Stenosis After Radiofrequency Ablation of Atrial Fibrillation: Functional Characterization, Evolution, and Influence of the Ablation Strategy, Circulation. 108; pp. 3102-3107. 2003. |
Sabbah, Hani N., Animal Models for Heart Failure and Device Development, Henry Ford Health System. 24 slides, Oct. 17, 2005. |
Schauerte, P et al., Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system, Journal of Cardiovascular Electrophysiology. 12(5). May 2001. Abstract only. 2 pgs. |
Schauerte, P et al., Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation, Circulation. 102(22). Nov. 28, 2000. Abstract only. 2 pgs. |
Schauerte, P et al., Transvenous parasympathetic nerve stimulation in the inferior vena cava and atrioventricular conduction, Journal of Cardiovascular Electrophysiology. 11(1). Jan. 2000. Abstract only. 2 pgs. |
Scheiner, Avram, Ph.D., The design, development and implementation of electrodes used for functional electrial stimulation, Thesis paper, Case Western Reserve University, May 1992, 220 pages. |
Scherlag, BJ and Po, S., The intrinsic cardiac nervous system and atrial fibrillation, Current Opinion in Cardiology. 21(1):51-54, Jan. 2006. Abstract only. 2 pgs. |
Schlaich, M.P. et al., Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560-5. |
Schlaich, M.P. et al., Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation, Hypertension, 2004, 43:169-175. |
Schmitt, Joseph et al., Intravascular Optical Coherence Tomography—Opening a Window into Coronary Artery Disease, LightLab Imaging, Inc. Business Briefing: European Cardiology 2005. |
Schoenbach, Karl H. et al, Intracellular Effect of Ultrashort Electrical Pulses, Dec. 26, 2000, Bioelectromagnetics, vol. 22, 2001, Wiley-Liss, Inc. 2001, pp. 440-448. |
Schrier, Robert et al., Cardiac and Renal Effects of Standard Versus Rigorous Blood Pressure Control in Autosomal-Dominant Polycistic Kidney Disease, Mar. 23, 2002, Journal of the American Society of Nephrology, American Society of Nephrology 2002, pp. 1733-1739. |
Scremin, Oscar U., M.D., Ph.D. and Daniel P. Holschneider, M.D., 31 & 32.. An Implantable Bolus Infusion Pump for the Neurosciences, FRP; Apr. 2005, 3 pages. |
Sensorcaine—MPF Spinal Injection, informational document, AstraZeneca 2001, 2 pgs. |
Shah, D.C., Haissaguerre, M., Jais, P., Catheter ablation of pulmonary vein foci for atrial fibrillation: pulmonary vein foci ablation for atrial firbrillation, Thorac Cardiovasc Surg, 1999, 47 (suppl. 3): 352-356. |
Shannon, J.L. et al., Studies on the innervation of human renal allografts, J Pathol. 1998, vol. 186, pp. 109-115. |
Shlipak, M.G. et al., The clinical challenge of cardiorenal syndrome. Circulation. 2004;110:1514-7. |
Shupak, Naomi M., Therapeutic Uses of Pulsed Magnetic-Field Exposure: A Review, Radio Science Bulletin Dec. 2003, No. 307, pp. 9-32. |
Shu-Qing, Liu et al., Old spinal cord injury treated by pulsed electric stimulation, General Hospital of Beijing Command, Beijing, Dec. 6, 1990, 5 pages (full article in Chinese; abstract on last page). |
Siegel, RJ et al., Clinical demonstration that catheter-delivered ultrasound energy reverses arterial vasoconstriction, Journal of the American College of Cardiology. 1992. 20; 732-735. Summary only. 2 pgs. |
Simpson, B. et al., Implantable spinal infusion devices for chronic pain and spasticity: an accelerated systematic review, ASERNIP-S Report No. 42, Adelaide, South Australia, ASERNIP-S, May 2003, 56 pages. |
Sisken, B.F. et al., 229.17 Influence of Non-Thermal Pulsed Radiofrequency Fields (PRF) on Neurite Outgrowth, Society for Neuroscience, vol. 21, 1995, 2 pages. |
Skeie, B. et al., Effect of chronic bupivacaine infusion on seizure threshold to bupivacaine, Dec. 28, 1986, Acta Anaesthesiol Scand 1987, vol. 31, pp. 423-425. |
Skopec, M., A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems, Feb. 4, 1997, CDRH Magnetic Resonance Working Group, U.S. Department of Heatlh and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Updated May 23, 1997, 17 pages, http://www.fda.gov/cdrh/ode/primerf6.html, (last accessed Jan. 23, 2006. |
Slappendel, Robert et al., The efficacy of radiofrequency lesioning of the cervical spinal dorsal root ganglion in a double blinded randomized study, Jun. 26, 1997, Pain 73, 1997 International Association for the Study of Pain, Elsevier Science B.V., pp. 159-163. |
Sluijter, M.D., Ph.D., Pulsed Radiofrequency, May 17, 2005, Anesthesiology Dec. 2005, vol. 103, No. 6, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., pp. 1313-1314. |
Sluijter, M.D., Ph.D., Radiofrequency Part 1: The Lumbosacral Region, Chapter 1 Mechanisms of Chronic Pain and part of Chapter 2 Spinal Pain, 2001 FlivoPress SA, Meggen (LU), Switzerland, pp. 1-26. |
Sluijter, M.D., Ph.D., Radiofrequency Part 2: Thoracic and Cervical Region, Headache and Facial Pain, various pages from, FlivoPress SA, Meggen (LU), Switzerland, 13 pages 2002. |
Sluijter, M.D., Ph.D., The Role of Radiofrequency in Failed Back Surgery Patients, Current Review of Pain 2000, vol. 4, 2000 by Current Science Inc., pp. 49-53. |
Smithwick, R.H. et al., Hypertension and associated cardiovascular disease: comparison of male and female mortality rates and their influence on selection of therapy, JAMA, 1956, 160:1023-1033. |
Smithwick, R.H. et al., Splanchnicectomy for essential hypertension, Journal Am Med Assn, 1953:152:1501-1504. |
Smithwick, R.H., Surgical treatment of hypertension, Am J Med 1948, 4:744-759. |
Sobotka, Paul A., Treatment Strategies for Fluid Overload, CHF Patients, CHF Solutions. Transcatheter Cardiovascular Therapeutics 2005. 20 slides. |
Solis-Herruzo, J.A. et al., Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome, Journal of Hepatology, 1987; 5: 167-173. |
Souza, D.R.B. et al., Chronic experimental myocardial infarction produces antinatriuresis by a renal nerve-dependent mechanism, Oct. 14, 2003, Brazilian Journal of Medical and Biological Research 2004, vol. 37, pp. 285-293. |
Standl, Thomas, M.D., et al., Patient-controlled epidural analgesia reduces analgesic requirements compared to continuous epidural infusion after major abdominal surgery, Aug. 29, 2002, Canada Journal of Anesthesia 2003, vol. 50 (3), pp. 258-264. |
Steffen, W. et al., Catheter-delivered high intensity, low frequency ultrasound induces vasodilation in vivo, European Heart Journal. 1994. 15; pp. 369-376. |
Steg, PG et al., Pulsed ultraviolet laser irradiation produces endothelium-independent relaxation of vascular smooth muscle, Circulation: Journal of the American Heart Assocation. 1989. pp. 189-197. |
Stone, Gregg W., M.D. et al., Fenoldopam Mesylate for the Prevention of Contrast-Induced Nephropathy, JAMA Nov. 5, 2003, vol. 290, No. 17, 2003 American Medical Association, pp. 2284-2291. |
Strojek, K. et al., Lowering of microalbuminuria in diabetic patients by a sympathicoplegic agent: novel approach to prevent progression of diabetic nephropathy? J Am Soc Nephrol. 2001;12:602-5. |
Summary, Critical Reviews in Biomedical Engineering, vol. 17, Issue 5, 1989, pp. 515-529. |
Sung, Duk Hyun, M.D. et al., Phenol Block of Peripheral Nerve Conduction: Titrating for Optimum Effect, Jun. 27, 2000, Arch. Phys. Med. Rehabil. vol. 82, May 2001, pp. 671-676. |
Taka, Tomomi et al., Impaired Flow-Mediated Vasodilation in vivo and Reduced Shear-Induced Platelet Reactivity in vitro in Response to Nitric Oxide in Prothrombotic, Stroke-Prone Spontaneously Hypertensive Rats, Pathophysiology of Haemostasis and Thrombosis. Dec. 23, 2002. pp. 184-189. |
Taler, Sandra J. et al., Resistant Hypertension, Comparing Hemodynamic Management to Specialist Care, Mar. 12, 2002, Hypertension 2002, vol. 39, 2002 American Heart Association, Inc., pp. 982-988. |
Tamborero, David et al., Incidence of Pulmonary Vein Stenosis in Patients Submitted to Atrial Fibrillation Ablation: A Comparison of the Selective Segmental Ostial Ablation vs. the Circumferential Pulmonary Veins Ablation, Journal of Intervocational Cardiac Electrophysiology. 14; pp. 41-25. 2005. |
Tay, Victoria KM, et al., Computed tomography fluoroscopy-guided chemical lumbar sympathectomy: Simple, safe and effective, Oct. 31, 2001, Diagnostic Radiology, Australasian Radiology 2002, vol. 46, pp. 163-166. |
Terashima, Mitsuyasu et al. Feasibility and Safety of a Novel CryoPlasty™ System. Poster. 1 page, Mar. 15, 2002. |
Thatipelli et al., CT Angiography of Renal Anatomy for Evaluating Embolic Protection Devices, Journal of Vascular and Interventional Radiology, Jul. 2007, pp. 842-846. |
The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, ALLHAT Research Group, JAMA, 2002, vol. 288, pp. 2981-2997. |
Thomas, John R. and Oakley, E. Howard N. Chapter 15: Nonfreezing Cold Injury Medical Aspects of Harsh Environments, vol. 1. pp. 467-490, 2001. |
Thompson, Gregory W., et al., Bradycardia Induced by Intravascular Versus Direct Stimulation of the Vagus Nerve, Aug. 24, 1997, The Society of Thoracic Surgeons 1998, pp. 637-642. |
Thrasher, Terry N., Unloading arterial baroreceptors causes neurogenic hypertension, Dec. 4, 2001, Am J. Physiol Regulatory Integrative Comp Physiol, vol. 282, 2002 the American Physiological Society, pp. R1044-R1053. |
Tokuno, Hajime A. et al., Local anesthetic effects of cocaethylene and isopropylcocaine on rat peripheral nerves, Oct. 7, 2003, Brain Research 996, 2004, Elsevier B.V. 2003, pp. 159-167. |
Trapani, Angelo J. et al., Neurohumoral interactions in conscious dehydrated rabbit, Am. J. Physiol. 254, 1988, the American Physiological Society 1988, pp. R338-R347. |
Trock, David H. et al., The Effect of Pulsed Electromagnetic Fields in the Treatment of Osteoarthritis of the Knee and Cervical Spine. Report of Randomized, Double Blind, Placebo Controlled Trials, Mar. 22, 1994, The Journal of Rheumatology 1994, vol. 21, pp. 1903-1911. |
Troiano, Gregory C. et al., The Reduction in Electroporation Voltages by the Addition of a Surfactant to Planar Lipid Bilayers, May 12, 1998, Biophysical Journal, vol. 75, Aug. 1998, the Biophysical Society 1998, pp. 880-888. |
Trumble, Dennis R. and James A. MaGovern, Comparison of Dog and Pig Models for Testing Substernal Cardiac Compression Devices, Nov. 2003, ASAIO Journal 2004, pp. 188-192. |
Tsai, E., Intrathecal drug delivery for pain indications, technique, results, Pain Lecture presentation, Jun. 8, 2001, 31 pages. |
Uematsu, Toshihiko, M.D., Ph.D., F.I.C.A. et al., Extrinsic Innervation of the Canine Superior Vena Cava, Pulmonary, Portal and Renal Veins, Angiology—Journal of Vascular Diseases, Aug. 1984, pp. 486-493. |
United States Renal Data System, USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2003, 593 pages. |
Upadhyay, Pramod, Electroporation of the skin to deliver antigen by using a piezo ceramic gas igniter, Jan. 27, 2001, International Journal of Pharmaceutics, vol. 217, 2001 Elsevier Science B.V., pp. 249-253. |
Valente, John F. et al., Laparoscopic renal denervation for intractable ADPKD-related pain, Aug. 24, 2000, Nephrol Dial Transplant 2001, vol. 16, European Renal Association—European Dialysis and Transplant Assocation, p. 160. |
Van Antwerp, Bill and Poonam Gulati, Protein Delivery from Mechanical Devices Challenges and Opportunities, Medtronic presentation, 19 pages, Jul. 2003. |
Velazquez, Eric J., An international perspective on heart failure and left ventricular systolic dysfunction complicating myocardial infarction: the Valiant registry, Aug. 5, 2004, European Heart Journal vol. 25, 2004 Elsevier, pp. 1911-1919. |
Velez-Roa, Sonia, M.D. et al., Peripheral Sympathetic Control During Dobutamine Infusion: Effects of Aging and Heart Failure, Jul. 7, 2003, Journal of the American College of Cardiology, vol. 42, No. 9, 2003, American College of Cardiology Foundation 2003, pp. 1605-1610. |
Villarreal, Daniel et al., Effects of renal denervation on postprandial sodium excretion in experimental heart failure, Oct. 29, 1993, Am J Physiol 266, 1994, pp. R1599-R1604. |
Villarreal, Daniel et al., Neurohumoral modulators and sodium balance in experimental heart failure, Nov. 6, 1992, Am. J. Physiol, vol. 264, 1993, pp. H1187-H1193. |
Vonend, O. et al., Moxonidine treatment of hypertensive patients with advanced renal failure. J Hypertens. 2003;21:1709-17. |
Wagner, C.D. et al., Very low frequency oscillations in arterial blood pressure after autonomic blockade in conscious dogs, Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039. |
Wald, Jan D., Ph.D, et al., Cardiology Update: 2003, Sep. 11, 2003, AG Edwards 2003, 120 pages. |
Wang, Xi et al., Alterations of adenylyl cyclase and G proteins in aortocaval shunt-induced heart failure, Jul. 2004, AM J Physiol Heart Circ Physiol vol. 287, 2004 the American Physiological Society, pp. H118-H125. |
Weaver, James C., Chapter 1 Electroporation Theory, Concepts and Mechanisms, Methods in Molecular Biology, vol. 55, Plant Cell Electroporation and Electrofusion Protocols, Edited by J.A. Nickoloff, Humana Press Inc., pp. 3-28, 1995. |
Weaver, James C., Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Oct. 22, 1992, Journal of Cellular Biochemistry, vol. 51, 1993 Wiley-Liss, Inc., pp. 426-435. |
Weiner, Richard L., M.D., Peripheral nerve neurostimulation, Neurosurg. Clin. N. Am. vol. 14, 2003, Elsevier, Inc. 2003, pp. 401-408. |
Weisbord, Steven D., M.D. and Paul M. Palevsky, M.D., Radiocontrast-Induced Acute Renal Failure, Jul. 10, 2004, Journal of Intensive Care Medicine 2005, vol. 20 (2), 2005 Sage Publications, pp. 63-75. |
Whitelaw, G.P., Kinsey, D., Smithwick, R.H., Factors influencing the choice of treatment in essential hypertension: surgical, medical, or a combination of both, Am J Surg, 1964, 107:220-231. |
Wilson, D.H. et al., The Effects of Pulsed Electromagnetic Energy on Peripheral Nerve Regeneration, Annals New York Academy of Sciences, Oct. 1974, pp. 575-585. |
Wolinsky, Harvey, M.D. PhD and Swan N. Thung, M.D., Use of a Perforated Balloon Catheter to Deliver Concentrated Heparin Into the Wall of the Normal Canine Artery, Aug. 30, 1989, JACC 1990, vol. 15, 1990 by the American College of Cardiology, pp. 475-481. |
Wyss, J. Michael et al., Neuronal control of the kidney: Contribution to hypertension, Apr. 8, 1991, Can. J. Physiol. Pharmacol. 1992;70: 759-770. |
Yamaguchi, Jun-ichi, M.D. et al., Prognostic Significance of Serum Creatinine Concentration for In-Hospital Mortality in Patients with Acute Myocardial Infarction Who Underwent Successful Primary Percutaneous Coronary Intervention (from the Heart Institute of Japan Acute Myocardial Infarction [HIJAMI] Registry), Feb. 24, 2004, The American Journal of Cardiology vol. 93, Jun. 15, 2004, 2004 by Excerpta Medica, Inc., pp. 1526-1528. |
Ye, Richard D., M.D., Ph.D., Pharmacology of the Peripheral Nervous System, E-425 MSB, 6 pages, Jan. 2000. |
Ye, S. et al., A limited renal injury may cause a permanent form of neurogenic hypertension. Am J Hypertens. 1998;11:723-8. |
Ye, Shaohua et al., Renal Injury Caused by Intrarenal Injection of Pheno Increases Afferent and Efferent Renal Sympathetic Nerve Activity, Mar. 12, 2002, American Journal of Hypertension, Aug. 2002, vol. 15, No. 8, 2002 the American Journal of Hypertension, Ltd. Published by Elsevier Science Inc., pp. 717-724. |
Yong-Quan, Dong et al., The therapeutic effect of pulsed electric field on experimental spinal cord injury, Beijing Army General Hospital of People's Liberation Army, Beijing, 5 pages (full article in Chinese; abstract on last page) Mar. 30, 1992. |
Young, James B., M.D., FACC, Management of Chronic Heart Failure: What Do Recent Clinical Trials Teach Us?, Reviews in Cardiovascular Medicine, vol. 5, Suppl. 1, 2004, MedReviews, LLC 2004, pp. S3-S9. |
Yu, Wen-Chung et al. Acquired Pulmonary Vein Stenosis after Radiofrequency Catheter Ablation of Paroxysmal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology. vol. 12, No. 8. Aug. 2001. pp. 887-892. |
Zanchetti, A. et al., Neural Control of the Kidney—Are There Reno-Renal Reflexes?, Clin. and Exper. Hyper. Theory and Practice, A6 (1&2), 1984, Marcel Dekker, Inc. 1984, pp. 275-286. |
Zanchetti, A. et al., Practice Guidelines for Primary Care Physicians: 2003 ESH/ESC Hypertension Guidelines, Journal of Hypertension, vol. 21, No. 10, 2003, pp. 1779-1786. |
Zanchetti, A.S., Neural regulation of renin release: Experimental evidence and clinical implications in arterial hypertension, Circulation, 1977, 56(5) 691-698. |
Zimmermann, Ulrich, Electrical Breakdown, Electropermeabilization and Electrofusion, Rev. Physiol. Biochem. Pharmacol., vol. 105, Springer-Verlag 1986, pp. 175-256. |
Zoccali, C. et al., Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105:1354-9. |
Zucker, Irving H. et al., The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide, Progress in Biophysics & Molecular Biology, vol. 84, 2004, Elsevier Ltd. 2003, pp. 217-232. |
Zundert, Jan Van, M.D. FIPP and Alex Cahana, M.D. DAAPM, Pulsed Radiofrequency in Chronic Pain Management: Looking for the Best Use of Electrical Current, Pain Practice 2005, vol. 5, Issue 2, 2005 World Institute of Pain, pp. 74-76. |
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765. |
Avitall et al., “The creation of linear contiguos lesions in the artria with an explandable loop catheter,” Journal of the American College of Cardiology, 1999; 33; pp. 972-984. |
Beale et al., “Minimally Invasive Treatment for Varicose Veins: A Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages. |
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013, 1 page. |
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831. |
Dodge, et al., “Lumen Diameter of Normal Human Coronary Arteries Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation”, Circulation, 1992, vol. 86 (1), pp. 232-246. |
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages). |
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages). |
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: 4, 2009, 10 pages. |
Kandarpa, Krishna et al., “Handbook of interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002). |
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct/show/NCT01628198. |
Opposition to European Patent No. 2465470, Granted Oct. 28, 2015, Date of Opposition Jul. 27, 2016, 34 pp. |
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages. |
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages. |
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages. |
Oz, Mehmet, Pressure Relief, Time, Jan. 9, 2012, 2 pages. <www.time.come/time/printout/0,8816,2103278,00.html>. |
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages. |
Pieper, et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping” Journal of Applied Physiology, 1991, vol. 71 (4), pp. 1529-1539. |
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080. |
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages. |
Purerfellner, Helmut et al., Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation, Curr. Opin. Cardio. 20 :484-490, 2005. |
Remo, et al., “Safety and Efficacy of Renal Denervation as a Novel Treatment of Ventricular Tachycardia Storm in Patients with Cardiomyopathy” Heart Rhythm, 2014, 11(4), pp. 541-546. |
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003). |
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages. |
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, 6, 2002, 4 pages. |
U.S. Appl. No. 11/363,867, filed Feb. 27, 2006, 70 pp. |
U.S. Appl. No. 60/813,589, filed Dec. 29, 2005, 62 pgs. |
U.S. Appl. No. 60/852,787, filed Oct. 18, 2006, 112 pgs. |
Ureter, https://en.wikipedia.org/wiki/Ureter, Jun. 2016, 6 pgs. |
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968. |
Zheng et al., “Comparison of the temperature profile and pathological effect at unipolar, bipolar and phased radiofrequency current configurations,” Journal of Interventional Cardiac Electrophysiology, 2001, pp. 401-410. |
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al. |
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al. |
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al. |
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct_2011.php>. |
“2012 top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>. |
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, <http://www.prnewswire.com/news-releases/ardianr-receives-2010-europcr-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>. |
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, <http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>. |
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year,” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media_relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>. |
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. <http://www.cxvascular.com/in-latest-news/interventional-news---latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>. |
“Iberis—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages. |
“Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business report, 2009. 1 page. <http://www.neurotechreports.com/pages/goldelectrodes09.html>. |
“Quick. Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages. |
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, <http://pharmaeuticalintelligence.com/tag/vessix-vascular/>. |
“The Edison Awards™” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>. |
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages. |
“Vessix Renal Denervation System: So Advanced It's Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages. |
Asbell, Penny, “Conductive Keratoplasty for the Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages. |
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit.” Am J Physiol Regul Integr Comp Physiol, vol. 274, 1998, 7 pages. |
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999,7 pages. |
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997). |
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages. |
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global Symplicity registry.” EuroIntervention, vol. 9, 2013, 9 pages. |
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=83002>. |
Davis, Mark et al., “Effectiveness of Renal Denvervation Therapy for Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages. |
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Interv Cardiac Electrophysiol, 2:285-292 (1998). |
Final Office Action; U.S. Appl. No. 12/827,700; dated Feb. 5, 2013, 61 pages. |
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension.” Journal of the American College of Cardiology, col. 60, No. 14, 2012, 7 pages. |
Gelfand, M., et al., “Treatment of renal failure and hypertension.” U.S. Appl. No. 60/442,970, filed Jan. 29, 2003, 23 pages. |
Gertner, Jon, “Meet the Tech Duo That's Revitalizing the Medical Device Industry.” Fast Company, Apr. 15, 2013, 6:00 AM, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>. |
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997). |
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000). |
Han, Y.-M, et al., “Renal artery embolization with diluted hot contrast medium: An experimental study.” J Vasc Intery Radiol, 12: 862-868 (2001). |
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87:13-19 (1994). |
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response.” American Medical Association White Paper (1988) 39 pages. |
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” EuroIntervention, vol. 9, 2013, 9 pages. |
Imimdtanz, “Medtronic awarded industry's highest honor for renal denervation system.” The official biog of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>. |
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCI/36509>. |
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001). |
Lee, S. J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999). |
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages. |
Lustgarten, D. L., et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999). |
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages. |
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages. |
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages. |
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages. |
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005, 1 page. |
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011) 44 pages. |
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal. 65, 729-734, (1989). |
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992). |
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006). |
Ormiston, John et al., “First-in-human use of the OneShot™ renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages. |
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages. |
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=80880>. |
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68. |
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), 4 pages, http://www.medtronic.com/rdn/mediakit/RDN%20FAQ.pdf. |
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages. |
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages. |
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” EuroIntervention, vol. 9, 2013, 9 pages. |
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages. |
Stella, A., et al., “Effects of reversible renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986). |
Stouffer, G. A. et al., “Catheter-based renal denervation in the treatment of resistant hypertension.” Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages. |
Swartz, J. F., et al., “Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993). |
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998). |
Verloop, W. L. et al., “Renal denervation: a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>. |
Weinstock, M., et al., “Renal denervation prevents sodium retention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996). |
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages. |
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages. |
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages. |
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages. |
Miller, Reed, “Finding a Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages. |
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: “Dubium Sapientiae Initium” (Doubt Is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214. |
Papademetriou, Vasilios et al, “Renal Nerve Ablation for Resistant Hypertension: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450. |
Papademetriou, Vasilios et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using a Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572. |
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages. |
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages. |
European Search Report for App. No. 12189194.9, dated Aug. 1, 2013, 11 pages. |
Bello-Reuss, “Effects of Acute Unilateral Renal Denervation in the Rat.” The Journal of Clinical Investigation, vol. 56, Jul. 1975, 10 pages. |
Page, I.H. et al., “The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension,” J. Clin Invest. 1934;14:27-30. |
Number | Date | Country | |
---|---|---|---|
20180303839 A1 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
60370190 | Apr 2002 | US | |
60415575 | Oct 2002 | US | |
60442970 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14878371 | Oct 2015 | US |
Child | 15960596 | US | |
Parent | 14221536 | Mar 2014 | US |
Child | 14878371 | US | |
Parent | 11133925 | May 2005 | US |
Child | 14221536 | US | |
Parent | 10900199 | Jul 2004 | US |
Child | 11133925 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10408665 | Apr 2003 | US |
Child | 10900199 | US |