Methods and devices for renal nerve blocking

Information

  • Patent Grant
  • 10376516
  • Patent Number
    10,376,516
  • Date Filed
    Tuesday, April 24, 2018
    6 years ago
  • Date Issued
    Tuesday, August 13, 2019
    4 years ago
Abstract
Methods for treating a hypertensive human patient are disclosed herein. A method in accordance with one embodiment comprises delivering a neuromodulatory agent to a renal nerve of the patient via an intravascularly positioned drug delivery catheter. The method includes at least partially blocking neural activity along the renal nerve with the neuromodulatory agent, which results in a therapeutically beneficial reduction in blood pressure of the patient.
Description
FIELD OF THE INVENTION

This invention relates to devices and methods for local drug delivery, and in particular is directed to an implantable system for targeted delivery of a nerve blocking agent to the periarterial space of the renal artery for the purpose of blocking the renal nerve plexus, methods for implanting same, and methods and devices for treating diseases. The invention directs the nerve-blocking agent towards the nerve, prevents dissipation of the agent in the surrounding tissue and provides fixation of the drug delivery mechanism in the surrounding tissue.


BACKGROUND OF THE INVENTION

Hypertension (HTN) and congestive heart failure (CHF) are the most important problems in contemporary cardiology. These chronic diseases account for most cardiovascular morbidity and mortality, and, despite much progress, remain therapeutic challenges. The cornerstone of therapy for both HTN and CHF includes the use primarily oral and intravenous drugs acting directly or indirectly on the kidney, such as angiotensin converting enzyme (ACE) inhibitors and diuretics, with the amount of each drug used dependent on the stage of the disease. While drug therapy is effective in the earliest stages of HTN and CHF, there is no truly effective drug treatment for the mid-to-later stages of these diseases.


HTN and CHF have many different initial causes. Irrespective of initial cause, both diseases follow a common pathway in their progression to end-stage disease, primarily as the result of excessive activity of the renal nerve. It has been shown in accepted animal models that renal denervation can control HTN and improve symptoms and slow down the progression of CHF. However, no drug or device therapies currently exist that can provide long-term, clinically usable blocking of renal nerve activity in humans. The only available clinical method of renal denervation is an invasive surgical procedure, technically difficult and of limited use, as the nerve quickly regenerates.


Of particular significance for this invention is the CHF condition that develops in many patients following a myocardial infarction (MI). Coronary artery disease causes approximately 70% of congestive heart failure. Acute MI due to obstruction of a coronary artery is a common initiating event that can lead ultimately to heart failure. This process by which this occurs is referred to as remodeling and is described in the text Heart Disease, 5th ed., E. Braunwald, Ch. 37 (1997). Remodeling after a myocardial infarction involves two distinct types of physical changes to the size, shape and thickness of the left ventricle. The first, known as infarct expansion, involves a localized thinning and stretching of the myocardium in the infarct zone. This myocardium can go through progressive phases of functional impairment, depending on the severity of the infarction. These phases reflect the underlying myocardial wall motion abnormality and include an initial dyssynchrony, followed by hypokinesis, akinesis, and finally, in cases that result in left ventricular aneurysm, dyskinesis. This dyskinesis has been described as “paradoxical” motion because the infarct zone bulges outward during systole while the rest of the left ventricle contracts inward. Consequently, end-systolic volume in dyskinetic hearts increases relative to nondyskinetic hearts.


The second physical characteristic of a remodeling left ventricle is the attempted compensation of noninfarcted region of myocardium for the infarcted region by becoming hyperkinetic and expanding acutely, causing the left ventricle to assume a more spherical shape. This helps to preserve stroke volume after an infarction. These changes increase wall stress in the myocardium of the left ventricle. It is thought that wall tension is one of the most important parameters that stimulate left ventricular remodeling. In response to increased wall tension or stress, further ventricular dilatation ensues. Thus, a vicious cycle can result, in which dilatation leads to further dilatation and greater functional impairment. On a cellular level, unfavorable adaptations occur as well. This further compounds the functional deterioration.


Takashi Nozawa et al reported the effects of renal denervation in “Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats” published in Heart Vessels (2002) 16:51-56 Springer-Verlag. In rats the bilateral renal nerves were surgically denervated (cut) (RD) two days before MI was induced by coronary artery legation. Four weeks later, left ventricular (LV) function and sodium excretion were determined. In MI rats, RD improved the reduced sodium excretion. MI RD rats revealed lower LV end-diastolic pressure and greater maximum dP/dt as compared with those of MI innervation (INN) rats. LV end-diastolic and end-systolic dimensions were significantly smaller and LV fractional shortening was greater in MI RD rats than in MI INN rats.


Inventors described novel methods and devices for reversible minimally invasive modulation of the renal nerve in copending applications. This application describes novel drug delivery methods and integrated physiological drug delivery and sensing systems that provide a significantly more effective method of blocking the renal nerve for the purpose of treating HTN and CHF than are currently available. The objective of this invention is a fully implantable device that blocks renal nerve activity of at least one kidney that 1) can be placed in a minimally invasive manner and 2) requires minimal intervention by the patient and physician; and will greatly increase patient compliance leading to a higher overall effectiveness of these therapies. In addition, to HTN and CHF, this method may be applicable to other major diseases such as slowing the progression of chronic renal failure and reducing the number of patients requiring chronic hemodialysis.


Nerve blocking in humans is known and practiced mostly in the field of local anesthesia and pain control. While compounds utilized as general anesthetics reduce pain by producing a loss of consciousness, local anesthetics act via a loss of sensation in the localized area of administration in the body. The mechanism by which local anesthetics induce their effect, while not having been determined definitively, is generally thought to be based upon the ability to locally interfere with the initiation and transmission of a nerve impulse, e.g., interfering with the initiation and/or propagation of a depolarization wave in a localized area of nerve tissue. The actions of local anesthetics are general, and any tissue where nerve conduction, e.g., cell membrane depolarization occurs can be affected by these drugs. Thus, nervous tissue mediating both sensory and motor functions can be similarly affected by local anesthetics. Neurotoxins are the chemicals that when applied to nerve tissue in extremely small amounts can block a nerve for a period of time that significantly exceeds that achieved with local anesthetics. They are also more toxic and potentially more dangerous to the patient than local anesthetics.


Different devices and formulations are known in the art for administration of local anesthetics. For example, local anesthetics can be delivered in solution or suspension by means of injection, infusion, infiltration, irrigation, topically and the like. Injection or infusion can be carried out acutely, or if prolonged local effects are desired, localized anesthetic agents can be administered continuously by means of a gravity drip or infusion pump. Thus, local anesthetics such as bupivacaine have been administered by continuous infusion, e.g., for prolonged epidural or intrathecal (spinal) administration. For prolonged control of pain fully implantable pumps have been proposed and implemented. These pumps can store a certain amount of drug and a physician periodically refills those. Several authors proposed drug eluting implants for control of pain and muscle spasms that slowly release an anesthetic agent at the site of implantation.


The duration of action of a local anesthetic is proportional to the time during which it is in actual contact with the nervous tissues. Consequently, procedures or formulations that maintain localization of the drug at the nerve greatly prolong anesthesia. Local anesthetics are potentially toxic, both locally and via systemic absorption, yet must be present long enough to allow sufficient time for the localized pain to subside. Therefore, it is of great importance that factors such as the choice of drug, concentration of drug, and rate and site of administration of drug be taken into consideration when contemplating their use for the application to block renal nerve. Charles Berde in “Mechanisms of Local Anesthetics” (Anesthesia, 5th addition, R. D. Miller, editor, Churchill-Livingstone, Philadelphia 2000, pp. 491-521) stipulated that only 1-2% of the total amount of local anesthetic, when delivered by traditional methods, ever reaches the nerve. The rest of the drug is dissipated by circulation of blood that takes the drug away, not towards the nerve. It is therefore the purpose of this invention to maximize the amount of drug directed towards the nerve so as to achieve the effective blockade of the renal nerve with the minimal amount of drug.


Theoretically, a suitable commercially available implantable drug pump such as a Syncromed pump made by Medtronic Inc. (Shoreview, Minn.) can be used to block the renal nerve in a human. The pump can deliver common commercially available solution of a local anesthetic agent such as bupivacaine to the tissue surrounding the renal nerve via an attached catheter. Although feasible, such embodiment of the renal nerve block will have practical limitations. To block a peripheral nerve (for example, for the purpose of a commonly performed brachial plexus block) using conventional techniques the physician typically infiltrates 10-50 ml of bupivacaine or similar anesthetic into the tissue surrounding the targeted nerve. This usually achieves adequate blocking of both sensory and motor signals for 2 to 6 hours. Commercially available bupivacaine marketed as Marcaine or Sensorcaine is available in concentrations of 0.25 to 0.1%. For peripheral (single nerve) blocks concentrations of 0.5 to 0.75% are typically used. There are several reasons why local anesthetics are so diluted. An amino-amide compound such as bupivacaine can be toxic both locally (it is an irritant) and systemically (it depresses the heart). It is generally perceived that a local anesthetic will not be effective below certain minimum concentration and will be toxic above certain maximum concentration.


Implantable drug pumps are commonly equipped with an internal drug storage reservoir of 30 to 50 ml. Bigger reservoirs are possible but impose severe limitations on the physical and clinical acceptability of the implant. If the continuous. (24 hour a day 7 days a week) block of the patient's renal nerve is desired, and a conventional peripheral nerve blocking technique is used, the implanted pump reservoir will need to be refilled every day or even more frequently. This is possible but not practical, since refilling of the pump is associated with the skin puncture, causing pain and leading to the risk of local and systemic infection. Also, daily infusion of a large amount of drug can result in a serious risk to the patient's health, especially if the patient has a weak heart. Notably the same drug bupivacaine is effective in a much lower doze when delivered directly to the targeted nerve tissue in the patient's spine. For example, an effective intrathecal (spinal) pain block can be achieved with 2-5 ml of bupivacaine. This observation shows that more targeted delivery of the same drug to the nerve tissue can result in 10 times or more reduction of the amount of drug needed for nerve blocking.


It is therefore the purpose of this invention to provide novel methods and implantable devices that will effectively block renal nerve by targeting the delivery of the selected drug to the nerve, reducing dissipation of the drug into the surrounding tissue, reducing the amount of drug stored in the device and increasing the time interval between the refilling or replacement of the device. It is also the purpose of this invention to enable testing of the effectiveness of the renal nerve blockade and to perform the renal block automatically, intermittently and/or periodically in the clinical scenarios where the continuous block is not desired.


SUMMARY OF THE INVENTION

Surgical denervation of the kidney in experimental animals suggested multiple immediate and long-term benefits for patients with cardiac and renal diseases. The most significant potential beneficial effects are: slowing of the progression of CHF, resolution of fluid overload in CHF by induction or enhancement of diuresis, reduction of remodeling after a myocardial infarct, reduction of hypertension and slowing of the progression of chronic renal disease to dialysis. The benefits are achieved via the reduction of the systemic sympathetic tone causing vasoconstriction of blood vessels, reduction of the load on the heart and the direct effects of denervation on the kidney. Both single kidney denervation and bilateral denervation have potential benefits. Surgical denervation has been previously performed in animals and in few humans to control pain. It requires a major surgery, and is ineffective in long term, since renal nerves eventually grow back. Additionally, after the surgical denervation, the renal nerve can re-grow in a pathological way and can cause pain and other serious side effects. Since fibrotic changes at the site of denervation make repeat surgical denervation impossible, patients face the possibility of the removal of the kidney to control the pain.


The inventors suggest an alternative method of reducing or blocking the renal nerve activity in patients by minimally invasive renal nerve modulation. Renal nerve modulation is achieved by controlled infusion of a nerve-blocking agent into the periarterial space of the renal artery of the kidney. The periarterial space is the area surrounding the renal arteries and veins, extending from the aorta and vena cava to and including the area around the kidney itself. Since renal nerves follow the external surface of the renal artery, when an effective concentration of the nerve-blocking agent is present in this periarterial space, the renal nerve activity is substantially reduced or stopped. Methods and devices for both continuous and intermittent periodic blocking of the renal nerve are proposed. These methods and devices provide effective, reversible nerve blocking for a clinically relevant duration of time, while avoiding major surgery and irreparable damage to the nerve that characterize the previously used surgical denervation.


The preferred embodiment devices can be implantable drug pumps or drug eluting implants. Both classes of local drug delivery devices are known. Implanted pumps have been successfully used previously for control of pain by infusion of local anesthetics into the patient's spine. Implantable pumps range from simple reservoirs (ports) implanted under the skin with an attached catheter to sophisticated microprocessor driven programmable devices similar to pacemakers. Drug eluting implants have been used to deliver birth control agents and to prevent restenosis of coronary arteries.


Implanted pumps can also be refilled with drug without surgery using a transdermal port accessible with a needle, though it is preferable to extend the time between refillings to minimize pain and the risk of infection. The programmable implantable pump embodiment also has an advantage of the periodic drug delivery that can be adjusted up or down using a remote communication link. This is particularly significant in treatment of chronic diseases such as CHF where the continuous constant nerve blocking can result in adaptation (resting of the physiologic gain or compensation) and the loss of therapeutic effect.


Drug eluting implants work primarily by diffusion. Drug eluting implants are advantageous in the treatment of a temporary condition such as infarct expansion following acute MI where an implant that blocks the nerve for approximately 30 days and then dissolves on its own can be the best embodiment of the invention.





SUMMARY OF THE DRAWINGS

A preferred embodiment and best mode of the invention is illustrated in the attached drawings that are described as follows:



FIG. 1 illustrates the patient treated with an implanted pump embodiment of the invention.



FIG. 2 illustrates the physiologic mechanisms of renal nerve modulation.



FIG. 3 illustrates anatomic positioning of the renal nerve blocking device.



FIG. 4 illustrates an implantable drug infusion pump with a catheter electrode.



FIG. 5 illustrates the infusion of an anesthetic drug into the renal fatpad.



FIG. 6 illustrates a catheter with a cuff for distributed drug infusion into the periarterial space.



FIG. 7 illustrates a bifurcated catheter for drug infusion into the periarterial space.



FIG. 8 illustrates a coiled catheter for drug infusion into the periarterial space.



FIG. 9 illustrates a drug eluting implant in the periarterial space.



FIG. 9A illustrates a drug eluting biodegradable material in the periarterial space.



FIG. 10 illustrates a porous drug infusion catheter.



FIG. 11 illustrates a drug infusion catheter with tissue ingrowth.



FIG. 12 illustrates the drug infusion catheter that directs the drug towards the renal nerve.



FIG. 13 illustrates the drug infusion catheter that overlaps the renal artery and directs the drug infusion towards the renal nerve.



FIG. 14 is a cross-sectional view of the catheter and artery shown in FIG. 13.





DETAILED DESCRIPTION OF THE INVENTION

For the proposed clinical use, the capability of the invention is to block the sympathetic activity of the renal nerve of the kidney by controlled local delivery of a nerve-blocking agent with the goal of improving the patient's renal and cardiac function. Elements of the invention are useful for blocking nerves for the purpose other than treating cardiorenal disease and can be applied in other anatomic locations.


A nerve blocking agent is a drug that reduces or blocks conduction of signals by renal nerves. The nerve blocking agents used can be selected from different groups including (1) local anesthetics, (2) ketamine (a well known sedative with nerve blocking properties), (3) tricyclic antidepressants such as amitriptyline, (4) neurotoxins such as tetrodotoxin and saxitoxin or (5) any other class or type of agent that transiently or permanently, partially or completely alters nerve conduction. The terms nerve blocking agent and nerve blocking drug are interchangeable.


Cardiorenal disease is defined as a condition, chronic or acute, that involves both the heart and the kidney. Examples of cardiorenal diseases are hypertension and CHF. Cardiorenal diseases are characterized by the elevated activity of the renal nerve.


For the purpose of this invention, the renal nerve is defined as any individual nerve or plexus of nerves and ganglia that conducts a nerve signal to and/or from the kidney and is anatomically located on the surface of the renal artery, parts of aorta where the renal artery branches from the aorta and/or on branches of the renal artery. The renal nerve generally enters the kidney in the area of the hilum of the kidney, but may enter in any location where a renal artery or branch of the renal artery enters the kidney.


Periarterial space is defined as the space immediately surrounding the renal arteries, renal veins and their branches between the aorta and the hilum of the kidney. The renal fat pad is defined as the adipose tissue or fat that fills the periarterial space and surrounds the renal artery, renal vein, renal nerves and the kidney itself. The renal fascia is the layer of connective tissue that surrounds, envelopes and contains the renal artery, renal vein, renal fatpad and the kidney itself.


An implantable or implanted device (commonly termed an “implant”) is an artificial device fully enclosed in the patient's body. It is significant that implants allow the natural skin of the patient to serve as a barrier against infection. An implant can be, for example, a complex electromechanical pump, catheter and port or a drug-releasing polymer. Implantation can be achieved by open surgery, minimally invasive surgery or a transcatheter intervention, whether extravascular, intravascular or combination of any of the above. During the implantation procedure, a surgical instrument or catheter is used to cross the skin, penetrating into the patient's body. The implant is positioned at the desired site and the pathway used to access the site is closed. The site heals and the device is now fully implanted.


An implantable pump is an implantable device that is inserted under the patient's skin and can be refilled using a transdermal needle access. An implantable pump may have an integral catheter or can be equipped with a separate catheter that delivers medication to the periarterial space. Depending on the desired treatment modality, a preferred implantable pump can be programmable, patient controlled or a constant rate device.


A drug eluting implant is a device that is fully implanted in the body that slowly elutes the nerve-blocking agent into the target space. One example of such a space is the renal periarterial space. Another example is inside the renal capsule, or the virtual space between the kidney tissue and the fibrous sheath surrounding the kidney tissues itself. Drug eluting implants work by diffusion and can be biodegradable or not. An osmotic pump is also a drug eluting implant. Different matrixes that serve to slow down the diffusion of the drug into a target space are all called drug eluting implants for the purpose of this invention. These include gels, patches, injectable microspheres, suspensions, solutions or any other matrix that may hold sufficient drug to cause the intended effect.



FIG. 1 illustrates a patient 101 treated with the preferred embodiment of the invention. Patient has kidneys 103 and 104 that are bean shaped organs 12 cm long, 6 cm wide, 3 cm thick located outside and behind the peritoneal cavity. Patient is equipped with an implantable drug pump 105 implanted in the patient's side under the skin. The pump is equipped with a drug delivery catheter 106 that terminates in the area of the renal artery 107 where the delivered drug is capable of blocking the renal nerve.



FIG. 2 illustrates the role of renal nerve activity in the progression of chronic cardiac and renal diseases. Increased renal afferent (from the kidney to the brain) nerve activity 201 results in the increased systemic sympathetic tone 202 and vasoconstriction (narrowing) 203 of blood vessels. Increased resistance of blood vessels results in hypertension 204. Hypertension is a major contributor to the progression of chronic heart failure and renal failure as well as the acute events such as strokes and myocardial infarcts. Increased renal efferent (from the brain to the kidney) nerve activity 205 results in further increased afferent renal nerve activity, secretion of the renal hormone renin 206, and reduction of renal blood flow and the decreased water and sodium excretion by the kidney. Renin contributes to systemic vasoconstriction of blood vessels 203. In combination these renal factors result in fluid retention 207 and increased workload of the heart thus contributing to the further deterioration of the patient. It should be clear from the FIG. 2 that moderation of renal nerve activity will benefit patients with heart, kidney and circulatory system (cardiorenal) diseases.



FIG. 3 illustrates a preferred embodiment of the invention using a CT scan (digital X-ray) image of a human body. The pump 105 is implanted under the skin in the patient's back. The pump is equipped with the catheter 106. Tip 304 of the catheter resides near the renal artery 107. In this example, the tip 304 is shown in the hilum 305 area of the kidney where the renal blood vessels (arteries and veins) enter and exit the kidney. In clinical practice, the tip could reside in other locations within the renal periarterial space as long as the position allows the spread of the nerve blocking agent to at least a sufficient area of the nerve to achieve the required level of nerve blockade. Each kidney has an outer convex surface and an indentation on the inner side called the hilum. The hilum functions as a route of entry and exit for the blood vessels, lymph vessels, nerves and ureters of the kidney. Renal nerves follow the renal artery 107 that connects the kidney 104 to the aorta 301 shown in front of the spine 302. Kidney and renal vessels are enclosed in fat and fascia made of connective tissues that do not show well on this type of CT scan image.


It is significant that the catheter 106 can be introduced into the periarterial space under the CT guidance without surgery. The spatial resolution of modern imaging modalities such as CT, CT Fluoroscopy, Ultrasound and MRI allows an interventional radiologist to position the catheter within a millimeter from the renal artery of a human. The procedure is performed using a needle, an exchange guidewire and similar techniques commonly used in interventional radiology. The distal end of the catheter can be left outside of the body for the test period or the entire treatment if the treatment requires only a short duration. Later, if the renal nerve blocking therapy is clinically successful, an implanted pump or a simple subcutaneous port such as a commercially available Port-A-Cath device can be connected to the already implanted catheter for repeat infusions of the nerve-blocking drug.



FIG. 4 illustrates a simplified design of an implantable programmable drug infusion pump. The pump 105 in implanted in a pocket under the patient's skin 401. All the mechanisms of the pump are enclosed in a titanium or polymer case 402. Drug is stored in the reservoir 403. To refill the pump a needle 405 is used to puncture the skin and the pump reservoir septum 406. Septum 406 is made of a material such as silicon that seals after the puncture. Drug is displaced from the reservoir by the compressed propellant 407. The propellant can be a chlorofluorocarbon, butane or other similar compound. The propellant acts on the drug through the elastic diaphragm 408. Alternatively, the diaphragm can act as a spring or it can be acted upon by the spring to displace the drug. The catheter 106 is in fluid communication with the reservoir 403. The propellant urges the drug from the reservoir into the catheter and through the catheter to the site of delivery, in this case, periarterial space of the renal artery and the renal nerve. To control the release of the drug, a valve 408 is placed between the reservoir and the catheter. The valve is normally closed. When it is forced open by the pump electronic control circuitry 409 for a short duration of time, a bolus of drug is released from the pump to the renal nerve-blocking site. The internal battery 411 supplies energy to the electronics and the valve. The communication electronics 410 allows the physician to reprogram the pump altering the amount and frequency of drug delivery as well as to interrogate the device. The communication electronics can be a radio-frequency RF link. All the elements described above are known to the developers of implantable drug pumps.


Programmable implantable infusion devices (also called implantable pumps) that actively meter the drug into an associated drug delivery catheter are described in the U.S. Pat. Nos. 4,692,147; 5,713,847; 5,711,326; 5,458,631; 4,360,019; 4,487,603; and 4,715,852. Alternatively, implantable infusion devices can control drug delivery by means of a rate-limiting element positioned between the drug reservoir and the delivery catheter as described in the U.S. Pat. No. 5,836,935, or by only releasing drug from the reservoir upon application of pressure to a subcutaneously positioned control device as described in U.S. Pat. Nos. 4,816,016 and 4,405,305. Implantable infusion devices have been used for intravenous, intraarterial, intrathecal, intraperitoneal, intraspinal and epidural drug delivery but not for periarterial drug infusion.


Known infusion pumps described above can be used to block the renal nerve for the purpose of treating cardiac diseases but they lack certain features needed in practical application. It is important for the physician to be able to determine that the nerve is in fact effectively blocked. In pain control applications of local anesthetics, the disappearance of the pain by itself is an indicator of an effective block. There is no natural indication of the renal nerve activity that can be simply measured. To address that problem, the pump 105 is equipped with a test electrode 412 on the tip 304 of the catheter 106. The electrode can be a single ring or multiple electrodes made of a conductive metal such as gold, stainless steel or titanium. The electrode 412 is connected to the control circuitry of the pump 409 by a conductive wire 413 integrated inside the catheter body 106. Except for the tip electrode 412 the wire is electrically insulated from the patient.


To test the effectiveness of the renal nerve block the control circuitry initiates an electric pulse to the electrode. To close the electric circuit the metal case 402 of the pump can be used as a second return electrode. Alternatively the catheter 106 can be equipped with more than one electrode. Low electric current pulse that can be in the range of 5-10 milliamps is passed through the tissue surrounding the electrode 412. If the nerve block is effective, patient will have no sensation of tingling or minor electric shock. If the block is ineffective, the nerves in the surrounding tissue will conduct the pulse, causing pain that the patient then reports to the physician and the physician will be able to make adjustments to therapy such as, for example, increase the dose of drug delivered by the pump.


This aspect is similar to the surgical technique used by anesthesiologists to establish short term invasive nerve blocks during surgery. Before the start of the surgery, the anesthesiologist places a needle precisely on the nerve or plexus. To do this, a specially designed electrical nerve stimulator is used. The nerve stimulator delivers a very small electrical current, too small to be felt, to the nerve, which causes twitching of the particular muscles supplied by that nerve or plexus of nerves. In this example, the nerve serves as nothing more than a sophisticated “electrical wire”, which is now conducting the current delivered by an electrical device to the muscles, in place of the normally conducted current originating from the brain. The patient will therefore experience small muscle twitches in the muscles supplied by that nerve similar to when your eye is twitching. This technique has never been previously applied to an implanted device. In the proposed invention, the physician will be able to perform the nerve block test in their office, without sophisticated surgical techniques and sterile environment. The external programmer device will initiate a command sequence that will be received by the electronics of the implanted pump using RF waves.


In an alternate embodiment, the catheter can have two or more sets of electrodes, at least one set proximal to and at least one set distal to the area of renal nerve blockade. Each set of electrodes is in sufficient proximity to the renal nerve so that it can either sense intrinsic nerve activity or stimulate nerve activity. It is clear that if the pump control circuitry initiates and electrical pulse to a one set of electrodes on one side of the block and does not record a corresponding and appropriately timed signal on the opposite side of the block, then the drug is effective in creating the nerve block. Conversely, if the electrical activity is sensed, more drug must be infused to create the desired block. It is also clear that this information can be used as feedback by the control circuitry to automatically adjust the timing and/or amount of drug released.



FIG. 5 illustrates the anatomic placement of the drug infusion catheter 106 in the periarterial space of the renal artery. Catheter 106 is shown schematically in connection to the implanted pump 105. The kidney 102 is supplied with blood by the renal artery 107 from the aorta 301. The periarterial space is defined as space immediately surrounding the renal arteries and veins along its length between the connection to the aorta and the hilum 305 of the kidney. The renal artery can branch into two or more arteries. The renal vein and its branches connecting the kidney to the vena cava of the patient share the space. These additional elements of the renal vascular system are omitted on FIG. 5 and the following figures for clarity but are presumed there.


Renal nerve 501 is shown schematically as a branching network attached to the external surface of the renal artery 107. Anatomically, the renal nerve forms one or more plexi on the external surface of the renal artery. Fibers contributing to these plexi arise from the celiac ganglion, the lowest splanchnic nerve, the aorticorenal ganglion and aortic plexus. The plexi are distributed with branches of the renal artery to vessels of the kidney, the glomeruli and tubules. The nerves from these sources, fifteen or twenty in number, have a few ganglia developed upon them. They accompany the branches of the renal artery into the kidney; some filaments are distributed to the spermatic plexus and, on the right side, to the inferior vena cava.


A fibrous connective tissue layer, called the renal capsule, encloses each kidney. Around the renal capsule is a dense deposit of adipose tissue, the renal fat pad, which protects the kidney from mechanical shock. The kidneys and the surrounding adipose tissue are anchored to the abdominal wall by a thin layer of connective tissue, the renal fascia. The periarterial space of the renal artery is externally limited by renal fascia 502 that extends between the kidney and the aorta and contains renal vessels and nerves. Renal fascia presents a natural barrier to the dissipation of the infused drug 504 that is emitted from the tip of the catheter 106. Fat fills the space between the fascia and the renal artery. In particular, there is a fat tissue layer 503 in the hilum of the kidney that surrounds the renal pedicle where arteries, nerves and veins enter the kidney. The catheter tip 304 is shown penetrating the renal fascia and the renal fat and the anesthetic drug is infused into the fatpad tissue. Although shown in the hilum of the kidney, the tip can be placed anywhere in the renal periarterial space as long as the position allows the spread of the nerve blocking agent to at least a sufficient area of nerve to achieve the required level of nerve blockade. In practice, there is an advantage to placing the tip at a location in continuity with the periarterial space fat. Anesthetic drugs such as amino ester and amino amide local anesthetics such as bupivacaine have high lipid solubility. The invention takes advantage of this. A single bolus of bupivacaine, after being infused into these areas, will be adsorbed by fat and retained at the location of the renal nerve. In this manner, the renal fat serves as storage of drug that will then be slowly released from the renal fat, and in this way, obtains the desired prolonged nerve blocking action.



FIG. 6 illustrates an alternative embodiment of the invention where the catheter 106 has a sealed tip 601 but is equipped with multiple side holes or pores 602 in the wall of the catheter. The pores can be as small as a micron in diameter. Pores less than 20 microns in diameter will allow penetration of the nerve-blocking drug through the wall of the catheter and into the periarterial space, renal fat pad and ultimately to the renal nerve target. At the same time, these small pores will discourage ingrowth of tissue into the side holes and increase the probability of the catheter patency after being implanted in the body for a long time. This design helps redistribute the anesthetic in the periarterial space between the wall of the renal artery and the renal fascia 502. The catheter is equipped with a cuff 603 to encourage ingrowth of connective tissue and prevents escape of the infused drug through the puncture in the renal fascia. The cuff can be made of a natural or synthetic fiber material with pores larger than 20 microns and preferably 100 microns. For example, Dacron cuffs are commonly used in surgically implanted catheters for long term vascular access and dialysis in humans, Dacron cuffs support ingrowth of tissue, prevent dislodgment and provide a barrier to infection.



FIG. 7 illustrates an embodiment of the catheter 106 that bifurcates in the periarterial space of the kidney after it enters inside the renal fascia. The internal lumen of the catheter is split between two or more branches 701 and 702. Catheter brunches can have end holes; side holes or wall pores for the delivery of medication to the renal nerve.



FIG. 8 illustrates an embodiment of the catheter 106 that forms a coil 801 inside the periarterial space. The coil can be equipped with side holes or pores to evenly distribute the infused drug in the periarterial space around the renal artery.



FIG. 9 illustrates an alternative preferred embodiment of the invention. The nerve blocking agent is stored in the drug eluting implant 901. The implant 901 is contained in the periarterial space after the implantation surgery. Implant can be permanent or slowly biodegradable. Prior to implantation the implant is impregnated or “loaded” with a nerve-blocking agent that is gradually released over time into the periarterial space in the amount sufficient to block the renal nerve. An implantable drug eluting implant or pellet(s) made of a nonbiodegradable polymer has the drawback of requiring both surgical implantation and removal. Use of a biocompatible, biodegradable implant overcomes deficiencies of nonbiodegradable implants. A biodegradable implant can release a drug over a long period of time with simultaneous or subsequent degradation of the polymer within the tissue into constituents, thereby avoiding any need to remove the implant. A degradable polymer can be a surface eroding polymer. A surface eroding polymer degrades only from its exterior surface, and drug release is therefore proportional to the polymer erosion rate. A suitable such polymer can be a polyanhydride. It is advantageous to have a surface eroding implant where the eroding surface faces the renal artery and the renal nerve. Other surfaces of the implant may be designed to erode at a slower rate or not erode at all that directing the drug towards the renal nerve target.


Implants for long-term drug delivery are known. For example, such implants have been used or proposed for delivering a birth control drug systemically (into circulation) or a chemotherapeutic agent to a localized breast tumor. Examples of such implantable drug delivery devices include implantable diffusion systems (see, e.g., implants such as Norplant for birth control and Zoladex for the treatment of prostate cancer) and other such systems, described of example in U.S. Pat. Nos. 5,756,115; 5,429,634; 5,843,069. Norplant is an example of a class of the drug eluting implants also called controlled release systems comprising a polymer for prolonged delivery of a therapeutic drug. Norplant is a subdermal reservoir implant comprised of a polymer can be used to release a contraceptive steroid, such as progestin, in amounts of 25-30 mg/day for up to sixty months. Norplant uses the DURIN biodegradable implant technology that is a platform for controlled delivery of drugs for periods of weeks to six months or more. DURIN can be adopted for delivery of an anesthetic into the periarterial space. The technology is based on the use of biodegradable polyester excipients, which have a proven record of safety and effectiveness in approved drug delivery and medical device products. DURIN technology is available from the DURECT Corporation of Cupertino, Calif.


Drug eluting implants generally operate by simple diffusion, e.g., the active agent diffuses through a polymeric material at a rate that is controlled by the characteristics of the active agent formulation and the polymeric material. An alternative approach involves the use of biodegradable implants, which facilitate drug delivery through degradation or erosion of the implant material that contains the drug (see, e.g., U.S. Pat. No. 5,626,862). Alternatively, the implant may be based upon an osmotically-driven device to accomplish controlled drug delivery (see, e.g., U.S. Pat. Nos. 3,987,790, 4,865,845, 5,057,318, 5,059,423, 5,112,614, 5,137,727, 5,234,692; 5,234,693; and 5,728,396). These osmotic pumps generally operate by imbibing fluid from the outside environment and releasing corresponding amounts of the therapeutic agent. Osmotic pumps suitable for the renal nerve blocking application are available from ALZA Corporation of Mountain View, Calif. under the brand name of Alzet Osmotic Pumps and the Duros implant. Duos implant is a miniature cylinder made from a titanium alloy, which protects and stabilizes the drug inside. Water enters into one end of the cylinder through a semipermeable membrane; the drug is delivered from a port at the other end of the cylinder at a controlled rate appropriate to the specific therapeutic agent. The advantage of drug eluting implants is that they can store a common anesthetic agent in concentration much higher than that used for common local anesthetic injections. Accurate delivery of small amounts of the drug via diffusion enables storage of the many months supply of the nerve-blocking agent in the implant and eliminates the need for frequent refills typical of an implanted drug pump. It is also clear that more than one drug can be released from the implant, that function in either in a complementary or inhibiting manner, to enhance or block the activity of each other.



FIG. 9A illustrates an alternative embodiment of the local drug eluting system illustrated by FIG. 9. In this embodiment the sustained release of the nerve-blocking agent is accomplished by infusing or implanting a self-forming biodegradable compound impregnated with the nerve-blocking agent in the periarterial space around the renal artery. The nerve-blocking agent is delivered in a biodegradable matrix such as an injectable get or microspheres. The action of the nerve-blocking drug is thus prolonged and can be enhanced by adding other medicaments, such as steroids, that suppress inflammation at the application site. This embodiment has an advantage of allowing better distribution and conformance of the drug eluting implant to the anatomic space surrounding the renal nerve. The carrier matrix loaded with the nerve blocking drug can be applied as a patch by the surgeon to the surface of the renal artery. Then the periarterial space will be closed and the fascia repaired. Alternatively the carrier matrix can be delivered through a needle attached to an infusion device. Such needle can be inserted into the periarterial space under CT guidance as illustrated by FIG. 3. For delivery through a needle the matrix will need to be in the form of gel or injectable microspheres.


Patches and gels containing local anesthetics have been previously used for topical application to numb skin at the site of irritation or burn as well as for example during cataract eye surgery. One applicable gel is described in the U.S. Pat. No. 5,589,192 to Okabe, et al. “Gel pharmaceutical formulation for local anesthesia.”


Injectable microparticles or microspheres or microcapsules loaded with drugs are also known. Injectable microspheres are made of degradable materials, such as lactic acid-glycolic acid copolymers, polycaprolactones and cholesterol among others. For example, U.S. Pat. No. 5,061,492 related to prolonged release microcapsules of a water-soluble drug in a biodegradable polymer matrix which is composed of a copolymer of glycolic acid and a lactic acid. The injectable preparation is made by preparing a water-in-oil emulsion of aqueous layer of drug and drug retaining substance and an oil layer of the polymer, thickening and then water-drying. In addition, controlled release microparticles containing glucocorticoid (steroid) agents are described, for example, by Tice et al. in U.S. Pat. No. 4,530,840. In another embodiment, the implanted microspheres are stable and do not degrade on their own. In this case, the microspheres are broken via external, directed application of an energy source, such as ultrasound, temperature or radiation. Breaking of the microspheres release the encapsulated drug and provide the desired physiologic effect, in this case, nerve blockade.


U.S. Pat. No. 5,700,485 to Berde, et al. titled “Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid” describes in sufficient detail methods of manufacturing and application of biodegradable controlled release microspheres for the prolonged administration of a local anesthetic agent. The microspheres are formed of biodegradable polymers polyanhydrides, polylactic acid-glycolic acid copolymers. Local anesthetics are incorporated into the polymer. Prolonged release is obtained by incorporation of a glucocorticoid into the polymeric matrix or by co-administration of the glucocorticoid with the microspheres. Significantly U.S. Pat. No. 6,238,702 to the same authors entitled “High load formulations and methods for providing prolonged local anesthesia” described the polymer matrix that contained significantly higher concentration of local anesthetic than is normally used for injections. Since the periarterial space can anatomically accommodate an implant of substantial size nerve blocking for at least 30 days and more preferably several years is possible. U.S. Pat. No. 5,618,563 to Berde, et al. titled “Biodegradable polymer matrices for sustained delivery of local anesthetic agents” further elaborates on the biodegradable controlled release system consisting of a polymeric matrix incorporating a local anesthetic for the prolonged administration of the local anesthetic agent, and a method for the manufacture thereof.



FIG. 10 illustrates the design of the drug delivery catheter for the invention that improves fixation of the catheter and distribution of the infused drug in the periarterial space. After the implantation an implant and the surrounding tissue undergo changes. It is the purpose of this part of the invention to improve the interface of the drug delivery device to maximize the effect of the drug on the nerve while minimizing the amount.


The human body acts spontaneously to reject or encapsulate any foreign object, which has been introduced into the body or a specific bodily organ. In some cases, encapsulation will impede or halt drug infusion. In others, the delivery fluid will reflux from the tissue through a space opened between the exterior of the catheter and the tissue of the bore in which the catheter is received. Either of these results will greatly diminish the effect of direct infusion of medicaments on affected body tissue. Thus, the body's own natural defense systems thus tend to frustrate the procedure. The reaction of living tissue to an implant can take a number of different forms. For example, the initial response to the surgical trauma of implantation is usually called the acute inflammatory reaction and is characterized by an invasion of polymorphonuclear leukocytes (PMNs). The acute inflammatory reaction is followed by the chronic inflammatory reaction, which is characterized by the presence of numerous macrophages and lymphocytes, some monocytes and granulocytes. Fibroblasts also begin accumulating in the vicinity of the implant and begin producing a matrix of collagen. The fibroblasts and collagen form a connective tissue capsule around the implant and the chronic inflammatory cells to effectively isolate the implant and these cells from the rest of the body. Connective tissue consisting of a fine network of collagen with active producing fibroblasts accompanied by chronic inflammatory cells, capillaries and blood vessels is referred to collectively as granulation tissue.


Thus, when a material is implanted into a soft tissue bed of a living organism such as a human or an animal, a granulation tissue capsule is formed around the implant material consisting of inflammatory cells, immature fibroblasts and blood vessels. This tissue capsule usually increases in thickness with time and contracts around the implant, deforming the implantation site, and possibly the implant itself depending upon the rigidity of the implant.


Implant illustrated by FIG. 10 is the tip 304 of the drug delivery catheter 106 connected to the implanted drug pump explained earlier in this application. The tip 304 is in the fluid communication with the internal lumen 1001 of the catheter and is shown with an internal cavity 1002 to which the nerve-blocking drug is delivered by the pump 104 (See FIG. 4). The tip is made out of the porous material, preferably a porous plastic such as for example PTFE. It is known that, when the implant is porous with pore entry diameters larger than approximately 20 microns, tissue grows into these pores. This phenomenon appears desirable to many medical device application because it makes an implant one with the implanted organ and in theory it allows tissue ingrowth into the implant and reduces capsular contraction. For example, U.S. Pat. No. 4,011,861 to Enger discloses an implantable electric terminal which has pores preferably in the range of about 10 to 500 microns so that blood vessels and tissue can grow into the pores.


The embodiment illustrated by FIG. 10 combines a material with small pores, preferably less than 20 microns 304 designed to discourage the tissue ingrowth and a material with larger pores, preferably larger than 20 microns 1004 to encourage tissue ingrowth. Material 1003 allows free diffusion and convection of the drug from the cavity 1002 to the periarterial space. Material 1004 encourages the natural fixation of the catheter tip 304 so that it will not be dislodged by motion and migrate out of the periarterial space.



FIG. 11 illustrates the catheter tip made of porous materials. It shows the surrounding tissue 1101 ingrowth 1102 into the large pore implant 1004 section. The small pore section 1003 is oriented to direct the drug infusion towards the renal artery 107 and the renal nerve 501.



FIG. 12 further illustrates an embodiment of the porous tip of the catheter 106 for directional drug delivery. The portion of the implant that surrounds the drug filled cavity 1002 and that is oriented away from the renal nerve is made of the material 1004 that is impermeable to drug. Portion of the implant that is oriented towards the renal nerve (on the surface of the renal artery) 1003 is made of the material that is permeable to the nerve blocking agent. Drug flux 1201 is shown as unidirectional therefore directing the therapy towards the site and minimizing the loss of the drug.



FIGS. 13 and 14 further illustrate an embodiment of the porous tip of the catheter 106 that at least partially encloses or envelopes the renal artery 107 with the intention of further directing the drug delivery towards the renal nerve. The tip forms a multi-layer cuff around the artery. The outer shell 1004 of the cuff is made of the material that is impermeable to the infused drug to prevent dissipation of the said drug away from the renal nerve. The material 1004 can also have large pores to encourage ingrowth and fixation of the implant. The inner layer 1003 is made of material permeable to the nerve-blocking drug. It is in fluid communication with the delivery catheter 106. The layer 1003 can be equipped with internal channels to facilitate equal distribution of drug 1201 in the space 1301 between the cuff and the artery 107.


While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims
  • 1. A method, comprising: delivering a neuromodulatory agent to a renal nerve of a hypertensive human patient via a drug delivery catheter; andat least partially blocking neural activity along the renal nerve to and from a kidney of the patient with the neuromodulatory agent,wherein at least partially blocking neural activity along the renal nerve results in a therapeutically beneficial reduction in blood pressure of the patient.
  • 2. The method of claim 1, further comprising removing the drug delivery catheter from the patient after delivering the neuromodulatory agent to conclude the procedure.
  • 3. The method of claim 1, further comprising positioning the drug delivery catheter under guidance imaging before delivering the neuromodulatory agent.
  • 4. The method of claim 3 wherein positioning the drug delivery catheter under guidance imaging comprises positioning the drug delivery catheter under fluoroscopic guidance.
  • 5. The method of claim 1, further comprising determining whether neural activity along the renal nerve has been substantially blocked.
  • 6. The method of claim 5 wherein determining whether neural activity has been substantially blocked comprises electrically stimulating the renal nerve and detecting a response in the patient.
  • 7. The method of claim 1, further comprising monitoring a parameter of the drug delivery catheter and/or tissue within the patient before and during delivery of the neuromodulatory agent.
  • 8. The method of claim 7, further comprising altering delivery of the neuromodulatory agent in response to the monitored parameter.
  • 9. The method of claim 1 wherein at least partially blocking neural activity along the renal nerve comprises at least substantially blocking sympathetic neural activity along the renal nerve of the patient.
  • 10. The method of claim 1 wherein delivering a neuromodulatory agent to a renal nerve of a hypertensive human patient comprises delivering a neurotoxin to the renal nerve of the patient.
  • 11. The method of claim 1 wherein delivering a neuromodulatory agent to a renal nerve of a hypertensive human patient comprises delivering alcohol to the renal nerve of the patient.
  • 12. The method of claim 1 wherein delivering a neuromodulatory agent to a renal nerve of a hypertensive human patient comprises delivering phenol, ketamine, and/or an antidepressant to the renal nerve of the patient.
  • 13. The method of claim 1 wherein at least partially blocking neural activity along the renal nerve with the neuromodulatory agent comprises denervating a kidney of the patient.
  • 14. The method of claim 1 wherein at least partially blocking neural activity along the renal nerve with the neuromodulatory agent comprises ablating the renal nerve via the neuromodulatory agent.
  • 15. The method of claim 1 wherein at least partially blocking neural activity along the renal nerve with the neuromodulatory agent further results in a reduction of systemic sympathetic tone in the patient.
  • 16. The method of claim 1, further comprising positioning at least a portion of the drug delivery catheter within a periarterial space of the patient before delivering the neuromodulatory agent.
  • 17. The method of claim 16 wherein positioning at least a portion of the drug delivery catheter within the periarterial space comprises positioning a distal tip of the drug delivery catheter within renal fascia of the patient.
  • 18. The method of claim 16 wherein positioning at least a portion of the drug delivery catheter within the periarterial space comprises positioning a distal tip of the drug delivery catheter within a target site in continuity with a periarterial fat tissue layer surrounding a renal pedicle of the patient.
  • 19. The method of claim 1 wherein delivering a neuromodulatory agent to a renal nerve of a hypertensive human patient comprises positioning a needle within a periarterial space of the patient and injecting the neuromodulatory agent via the needle into the periarterial space of the patient.
  • 20. The method of claim 19 wherein positioning a needle within a periarterial space of the patient comprises positioning the needle under CT guidance.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/878,371, filed Oct. 8, 2015, now U.S. Pat. No. 9,968,511, which is a continuation of U.S. application Ser. No. 14/221,536, filed Mar. 21, 2014, now U.S. Pat. No. 9,192,715, which is a continuation of U.S. application Ser. No. 11/133,925, filed May 20, 2005, now U.S. Pat. No. 8,771,252, which is a continuation of U.S. application Ser. No. 10/900,199, filed Jul. 28, 2004, now U.S. Pat. No. 6,978,174, which is a continuation-in-part of U.S. application Ser. No. 10/408,665, filed Apr. 8, 2003, now U.S. Pat. No. 7,162,303, which claims priority to the following commonly-owned applications: U.S. Provisional Application No. 60/370,190, filed Apr. 8, 2002, entitled “Modulation Of Renal Nerve To Treat CHF”, U.S. Provisional Application No. 60/415,575, filed Oct. 3, 2002, entitled “Modulation Of Renal Nerve To Treat CHF”, and U.S. Provisional Application No. 60/442,970, filed Jan. 29, 2003, entitled “Treatment Of Renal Failure And Hypertension”. The entirety of each of these applications is incorporated by reference herein.

US Referenced Citations (810)
Number Name Date Kind
2130758 Rose Sep 1938 A
2276995 Milinowski Mar 1942 A
2276996 Milinowski Mar 1942 A
3043310 Milinowski Jul 1962 A
3127895 Kendall et al. Apr 1964 A
3181535 Milinowski May 1965 A
3270746 Kendall et al. Sep 1966 A
3329149 Kendall et al. Jul 1967 A
3522811 Schwartz et al. Aug 1970 A
3563246 Puharich et al. Feb 1971 A
3650277 Sjostrand et al. Mar 1972 A
3670737 Pearo Jun 1972 A
3752162 Newash Aug 1973 A
3760812 Timm et al. Sep 1973 A
3774620 Hansjurgens et al. Nov 1973 A
3794022 Nawracaj et al. Feb 1974 A
3800802 Berry et al. Apr 1974 A
3803463 Cover Apr 1974 A
3894532 Morey Jul 1975 A
3895639 Rodler et al. Jul 1975 A
3897789 Blanchard Aug 1975 A
3911930 Hagfors et al. Oct 1975 A
3952751 Yarger Apr 1976 A
3987790 Eckenhoff et al. Oct 1976 A
4011861 Enger Mar 1977 A
4026300 DeLuca et al. May 1977 A
4055190 Tany et al. Oct 1977 A
4071033 Nawracaj et al. Jan 1978 A
4105017 Ryaby et al. Aug 1978 A
4141365 Fischell et al. Feb 1979 A
4266532 Ryaby et al. May 1981 A
4266533 Ryaby et al. May 1981 A
4305115 Armitage et al. Dec 1981 A
4315503 Ryaby et al. Feb 1982 A
4360019 Portner et al. Nov 1982 A
4379462 Borkan et al. Apr 1983 A
4405305 Stephen et al. Sep 1983 A
4454883 Fellus et al. Jun 1984 A
4467808 Brighton et al. Aug 1984 A
4487603 Harris Dec 1984 A
4530840 Tice et al. Jul 1985 A
4587975 Salo et al. May 1986 A
4602624 Naples et al. Jul 1986 A
4608985 Crish et al. Sep 1986 A
4649936 Ungar et al. Mar 1987 A
4671286 Renault Jun 1987 A
4674482 Waltonen et al. Jun 1987 A
4692147 Duggan Sep 1987 A
4709698 Johnston et al. Dec 1987 A
4715852 Reinicke et al. Dec 1987 A
4774967 Zanakis et al. Oct 1988 A
4791931 Slate Dec 1988 A
4816016 Schulte et al. Mar 1989 A
4824436 Wolinsky Apr 1989 A
4852573 Kennedy Aug 1989 A
4865845 Eckenhoff et al. Sep 1989 A
4890623 Cook et al. Jan 1990 A
4976711 Parins et al. Dec 1990 A
4979511 Terry, Jr. Dec 1990 A
4981146 Bertolucci Jan 1991 A
4998532 Griffith Mar 1991 A
5006119 Acker et al. Apr 1991 A
5014699 Pollack et al. May 1991 A
5019034 Weaver et al. May 1991 A
5057318 Magruder et al. Oct 1991 A
5058584 Bourgeois et al. Oct 1991 A
5059423 Magruder et al. Oct 1991 A
5061492 Okada et al. Oct 1991 A
5087244 Wolinsky et al. Feb 1992 A
5094242 Gleason et al. Mar 1992 A
5102402 Dror et al. Apr 1992 A
5111815 Mower May 1992 A
5112614 Magruder et al. May 1992 A
5125928 Parins et al. Jun 1992 A
5131409 Lobarev et al. Jul 1992 A
5137727 Eckenhoff Aug 1992 A
5188837 Domb Feb 1993 A
5193048 Kaufman et al. Mar 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5199428 Obel et al. Apr 1993 A
5203326 Collins et al. Apr 1993 A
5213098 Bennett et al. May 1993 A
5215086 Terry, Jr. et al. Jun 1993 A
5231988 Wernicke et al. Aug 1993 A
5234692 Magruder et al. Aug 1993 A
5234693 Magruder et al. Aug 1993 A
5251634 Weinberg Oct 1993 A
5251643 Osypka et al. Oct 1993 A
5263480 Wernicke et al. Nov 1993 A
5269303 Wernicke et al. Dec 1993 A
5282468 Klepinski Feb 1994 A
5282785 Shapland et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5299569 Wernicke et al. Apr 1994 A
5300068 Rosar et al. Apr 1994 A
5304120 Crandell et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5317155 King May 1994 A
5324255 Passafaro et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5334193 Nardella Aug 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5338662 Sadri Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5351394 Weinberg Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5368591 Lennox et al. Nov 1994 A
5370680 Proctor Dec 1994 A
5389069 Weaver Feb 1995 A
5397308 Ellis et al. Mar 1995 A
5397338 Grey et al. Mar 1995 A
5400784 Durand et al. Mar 1995 A
5405367 Schulman et al. Apr 1995 A
5419767 Eggers et al. May 1995 A
5419777 Hofling May 1995 A
5423744 Gencheff et al. Jun 1995 A
5429634 Narciso, Jr. Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5439440 Hofmann Aug 1995 A
5454782 Perkins Oct 1995 A
5454809 Janssen Oct 1995 A
5458568 Racchini et al. Oct 1995 A
5458626 Krause Oct 1995 A
5458631 Xavier Oct 1995 A
5464395 Faxon et al. Nov 1995 A
5470352 Rappaport Nov 1995 A
5472406 de la Torre et al. Dec 1995 A
5478303 Foley-Nolan et al. Dec 1995 A
5484400 Edwards et al. Jan 1996 A
5494822 Sadri Feb 1996 A
5498238 Shapland et al. Mar 1996 A
5499971 Shapland et al. Mar 1996 A
5505700 Leone et al. Apr 1996 A
5507724 Hofmann et al. Apr 1996 A
5507791 Sit'ko et al. Apr 1996 A
5531778 Maschino et al. Jul 1996 A
5538504 Linden et al. Jul 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5553611 Budd et al. Sep 1996 A
5560360 Filler et al. Oct 1996 A
5569198 Racchini Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5571150 Wernicke et al. Nov 1996 A
5573552 Hansjurgens et al. Nov 1996 A
5584863 Rauch et al. Dec 1996 A
5588960 Edwards et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5588964 Imran et al. Dec 1996 A
5589192 Okabe et al. Dec 1996 A
5590654 Prince Jan 1997 A
5599345 Edwards et al. Feb 1997 A
5618563 Berde et al. Apr 1997 A
5626576 Janssen May 1997 A
5626862 Brem et al. May 1997 A
5628730 Shapland et al. May 1997 A
5634462 Tyler et al. Jun 1997 A
5634899 Shapland et al. Jun 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5688266 Edwards et al. Nov 1997 A
5689877 Grill, Jr. et al. Nov 1997 A
5690691 Chen et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5700485 Berde et al. Dec 1997 A
5704908 Hofmann et al. Jan 1998 A
5707400 Terry, Jr. et al. Jan 1998 A
5709874 Hanson et al. Jan 1998 A
5711326 Thies et al. Jan 1998 A
5713847 Howard, III et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5723001 Pilla et al. Mar 1998 A
5725563 Klotz et al. Mar 1998 A
5728396 Peery et al. Mar 1998 A
5747060 Sackler et al. May 1998 A
5755750 Petruska et al. May 1998 A
5756115 Moo-Young et al. May 1998 A
5772590 Webster, Jr. Jun 1998 A
5792187 Adams Aug 1998 A
5800464 Kieval Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5814079 Kieval Sep 1998 A
5817144 Gregory Oct 1998 A
5824087 Aspden et al. Oct 1998 A
5836935 Ashton et al. Nov 1998 A
RE35987 Harris et al. Dec 1998 E
5843016 Lugnani et al. Dec 1998 A
5843069 Butler et al. Dec 1998 A
5860974 Abele Jan 1999 A
5861021 Thome et al. Jan 1999 A
5865787 Shapland et al. Feb 1999 A
5865801 Houser Feb 1999 A
5871449 Brown Feb 1999 A
5876374 Alba et al. Mar 1999 A
5891181 Zhu et al. Apr 1999 A
5893885 Webster et al. Apr 1999 A
5906636 Casscells, III et al. May 1999 A
5906817 Moullier et al. May 1999 A
5913876 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919187 Guglielmi et al. Jul 1999 A
5922340 Berde et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5924997 Campbell Jul 1999 A
5928272 Adkins et al. Jul 1999 A
5935075 Casscells et al. Aug 1999 A
5938670 Keith et al. Aug 1999 A
5944710 Dev et al. Aug 1999 A
5954719 Chen et al. Sep 1999 A
5983131 Weaver et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
5989208 Nita Nov 1999 A
5997497 Nita et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6006134 Hill et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6010613 Walters et al. Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6026326 Bardy Feb 2000 A
6036687 Laufer et al. Mar 2000 A
6041252 Walker et al. Mar 2000 A
6051017 Loeb et al. Apr 2000 A
6058328 Levine et al. May 2000 A
6058331 King May 2000 A
6066134 Eggers et al. May 2000 A
6073048 Kieval et al. Jun 2000 A
6077227 Miesel et al. Jun 2000 A
6086527 Talpade Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6122548 Starkebaum et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6135999 Fanton et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6146380 Racz et al. Nov 2000 A
6161048 Sluijter et al. Dec 2000 A
6171306 Swanson et al. Jan 2001 B1
6178349 Kleval Jan 2001 B1
6190353 Makower et al. Feb 2001 B1
6192889 Morrish Feb 2001 B1
6205361 Kuzma et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211247 Goodman Apr 2001 B1
6214032 Loeb et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6238702 Berde et al. May 2001 B1
6245026 Campbell et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251130 Dobak, III et al. Jun 2001 B1
6254598 Edwards et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6259952 Sluijter et al. Jul 2001 B1
6269269 Ottenhoff et al. Jul 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6272383 Grey et al. Aug 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280377 Talpade Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6287608 Levin et al. Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6302870 Jacobsen et al. Oct 2001 B1
6304777 Ben-Haim et al. Oct 2001 B1
6304787 Kuzma et al. Oct 2001 B1
6306423 Donovan et al. Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6314325 Fitz Nov 2001 B1
6322558 Taylor et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6326020 Kohane et al. Dec 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6334069 George et al. Dec 2001 B1
6347247 Dev et al. Feb 2002 B1
6353763 George et al. Mar 2002 B1
6356786 Rezai et al. Mar 2002 B1
6356787 Rezai et al. Mar 2002 B1
6366808 Schroeppel et al. Apr 2002 B1
6366815 Haugland et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6389314 Feiring May 2002 B2
6393324 Gruzdowich et al. May 2002 B2
6400982 Sweeney et al. Jun 2002 B2
6405079 Ansarinia Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6413255 Stern Jul 2002 B1
6415183 Scheiner et al. Jul 2002 B1
6415187 Kuzma et al. Jul 2002 B1
6438423 Rezai et al. Aug 2002 B1
6442424 Ben-Haim et al. Aug 2002 B1
6449507 Hill et al. Sep 2002 B1
6450942 Lapanashvili et al. Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6464687 Ishikawa et al. Oct 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6482619 Rubinsky et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6488679 Swanson et al. Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508774 Acker et al. Jan 2003 B1
6514226 Levin et al. Feb 2003 B1
6514236 Stratienko Feb 2003 B1
6516211 Acker et al. Feb 2003 B1
6517811 John et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6522932 Kuzma et al. Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6524607 Goldenheim et al. Feb 2003 B1
6534081 Goldenheim et al. Mar 2003 B2
6536949 Heuser Mar 2003 B1
6542781 Koblish et al. Apr 2003 B1
6558382 Jahns et al. May 2003 B2
6562034 Edwards et al. May 2003 B2
6564096 Mest May 2003 B2
6571127 Ben-Haim et al. May 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6599256 Acker et al. Jul 2003 B1
6600954 Cohen et al. Jul 2003 B2
6600956 Maschino et al. Jul 2003 B2
6601459 Jenni et al. Aug 2003 B1
6605084 Acker et al. Aug 2003 B2
6613045 Laufer et al. Sep 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6616624 Kieval Sep 2003 B1
6620151 Blischak et al. Sep 2003 B2
6622041 Terry, Jr. et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6635054 Fjield et al. Oct 2003 B2
6640120 Swanson et al. Oct 2003 B1
6654636 Dev et al. Nov 2003 B1
6666845 Hooper et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6671556 Osorio et al. Dec 2003 B2
6672312 Acker Jan 2004 B2
6676657 Wood Jan 2004 B2
6681136 Schuler et al. Jan 2004 B2
6684105 Cohen et al. Jan 2004 B2
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690971 Schauerte et al. Feb 2004 B2
6692738 MacLaughlin et al. Feb 2004 B2
6695830 Vigil et al. Feb 2004 B2
6697670 Chomenky et al. Feb 2004 B2
6706011 Murphy-Chutorian et al. Mar 2004 B1
6711444 Koblish Mar 2004 B2
6714822 King et al. Mar 2004 B2
6718208 Hill et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6735471 Hill et al. May 2004 B2
6738663 Schroeppel et al. May 2004 B2
6749598 Keren et al. Jun 2004 B1
6752805 Maguire et al. Jun 2004 B2
6767544 Brooks et al. Jul 2004 B2
6786904 Doscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6830568 Kesten et al. Dec 2004 B1
6845267 Harrison et al. Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6850801 Kieval et al. Feb 2005 B2
6862479 Whitehurst et al. Mar 2005 B1
6865416 Dev et al. Mar 2005 B2
6869431 Maguire et al. Mar 2005 B2
6885888 Rezai Apr 2005 B2
6893414 Goble et al. May 2005 B2
6916656 Walters et al. Jul 2005 B2
6917834 Koblish et al. Jul 2005 B2
6923808 Taimisto Aug 2005 B2
6927049 Rubinsky et al. Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6939345 KenKnight et al. Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6958060 Mathiesen et al. Oct 2005 B2
6969388 Goldman et al. Nov 2005 B2
6972013 Zhang et al. Dec 2005 B1
6978174 Gelfand et al. Dec 2005 B2
6985774 Kieval et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
6994700 Elkins et al. Feb 2006 B2
6994706 Chornenky et al. Feb 2006 B2
7004911 Tu et al. Feb 2006 B1
7054685 Dimmer et al. May 2006 B2
7063679 Maguire et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7081114 Rashidi Jul 2006 B2
7081115 Taimisto Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7122019 Kesten et al. Oct 2006 B1
7127284 Seward Oct 2006 B2
7141041 Seward Nov 2006 B2
7155284 Whitehurst et al. Dec 2006 B1
7162303 Levin et al. Jan 2007 B2
7191015 Lamson et al. Mar 2007 B2
7197354 Sobe Mar 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7273469 Chan et al. Sep 2007 B1
7297475 Koiwai et al. Nov 2007 B2
7326235 Edwards Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7364566 Elkins et al. Apr 2008 B2
7373204 Gelfand et al. May 2008 B2
7407671 McBride et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7444183 Knudson et al. Oct 2008 B2
7465298 Seward et al. Dec 2008 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7507235 Keogh et al. Mar 2009 B2
7529589 Williams et al. May 2009 B2
7540870 Babaev Jun 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7599730 Hunter et al. Oct 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7640046 Pastore et al. Dec 2009 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7666163 Seward et al. Feb 2010 B2
7691080 Seward et al. Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7717948 Demarais et al. May 2010 B2
7744584 Seward et al. Jun 2010 B2
7756583 Demarais et al. Jul 2010 B2
7766892 Keren et al. Aug 2010 B2
7837720 Mon Nov 2010 B2
7905862 Sampson Mar 2011 B2
7917208 Yomtov et al. Mar 2011 B2
8016786 Seward et al. Sep 2011 B2
8027740 Altman et al. Sep 2011 B2
8119183 O'Donoghue et al. Feb 2012 B2
8131371 Demarais et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8317776 Ferren et al. Nov 2012 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8399443 Seward Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8465752 Seward Jun 2013 B2
8562573 Fischell Oct 2013 B1
8663190 Fischell et al. Mar 2014 B2
8708995 Sewards et al. Apr 2014 B2
8721590 Seward et al. May 2014 B2
8740849 Fischell et al. Jun 2014 B1
8975233 Stein et al. Mar 2015 B2
9011879 Seward Apr 2015 B2
9033917 Magana et al. May 2015 B2
9055956 McRae et al. Jun 2015 B2
9056184 Stein et al. Jun 2015 B2
9056185 Fischell et al. Jun 2015 B2
9108030 Braga Aug 2015 B2
9114123 Azamian et al. Aug 2015 B2
9131983 Fischell et al. Sep 2015 B2
9179962 Fischell et al. Nov 2015 B2
9199065 Seward Dec 2015 B2
9237925 Fischell et al. Jan 2016 B2
9254360 Fischell et al. Feb 2016 B2
9278196 Fischell et al. Mar 2016 B2
9301795 Fischell et al. Apr 2016 B2
9320850 Fischell et al. Apr 2016 B2
9526827 Fischell et al. Dec 2016 B2
9539047 Fischell et al. Jan 2017 B2
9554849 Fischell et al. Jan 2017 B2
20010039419 Francischelli et al. Nov 2001 A1
20010044596 Jaafar Nov 2001 A1
20020002329 Avitall Jan 2002 A1
20020026222 Schauerte et al. Feb 2002 A1
20020026228 Schauerte Feb 2002 A1
20020032468 Hill et al. Mar 2002 A1
20020038137 Stein Mar 2002 A1
20020040204 Dev et al. Apr 2002 A1
20020045853 Dev et al. Apr 2002 A1
20020065541 Fredricks et al. May 2002 A1
20020072782 Osorio et al. Jun 2002 A1
20020077592 Barry Jun 2002 A1
20020082552 Ding et al. Jun 2002 A1
20020103445 Rahdert et al. Aug 2002 A1
20020107553 Hill et al. Aug 2002 A1
20020116030 Rezai Aug 2002 A1
20020120304 Mest Aug 2002 A1
20020139379 Edwards et al. Oct 2002 A1
20020165532 Hill et al. Nov 2002 A1
20020165586 Hill et al. Nov 2002 A1
20020169413 Keren et al. Nov 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20020183684 Dev et al. Dec 2002 A1
20020188325 Hill et al. Dec 2002 A1
20020198512 Seward Dec 2002 A1
20030004549 Hill et al. Jan 2003 A1
20030009145 Struijker-Boudier et al. Jan 2003 A1
20030018367 DiLorenzo Jan 2003 A1
20030040774 Terry et al. Feb 2003 A1
20030045909 Gross et al. Mar 2003 A1
20030050635 Truckai et al. Mar 2003 A1
20030050681 Pianca et al. Mar 2003 A1
20030060848 Kieval et al. Mar 2003 A1
20030060857 Perrson et al. Mar 2003 A1
20030060858 Kieval et al. Mar 2003 A1
20030069619 Fenn et al. Apr 2003 A1
20030074039 Puskas Apr 2003 A1
20030082225 Mason May 2003 A1
20030100924 Foreman et al. May 2003 A1
20030114791 Rosenthal et al. Jun 2003 A1
20030120270 Acker Jun 2003 A1
20030125790 Fastovsky et al. Jul 2003 A1
20030150464 Casscells Aug 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030181897 Thomas et al. Sep 2003 A1
20030181963 Pellegrino et al. Sep 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030199767 Cespedes et al. Oct 2003 A1
20030199768 Cespedes et al. Oct 2003 A1
20030199806 Kieval Oct 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20030204161 Ferek-Petric Oct 2003 A1
20030216792 Levin et al. Nov 2003 A1
20030220521 Reitz et al. Nov 2003 A1
20030229340 Sherry et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20030236443 Cespedes et al. Dec 2003 A1
20040010289 Biggs et al. Jan 2004 A1
20040010303 Bolea et al. Jan 2004 A1
20040019364 Kieval et al. Jan 2004 A1
20040019371 Jaafar et al. Jan 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040062852 Schroeder et al. Apr 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040064091 Keren et al. Apr 2004 A1
20040064093 Hektner et al. Apr 2004 A1
20040065615 Hooper et al. Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040082978 Harrison et al. Apr 2004 A1
20040101523 Reitz et al. May 2004 A1
20040106953 Yomtov et al. Jun 2004 A1
20040111080 Harper et al. Jun 2004 A1
20040127942 Yomtov et al. Jul 2004 A1
20040162590 Whitehurst et al. Aug 2004 A1
20040163655 Gelfand et al. Aug 2004 A1
20040167415 Gelfand et al. Aug 2004 A1
20040176699 Walker et al. Sep 2004 A1
20040176757 Sinelnikov et al. Sep 2004 A1
20040186468 Edwards Sep 2004 A1
20040193228 Gerber Sep 2004 A1
20040215186 Cornelius et al. Oct 2004 A1
20040220511 Scott et al. Nov 2004 A1
20040243102 Berg et al. Dec 2004 A1
20040243206 Tadlock Dec 2004 A1
20040249416 Yun et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040254616 Rossing et al. Dec 2004 A1
20050010263 Schauerte Jan 2005 A1
20050021092 Yun et al. Jan 2005 A1
20050038409 Segal et al. Feb 2005 A1
20050049542 Sigg et al. Mar 2005 A1
20050065562 Rezai Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065574 Rezai Mar 2005 A1
20050075681 Rezai et al. Apr 2005 A1
20050080409 Young et al. Apr 2005 A1
20050080459 Jacobson et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050096710 Kieval May 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050154418 Kieval et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050171523 Rubinsky et al. Aug 2005 A1
20050171574 Rubinsky et al. Aug 2005 A1
20050171575 Dev et al. Aug 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050187579 Danek et al. Aug 2005 A1
20050192638 Gelfand et al. Sep 2005 A1
20050197624 Goodson et al. Sep 2005 A1
20050209548 Dev et al. Sep 2005 A1
20050209642 Palti Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050234523 Levin et al. Oct 2005 A1
20050240126 Foley et al. Oct 2005 A1
20050240173 Palti Oct 2005 A1
20050240228 Palti Oct 2005 A1
20050240241 Yun et al. Oct 2005 A1
20050245882 Elkins et al. Nov 2005 A1
20050245892 Elkins et al. Nov 2005 A1
20050251212 Kieval et al. Nov 2005 A1
20050261672 Deem et al. Nov 2005 A1
20050267010 Goodson et al. Dec 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050282284 Rubinsky et al. Dec 2005 A1
20050283195 Pastore et al. Dec 2005 A1
20060004417 Rossing et al. Jan 2006 A1
20060004430 Rossing et al. Jan 2006 A1
20060018949 Ammon, Jr. et al. Jan 2006 A1
20060025821 Gelfand et al. Feb 2006 A1
20060030814 Valencia et al. Feb 2006 A1
20060036218 Goodson et al. Feb 2006 A1
20060041277 Deem et al. Feb 2006 A1
20060041283 Gelfand et al. Feb 2006 A1
20060067972 Kesten et al. Mar 2006 A1
20060069323 Elkins et al. Mar 2006 A1
20060074453 Kieval et al. Apr 2006 A1
20060079859 Elkins et al. Apr 2006 A1
20060085046 Rezai et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089674 Walters et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060100667 Machado et al. May 2006 A1
20060106429 Libbus et al. May 2006 A1
20060111672 Seward May 2006 A1
20060111754 Rezai et al. May 2006 A1
20060116720 Knoblich Jun 2006 A1
20060121016 Lee Jun 2006 A1
20060121610 Rubinsky et al. Jun 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060155344 Rezai et al. Jul 2006 A1
20060167437 Valencia Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060167499 Palti Jul 2006 A1
20060189941 Seward et al. Aug 2006 A1
20060189960 Kesten et al. Aug 2006 A1
20060190044 Libbus et al. Aug 2006 A1
20060206149 Yun Sep 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060229677 Moffitt et al. Oct 2006 A1
20060235474 Demarais Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060265014 Demarais et al. Nov 2006 A1
20060265015 Demarais et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060276852 Demarais et al. Dec 2006 A1
20060280858 Kokish Dec 2006 A1
20070066957 Demarais et al. Mar 2007 A1
20070066959 Seward Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070078620 Seward et al. Apr 2007 A1
20070083239 Demarais et al. Apr 2007 A1
20070100318 Seward et al. May 2007 A1
20070106249 Seward et al. May 2007 A1
20070106250 Seward et al. May 2007 A1
20070106251 Seward et al. May 2007 A1
20070106255 Seward et al. May 2007 A1
20070106256 Seward et al. May 2007 A1
20070106257 Seward et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070142864 Libbus et al. Jun 2007 A1
20070156200 Kornet et al. Jul 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208382 Yun Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070269385 Yun et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282376 Shuros et al. Dec 2007 A1
20070288070 Libbus et al. Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004596 Yun et al. Jan 2008 A1
20080004673 Rossing et al. Jan 2008 A1
20080015659 Zhang et al. Jan 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039904 Bulkes et al. Feb 2008 A1
20080045890 Seward et al. Feb 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091255 Caparso et al. Apr 2008 A1
20080140150 Zhou et al. Jun 2008 A1
20080208162 Joshi Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080245371 Gruber Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080317818 Griffiths et al. Dec 2008 A1
20080319513 Pu et al. Dec 2008 A1
20090024195 Rezai et al. Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090074828 Alexis et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090105631 Kieval Apr 2009 A1
20090142306 Seward et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20100010567 Deem et al. Jan 2010 A1
20100057150 Demarais et al. Mar 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249702 Magana et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100324472 Wulfman Dec 2010 A1
20110060324 Wu et al. Mar 2011 A1
20110086257 Pitteloud et al. Apr 2011 A1
20110104060 Seward May 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110137298 Nguyen et al. Jun 2011 A1
20110182912 Evans et al. Jul 2011 A1
20110184337 Evans et al. Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20120172837 Demarais Jul 2012 A1
20120259269 Meyer Oct 2012 A1
20120271277 Fischell et al. Oct 2012 A1
20120271301 Fischell et al. Oct 2012 A1
20130053792 Fischell et al. Feb 2013 A1
20130053821 Fischell et al. Feb 2013 A1
20130053822 Fischell et al. Feb 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130204131 Seward Aug 2013 A1
20130252932 Seward Sep 2013 A1
20130274673 Fischell et al. Oct 2013 A1
20130274674 Fischell et al. Oct 2013 A1
20130287698 Seward Oct 2013 A1
20130296853 Sugimoto et al. Nov 2013 A1
20140012231 Fischell Jan 2014 A1
20140046298 Fischell et al. Feb 2014 A1
20140107478 Seward et al. Apr 2014 A1
20140121641 Fischell et al. May 2014 A1
20140121644 Fischell et al. May 2014 A1
20140135661 Garrison et al. May 2014 A1
20140236103 Fischell et al. Aug 2014 A1
20140271717 Goshayeshgar et al. Sep 2014 A1
20140276621 Braga Sep 2014 A1
20140296279 Seward et al. Oct 2014 A1
20140303569 Seward et al. Oct 2014 A1
20140316351 Fischell et al. Oct 2014 A1
20140358079 Fischell et al. Dec 2014 A1
20140378906 Fischell et al. Dec 2014 A1
20150005719 Fischell et al. Jan 2015 A1
20150132409 Stein et al. May 2015 A1
20150202220 Stein et al. Jul 2015 A1
20150224289 Seward Aug 2015 A1
20150231386 Meyer Aug 2015 A1
20150245863 Fischell et al. Sep 2015 A1
20150335384 Fischell et al. Nov 2015 A1
20150343156 Fischell et al. Dec 2015 A1
20150343175 Braga Dec 2015 A1
20160008387 Stein et al. Jan 2016 A9
20160051465 Azamian et al. Feb 2016 A1
20160058489 Fischell et al. Mar 2016 A1
20160095862 Gelfand et al. Apr 2016 A1
20160120587 Fischell et al. May 2016 A1
20160235464 Fischell et al. Aug 2016 A1
20160242661 Fischell et al. Aug 2016 A1
20160310200 Wang Oct 2016 A1
20160354137 Fischell et al. Dec 2016 A1
Foreign Referenced Citations (140)
Number Date Country
2384866 Apr 2001 CA
2575458 Feb 2006 CA
3151180 Aug 1982 DE
233100 Aug 1987 EP
497041 Aug 1992 EP
0599567 Jun 1994 EP
0811395 Dec 1997 EP
774991 Oct 2003 EP
1782852 May 2007 EP
2092957 Aug 2009 EP
2352542 Aug 2011 EP
2429641 Mar 2012 EP
2528649 Dec 2012 EP
2656807 Oct 2013 EP
2675458 Dec 2013 EP
2694150 Feb 2014 EP
2747688 Jul 2014 EP
2885041 Jun 2015 EP
2911735 Sep 2015 EP
2914326 Sep 2015 EP
3060148 Aug 2016 EP
3132828 Feb 2017 EP
3158866 Apr 2017 EP
H0341967 Feb 1991 JP
2003510126 Mar 2003 JP
2004016333 Jan 2004 JP
2004503294 Feb 2004 JP
WO-1985001213 Mar 1985 WO
WO-1991004725 Apr 1991 WO
WO-1992020291 Nov 1992 WO
WO-1993002740 Feb 1993 WO
WO-1993007803 Apr 1993 WO
WO-1994000188 Jan 1994 WO
WO-1994007446 Apr 1994 WO
WO-1994011057 May 1994 WO
WO-1995025472 Sep 1995 WO
WO-1995031142 Nov 1995 WO
WO-1995033514 Dec 1995 WO
WO-1996000039 Jan 1996 WO
WO-1996004957 Feb 1996 WO
WO-1996011723 Apr 1996 WO
1996041616 Dec 1996 WO
1997003604 Feb 1997 WO
WO-1997013463 Apr 1997 WO
WO-1997013550 Apr 1997 WO
WO-1997036548 Oct 1997 WO
1997042990 Nov 1997 WO
WO-1997049453 Dec 1997 WO
WO-1998037926 Sep 1998 WO
WO 1998042403 Oct 1998 WO
WO-1998042403 Oct 1998 WO
WO-1998043700 Oct 1998 WO
WO-1998043701 Oct 1998 WO
WO-1998048888 Nov 1998 WO
WO-1999000060 Jan 1999 WO
WO-1999033407 Jul 1999 WO
WO-1999051286 Oct 1999 WO
WO-1999052424 Oct 1999 WO
WO-2001022897 Apr 2001 WO
WO-2001026729 Apr 2001 WO
WO-2001070114 Sep 2001 WO
2001095832 Dec 2001 WO
WO-2002009808 Feb 2002 WO
2002026318 Apr 2002 WO
WO-2002026314 Apr 2002 WO
WO-2002053207 Jul 2002 WO
2002058549 Aug 2002 WO
WO-2002070039 Sep 2002 WO
WO-2002070047 Sep 2002 WO
WO-2002085192 Oct 2002 WO
WO-2002085448 Oct 2002 WO
2003024311 Mar 2003 WO
WO-2003018108 Mar 2003 WO
WO-2003022167 Mar 2003 WO
WO-2003028802 Apr 2003 WO
WO-2003063692 Aug 2003 WO
WO-2003071140 Aug 2003 WO
WO-2003076008 Sep 2003 WO
WO-2003082080 Oct 2003 WO
WO-2003082080 Oct 2003 WO
WO-2003082403 Oct 2003 WO
WO-2004026370 Apr 2004 WO
WO-2004026371 Apr 2004 WO
WO-2004026374 Apr 2004 WO
WO 2004030718 Apr 2004 WO
WO-2004032791 Apr 2004 WO
2004011055 May 2004 WO
2004049976 Jun 2004 WO
2004028583 Aug 2004 WO
WO-2004107965 Dec 2004 WO
2005007000 Jan 2005 WO
WO-2005014100 Feb 2005 WO
WO-2005016165 Feb 2005 WO
WO-2005032646 Apr 2005 WO
WO-2005030072 Apr 2005 WO
WO-2005041748 May 2005 WO
WO-2005065284 Jul 2005 WO
WO-2005084389 Sep 2005 WO
WO-2005097256 Oct 2005 WO
WO-2005110528 Nov 2005 WO
WO-2005123183 Dec 2005 WO
WO-2006007048 Jan 2006 WO
2006022790 Feb 2006 WO
WO-2006018528 Feb 2006 WO
2006022790 Mar 2006 WO
WO-2006022790 Mar 2006 WO
WO-2006031899 Mar 2006 WO
WO-2006041847 Apr 2006 WO
WO-2006041881 Apr 2006 WO
WO-2006105121 Oct 2006 WO
WO 2007008954 Jan 2007 WO
WO-2007035537 Mar 2007 WO
WO-2007078997 Jul 2007 WO
WO-2007086965 Aug 2007 WO
WO-2007103879 Sep 2007 WO
WO-2007103881 Sep 2007 WO
WO-2007121309 Oct 2007 WO
WO-2007146834 Dec 2007 WO
WO-2008003058 Jan 2008 WO
WO-2008049084 Apr 2008 WO
WO-2008061150 May 2008 WO
WO-2008061152 May 2008 WO
WO-2008070413 Jun 2008 WO
2009088678 Jul 2009 WO
2010042653 Apr 2010 WO
WO-2010078175 Jul 2010 WO
2011094367 Aug 2011 WO
2011133724 Oct 2011 WO
2012161875 Nov 2012 WO
2013028781 Feb 2013 WO
2013059735 Apr 2013 WO
2013063331 May 2013 WO
2013112844 Aug 2013 WO
2013169741 Nov 2013 WO
2013188689 Dec 2013 WO
2014031167 Feb 2014 WO
2014070820 May 2014 WO
2014070999 May 2014 WO
2014078301 May 2014 WO
2014189887 Nov 2014 WO
Non-Patent Literature Citations (584)
Entry
2003 European Society of Hypertension—European Society of Cardiology guidelines for the management of arterial hypertension, Guidelines Committee, Journal of Hypertension 2003, vol. 21, No. 6, pp. 1011-1053.
Aars, H. and S. Akre, Reflex Changes in Sympathetic Activity and Arterial Blood Pressure Evoked by Afferent Stimulation of the Renal Nerve, Feb. 26, 1999, Acta physiol. Scand., vol. 78, 1970, pp. 184-188.
Abramov, G.S. et al., Alteration in sensory nerve function following electrical shock, Burns vol. 22, No. 8, 1996 Elsevier Science Ltd., pp. 602-606.
Achar, Suraj, M.D., and Suriti Kundu, M.D., Principles of Office Anesthesia: Part I. Infiltrative Anesthesia, Office Procedures, American Family Physician, Jul. 1, 2002, vol. 66, No. 1, pp. 91-94.
Advanced Neuromodulation Systems' Comparison Chart, Dec. 16, 2008 pp. 1.
Advances in the role of the sympathetic nervous system in cardiovascular medicine, 2001 SNS Report, No. 3, Springer, Published with an educational grant from Servier, pp. 1-8.
Aggarwal, A. et al., Regional sympathetic effects of low-dose clonidine in heart failure. Hypertension. 2003;41:553-7.
Agnew, William F. et al., Evolution and Resolution of Stimulation-Induced Axonal Injury in Peripheral Nerve, May 21, 1999, Muscle & Nerve, vol. 22, Oct. 1999, John Wiley & Sons, Inc. 1999, pp. 1393-1402.
Ahadian, Farshad M., M.D., Pulsed Radiofrequency Neurotomy: Advances in Pain Medicine, Current Pain and Headache Reports 2004, vol. 8, 2004 Current Science Inc., pp. 34-40.
Alexander, B.T. et al., Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion; Hypertension, 2005; 45 (part 2): pp. 754-758.
Alford, J. Winslow, M.D. and Paul D. Fadale, M.D., Evaluation of Postoperative Bupivacaine infusion for Pain Management After Anterior Cruciate Ligament Recontruction, The Journal of Arthroscopic and Related Surgery, vol. 19, No. 8, Oct. 2003 Arthroscopy Association of North America, pp. 855-861.
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140.
Amersham Health. Hypaque-Cysto, 2003, 6 pages.
Andrews, B.T. et al., The use of surgical sympathectomy in the treatment of chronic renal pain. Br J Urol. 1997; 80: 6-10.
Antman, Elliott M. and Eugene Braunwald, Chapter 37—Acute Myocardial Infarction, Heart Disease—A Textbook of Cardiovascular Medicine, 5th Edition, vol. 2, 1997, Edited by Eugene Braunwald, pp. 1184-1288.
Archer, Steffen et al., Cell Reactions to Dielectrophoretic Manipulation, Mar. 1, 1999, Biochemical and Biophysical Research Communications, 1999 Academic Press, pp. 687-698.
Arentz, T. et al., Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. European Heart Journal. 2003. 24; pp. 963-969.
Arias, M.D., Manuel J., Percutaneous Radio-Frequency Thermocoagulation with Low Temperature in the Treatment of Essential Glossopharyngeal Neuralgia, Surg. Neurol. 1986, vol. 25, 1986 Elsevier Science Publishing Co., Inc., pp. 94-96.
Aronofsky, David H., D.D.S., Reduction of dental postsurgical symptoms using nonthermal pulsed high-peak-power electromagnetic energy, Oral Surg., Nov. 1971, vol. 32, No. 5, pp. 688-696.
Aspelin, Peter, M.D., Ph.D. et al., Nephrotoxic Effects in High-Risk Patients Undergoing Angiography, Feb. 6, 2003, New England Journal of Medicine 2003, vol. 348, No. 6, 2003 Massachusetts Medical Society, pp. 491-499.
Atrial Fibrillation Heart and Vascular Health on Yahoo! Health. 2 pgs. <URL: http://health.yahoo.com/topic/heart/overview/article/healthwise/hw160872;_ylt=AiBT43Ey74HQ7ft3jAb4C.sPu7cF> Feb. 21, 2006.
Augustyniak, Robert A. et al., Sympathetic Overactivity as a Cause of Hypertension in Chronic Renal Failure, Aug. 14, 2001, Journal of Hypertension 2002, vol. 20, 2002 Lippincott Williams & Wilkins, pp. 3-9.
Awwad, Ziad M., FRCS and Bashir A. Atiyat, GBA, JBA, Pain relief using continuous bupivacaine infusion in the paravertebral space after loin incision, May 15, 2004, Saudi Med J 2004, vol. 25 (10), pp. 1369-1373.
Badyal, D. K., H. Lata and A.P. Dadhich, Animal Models of Hypertension and Effect of Drugs, Aug. 19, 2003, Indian Journal of Pharmacology 2003, vol. 35, pp. 349-362.
Baker, Carol E. et al., Effect of pH of Bupivacaine on Duration of Repeated Sciatic Nerve Blocks in the Albino Rat, Anesth Analg, 1991, vol. 72, The International Anesthesia Research Society 1991, pp. 773-778.
Balazs, Tibor, Development of Tissue Resistance to Toxic Effects of Chemicals, Jan. 26, 1974, Toxicology, 2 (1974), Elsevier/North-Holland, Amsterdam, pp. 247-255.
Barajas, L. Innervation of the renal cortex. Fex Proc. 1978;37:1192-201.
Barrett, Carolyn J. et al., Long-term control of renal blood flow: what is the role of the renal nerves?, Jan. 4, 2001, Am J Physiol Regulatory Integrative Comp Physiol 280, 2001, the American Physiological Society 2001, pp. R1534-R1545.
Barrett, Carolyn J. et al., What Sets the Long-Term Level of Renal Sympathetic Nerve Activity, May 12, 2003, Integrative Physiology, Circ Res. 2003, vol. 92, 2003 American Heart Association, pp. 1330-1336.
Bassett, C. Andrew L. et al., Augmentation of Bone Repair by Inductively Coupled Electromagnetic Fields, May 3, 1974, Science, vol. 184, pp. 575-577.
Bassett, C. Andrew L., Fundamental and Practical Aspects of Therapeutic Uses of Pulsed Electromagnetic Fields (PEMFs), Critical Reviews in Biomedical Engineering, vol. 17, Issue 5, 1989, pp. 451-514.
Beebe, Stephen J. et al., Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms, Apr. 8, 2004, Physiol. Meas. 25, 2004, IOP Publishing Ltd. 2004, pp. 1077-1093.
Beebe, Stephen J., et al., Nanosecond Pulsed Electric Field (nsPEF) Effects on Cells and Tissues: Apoptosis Induction and Tumor Growth Inhibition, Oct. 11, 2001, IEEE Transactions on Plasma Science, vol. 30, No. 1, Feb. 2002, IEEE 2002, pp. 286-292.
Bello-Reuss, E. et al., Acute unilateral renal denervation in rats with extracellular volume expansion, Departments of Medicine and Physiology, University of North Carolina School of Medicine. F26-F32 Jul. 1975.
Bello-Reuss, E. et al., Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption, J Clin Invest, 1976;57:1104-1107.
Bello-Reuss, E. et al., Effects of Acute Unilateral Renal Denervation in the Rat, J Clin Invest, 1975;56:208-217.
Berde, C. et al., Local Anesthetics, Anesthesia, Chapter 13, 5th addition, Churchill-Livingston, Philadelphia 2000, pp. 491-521.
Bhadra, Niloy and Kevin L. Kilgore, Direct Current Electrical Conduction Block of Peripheral Nerve, Feb. 25, 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 3. Sep. 2004, pp. 313-324.
Bhandari, A. and Ellias, M., Loin pain hematuria syndrome: Pain control with RFA to the Splanchanic plexus, The Pain Clinic, 2000, vol. 12, No. 4, pp. 323-327.
Bhatt, Deepak L. et al., Rhabdomyolysis Due to Pulsed Electric Fields, May 11, 1989, Plastic and Reconstructive Surgery Jul. 1990, pp. 1-11
Bichet, D., et al., Renal intracortical blood flow and renin secretion after denervation by 6-hydroxydopamine Can J Physiol Pharmacol. 1982;60:184-92.
Bigler, D. et al., Tachyphylaxis during postoperative epidural analgesia—new insights, Apr. 15, 1987, Letter to the Editor, Acta Anaesthesiol Scand. 1987, vol. 31, pp. 664-665.
Binder, Allan et al., Pulsed Electromagnetic Field Therapy of Persistent Rotator Cuff Tendinitis, The Lancet, Saturday Mar. 31, 1984, The Lancet Ltd., pp. 695-698.
Black, M.D., Henry R., Resistant Hypertension 2004, presentation at Rush University Medical Center, Jul. 15, 2004, 40 pages.
Blad, B., et al., An Electrical Impedance index to Assess Electroporation in Tissue, Tissue and Organ (Therapy), 2001, Oslo, www.bl.uk <http://www.bl.uk> British Library, pp. 31-34.
Blair, M. L. et al, Sympathetic activation cannot fully account for increased plasma renin levels during water deprivation, Sep. 23, 1996, Am. J. Physiol., vol. 272, 1997, the American Physioiogical Society 1997, pp. R1197-R1203.
Blomberg, S.G., M.D., PhD, Long-Term Home Self-Treatment with High Thoracic Epidural Anesthesia in Patients with Severe Coronary Artery Disease, Mar. 29, 1994, Anesth Analg 1994, vol. 79, 1994 International Anesthesia Research Society, pp. 413-421.
Boehmer, J.P., Resynchronization Therapy for Chronic CHF: Indications, Devices and Outcomes. Penn State College of Medicine: Penn State Heart and Vascular Institute, Transcatheter Cardiovascular Therapeutics 2005, 31 slides.
Bourge, R.C., Heart Failure Monitoring Devices: Rationale and Status 28 pages, Feb. 2001.
Braunwald, E., Heart Disease, A Textbook of Cardiovascular Medicine, 5th Ed., vol. 2, 1997, pp. 480-481, 824-825, 1184-1288 and 1923-1925, W.B. Saunders Company.
Bravo, E.L., et al., Renal denervation for resistant hypertension, American Journal of Kidney Diseases, 2009, 3 pgs.
Bunch, Jared T. et al. Mechanisms of Phrenic Nerve Injury During Radiofrequency Ablation at the Pulmonary Vein Orifice. Journal of Cardiovascular Electrophysiclody. vol. 16, No. 12. pp. 1318-1325. Dec. 2005.
Burkhoff, D., Interventional Device-Based Therapy for CHF Will Redefine Current Treatment Paradigms. Columbia University. 2004. 32 slides.
Burns, J. et al., Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation. 2007;115:1999-2005.
Cahana, A. et al., Acute Differential Modulation of Synaptic Transmission and Cell Survival During Exposure to Pulsed and Continuous Radiofrequency Energy, May 2003, The Journal of Pain, vol. 4, No. 4, © 2003 by the American Pain Society, pp. 197-202.
Cahana, Alex, M.D., Pulsed Radiofrequency: A Neurobiologic and Clinical Reality, May 17, 2005, Anesthesiology 2005, vol. 103, No. 6, Dec. 2005, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., p. 1311.
Calaresu, F.R. et al., Haemodynamic Responses and Renin Release During Stimulation of Afferent Renal Nerves in the Cat, Aug. 12, 1975, J. Physiol. 1976, vol. 255, pp. 687-700.
Cameron, Tracy. Micromodular Implants to Provide Electrical Stimulation of Paralyzed Muscles and Limbs. IEEE Transactions on Biomedical Engineering, vol. 44, No. 9, Sep. 1997. pp. 781-790.
Campese, V.M. et al., Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878-82.
Campese, V.M. et al., Renal Afferent Denervation Prevents the Progression of Renal Disease in the Renal Ablation Model of Chronic Renal Failure in the Rat, Am J Kidney Dis. 1995;26:861-5.
Campese, V.M., A new model of neurogenic hypertension caused by renal injury: pathophysiology and therapeutic implications, Clin Exp Nephrol (2003) 7: 167-171, Japanese Society of Nephrology 2003.
Campese, V.M., Neurogenic factors and hypertension in chronic renal failure, Journal of Nephrology vol. 10, No. 4, 1997, Societa Italiana di Nefrologia, pp. 184-187.
Campese, V.M., Neurogenic factors and hypertension in renal disease. Kidney Int. 2000;57 Suppl. 75:S2-3.
Canbaz, S. et al., Electrophysiological evaluation of phrenic nerve injury during cardiac surgery—a prospective, controlled clinical study. BioMed Central. 5 pgs. 2004.
Cardiac Glycosides, Heart Disease—A Textbook of Cardiovascular Medicine vol. 2, Edited by Eugene Braunwald, 5th Edition, 1997 WB Saunders Company, pp. 480-481.
Carls, G. et al., Electrical and magnetic stimulation of the intercostal nerves: a comparative study, Electromyogr, clin. Neurophysiol. 1997, vol. 37, pp. 509-512.
Carlson, Scott H. and J. Michael Wyss, e-Hypertension—Opening New Vistas, Introductory Commentary, Hypertension 2000, vol. 35, American Heart Association, Inc. 2000, p. 538.
Carson, P., Device-based Treatment for Chronic Heart Failure: Electrical Modulation of Myocardial Contractility. Transcatheter Cardiovascular Therapeutics 2005, 21 slides.
Chang, Donald C., Cell poration and cell fusion using an oscillating electric field, Biophysical Journal. vol. 56, Oct. 1989. Biophysical Society, pp. 641-652.
Chen, S.A. et al., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablataion, Circulation, 1999, 100:1879-1886.
Chin, J.L. et al., Renal autotransplantation for the loin pain-hematuria syndrome: long term follow up of 26 cases, J Urol, 1998, vol. 160, pp. 1232-1236.
Chiou, C.W. et al., Efferent Vagal Innervation of the Canine Atria and Sinus and Atrioventricular Nodes. Circulation. Jun. 1997. 95(11):2573-2584. Abstract only. 2 pgs.
Chobanian, Aram V. et al., Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, Nov. 6, 2003, Hypertension 2003, vol. 42, 2003 American Heart Association, Inc., pp. 1206-1252.
Clinical Trials in Hypertension and Renal Diseases, Slide Source, www.hypertensiononline.org, 33 pages Aug. 13, 2001.
Conradi, E. and Ines Helen Pages, Effects of Continous and Pulsed Microwave Irradiation on Distribution of Heat in the Gluteal Region of Minipigs, Scand J Rehab Med, vol. 21, 1989, pp. 59-62.
Converse, R.L., Jr. et al., Sympathetic Overactivity in Patients with Chronic Renal Failure, N Engl J Med. Dec. 31, 1992, vol. 327 (27), pp. 1912-1918.
Cosman, E.R., Jr. et al., Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes, Pain Medicine, vol. 6, No. 6, 2005, American Academy of Pain Medicine, pp. 405-424.
Cosman, E.R., Ph.D., A Comment on the History of the Pulsed Radiofrequency Technique for Pain Therapy, Anesthesiology Dec. 2005, vol. 103, No. 6, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., p. 1312.
Crawford, William H. et al., Pulsed Radio Frequency Therapy of Experimentally Induced Arthritis in Ponies, Dec. 18, 1989, Can. J. Vet. Res. 1991, vol. 55, pp. 76-85.
Curtis, J.J. et. al., Surgical therapy for persistent hypertension after renal transplantation, Transplantation, 1981, 31(2):125-128.
Dahm, Peter et al., Efficacy and Technical Complications of Long-Term Continuous Intraspinal Infusions of Opiod and/or Bupivacaine in Refractory Nonmalignant Pain . . . , Oct. 6, 1997, The Clinical Journal of Pain, vol. 14, No. 1, 1998, Lippincott-Raven Publishers 1998, pp. 4-16.
Dahm, Peter O. et al., Long-Term Intrathecal Infusion of Opiod and/or Bupivacaine in the Prophylaxis and Treatment of Phantom Limb Pain, Neuromodulation, vol. 1, No. 3, 1998, International Neuromodulation Society 1998, pp. 111-128.
Dang, Nicholas C. et al., A Novel Approach to Increase Total Urine Output in Heart Failure: Renal Nerve Blockade, ACC 2005 poster; 1 page.
Daniel, Alan and Honig, Carl R. Does Histamine influence Vasodilation Caused by Prolonged Arterial Occlusion or Heavy Exercise? The Journal of Pharmacology and Experimental Therapeutics. vol. 215 No. 2. Aug. 21, 1980. pp. 533-538.
Davalos, R. et al., Electrical Impedance Tomography for Imaging Tissue Electroporation, Jul. 25, 2003, IEEE Transactions on Biomedical Engineering, vol. 51, No. 5, May 2004, IEEE 2004, pp. 761-767.
Davalos, R.V. et al., Tissue Ablation with Irreversible Electroporation, Sep. 7, 2004, Annals of Biomedical Engineering, Feb. 2005, vol. 33, No. 2, 2005 Biomedical Engineering Society, pp. 223-231.
De Leeuw, Peter W. et al., Renal Vascular Tachyphylaxis to Angiotensin II: Specificity of the Response for Angiotensin, Dec. 28, 1981, Life Sciences, vol. 30, 1982 Pergamon Press Ltd., pp. 813-819.
Deng, Jingdong et al., The Effects of Intense Submicrosecond Electrical Pulses on Cells, Nov. 26, 2002, Biophysical Journal, vol. 84, Apr. 2003, Biophysical Society 2003, pp. 2709-2714.
Denton, Kate M. et al., Differential Neural Control of Glomerular Ultrafiltration, Jan. 30, 2004, Proceedings of the Australian Physiological and Pharmacological Society Symposium: Hormonal, Metabolic and Neural Control of the Kidney, Clinical and Experimental Pharmacology and Physiology (2004) 31, pp. 380-386.
Dev, Nagendu B., Ph.D. et al., Intravascular Electroporation Markedly Attenuates Neointima Formation After Balloon Injury of the Carotid Artery in the Rat, Journal of Interventional Cardiology, vol. 13, No. 5, 2000, pp. 331-338.
Dev, Nagendu B., Ph.D. et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, May 5, 1998, Cathterization and Cardiovascular Diagnosis, vol. 45, 1998, Wiley-Liss, Inc. 1998, pp. 337-345.
Devereaux, R.B. et al., Regression of Hypertensive Left Ventricular Hypertrophy by Losartan Compared With Atenolol: The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) Trial, Circulation, 2004, vol. 110, pp. 1456-1462.
Dibona, Gerald F. and Linda L. Sawin, Role of renal nerves in sodium retention of cirrhosis and congestive heart failure, Sep. 27, 1990, Am. J. Physiol. 1991, vol. 260, 1991 the American Physioiogical Society, pp. R298-R305.
Dibona, Gerald F. and Susan Y. Jones, Dynamic Analysis of Renal Nerve Activity Responses to Baroreceptor Denervation in Hypertensive Rats, Sep. 19, 2000, Hypertension Apr. 2001, American Heart Association, Inc. 2001, pp. 1153-1163.
Dibona, Gerald F. and Ulla C. Kopp, Neural Control of Renal Function, Physiological Reviews, vol. 77, No. 1, Jan. 1997, the American Physiological Society 1997, pp. 75-197.
Dibona, Gerald F. and Ulla C. Kopp, Role of the Renal Sympathetic Nerves in Pathophysiological States, Neural Control of Renal Function, vol. 77, pp. 142-197 Jan. 1997.
Dibona, Gerald F., Functionally Specific Renal Sympathetic Nerve Fibers: Role in Cardiovascular Regulation, Mar. 6, 2001, American Journal of Hypertension, 2001, vol. 14, 2001 American Journal of Hypertension, Ltd. Published by Elsevier Science Inc., pp. 163S-170S.
Dibona, Gerald F., L.L. Sawin, Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat,: 1982, American Physiological Society, F576-F580, 5 pgs.
Dibona, Gerald F., Nervous Kidney—Interaction Between Renal Sympathetic Nerves and the Renin-Angiotensin System in the Control of Renal Function, Jun. 21, 2000, Hypertension 2000, vol. 36, 2000 American Heart Association, Inc., pp. 1083-1088.
Dibona, Gerald F., Neural Control of the Kidney—Past, Present and Future, Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part 2, 2002 American Heart Association, Inc., pp. 621-624.
Dibona, Gerald F., Neural Control of the Kidney: Functionally Specific Renal Sympathetic Nerve Fibers, Starling Lecture, Am J Physiol Regulatory Integrative Comp Physiol, 2000, 279, 2000 The American Physiological Society, pp. R1517-R1524.
Dibona, Gerald F., Peripheral and Central Interactions between the Renin-Angiotensin System and the Renal Sympathetic Nerves in Control of Renal Function, Annals New York Academy of Sciences, pp. 395-406 Jan. 25, 2006.
Dibona, Gerald F., Renal Innervation and Denervation: Lessons from Renal Transplantation Reconsidered, Artificial Organs, vol. 11, No. 6, Raven Press, Ltd., 1987 International Society for Artificial Organs, pp. 457-462.
Dibona, Gerald F., Sympathetic Nervous System and the Kidney in Hypertension, Current Opinion in Nephrology and Hypertension 2002, vol. 11, 2002 Lippincott Williams & Wilkins, pp. 197-200.
Dibona, Gerald F., The Sympathetic Nervous System and Hypertension, Dec. 4, 2003, Hypertension Highlights, Hypertension Feb. 2004, vol. 43, 2004 American Heart Association, Inc., pp. 147-150.
Dibona, Gerald, LL Sawin, Effect of renal denervation on dynamic autoregulation of renal blood flow, Feb. 12, 2004, AmJ Physiol Renal Physiol 286, pp. F1209-F1218.
Dong, Jun et al. Incidence and Predictors of Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation Using the Anatomic Pulmonary Vein Ablation Approach: Results from Paired Magnetic Resonance Imaging. Journal of Cardiovascular Electrophysiology. vol. 16, No. 8, Aug. 2005. pp. 845-852.
Dorros, Gerald, M.D., Renal Artery Stenting State of the Art, presentation, TCT, Washington D.C., Sep. 2003, 27 pages.
Dueck, Ron, M.D., Noninvasive Cardiac Output Monitoring, The Cardiopulmonary and Critical Care Journal, Chest, vol. 120, sec. 2, Aug. 2001, American College of Chest Physicians 2005, pp. 339-341, 5 pages.
Dunn, Matthew D. et al., Laparoscopic Nephrectomy in Patients With End-Stage Renal Disease and Autosomal Dominant Polycystic Kidney Disease, Oct. 25, 1999, American Journal of Kidney Diseases, vol. 35, No. 4 Apr. 2000, National Kidney Foundation, Inc. 2000, pp. 720-725.
Durand, D.M., Electric Field Effects in Hyperexcitable Neural Tissue: A Review, Radiation Protection Dosimetry, vol. 106, No. 4, 2003 Nuclear Technology Publishing, pp. 325-331.
Effects of Renal Failure on the Cardiovascular System, 5th Edition Heart Disease, A Textbook of Cardiovascular Medicine, vol. 2, Edited by Eugene Braunwald, 1997, W.B. Saunders Company, pp. 1923-1925.
Electrical Stimulation for the Treatment of Chronic Wounds, Radiation Protection Standard, Maximum Exposure Levels to Radiofrequency Fields—3 KHz to 300 GHz, Radiation Protection Series No. 3, Australian Radiation Protection and Nuclear Safety Agency, Apr. 1996, 322 pgs.
Electropermeabilization (Electroporation), Cyto Pulse Sciences, Inc., http://www.cytopulse.com/electroporation.html (last accessed Mar. 3, 2005), 3 pgs.
Electroporation based Technologies and Treatments, ESPE Newsletter No. 6, QLK 02002-2003, Jan. 2005, www.cliniporator.com, 4 pgs.
End-stage renal disease payment policies in traditional Medicare, Chapter 8, Report to the Congress: Medicare Payment Policy, Mar. 2001, Medpac, pp. 123-138.
Epidemiology of Renal Disease in Hypertension, slide presentation by hypertensiononline.org, 21 pages Mar. 30, 2001.
Erdine, Serap and Alev Arat-Ozkan, Resistant Hypertension, European Society of Hypertension Scientific Newsletter: Update on Hypertension Management 2003, vol. 4, No, 15, 2 pages.
Esler; M. et al., Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8:S39-43.
Esler, M. et al., Noradrenaline release and the pathophysiology of primary human hypertension. Am J Hypertens. 1989; 2:140S-146S.
Esler, M. et al., Sympathetic nerve biology in essential hypertension, Clin and Exp Pharmacology and Physiology, 2001, 28:986-989.
European Examination Report; European Patent Application No. 07799148.7; Applicant: Ardian, Inc.; dated Jan. 19, 2010, 4 pgs.
European Examination Report; European Patent Application No. 09156661.2; Applicant: Ardian, Inc.; dated Jan. 19, 2010, 6 pgs.
European Search Report; European Patent Application No. 05806045.0; Applicant: Ardian, Inc.; dated Sep. 22, 2009, 8 pgs.
European Search Report; European Patent Application No. 05811851.4; Applicant: Ardian, Inc.; dated Oct. 1, 2009, 7 pgs.
European Search Report; European Patent Application No. 06847926.0; Applicant: Ardian, Inc.; dated Feb. 10, 2010, 6 pgs.
European Search Report; European Patent Application No. 07757925.8; Applicant: Ardian, Inc.; dated Apr. 29, 2010, 9 pgs.
European Search Report; European Patent Application No. 07798341.9; Applicant: Ardian, Inc.; dated Aug. 4, 2011; 6 pgs.
European Search Report; European Patent Application No. 07799148.7; Applicant: Ardian, Inc.; dated Jul. 23, 2009, 6 pgs.
European Search Report; European Patent Application No. 07868755.5; Applicant: Ardian, Inc.; dated Jul. 28, 2010, 7 pgs.
European Search Report; European Patent Application No. 09156661.2; Applicant: Ardian, Inc.; dated Jul. 23, 2009, 6 pgs.
European Search Report; European Patent Application No. 09167937.3; Applicant: Ardian, Inc.; dated Nov. 11, 2009, 6 pgs.
European Search Report; European Patent Application No. 09168202.1; Applicant: Ardian, Inc.; dated Nov. 11, 2009, 5 pgs.
European Search Report; European Patent Application No. 09168204.7; Applicant: Ardian, Inc.; dated Nov. 19, 2009, 6 pgs.
Evelyn, K.A. et al., Effect of thoracolumbar sympathectomy on the clinical course of primary (essential) hypertension, Am J Med, 1960;28:188-221.
Ex parte Quayle Office Action; U.S. Appl. No. 11/144,173; Mailed on May 28, 2009, 4 pgs.
Fact Book Fiscal Year 2003, National Institutes of Health National Heart, Lung, and Blood Institute, Feb. 2004, 197 pgs.
Fajardo, J. et al., Effect of chemical sympathectomy on renal hydroelectrolytic handling in dogs with chronic caval constriction. Clin Physiol Biochem. 1986;4:252-6.
Fareed, Jawed, Ph.D. et al., Some Objective Considerations for the Use of Heparins and Recombinant Hirudin in Percutaneous Transluminal Coronary Angoplasty, Seminars in Thrombosis and Hemostasis 1991, vol. 17, No. 4, 1991 by Thieme Medical Publishers, Inc., pp. 455-470.
Ferguson, D.R. et al., Responses of the pig isolated renal artery to transmural electrical stimulation and drugs, Dec. 7, 1984, Br. J. Pharmac. 1985, vol. 84, The Macmillan Press Ltd. 1985, pp. 879-882.
Fernandez-Ortiz, Antonio, et al., A New Approach for Local Intravascular Drug Delivery—Iontophoretic Balloon, Intravascular Iontophoretic Local Delivery, Circulation, vol. 89, No. 4, Apr. 1994, pp. 1518-1522.
Fields, Larry E. et al., The Burden of Adult Hypertension in the United States 1999 to 2000—A Rising Tide, May 18, 2004, American Heart Association 2004, Hypertension Oct. 2004, pp. 1-7.
Final Office Action; U.S. Appl. No. 11/233,814; dated Jan. 29, 2009, 11 pgs.
Final Office Action; U.S. Appl. No. 11/266,993; dated Jan. 8, 2010, 7 pgs.
Final Office Action; U.S. Appl. No. 11/363,867; dated May 1, 2009, 8 pgs.
Final Office Action; U.S. Appl. No. 11/451,728; dated Jan. 13, 2009, 7 pgs.
Final Office Action; U.S. Appl. No. 11/599,649; dated Jan. 15, 2009, 10 pgs.
Final Office Action; U.S. Appl. No. 11/599,723; dated Apr. 5, 2010, 17 pgs.
Final Office Action; U.S. Appl. No. 11/599,890; dated Mar. 29, 2009, 9 pgs.
Fischell, Tim A. et al., Ultrasonic Energy: Effects on Vascular Function and Integrity, Circulation: Journal of the American Heart Association. 1991. 84;pp. 1783-1795.
Freeman, Scott A. et al., Theory of Electroporation of Planar Bilayer Membranes: Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation, Feb. 23, 1994. Biophysical Journal, Jul. 1994, vol. 67, 1994 by the Biophysical Society, pp. 42-56.
Fukuoka, Yuko et al., Imaging of neural conduction block by neuromagnetic recording, Oct. 16, 2002, Clinical Neurophysiology, vol. 113, 2002, Elsevier Science Ireland Ltd. 2002, pp. 1985-1992.
Fuster, Valentin et al. ACC/AHA/ESC Practice Guidelines: ACA/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation. JACC vol. 48, No. 4, Aug. 15, 2006.
Gami, Apoor S., M.D. and Vesna D. Garovic, M.D., Contrast Nephropathy After Coronary Angiography, Mayo Clin Proc. 2004, vol. 79, 2004 Mayo Foundation for Medical Education and Research, pp. 211-219.
Gattone II, Vincent H. et al., Contribution of Renal Innervation to Hypertension in Polycystic Kidney Disease in the Rat, University of Chicago Section of Urology, 16 pages, Mar. 17, 2008.
Gaylor, D.C. et al., Significance of Cell Size and Tissue Structure in Electrical Trauma, Jan. 26, 1988, J. theor. Biol. 1988, vol. 133, 1988 Academic Press Limited, pp. 223-237.
Gazdar, A.F. and G.J. Dammin, Neural degeneration and regeneration in human renal transplants, NEJM, Jul. 30, 1970, 283:222-244.
Gehl, Julie et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biophysica Acta, 1428, 1999, Elsevier Science B.V. 1999, pp. 233-240, www.elsevier.com/locate/bba <http:www.elsevier.com/locate/bba>.
Getts, R.T. et al., Regression of left ventricular hypertrophy after bilateral nephrectomy, Nephrol Dial Transplant, 2006, vol. 21, pp. 1089-1091.
Ghoname, El-sayed A. et al., Percutaneous electrical nerve stimulation: an alternative to TENS in the management of sciatica, Apr. 26, 1999, Pain 1999, vol. 83, 1999 International Association for the Study of Pain / Published by Elsevier Science B.V., pp. 193-199.
Gimple, M.D., Lawrence et al., Effect of Chronic Subcutaneous or Intramural Administration of Heparin on Femoral Artery Restenosis After Balloon Angioplasty in Hypercholesterolemic Rabbits, Laboratory Investigation, Circulation, vol. 86, No. 5, Nov. 1992, pp. 1536-1546.
Goldberger, Jeffrey J. et al., New technique for vagal nerve stimulation, Jun. 2, 1999, Journal of Neuroscience Methods 91, 1999, Elsevier Science B.V. 1999, pp. 109-114.
Gorbunov, F.E. et al., The Use of Pulsed and Continuous Short Wave Diathermy (Electric Field) in Medical Rehabilitation of the Patients with Guillan-Barre Syndrome and Other Peripheral Myelinopathies, May 6, 1994, 5 pages (most of article in Russian language).
Gottschalk, C.W., Renal nerves and sodium excretion, Ann. Rev. Physiol., 1979, 41:229-240.
Greenwell, T.J. et al., The outcome of renal denervation for managing loin pain haematuria syndrome. BJU International, 2004; 4 pgs.
Gruberg, Luis, M.D. et al., The Prognostic Implications of Further Renal Function Deterioration Within 48 h of Interventional Coronary Procedures in Patients with Pre-existent Chronic Renal Insufficiency, Jun. 19, 2000, Journal of the American College of Cardiology 2000, vol. 36, No. 5, 2000 by the American College of Cardiology, pp. 1542-1548.
Guimaraes, Sarfim. Vascular Adrenoceptors: An Update. pp. 319-356, Jun. 1, 2001.
Haissaguerre, M. et al., Spontaneous initiation of atrial fibrillation by ectopic beats orginating in the pulmonary veins, New England Journal of Medicine, 1998, 339: 659-666.
Hajjar, Ihab, M.D., M.S. and Theodore A. Kotchen, M.D., Trends in Prevalence, Awareness, Treatment, and Control of Hypertension in the United States, 1988-2000, JAMA, Jul. 9, 2003, vol. 290, No. 2, pp. 199-206.
Hammer, Leah W. Differential Inhibition of Functional Dilation of Small Arterioles by Indomethacin and Glibenclamide. Hypertension, Feb. 2001 Part II, pp. 599-603.
Hampers, C.L. et al., A hemodynamic evaluation of bilateral nephrectomy and hemodialysis in hypertensive man, Circulation. 1967;35:272-288.
Hamza, M.D., Mohamed A. et al., Effect of the Duration of Electrical Stimulation on the Analgesic Response in Patients with Low Back Pain, Anesthesiology, vol. 91, No. 6, Dec. 1999, American Society of Anesthesiologists, Inc. 1999, pp. 1622-1627.
Han, Hyo-Kyung and Gordon L. Amidon, Targeted Prodrug Design to Optimize Drug Delivery, Mar. 21, 2000, AAPS Pharmsci 2000, 2 (1) article 6, pp. 1-11.
Hansen, J.M. et al., The transplanted human kidney does not achieve functional reinnervation, Clin Science, 1994, vol. 87, pp. 13-20.
Hasking, G.J. et al., Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615-21.
Hausberg, M. et al., Sympathetic nerve activity in end-stage renal disease, Circulation, 2002, 106: 1974-1979.
Heart Arrhythmia Heart and Vascular Health on Yahoo! Health. 13 pgs. <URL: http://health.yahoo.com/topic/heart/overview/article/mayoclinic/21BBE2B0-128D-4AA2-A5CE215065586678;_ylt=Aqd9M5rNyHD0sbPOmHXFhLcPu7cF> Feb. 16, 2005.
Heart Disease and Stroke Statistics—2004 Update, American Heart Association, American Stroke Association, Dallas, Texas, 2003 American Heart Association, 52 pgs.
Heida, Tjitske, et al., Investigating Membrane Breakdown of Neuronal Cells Exposed to Nonuniform Electric Fields by Finite-Element Modeling and Experiments, May 9, 2002, IEEE Transactions on Biomedical Engineering, vol. 49, No. 10, Oct. 2002, IEEE 2002, pp. 1195-1203.
Heuer, G.J., The surgical treatment of essential hypertension, Annals of Surgery, 1936; 104 (4): 771-786.
Higuchi, Yoshinori, M.D., Ph.D. et al, Exposure of the Dorsal Root Ganglion in Rats to Pulsed Radiofrequency Currents Activates Dorsal Horn Lamina I and II Neurons, Dec. 4, 2001, Experimental Studies, Neurosurgery, vol. 50, No. 4, Apr. 2002, pp. 850-856.
Hildebrand, Keith R., D.V.M., Ph.D. et al., Stability, Compatibility, and Safety of Intrathecal Bupivacaine Administered Chronically via an Implantable Delivery System, May 18, 2001, The Clinical Journal of Pain, vol. 17, No. 3, 2001 Lippincott Williams & Wilkins, Inc., pp. 239-244.
Hing, Esther, M.P.H. and Kimberly Middleton, B.S.N., M.P.H., National Hospital Ambulatory Medical Care Survey: 2001 Outpatient Department Summary, Aug. 5, 2003, Advance Data from Vital and Health Statistics, No. 338, CDC, 32 pages.
Hodgkin, Douglas D. et al., Electrophysiologic Characteristics of a Pulsed Iontophoretic Drug-Delivery System in Coronary Arteries, Journal of Cardiovascular Pharmacology. 29(1):pp. 39-44, Jan. 1997, Abstract, 2 pgs.
Hopp, F.A. et al., Respiratory Responses to Selective Blockade of Carotid Sinus Baroreceptors in the Dog, Jun. 22, 2005, Am J Physiol Regul Integr Comp Physiol 1998, vol. 275, 2005 American Physiological Society, pp. R10-R18.
Hortobagyi, Gabriel N., Randomized Trial of High-Dose Chemotherapy and Blood Cell Autographs for High-Risk Primary Breast Carcinoma, Journal of the National Cancer Institute, vol. 92, No. 3, Feb. 2, 2000, pp. 225-233.
Horwich, Tamara, M.D., New Advances in the Diagnosis and Management of Acute Decompensated Heart Failure, the heart.org satellite program, Rapid Review, CME Symposium presented on Nov. 8, 2004 at the Sheraton New Orleans Hotel, 4 pages.
Huang, Wann-Chu et al. Renal Denervation Prevents and Reverses Hyperinsulinemia-Induced Hypertension in Rats, Mar. 25, 1998, Hypertension 1998, vol. 32, 1998 American Heart Association, pp. 249-254.
Huang, Yifei et al., Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural and cellular responses, Jan. 8, 2004, Am J Physiol. Heart Circ. Physiol. 2004, vol. 286, 2004 the American Physiological Society, pp. H2141-H2150.
Hughes, Gordon B., M.D. et al., A Comparative Study of Neuropathologic Changes Following Pulsed and Direct Current Stimulation of the Mouse Sciatic Nerve, Jun. 27, 1980, American Journal of Otolaryngology, Nov. 1980, vol. 1, No. 5, pp. 378-384.
Hypertension and Renal Disease: Mechanisms, Slide Show by www.hypertensiononline.org, 22 pages Mar. 30, 2001.
Hypertension Incidence and Prevalence, Age-Specific Rates, by Gender, B.C., 2001/2002, Graph, Chronic Disease Management, May 2003, British Columbia Ministry of Health Services, 1 page.
Implantable Neurostimulation Systems, Medtronic Neurological, http://medtronic.com/neuro/paintherapies/pain_treatment_ladder/pdf/implantable_brochure.pdf; 1999, 6 pages.
Implantable Pump—The Medtronic MiniMed 2007 Implantable Insulin Pump System, Medtronic MiniMed, 2006, 5 pgs.
International Search Report and Written Opinion for PCT/US2009/069334; Applicant: Ardian, Inc.; dated Mar. 1, 2010, 10 pgs.
International Search Report and Written Opinion, PCT/US05/35693, dated Mar. 8, 2006, Applicant: Ardian, Inc., 29 pgs.
International Search Report and Written Opinion, PCT/US05/35757, dated Dec. 27, 2006, Applicant: Ardian, Inc., 8 pgs.
International Search Report and Written Opinion, PCT/US06/36120, dated Jun. 25, 2008, Applicant: Ardian, Inc., 10 pgs.
International Search Report and Written Opinion, PCT/US06/41889, dated Oct. 20, 2008, Applicant: Ardian, Inc., 7 pgs.
International Search Report and Written Opinion, PCT/US06/48822, dated Aug. 15, 2008, Applicant: Ardian, Inc., 12 pgs.
International Search Report and Written Opinion, PCT/US07/63322, dated Mar. 3, 2008, Applicant: Ardian, Inc., 10 pgs.
International Search Report and Written Opinion, PCT/US07/63324, dated Oct. 10, 2008, Applicant: Ardian, Inc., 10 pgs.
International Search Report and Written Opinion, PCT/US07/66539, dated Jan. 28, 2008, Applicant: Ardian, Inc., 6 pgs.
International Search Report and Written Opinion, PCT/US07/70799, dated Jul. 2, 2008, Applicant: Ardian, Inc., 7 pgs.
International Search Report and Written Opinion, PCT/US07/72396, dated Aug. 27, 2008, Applicant: Ardian, Inc., 9 pgs.
International Search Report and Written Opinion, PCT/US07/84701, dated Aug. 21, 2008, Applicant: Ardian, Inc., 11 pgs.
International Search Report and Written Opinion, PCT/US07/84705, dated Jul. 28, 2008, Applicant: Ardian, Inc., 12 pgs.
International Search Report and Written Opinion, PCT/US07/84708, dated Aug. 11, 2008, Applicant: Ardian, Inc., 9 pgs.
International Search Report, PCT/US02/0039, dated Sep. 11, 2002, Applicant: Advanced Neuromodulation Systems, Inc.
International Search Report, PCT/US02/25712, dated Apr. 23, 2003, Applicant: Cyberonics, Inc.
International Search Report, PCT/US03/08014, dated Sep. 23, 2003, Applicant: The General Hospital Corporation.
International Search Report, PCT/US03/09764, dated Oct. 28, 2003, Applicant: CVRX, Inc.
International Search Report, PCT/US04/38498, dated Feb. 18, 2005, Applicant: G & L Consulting, LLC, 4 pgs.
Introduction to Autonomic Pharmacology, Chapter 3, Part 2 Autonomic Pharmacology, pp. 18-26, May 24, 2002.
Isovue: Data Sheet. Regional Health Limited. 8 pgs. Mar. 11, 2003.
Israili, Z.H., Clinical pharmacokinetics of angiotensin II (AT) receptor blockers in hypertension, Journal of Human Hypertension, 2000, Macmillan Publishers Ltd., vol. 14, pp. S73-S86.
Janda, J., Impact of the electrical stimulation apparatus rebox on the course of ischemic renal damage in rats, British Library—The world's knowledge pp. 252-254 (translated and untranslated versions) 1996.
Janssen, Ben J.A. et al., Effects of complete renal denervation and selective afferent renal denervation on the hypertension induced by intrarenal norepinephrine infusion in conscious rats, Jan. 4, 1989, Journal of Hypertension 1989, vol. 7, No. 6, Current Science Ltd, pp. 447-455.
Jia, Jianping et al., Cold injury to nerves is not due to ischaemia alone, Brain. 121;pp. 989-1001. 1998.
Jia, Jianping et al.., The pathogenesis of non-freezing cold nerve injury: Observations in the rat, Brain. 120; pp. 631-646. 1997.
Jin, Yuanzhe et al., Pulmonary Vein Stenosis and Remodeling After Electrical Isolation for Treatment of Atrial Fibrillation: Short- and Medium-Term Follow-Up, PACE, vol. 27., Oct. 2004, pp. 1362-1370.
Johansson, Bjorn, Electrical Membrane Breakdown, A Possible Mediator of the Actions of Electroconvulsive Therapy, Medical Hypotheses 1987, vol. 24, Longman Group UK Ltd 1987, pp. 313-324.
Joles, J.A. et al., Causes and Consequences of Increased Sympathetic Activity in Renal Disease. Hypertension. 2004;43:699-706.
Jorgensen, William A. et al., Electrochemical Therapy of Pelvic Pain: Effects of Pulsed Electromagnetic Fields (PEMF) on Tissue Trauma, Eur J Surg 1994, Suppl 574, vol. 160, 1994 Scandinavian University Press, pp. 83-86.
Joshi, R. P. and K. H. Schoenbach, Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions, Nov. 11, 2002, Physical Review E 66, 2002, The American Physical Society 2002, pp. 052902-1-052901-4.
Joshi, R. P. et al., Improved energy model for membrane electroporation in biological cells subjected to electrical pulses, Apr. 9, 2002, Physical Review E, vol. 65, 041920-1, 2002 The American Physical Society, 8 pages.
Joshi, R. P. et al., Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses, Jun. 21, 2001, Physical Review E, vol. 64, 011913, 2001 The American Physcial Society, pp. 1-10.
Kanduser, Masa et al., Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F, Aug. 20, 2002, Colloids and Surfaces A: Physicochem. Eng. Aspects 214, 2003, Elsevier Science B.V. 2002, pp. 205-217.
Kassab, S. et al., Renal denervation attenuates the sodium retention and hypertension associated with obesity, Hypertension, 1995, 25:893-897.
Katholi, R.E. et al., Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension, Hypertension, 1982, 4 (suppl II): II-166-II-174.
Katholi, R.E. et al., Role of the renal nerves in the pathogenesis of one-kidney renal hypertension in the rat, Hypertension, 1981, 3(4) 404-409.
Katholi, R.E., Renal nerves and hypertension: an update, Fed Proc., 1985, 44:2846-2850.
Katholi, Richard E., Renal nerves in the pathogenesis of hypertension in experimental animals and humans, Am. J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14.
Kaye, D.M. et al., Functional and neurochemical evidence for partial cardiac sympathetic reinnervation after cardiac transplantation in humans, Circulation, 1993, vol. 88, pp. 1101-1109.
Kelleher, Catherine L. et al., Characteristics of Hypertension in Young Adults with Autosomal Dominant Polycystic Kidney Disease Compared with the General U.S. Population, Jun. 9, 2004, American Journal of Hypertension 2004, pp. 1029-1034.
King, Ronald W. P., Nerves in a Human Body Exposed to Low-Frequency Electromagnetic Fields, Jun. 7, 1999, IEEE Transactions on Biomedical Engineering, vol. 46, No. 12, Dec. 1999, IEEE 1999, pp. 1426-1431.
Kinney, Brian M., M.D., High-Tech Healing—The evolution of therapeutic electromagnetic fields in plastic surgery, Plastic Surgery Products, Jun. 2004, pp. 32-36, 3 pages.
Kirchheim, H. et al., Sympathetic modulation of renal hemodynamics, renin release and sodium excretion, Klin Wochenschr, 1989, 67:858-864.
Klein, K. et al., Impaired autofeedback regulation of hypothalamic norepinephrine release in experimental uremia. J Am Soc Nephrol. 2005;16:2081-7.
Knot, H. J. et al., Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. The Journal of Physiology. 1998. 508; pp. 199-209.
Kok, Lai Chow et al. Effect of Heating on Pulmonary Veins: How to Avoid Pulmonary Vein Stenosis. Journal of Cardiovascular Electrophysiology. vol. 14, No. 3, Mar. 2003. pp. 250-254.
Kok, R. J. et al., Specific Delivery of Captopril to the Kidney with the Prodrug Captopril-Lysozyme, Aug. 16, 1998, Journal of Pharmacology and Experimental Therapeutics, vol. 288, No. 1, 1999 by The American Socieity for Pharmacology and Experimental Therapeutics, pp. 281-285.
Kon, V. Neural Control of Renal Circulation, Miner Electrolyte Metab. 1989;15:33-43.
Koomans, H.A., et al., Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol. 2004;15:524-37.
Kopp, U. et al., Dietary sodium loading increases arterial pressure in afferent renal-denervated rats, Hypertension, 2003, 42:968-973.
Kopp, U.C. et al., Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1561-72.
Koyama, Shozo et al., Relative Contribution of Renal Nerve and Adrenal Gland to Renal Vascular Tone During Prolonged Canine Hemorrhagic Hypotension, Sep. 24, 1992, Circulatory Shock 1993, vol. 39, Wiley-Liss, Inc. 1993, pp. 269-274.
Kozak, Lola Jean, Ph.D et al., National Hospital Discharge Survey: 2001 Annual Summary with Detailed Diagnosis and Procedure Data, Vital and Health Statistics, Serices 13 No. 156, Jun. 2004, CDC, 206 pages.
Kumagai, K. et al. New Approach to Pulmonary Vein Isolation for Atrial Fibrillation Using a Muitielectrode Basket Catheter. Circulation Journal. 2006;70:88-93.
Lafayette, Richard A., M.D., How Does Knocking Out Angiotensin II Activity Reduce Renal Injury in Mice?, Jun. 14, 1999, Journal Club, American Journal of Kidney Diseases, vol. 35, No. 1, Jan. 2000, National Kidney Foundation, Inc. 2000, pp. 166-172.
Lavie, Peretz, Ph.D. and Victor Hoffstein, M.D., Sleep Apnea Syndrome: A Possible Contributing Factor to Resistant Hypertension, Jun. 2001, Sleep 2001, vol. 24, No. 6, pp. 721-725.
Le Noble, J.L. et al., Pharmacological evidence for rapid destruction of efferent renal nerves in rats by intrarenal infusion of 6-hydroxydopamine. J Hypertens Suppl. 1985;3:S137-40.
Lee, Michael A. (editor). SPORTSMed. Connecticut State Medical Society Committee on the Medical Aspects of Sports. Fall/Winter 2005. 10 pgs.
Lee, Raphael C. et al., Biophysical Injury Mechanisms in Electronic Shock Trauma, Annu. Rev. Biomed. Eng., 2000, vol. 2, Copyright ® 2000 by Annual Reviews, pp. 477-509.
Lee, Raphael C. et al., Clinical Sequelae Manifested in Electrical Shock Survivors, Presentation by the Electrical Trauma Research Program, The University of Chicago, 37 pages Dec. 24, 2004.
Lee, Raphael C. et al., Membrane Biology and Biophysics, Chapter 25, Surgical Research, 2001 Academic Press, pp. 297-305.
Lee, Raphael C., M.D., Sc.D. and Michael S. Kolodney, S.B., Electrical Injury Mechanisms: Electrical Breakdown of Cell Membranes, Oct. 1, 1986, Plastic and Reconstructive Surgery, Nov. 1987, vol. 80, No. 5, pp. 672-679.
Lenoble, L.M. et al., Selective efferent chemical sympathectomy of rat kidneys. Am J Physiol. 1985;249:R496-501.
Ligtenberg, Gerry M.D. et al., Reduction of Sympathetic Hyperactivity by Enalapril in Patients with Chronic Renal Failure, Apr. 29, 1999, New England Journal of Medicine 1999, vol. 340, No. 17, 1999 Massachusetts Medical Society, pp. 1321-1328.
Lin, Vernon W. H. et al., High intensity magnetic stimulation over the lumbosacral spine evokes antinociception in rats, Apr. 16, 2002, Clinical Neurophysiology, vol. 113, 2002 Elsevier Science Ireland Ltd., pp. 1006-1012.
Lipfert, Peter, M.D. et al., Tachyphylaxis to Local Anesthetics Does Not Result form Reduced Drug Effectiveness at the Nerve Itself, Aug. 3, 1988, Anesthesiology 1989, vol. 70, pp. 71-75.
Lohmeier, Thomas E. and Drew A. Hildebrandt, Renal Nerves Promote Sodium Excretion in Angiotensin-Induced Hypertension, Oct. 20, 1997, Hypertension 1998, vol. 31, part 2, 1998 American Heart Association, Inc., pp. 429-434.
Lohmeier, Thomas E. et al., Prolonged Activation of the Baroreflex Produces Sustained Hypotension, Harry Goldblatt Award, Nov. 26, 2003, Hypertension 2004, vol. 43, Part 2, 2004 American Heart Association, Inc., pp. 306-311.
Lohmeier, Thomas E. et al., Renal Nerves Promote Sodium Excretion During Long-Term Increases in Salt Intake, Oct. 23, 1998, Hypertension 1999, vol. 33, part II, 1999 American Heart Association, Inc., pp. 487-492.
Lohmeier, Thomas E. et al., Sustained influence of the renal nerves to attenuate sodium retention in angiotensin hypertension, Apr. 13, 2001, Am J Physiol Regulatory Integrative Comp Physiol, vol. 281, 2001 the American Physiological Society, pp. R434-R443.
Lohmeier, Thomas E., et al., Baroreflexes prevent neurally induced sodium retention in angiotensin hypertension, American Journal Physiol Regulatory Integrative Comp Physiol, vol. 279, 2000 the American Physiological Society, pp, R1437-R1448.
Lohmeier, Thomas E., Interactions Between Angiotensin II and Baroreflexes in Long-Term Regulation of Renal Sympathetic Nerve Activity, Circulation Research, Jun. 27, 2003, American Heart Association, Inc.2003, pp. 1282-1284.
Luff, S.E. et al., Two types of sympathetic axon innervating the juxtaglomerular arterioles of the rabbit and rat kidney differ structurally from those supplying other arteries, May 1, 1991, Journal of Neurocytology 1991, vol. 20, 1991 Chapman and Hall Ltd., pp. 781-795.
Luippold, G. et al., Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats, Nephrol Dial Transplant (2004) 19:342-347.
Lundborg, C. et al., Clinical experience using intrathecal (IT) bupivacaine infusion in three patients with complex regional pain syndrome type I (CRPS-I), Acta Anaesthesiol Scand 1999, vol. 43, pp. 667-678.
Maeder, Micha, M.D. et al., Constrast Nephropathy: Review Focusing on Prevention, Jun. 22, 2004, Journal of the American College of Cardiology Nov. 2, 2004, vol. 44, No. 9, 2004 by the American College of Cardiology Foundation, pp. 1763-1771.
Malpas, Simon C., What sets the long-term level of sympathetic nerve activity: is there a role for arterial baroreceptors?, Invited Review, Am J Physiol Regul Integr Comp Physiol 2004, vol. 286, 2004 the American Physiological Society, pp. R1-R12.
Mancia, G., Grassi, G., Giannattasio, C., Seravalle, G., Sympathetic actrivation of pathogenesis of hypertension and progression of organ damage, Hypertension 1999, 34 (4 Pt 2): 724-728.
Marenzi, Giancarlo, M.D. et al., The Prevention of Radiocontrast-Agent-Induced Nephropathy by Hemofiltration, New England Journal of Medicine, Oct. 2, 2003, vol. 349 (14), 2003 Massachusetts Medical Society, pp. 1333-1340.
Market for infusion pumps grows with an aging population, NWL 97-01, The BBI Newsletter, vol. 20, No. 2, Feb. 1, 1997, American Health Consultants, Inc., pp. 6.
Martin, Jason B. et al., Gene Transfer to Intact Mesenteric Arteries by Electroporation, Mar. 27, 2000, Journal of Vascular Research 2000, vol. 37, 2000 S. Karger AG, Basel, pp. 372-380.
McCreery, Douglas B. et al., Charge Density and Charge Per Phase as Cofactors in Neural Injury Induced by Electrical Stimulation, IEEE Transactions on Biomedical Engineering, vol. 17, No. 10, Oct. 1990, pp. 996-1000.
McCullough, Peter A., M.D., MPH et al., Acute Renal Failure after Coronary Intervention: Incidence, Risk Factors and Relationship to Mortality, Apr. 14, 1997, Am J Med. 1997, vol. 103, 1997 Excerpta Medica, Inc., pp. 368-375.
McMurray, John J.V., M.D. and Eileen O'Meara, M.D., Treatment of Heart Failure with Spironolactone—Trial and Tribulations, Aug. 5, 2004, New England Journal of Medicine, vol. 351, No. 6, 2004 Massachusetts Medical Society, pp. 526-526.
McRobbie, D. and M.A. Foster, Thresholds for biological effects of time-varying magnetic fields, Dec. 16, 1983, Clin. Phys. Physiol, Meas. 1984, vol. 5, No. 2, 1984 The Institute of Physics, pp. 67-78.
Medtronic Neurostimulation Systems, Expanding the Array of Pain Control Solutions, informational pamphlet, 1999 Medtronic, Inc., 6 pages.
Medtronic, Spinal Cord Stimulation, Patient Management Guidelines for Clinicians, Medtronic, Inc. 1999, 115 pages.
Medtronic, SynchroMed Infusion System—Clinical Reference Guide for Pain Therapy, Medtronic, Inc. 1998, 198 pages.
Mehran, Roxana, Renal insufficiency and contrast nephropathy: The most common, least understood risk factor, Cardiovascular Research Foundation, Columbia University Medical Center, 2005, 86 slides.
Mess, Sarah A., M.D. et al., Implantable Baclofen Pump as an Adjuvant in Treatment of Pressure Sores, Mar. 1, 2003, Annals of Plastic Surgery, vol. 51, No. 5, Nov. 2003, Lippincott Williams & Wilkins 2003, pp. 465-467.
Micro ETS Hyperhidrosis USA Hyperhidrosis USA. 2 pgs, <URL: http://www.hyperhidrosis-usa.com/Index.html>. Nov. 6, 2006.
Mihran, Richard T. et al., Temporally-Specific Modification of Myelinated Axon Excitability in Vitro Following a Single Ultrasound Pulse, Sep. 25, 1989, Ultrasound in Med. & Biol. 1990, vol. 16, No. 3, pp. 297-309.
Miklav{hacek over (c)}i{hacek over (c)}, D. et al, A Validated Model of in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta, 1523, 2000, pp. 73-83, <http:www.elsevier.com/locate/bba>.
Mitchell, G. A. G., The Nerve Supply of the Kidneys, Aug. 20, 1949, Acta Anatomica, vol. X, Fasc. ½, 1950, pp. 1-37.
Morrisey, D.M. et al., Sympathectomy in the treatment of hypertension: Review of 122 cases, Lancet. 1953;1:403-408.
Moss, Nicholas G., Renal function and renal afferent and efferent nerve activity, Am. J. Physiol. 1982, vol. 243, 1982 the American Physiological Society, pp. F425-F433.
Munglani, Rajesh, The longer term effect of pulsed radiofrequency for neuropathic pain, Jun. 8, 1998. Pain 80, 1999, International Association for the Study of Pain 1999, Published by Elsevier Science B.V., pp. 437-439.
Naropin (ropivacaine HCI) Injection, RX only Description, AstraZeneca 2001, 3 pages.
National High Blood Pressure Education Program, 1995 Update of the Working Group Reports on Chronic Renal Failure and Renovascular Hypertension, presentation, 13 pages.
National Kidney Foundation, Are You at Increased Risk for Chronic Kidney Disease?, 2002 National Kidney Foundation, Inc., 14 pages.
Nelson, L. et al., Neurogenic Control of Renal Function in Response to Graded Nonhypotensive Hemorrahage in Conscious Dogs, Sep. 13, 1992, Am J. Physiol. 264, 1993, American Physiological Society 1993, pp. R661-R667.
Nikolsky, Eugenia, M.D. et al., Radiocontrast Nephropathy: Identifying the High-Risk Patient and the Implications of Exacerbating Renal Function, Rev Cardiovasc Med. 2003, vol. 4, Supp. 1, 2003 MedReviews, LLC, pp. S7-S14.
Non-Final Office Action; U.S. Appl. No. 10/408,665; dated Mar. 21, 2006, 14 pgs.
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated May 18, 2007, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated Oct. 6, 2006, 30 pgs.
Non-Final Office Action; U.S. Appl. No. 11/133,925; dated Oct. 8, 2008, 41 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,173; dated Apr. 5, 2007, 33 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,173; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Oct. 29, 2009, 8 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Apr. 5, 2007, 33 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Dec. 29, 2008, 7 pgs.
Non-Final Office Action; U.S. Appl. No. 11/145,122; dated Apr. 11, 2007, 33 pgs.
Non-Final Office Action; U.S. Appl. No. 11/145,122; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/189,563; dated May 28, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/233,814; dated Jun. 17, 2008, 12 pgs.
Non-Final Office Action; U.S. Appl. No. 11/252,462; dated Feb. 22, 2010, 6 pgs.
Non-Final Office Action; U.S. Appl. No. 11/266,993; dated Jul. 8, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/266,993; dated Dec. 30, 2008, 7 pgs.
Non-Final Office Action; U.S. Appl. No. 11/363,867; dated Sep. 25, 2008, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,553; dated May 18, 2010, 4 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,553; dated Oct. 7, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,809; dated Dec. 3, 2009, 4 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,949; dated Jun. 11, 2010, 6 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,971; dated Aug. 24, 2010, 9 pgs.
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Jun. 12, 2008, 41 pgs.
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Jul. 2, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Dec. 28, 2009, 7 pgs.
Non-Final Office Action; U.S. Appl. No. 11/504,117; dated Mar. 31, 2009, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,649; dated Mar. 30, 2009, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,649; dated Jun. 23, 2008, 9 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,723; dated Jun. 26, 2009, 17 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,723; dated Oct. 15, 2010, 16 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,882; dated Jul. 6, 2009, 13 pgs.
Non-Final Office Action; U.S. Appl. No. 11/688,178; dated Jun. 28, 2010, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/840,142; dated Apr. 3, 2009, 13 pgs.
Non-Final Office Action; U.S. Appl. No. 12/567,521; dated Sep. 3, 2010, 9 pgs.
Non-Final Office Action; U.S. Appl. No. 12/616,708; dated Sep. 16, 2010, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 12/725,375; dated Oct. 12, 2010, 14 pgs.
Nozawa, T.et al., Effects of Long Term Renal Sympathetic Denervation on Heart Failure After Myocardial Infarction in Rats, Sep. 22, 2001, Heart Vessels, 2002, 16, Springer-Verlag 2002, pp. 51-56.
O'Hagan, K.P. et al., Renal denervation decreases blood pressure in DOCA-treated miniature swine with established hypertension, Am J Hypertens., 1990, 3:62-64.
Onesti, G. et al., Blood pressure regulation in end-stage renal disease and anephric man, Circ Res Suppl., 1975, 36 & 37: 145-152.
Osborn, et al., Effect of renal nerve stimulation on renal blood flow autoregulation and antinatriuresis during reductions in renal perfusion pressure, in Proceedings of the Society for Experimental Biology and Medicine, vol. 168, 77-81, 1981. (Abstract).
Packer, Douglas L. et al., Clinical Presentation, Investigation, and Management of Pulmonary Vein Stenosis Complication Ablation for Atrial Fibrillation, Circulation: Journal of the American Heart Association. Feb. 8, 2005. pp. 546-554.
Page, I.H., et al., The Effect of Renal Efficiencyof Lowering Arterial Blood Pressure in Cases of Essential Nephritis, Hospital of the Rockefeller Institue, Jul. 12, 1934, 7 pgs.
Palmer, Biff, F., M.D., Managing Hyperkalemia Caused by Inhibitors of the Renin-Angiotensin-Aldosterone System, Aug. 5, 2004, The New England Journal of Medicine 2004, vol. 351;6, 2004 Massachusetts Medical Society, pp. 585-592.
Pappone, Carlo et al., [2005][P2-70] Safety Report of Circumferential Pulmonary Vein Ablation. A 9-Year Single-Center Experience on 6,442 Patients with Atrial Fibrillation, Abstract only. 1 page, May 2005.
Pappone, Carlo et al., [2004][759] Pulmonary Vein Denervation Benefits Paroxysmal Atrial Fibrillation Patients after Circumferential Ablation, Abstract only. 1 page, Jan. 5, 2004.
Pappone, Carol and Santinelli, Vincenzo. Multielectrode basket catheter: A new tool for curing atrial fibrillation? Heart Rhythm, vol. 3, Issue 4, pp. 385-386. Apr. 2006.
Peacock, J.M. and R. Orchardson, Action potential conduction block of nerves in vitro by potassium citrate, potassium tartrate and potassium oxalate, May 6, 1998, Journal of Clinical Periodontology, Munksgaard 1999, vol. 26, pp. 33-37.
Petersson, M. et al., Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26:906-13.
Pettersson, A. et al., Renal interaction between sympathetic activity and ANP in rats with chronic ischaemic heart failure, Nov. 25, 1988, Acta Physiol Scand 1989, 135, pp. 487-492.
PHCL 762 Pharmacology of the Autonomic Nervous System, Chapter 2 and 6.8 in Mosby, http://www.kumc.edu/research/medicine/pharmacology/CAI/phcl762.html, last accessed Aug. 24, 2004, 14 pgs.
Pitt, B. et al., Effects of Eplerenone, Enalapril, and Eplerenone/Enalapril in Patients With Essential Hypertension and Left Ventricular Hypertrophy: The 4E-Left Ventricular Hypertrophy Study, Circulation, 2003, vol. 108, pp. 1831-1838.
Pliquett, U., Joule heating during solid tissue electroporation, Oct. 22, 2002, Med. Biol. Eng. Comput., 2003, vol. 41, pp. 215-219.
Podhajsky R.J. et al, The Histologic Effects of Pulsed and Continuous Radiofrequency Lesions at 42 C to Rat Dorsal Root Ganglion and Sciatic Nerve, SPINE, vol. 30, No. 9, 2005, Lippincott Williams & Wilkins Inc., pp. 1008-1013.
Pope, Jill. Fixing a Hole: Treating Injury by Repairing Cells. The New York Academy of Sciences. Jul. 6, 2006. 6 pgs.
Popovic, Jennifer R. and Margaret J. Hall, 1999 National Hospital Discharge Survey, Apr. 24, 2001, Advance Data, No. 319, CDC, pp. 1-17 & 20.
Practice Guidelines Writing Committee and ESH/ESC Hypertension Guidelines Committee, Practice Guidelines for Primary Care Physicians: 2003 ESH/ESC Hypertension Guidelines, Published in Journal of Hypertension 2003, vol. 21, No. 10: 1011-1053, European Society of Hypertension 2003, pp. 1779-1786.
Programmable Infusion System, Pumps and Pump Selection, Medtronic Pain Therapies, Medtronic, Inc, Sep. 5, 2001, 2 pgs.
Pucihar, Gorazd et al., The influence of medium conductivity on electropermeabilization and survival of cells in vitro, May 31, 2001, Bioelectrochemistry, vol. 54, 2001, Elsevier Science B.V. 2001, pp. 107-115.
Pulmonary Concepts in Critical Care Breath Sounds, http://mbob.tripod.com/breath.htm, last accessed Aug. 23, 2004, 5 pages.
Pulmonary Function Testing, http://jan.ucc.nau.edu/˜daa/lecture/pft.htm, last accessed Aug. 23, 2004, 8 pages.
Purerfellner, Helmut and Martinek, Martin. Pulmonary vein stenosis following catheter ablation of atrial fibrillation. Current Opinion in Cardiology. 20; pp. 484-490. 2005.
Purerfellner, Helmut et al., Pulmonary Vein Stenosis by Ostial Irrigated-Tip Ablation: Incidence, Time Course, and Prediction, Journal of Cardiovascular Electrophysiology. vol. 14, No. 2. Feb. 2003. pp. 158-164.
Raji, A. R. M. and R. E. M. Bowden, Effects of High-Peak Pulsed Electromagnetic Field on the Degeneration and Regeneration of the Common Peroneal Nerve in Rats, The Journal of Bone and Joint Surgery Aug. 1983, vol. 65-B, No. 4, 1983 British Editorial Society of Bone and Joint Surgery, pp. 478-492.
Ram, C. Venkata S., M.D., Understanding refractory hypertension, May 15, 2004, Patient Care May 2004, vol. 38, pp. 12-16, 7 pages from http://www.patientcareonline.com/patcare/content/printContentPopup.jsp?id=108324.
Ravalia, A. et al., Tachyphylaxis and epidural anaesthesia, Edgware General Hospital, Correspondence, p. 529, Jun. 1989.
Renal Parenchymal Disease, Ch. 26, 5th Edition Heart Disease, A Textbook of Cardiovascular Medicine vol. 2, Edited by Eugene Braunwald, WB Saunders Company, pp. 824-825 1997.
Ribstein, Jean and Michael H. Humphreys, Renal nerves and cation excretion after acute reduction in functioning renal mass in the rat, Sep. 22, 1983, Am. J. Physiol., vol. 246, 1984 the American Physiological Society, pp. F260-F265.
Richebe, Philippe, M.D. et al., Immediate Early Genes after Pulsed Radiofrequency Treatment: Neurobiology in Need of Clinical Trials, Oct. 13, 2004, Anesthesiology Jan. 2005, vol. 102, No. 1, 2004 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., pp. 1-3.
Rihal, Charanjit S. et al., Incidence and Prognostic Importance of Acute Renal Failure After Percutaneous Coronary Intervention, Mar. 6, 2002, Circulation May 14, 2002, vol. 10, 2002 American Heart Association, Inc., pp. 2259-2264.
Rosen, S.M. et al., Relationship of Vascular Reactivity to Plasma Renin Concentration in Patients with Terminal Renal Failure, Proc. Dialysis Transplant Forum 1974, pp. 45-47.
Roth, Bradley J. and Peter J. Basser, A Model of the Stimulation of a Nerve Fiber by Electromagnetic Induction, IEEE Transactions on Biomedical Engineering, vol. 37, No. 6, Jun. 1990, pp. 588-597.
Rudin, Asa, M.D. et al., Postoperative Epidural or Intravenous Analgesia after Major Abdominal or Thoraco-Abdominal Surgery, The Journal of the American Society of Anesthesiologists, Inc., Anesthesiology 2001, vol. 95, A-970, 1 page.
Rudnick, Michael R. et al., Contrast-induced nephropathy: How it develops, how to prevent it, Cleveland Clinic Journal of Medicine Jan. 2006, vol. 73, No. 1, pp. 75-87.
Rump, L.C., The Role of Sympathetic Nervous Activity in Chronic Renal Failure, J Clinical Basic Cardiology 2001, vol. 4, pp. 179-182.
Ruohonen, Jarmo et al., Modeling Peripheral Nerve Stimulation Using Magnetic Fields, Journal of the Peripheral Nervous System, vol. 2, No. 1, 1997, Woodland Publications 1997, pp. 17-29.
Saad, Eduardo B, et al., Pulmonary Vein Stenosis After Radiofrequency Ablation of Atrial Fibrillation: Functional Characterization, Evolution, and Influence of the Ablation Strategy, Circulation. 108; pp. 3102-3107. 2003.
Sabbah, Hani N., Animal Models for Heart Failure and Device Development, Henry Ford Health System. 24 slides, Oct. 17, 2005.
Schauerte, P et al., Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system, Journal of Cardiovascular Electrophysiology. 12(5). May 2001. Abstract only. 2 pgs.
Schauerte, P et al., Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation, Circulation. 102(22). Nov. 28, 2000. Abstract only. 2 pgs.
Schauerte, P et al., Transvenous parasympathetic nerve stimulation in the inferior vena cava and atrioventricular conduction, Journal of Cardiovascular Electrophysiology. 11(1). Jan. 2000. Abstract only. 2 pgs.
Scheiner, Avram, Ph.D., The design, development and implementation of electrodes used for functional electrial stimulation, Thesis paper, Case Western Reserve University, May 1992, 220 pages.
Scherlag, BJ and Po, S., The intrinsic cardiac nervous system and atrial fibrillation, Current Opinion in Cardiology. 21(1):51-54, Jan. 2006. Abstract only. 2 pgs.
Schlaich, M.P. et al., Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560-5.
Schlaich, M.P. et al., Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation, Hypertension, 2004, 43:169-175.
Schmitt, Joseph et al., Intravascular Optical Coherence Tomography—Opening a Window into Coronary Artery Disease, LightLab Imaging, Inc. Business Briefing: European Cardiology 2005.
Schoenbach, Karl H. et al, Intracellular Effect of Ultrashort Electrical Pulses, Dec. 26, 2000, Bioelectromagnetics, vol. 22, 2001, Wiley-Liss, Inc. 2001, pp. 440-448.
Schrier, Robert et al., Cardiac and Renal Effects of Standard Versus Rigorous Blood Pressure Control in Autosomal-Dominant Polycistic Kidney Disease, Mar. 23, 2002, Journal of the American Society of Nephrology, American Society of Nephrology 2002, pp. 1733-1739.
Scremin, Oscar U., M.D., Ph.D. and Daniel P. Holschneider, M.D., 31 & 32.. An Implantable Bolus Infusion Pump for the Neurosciences, FRP; Apr. 2005, 3 pages.
Sensorcaine—MPF Spinal Injection, informational document, AstraZeneca 2001, 2 pgs.
Shah, D.C., Haissaguerre, M., Jais, P., Catheter ablation of pulmonary vein foci for atrial fibrillation: pulmonary vein foci ablation for atrial firbrillation, Thorac Cardiovasc Surg, 1999, 47 (suppl. 3): 352-356.
Shannon, J.L. et al., Studies on the innervation of human renal allografts, J Pathol. 1998, vol. 186, pp. 109-115.
Shlipak, M.G. et al., The clinical challenge of cardiorenal syndrome. Circulation. 2004;110:1514-7.
Shupak, Naomi M., Therapeutic Uses of Pulsed Magnetic-Field Exposure: A Review, Radio Science Bulletin Dec. 2003, No. 307, pp. 9-32.
Shu-Qing, Liu et al., Old spinal cord injury treated by pulsed electric stimulation, General Hospital of Beijing Command, Beijing, Dec. 6, 1990, 5 pages (full article in Chinese; abstract on last page).
Siegel, RJ et al., Clinical demonstration that catheter-delivered ultrasound energy reverses arterial vasoconstriction, Journal of the American College of Cardiology. 1992. 20; 732-735. Summary only. 2 pgs.
Simpson, B. et al., Implantable spinal infusion devices for chronic pain and spasticity: an accelerated systematic review, ASERNIP-S Report No. 42, Adelaide, South Australia, ASERNIP-S, May 2003, 56 pages.
Sisken, B.F. et al., 229.17 Influence of Non-Thermal Pulsed Radiofrequency Fields (PRF) on Neurite Outgrowth, Society for Neuroscience, vol. 21, 1995, 2 pages.
Skeie, B. et al., Effect of chronic bupivacaine infusion on seizure threshold to bupivacaine, Dec. 28, 1986, Acta Anaesthesiol Scand 1987, vol. 31, pp. 423-425.
Skopec, M., A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems, Feb. 4, 1997, CDRH Magnetic Resonance Working Group, U.S. Department of Heatlh and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Updated May 23, 1997, 17 pages, http://www.fda.gov/cdrh/ode/primerf6.html, (last accessed Jan. 23, 2006.
Slappendel, Robert et al., The efficacy of radiofrequency lesioning of the cervical spinal dorsal root ganglion in a double blinded randomized study, Jun. 26, 1997, Pain 73, 1997 International Association for the Study of Pain, Elsevier Science B.V., pp. 159-163.
Sluijter, M.D., Ph.D., Pulsed Radiofrequency, May 17, 2005, Anesthesiology Dec. 2005, vol. 103, No. 6, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., pp. 1313-1314.
Sluijter, M.D., Ph.D., Radiofrequency Part 1: The Lumbosacral Region, Chapter 1 Mechanisms of Chronic Pain and part of Chapter 2 Spinal Pain, 2001 FlivoPress SA, Meggen (LU), Switzerland, pp. 1-26.
Sluijter, M.D., Ph.D., Radiofrequency Part 2: Thoracic and Cervical Region, Headache and Facial Pain, various pages from, FlivoPress SA, Meggen (LU), Switzerland, 13 pages 2002.
Sluijter, M.D., Ph.D., The Role of Radiofrequency in Failed Back Surgery Patients, Current Review of Pain 2000, vol. 4, 2000 by Current Science Inc., pp. 49-53.
Smithwick, R.H. et al., Hypertension and associated cardiovascular disease: comparison of male and female mortality rates and their influence on selection of therapy, JAMA, 1956, 160:1023-1033.
Smithwick, R.H. et al., Splanchnicectomy for essential hypertension, Journal Am Med Assn, 1953:152:1501-1504.
Smithwick, R.H., Surgical treatment of hypertension, Am J Med 1948, 4:744-759.
Sobotka, Paul A., Treatment Strategies for Fluid Overload, CHF Patients, CHF Solutions. Transcatheter Cardiovascular Therapeutics 2005. 20 slides.
Solis-Herruzo, J.A. et al., Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome, Journal of Hepatology, 1987; 5: 167-173.
Souza, D.R.B. et al., Chronic experimental myocardial infarction produces antinatriuresis by a renal nerve-dependent mechanism, Oct. 14, 2003, Brazilian Journal of Medical and Biological Research 2004, vol. 37, pp. 285-293.
Standl, Thomas, M.D., et al., Patient-controlled epidural analgesia reduces analgesic requirements compared to continuous epidural infusion after major abdominal surgery, Aug. 29, 2002, Canada Journal of Anesthesia 2003, vol. 50 (3), pp. 258-264.
Steffen, W. et al., Catheter-delivered high intensity, low frequency ultrasound induces vasodilation in vivo, European Heart Journal. 1994. 15; pp. 369-376.
Steg, PG et al., Pulsed ultraviolet laser irradiation produces endothelium-independent relaxation of vascular smooth muscle, Circulation: Journal of the American Heart Assocation. 1989. pp. 189-197.
Stone, Gregg W., M.D. et al., Fenoldopam Mesylate for the Prevention of Contrast-Induced Nephropathy, JAMA Nov. 5, 2003, vol. 290, No. 17, 2003 American Medical Association, pp. 2284-2291.
Strojek, K. et al., Lowering of microalbuminuria in diabetic patients by a sympathicoplegic agent: novel approach to prevent progression of diabetic nephropathy? J Am Soc Nephrol. 2001;12:602-5.
Summary, Critical Reviews in Biomedical Engineering, vol. 17, Issue 5, 1989, pp. 515-529.
Sung, Duk Hyun, M.D. et al., Phenol Block of Peripheral Nerve Conduction: Titrating for Optimum Effect, Jun. 27, 2000, Arch. Phys. Med. Rehabil. vol. 82, May 2001, pp. 671-676.
Taka, Tomomi et al., Impaired Flow-Mediated Vasodilation in vivo and Reduced Shear-Induced Platelet Reactivity in vitro in Response to Nitric Oxide in Prothrombotic, Stroke-Prone Spontaneously Hypertensive Rats, Pathophysiology of Haemostasis and Thrombosis. Dec. 23, 2002. pp. 184-189.
Taler, Sandra J. et al., Resistant Hypertension, Comparing Hemodynamic Management to Specialist Care, Mar. 12, 2002, Hypertension 2002, vol. 39, 2002 American Heart Association, Inc., pp. 982-988.
Tamborero, David et al., Incidence of Pulmonary Vein Stenosis in Patients Submitted to Atrial Fibrillation Ablation: A Comparison of the Selective Segmental Ostial Ablation vs. the Circumferential Pulmonary Veins Ablation, Journal of Intervocational Cardiac Electrophysiology. 14; pp. 41-25. 2005.
Tay, Victoria KM, et al., Computed tomography fluoroscopy-guided chemical lumbar sympathectomy: Simple, safe and effective, Oct. 31, 2001, Diagnostic Radiology, Australasian Radiology 2002, vol. 46, pp. 163-166.
Terashima, Mitsuyasu et al. Feasibility and Safety of a Novel CryoPlasty™ System. Poster. 1 page, Mar. 15, 2002.
Thatipelli et al., CT Angiography of Renal Anatomy for Evaluating Embolic Protection Devices, Journal of Vascular and Interventional Radiology, Jul. 2007, pp. 842-846.
The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, ALLHAT Research Group, JAMA, 2002, vol. 288, pp. 2981-2997.
Thomas, John R. and Oakley, E. Howard N. Chapter 15: Nonfreezing Cold Injury Medical Aspects of Harsh Environments, vol. 1. pp. 467-490, 2001.
Thompson, Gregory W., et al., Bradycardia Induced by Intravascular Versus Direct Stimulation of the Vagus Nerve, Aug. 24, 1997, The Society of Thoracic Surgeons 1998, pp. 637-642.
Thrasher, Terry N., Unloading arterial baroreceptors causes neurogenic hypertension, Dec. 4, 2001, Am J. Physiol Regulatory Integrative Comp Physiol, vol. 282, 2002 the American Physiological Society, pp. R1044-R1053.
Tokuno, Hajime A. et al., Local anesthetic effects of cocaethylene and isopropylcocaine on rat peripheral nerves, Oct. 7, 2003, Brain Research 996, 2004, Elsevier B.V. 2003, pp. 159-167.
Trapani, Angelo J. et al., Neurohumoral interactions in conscious dehydrated rabbit, Am. J. Physiol. 254, 1988, the American Physiological Society 1988, pp. R338-R347.
Trock, David H. et al., The Effect of Pulsed Electromagnetic Fields in the Treatment of Osteoarthritis of the Knee and Cervical Spine. Report of Randomized, Double Blind, Placebo Controlled Trials, Mar. 22, 1994, The Journal of Rheumatology 1994, vol. 21, pp. 1903-1911.
Troiano, Gregory C. et al., The Reduction in Electroporation Voltages by the Addition of a Surfactant to Planar Lipid Bilayers, May 12, 1998, Biophysical Journal, vol. 75, Aug. 1998, the Biophysical Society 1998, pp. 880-888.
Trumble, Dennis R. and James A. MaGovern, Comparison of Dog and Pig Models for Testing Substernal Cardiac Compression Devices, Nov. 2003, ASAIO Journal 2004, pp. 188-192.
Tsai, E., Intrathecal drug delivery for pain indications, technique, results, Pain Lecture presentation, Jun. 8, 2001, 31 pages.
Uematsu, Toshihiko, M.D., Ph.D., F.I.C.A. et al., Extrinsic Innervation of the Canine Superior Vena Cava, Pulmonary, Portal and Renal Veins, Angiology—Journal of Vascular Diseases, Aug. 1984, pp. 486-493.
United States Renal Data System, USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2003, 593 pages.
Upadhyay, Pramod, Electroporation of the skin to deliver antigen by using a piezo ceramic gas igniter, Jan. 27, 2001, International Journal of Pharmaceutics, vol. 217, 2001 Elsevier Science B.V., pp. 249-253.
Valente, John F. et al., Laparoscopic renal denervation for intractable ADPKD-related pain, Aug. 24, 2000, Nephrol Dial Transplant 2001, vol. 16, European Renal Association—European Dialysis and Transplant Assocation, p. 160.
Van Antwerp, Bill and Poonam Gulati, Protein Delivery from Mechanical Devices Challenges and Opportunities, Medtronic presentation, 19 pages, Jul. 2003.
Velazquez, Eric J., An international perspective on heart failure and left ventricular systolic dysfunction complicating myocardial infarction: the Valiant registry, Aug. 5, 2004, European Heart Journal vol. 25, 2004 Elsevier, pp. 1911-1919.
Velez-Roa, Sonia, M.D. et al., Peripheral Sympathetic Control During Dobutamine Infusion: Effects of Aging and Heart Failure, Jul. 7, 2003, Journal of the American College of Cardiology, vol. 42, No. 9, 2003, American College of Cardiology Foundation 2003, pp. 1605-1610.
Villarreal, Daniel et al., Effects of renal denervation on postprandial sodium excretion in experimental heart failure, Oct. 29, 1993, Am J Physiol 266, 1994, pp. R1599-R1604.
Villarreal, Daniel et al., Neurohumoral modulators and sodium balance in experimental heart failure, Nov. 6, 1992, Am. J. Physiol, vol. 264, 1993, pp. H1187-H1193.
Vonend, O. et al., Moxonidine treatment of hypertensive patients with advanced renal failure. J Hypertens. 2003;21:1709-17.
Wagner, C.D. et al., Very low frequency oscillations in arterial blood pressure after autonomic blockade in conscious dogs, Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039.
Wald, Jan D., Ph.D, et al., Cardiology Update: 2003, Sep. 11, 2003, AG Edwards 2003, 120 pages.
Wang, Xi et al., Alterations of adenylyl cyclase and G proteins in aortocaval shunt-induced heart failure, Jul. 2004, AM J Physiol Heart Circ Physiol vol. 287, 2004 the American Physiological Society, pp. H118-H125.
Weaver, James C., Chapter 1 Electroporation Theory, Concepts and Mechanisms, Methods in Molecular Biology, vol. 55, Plant Cell Electroporation and Electrofusion Protocols, Edited by J.A. Nickoloff, Humana Press Inc., pp. 3-28, 1995.
Weaver, James C., Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Oct. 22, 1992, Journal of Cellular Biochemistry, vol. 51, 1993 Wiley-Liss, Inc., pp. 426-435.
Weiner, Richard L., M.D., Peripheral nerve neurostimulation, Neurosurg. Clin. N. Am. vol. 14, 2003, Elsevier, Inc. 2003, pp. 401-408.
Weisbord, Steven D., M.D. and Paul M. Palevsky, M.D., Radiocontrast-Induced Acute Renal Failure, Jul. 10, 2004, Journal of Intensive Care Medicine 2005, vol. 20 (2), 2005 Sage Publications, pp. 63-75.
Whitelaw, G.P., Kinsey, D., Smithwick, R.H., Factors influencing the choice of treatment in essential hypertension: surgical, medical, or a combination of both, Am J Surg, 1964, 107:220-231.
Wilson, D.H. et al., The Effects of Pulsed Electromagnetic Energy on Peripheral Nerve Regeneration, Annals New York Academy of Sciences, Oct. 1974, pp. 575-585.
Wolinsky, Harvey, M.D. PhD and Swan N. Thung, M.D., Use of a Perforated Balloon Catheter to Deliver Concentrated Heparin Into the Wall of the Normal Canine Artery, Aug. 30, 1989, JACC 1990, vol. 15, 1990 by the American College of Cardiology, pp. 475-481.
Wyss, J. Michael et al., Neuronal control of the kidney: Contribution to hypertension, Apr. 8, 1991, Can. J. Physiol. Pharmacol. 1992;70: 759-770.
Yamaguchi, Jun-ichi, M.D. et al., Prognostic Significance of Serum Creatinine Concentration for In-Hospital Mortality in Patients with Acute Myocardial Infarction Who Underwent Successful Primary Percutaneous Coronary Intervention (from the Heart Institute of Japan Acute Myocardial Infarction [HIJAMI] Registry), Feb. 24, 2004, The American Journal of Cardiology vol. 93, Jun. 15, 2004, 2004 by Excerpta Medica, Inc., pp. 1526-1528.
Ye, Richard D., M.D., Ph.D., Pharmacology of the Peripheral Nervous System, E-425 MSB, 6 pages, Jan. 2000.
Ye, S. et al., A limited renal injury may cause a permanent form of neurogenic hypertension. Am J Hypertens. 1998;11:723-8.
Ye, Shaohua et al., Renal Injury Caused by Intrarenal Injection of Pheno Increases Afferent and Efferent Renal Sympathetic Nerve Activity, Mar. 12, 2002, American Journal of Hypertension, Aug. 2002, vol. 15, No. 8, 2002 the American Journal of Hypertension, Ltd. Published by Elsevier Science Inc., pp. 717-724.
Yong-Quan, Dong et al., The therapeutic effect of pulsed electric field on experimental spinal cord injury, Beijing Army General Hospital of People's Liberation Army, Beijing, 5 pages (full article in Chinese; abstract on last page) Mar. 30, 1992.
Young, James B., M.D., FACC, Management of Chronic Heart Failure: What Do Recent Clinical Trials Teach Us?, Reviews in Cardiovascular Medicine, vol. 5, Suppl. 1, 2004, MedReviews, LLC 2004, pp. S3-S9.
Yu, Wen-Chung et al. Acquired Pulmonary Vein Stenosis after Radiofrequency Catheter Ablation of Paroxysmal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology. vol. 12, No. 8. Aug. 2001. pp. 887-892.
Zanchetti, A. et al., Neural Control of the Kidney—Are There Reno-Renal Reflexes?, Clin. and Exper. Hyper. Theory and Practice, A6 (1&2), 1984, Marcel Dekker, Inc. 1984, pp. 275-286.
Zanchetti, A. et al., Practice Guidelines for Primary Care Physicians: 2003 ESH/ESC Hypertension Guidelines, Journal of Hypertension, vol. 21, No. 10, 2003, pp. 1779-1786.
Zanchetti, A.S., Neural regulation of renin release: Experimental evidence and clinical implications in arterial hypertension, Circulation, 1977, 56(5) 691-698.
Zimmermann, Ulrich, Electrical Breakdown, Electropermeabilization and Electrofusion, Rev. Physiol. Biochem. Pharmacol., vol. 105, Springer-Verlag 1986, pp. 175-256.
Zoccali, C. et al., Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105:1354-9.
Zucker, Irving H. et al., The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide, Progress in Biophysics & Molecular Biology, vol. 84, 2004, Elsevier Ltd. 2003, pp. 217-232.
Zundert, Jan Van, M.D. FIPP and Alex Cahana, M.D. DAAPM, Pulsed Radiofrequency in Chronic Pain Management: Looking for the Best Use of Electrical Current, Pain Practice 2005, vol. 5, Issue 2, 2005 World Institute of Pain, pp. 74-76.
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765.
Avitall et al., “The creation of linear contiguos lesions in the artria with an explandable loop catheter,” Journal of the American College of Cardiology, 1999; 33; pp. 972-984.
Beale et al., “Minimally Invasive Treatment for Varicose Veins: A Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages.
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013, 1 page.
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831.
Dodge, et al., “Lumen Diameter of Normal Human Coronary Arteries Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation”, Circulation, 1992, vol. 86 (1), pp. 232-246.
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages).
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages).
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: 4, 2009, 10 pages.
Kandarpa, Krishna et al., “Handbook of interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002).
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct/show/NCT01628198.
Opposition to European Patent No. 2465470, Granted Oct. 28, 2015, Date of Opposition Jul. 27, 2016, 34 pp.
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages.
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages.
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages.
Oz, Mehmet, Pressure Relief, Time, Jan. 9, 2012, 2 pages. <www.time.come/time/printout/0,8816,2103278,00.html>.
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages.
Pieper, et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping” Journal of Applied Physiology, 1991, vol. 71 (4), pp. 1529-1539.
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080.
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages.
Purerfellner, Helmut et al., Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation, Curr. Opin. Cardio. 20 :484-490, 2005.
Remo, et al., “Safety and Efficacy of Renal Denervation as a Novel Treatment of Ventricular Tachycardia Storm in Patients with Cardiomyopathy” Heart Rhythm, 2014, 11(4), pp. 541-546.
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003).
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages.
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, 6, 2002, 4 pages.
U.S. Appl. No. 11/363,867, filed Feb. 27, 2006, 70 pp.
U.S. Appl. No. 60/813,589, filed Dec. 29, 2005, 62 pgs.
U.S. Appl. No. 60/852,787, filed Oct. 18, 2006, 112 pgs.
Ureter, https://en.wikipedia.org/wiki/Ureter, Jun. 2016, 6 pgs.
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968.
Zheng et al., “Comparison of the temperature profile and pathological effect at unipolar, bipolar and phased radiofrequency current configurations,” Journal of Interventional Cardiac Electrophysiology, 2001, pp. 401-410.
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al.
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al.
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al.
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct_2011.php>.
“2012 top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>.
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, <http://www.prnewswire.com/news-releases/ardianr-receives-2010-europcr-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>.
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, <http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>.
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year,” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media_relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>.
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. <http://www.cxvascular.com/in-latest-news/interventional-news---latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>.
“Iberis—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages.
“Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business report, 2009. 1 page. <http://www.neurotechreports.com/pages/goldelectrodes09.html>.
“Quick. Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages.
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, <http://pharmaeuticalintelligence.com/tag/vessix-vascular/>.
“The Edison Awards™” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>.
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages.
“Vessix Renal Denervation System: So Advanced It's Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages.
Asbell, Penny, “Conductive Keratoplasty for the Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages.
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit.” Am J Physiol Regul Integr Comp Physiol, vol. 274, 1998, 7 pages.
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999,7 pages.
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997).
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages.
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global Symplicity registry.” EuroIntervention, vol. 9, 2013, 9 pages.
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=83002>.
Davis, Mark et al., “Effectiveness of Renal Denvervation Therapy for Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages.
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Interv Cardiac Electrophysiol, 2:285-292 (1998).
Final Office Action; U.S. Appl. No. 12/827,700; dated Feb. 5, 2013, 61 pages.
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension.” Journal of the American College of Cardiology, col. 60, No. 14, 2012, 7 pages.
Gelfand, M., et al., “Treatment of renal failure and hypertension.” U.S. Appl. No. 60/442,970, filed Jan. 29, 2003, 23 pages.
Gertner, Jon, “Meet the Tech Duo That's Revitalizing the Medical Device Industry.” Fast Company, Apr. 15, 2013, 6:00 AM, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>.
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997).
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000).
Han, Y.-M, et al., “Renal artery embolization with diluted hot contrast medium: An experimental study.” J Vasc Intery Radiol, 12: 862-868 (2001).
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87:13-19 (1994).
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response.” American Medical Association White Paper (1988) 39 pages.
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” EuroIntervention, vol. 9, 2013, 9 pages.
Imimdtanz, “Medtronic awarded industry's highest honor for renal denervation system.” The official biog of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>.
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCI/36509>.
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001).
Lee, S. J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999).
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages.
Lustgarten, D. L., et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999).
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages.
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages.
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages.
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages.
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005, 1 page.
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011) 44 pages.
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal. 65, 729-734, (1989).
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992).
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006).
Ormiston, John et al., “First-in-human use of the OneShot™ renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages.
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages.
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=80880>.
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68.
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), 4 pages, http://www.medtronic.com/rdn/mediakit/RDN%20FAQ.pdf.
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages.
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages.
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” EuroIntervention, vol. 9, 2013, 9 pages.
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages.
Stella, A., et al., “Effects of reversible renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986).
Stouffer, G. A. et al., “Catheter-based renal denervation in the treatment of resistant hypertension.” Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages.
Swartz, J. F., et al., “Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993).
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998).
Verloop, W. L. et al., “Renal denervation: a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>.
Weinstock, M., et al., “Renal denervation prevents sodium retention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996).
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages.
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages.
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages.
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages.
Miller, Reed, “Finding a Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages.
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: “Dubium Sapientiae Initium” (Doubt Is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214.
Papademetriou, Vasilios et al, “Renal Nerve Ablation for Resistant Hypertension: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450.
Papademetriou, Vasilios et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using a Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572.
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages.
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages.
European Search Report for App. No. 12189194.9, dated Aug. 1, 2013, 11 pages.
Bello-Reuss, “Effects of Acute Unilateral Renal Denervation in the Rat.” The Journal of Clinical Investigation, vol. 56, Jul. 1975, 10 pages.
Page, I.H. et al., “The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension,” J. Clin Invest. 1934;14:27-30.
Related Publications (1)
Number Date Country
20180303839 A1 Oct 2018 US
Provisional Applications (3)
Number Date Country
60370190 Apr 2002 US
60415575 Oct 2002 US
60442970 Jan 2003 US
Continuations (4)
Number Date Country
Parent 14878371 Oct 2015 US
Child 15960596 US
Parent 14221536 Mar 2014 US
Child 14878371 US
Parent 11133925 May 2005 US
Child 14221536 US
Parent 10900199 Jul 2004 US
Child 11133925 US
Continuation in Parts (1)
Number Date Country
Parent 10408665 Apr 2003 US
Child 10900199 US