Various embodiments relate to methods, devices, computer program products and a system for requesting and providing information from clients located in an area.
Today magnetic loops and cameras/video surveillance (often utilizing number plate recognition) are used to monitor vehicles and measure their speed in order to collect traffic related information and estimate traffic flow and density. Traffic management centrals operators may also buy so called floating car data (FCD, comprising for example position and speed related data) as raw or aggregated data from companies in the navigation device business (for example companies selling traffic navigation devices for cars which are connected to a central server which collets for example FCD related data from the devices).
The Cooperative Intelligent Traffic Systems (C-ITSs) are standardized in EU and US (ETSI/IEEE) with the purpose of sharing information for better traffic safety and efficiency. The primary standardized access technology for C-ITS is ITS G5 or in the US IEEE 802.11p ad hoc WLAN on 5.9 GHz for vehicle to vehicle (V2V) or vehicle to infrastructure (V2I) communication. Examples of messages that are broadcasted in a limited range (limited mainly by the ad hoc WLAN range) are Decentralized Environmental Notification Message (DENM=an event has happened, for example slippery road ahead) and Cooperative Awareness Message (CAM=here I am, here I'm going) which are repeated in a defined frequency, for example with 1-10 Hz.
Road Site ITS Stations (also called Road Site Units, RSUs) owned by the road operator are planned to take care of the communication between vehicles and TMC by mostly standardized messages. Road operators will place those RSUs along (major) roads to collect information and send messages (for example CAM and DENM messages) to and from passing vehicles. However it will take some time and is costly to build RSU's for a bigger road network. Often the RSUs are fixed installations, but RSUs can be also mounted on a road work warning trailer (semi fixed).
The collected information is sent from the RSUs to the Traffic Management Center (TMC) back end for example to enable monitoring of the traffic flow.
Traffic management centers (TMC) should become more efficient and operate in real-time, or almost real-time, in order to improve traffic management and offer better and more accurate services to their customers. Therefore TMCs need to be able to collect traffic information (for example FCD which may comprise CAM and DENM messages) in a flexible, efficient and dynamic way, preferably in real-time or almost real time and anywhere in the road network.
However with the above described system of using RSUs to collect FCD data or of buying FCD, this can be only achieved to a limited extend due to the described problems above (RSUs installations along the majority of the roads takes a long time and is expensive, buying of FCD is expensive and only limited FCD data may be available and FCD data may be not available in real-time).
Further by frequently provided information (for example FCD) from vehicles in the network, a lot of data traffic is generated in the underlying network by providing and collecting information which may be not used by the TMC to the full extend or is even not needed by the TMC. The TMC is often only interested in a sub-set of the collected information.
Therefore a need exists to query and receive information (for example CAM and DENM messages or any other client related information) from a number of clients (for example vehicles/sensors) distributed over a certain geographic area in a dynamic, flexible and efficient way.
This need is met by the features of the independent claims. The dependent claims define refinements and embodiments.
According to an aspect a method for a first network entity requesting information from clients located in a first area is provided, the method comprising determining a second area overlapping with the first area and transmitting an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request.
According to a further aspect a method for a client providing information requested by a first network entity is disclosed, the method comprises receiving an information request from the first network entity, wherein said information request comprising a condition defining when to respond to the information request. The method further comprises determining if the condition is met, providing the requested information and transmitting the requested information when the condition is met.
According to a further aspect a first network entity configured to request information from clients located in a first area is provided, the first network entity comprising at least one processing unit configured to determine a second area overlapping with the first area, and an interface configured to transmit an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request.
According to a further aspect a client configured to provide information requested by a first network entity is provided, the client comprising an interface configured to receive an information request from the first network entity, wherein said information request comprises a condition defining when to respond to the information request. The interface is further configured to transmit the requested information when a condition is met. The client further comprises at least one processing unit configured to provide the requested information and to determine if the condition is met.
According to a further aspect, a computer program for a first network entity requesting information from clients located in a first area is provided, the computer program comprising instructions which, when executed on at least one processor, cause the at least one processor to determine a second area overlapping with the first area, and to transmit an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request.
According to a further aspect, a computer program for providing information requested by a first network entity is disclosed, the computer program comprising instructions which, when executed on at least one processor, cause the at least one processor to receive an information request from the first network entity, wherein said information request comprising a condition defining when to respond to the information request, to determine if the condition is met, to provide the requested information, and to transmit the requested information when the condition is met.
According to a further aspect, a network entity for requesting information from clients located in a first area is provided, the first network entity comprising means for determining a second area overlapping with the first area, and a means for transmitting an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request.
According to a further aspect, a client for providing information requested by a first network entity is provided, the client comprising a means for receiving an information request from the first network entity, wherein said information request comprises a condition defining when to respond to the information request, a means for determining if the condition is met, a means for providing the requested information and a means for transmitting the requested information when the condition is met.
According to a further aspect, a system for providing requested information from clients located in a first area is disclosed, the system comprising a network entity and at least one client according to the aspects mentioned above.
According to a further aspect, a method for providing requested information from clients located in a first area is disclosed, the method comprising determining a second area overlapping with the first area, transmitting an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request. The method further comprising receiving the information request, determining if the condition is met, providing the requested information, and transmitting the requested information when the condition is met.
Under the above aspects a service provider (for example an operator of a TMC) is enabled to request and collect information (for example FCD data) from clients (for example vehicles or sensors) in a selective and efficient way and in real-time or close to real-time, while limiting the traffic in the underlying telecommunication network to a minimum and increasing the quality of the collected information by avoiding to contact not affected clients and by avoiding to receive not requested information from contacted clients.
In summary a service provider is enabled to provide a better and more accurate service to customers, while optimizing the utilization of the underlying communication network resources.
At least one or more of the following advantages are provided:
It is to be understood that the features mentioned above, and the features yet to be explained below, can be used not only in the respective combinations indicated, but also in other combinations or in isolation, without departing from the scope of the present invention. Features of the above-mentioned aspects and embodiments may be combined with each other in other embodiments.
The foregoing and additional features and effects of the invention will become apparent from the following detailed description when read in conjunction with the accompanying drawings showing example embodiments. The elements and steps shown in the figure are illustrating various embodiments and show also optional elements and steps.
In the following description, for purposes of explanation and not limitation, specific details are set forth, such as particular network environments and communication standards etc., in order to provide a thorough understanding of the invention. It will be apparent to one skilled in the art that the invention may be practiced in other embodiments that depart from these specific details. For example, the skilled person in the art will appreciate that the current invention may be practised with any wireless network like for example UMTS, GSM, LTE or 5G (supporting for example machine-to-machine type communication) networks. As another example, the invention may also be implemented in short-range wireless networks such as WLAN, Bluetooth or WiFi systems or in wireline networks, for example in any IP-based network.
Embodiments will be described in detail with reference to the accompanying drawings. The scope of the invention is not intended to be limited by the embodiments described hereinafter or by the drawings, which are taken to be illustrative only. Elements or steps shown in the drawings may be optional and/or their order may be exchangeable.
The drawings are to be regarded as being example schematic representations, flow diagrams and elements illustrated in the drawings are not necessarily shown to scale. Rather, the various elements are represented such that their function and general purpose become apparent to a person skilled in the art. Any connection or coupling between functional blocks, devices, components, or other physical or functional units shown in the drawings or described herein may also be implemented by an indirect connection or coupling. A coupling between components may also be established over a wireless connection. Functional blocks may be implemented in hardware, firmware, software, or a combination thereof.
In the following description detailed example embodiments are described with respect to traffic related services/traffic management where a client is typically a vehicle. However this shall be not interpreted as limiting. The described methods and entities/clients can be used in any scenario where information from geographical distributed clients is requested and collected. Traffic management is just one example service and a vehicle (for example a car) is just one example for a client.
A network entity may be a server, especially an application server for Geo Location Messaging (GLM), a traffic control server, an element of a mobile core network, an element of a mobile access network or any kind of network element performing the described functionality. The network entity may be integrated into another network element or may be a stand-alone network entity. The network entity may be implemented in a cloud. The network entity may have a connection to one or more service providers and to clients.
A service provider may provide any kind of service for clients or any other interested party. A service provider may be a road operator (for example a national/city/private motorway), a traffic authority (for example city, state or federal), a traffic management center, a map provider or a traffic service provider. Examples of the services provided by the service provider are traffic management, real time traffic information, multi modal traffic information, navigation services, assistance to emergency vehicles or assistance vehicles.
A client may be for example a portable client (for example a mobile device, a tablet, a laptop) or a vehicle (for example a car, a plane, a drone, a motorcycle). The portable client may be part of the vehicle (for example temporary or fixed installed in the vehicle) and may function there as the client of the vehicle. A client may be a GLM client or a sensor and may support machine-to-machine type functionality. Further the client may be movable or fixed installed.
The client may be connected wireless to a communication network. The connection of the client may be a mobile network connection (for example GSM, UMTS, LTE, 5G) or any other kind of connection (WLAN/WiFi, Bluetooth, Wimax, Near field communication (NFC) . . . ). The client may establish the connection directly to the network or via other clients which provide the connection to the network. The client itself may route connection of other clients towards the communication network or further clients.
A condition (or a criterion) can comprise of one or more parameters. If the one or more parameter fulfil defined requirements (for example if the one or more parameter is speed and if a defined speed is exceeded) the condition is supposed to be met. If a condition comprises of more than one parameter the condition may be met if the requirements of all parameters are fulfilled or if a subset of the requirements of the parameters is fulfilled. The one or more parameter may be parameters of a client or which are collected by a client. The one or more parameter may relate to properties of the client, to environmental parameters, to properties of other clients or to time (for example if the client is a vehicle parameters may be speed, driving direction, ambient temperature, status of rain sensor/wipers, type of the vehicle, speed of clients in an area around the client, area where the client shall be located, point a client shall pass, time point or time interval).
The requested information may be any kind of information or data, for example measurement results, client related data (for example position, speed, direction, type of the client/vehicle), identifications, data from sensors, history data, environmental data, data collected from other clients or sensors, status data or calculated data.
With the roll out of C-ITS G5 vehicles will be able to send CAM and DENM messages. Instead (or in addition) to an ad hoc WLAN for communicating CAM and DENM messages towards the TMC, it is proposed to use other networks technologies (for example mobile networks) to transport the CAM/DENM messages (or any other information/data reported by a vehicle or client). Further a publish/subscribe system is proposed which allows service providers (e.g. TMCs/Traffic Authorities) to subscribe for events which have a geographical relevance, without having to deal with the complexity which is involved when dealing with a large client base, many events and geographical computations. It is proposed that the TMC can place FCD measurement (or any other kind of measurements as needed in almost real time in a selected geographical area.
By for example instructing vehicles to upload a certain amount of CAM messages (or other measurement messages) per time interval, traffic speed at a specific point can be measured. By changing the area in which a measurement is required, traffic management can place measurement points where they are needed in real time.
The Service Provider 1.1 (for example a Traffic Authority/TMC) can define measurement tasks targeted to sensors or vehicles which are located within a certain geographic area. In a measurement task a number of parameters can be specified like for example:
The SP 1.1 sends a request 1.11 related to the measurement task to a Geographic Receiver (GR) 1.2 which is an apparatus to keep track on those requests. The GR forwards 1.12 the request to a Geographic Enabler (GE) 1.3 which holds information about different sensors and devices (for example vehicles) and their location in the area where the request from the SP is targeted to. There could be several GEs (not shown) responsible for different geographical areas. Those areas may be overlapping. If there are several GEs, the GR can select the GE which can handle the request. The GR may select several GEs (and so forward the request to several GEs) if the target area of the SP falls into the responsible areas of several GEs. The forwarded request may be modified (for example by adapting parameters of the request and/or by adding information) by the GR before it is forwarded from the GR to the one or more GEs. However the request can be also forwarded unchanged.
The GE 1.3 will send request messages 1.13 to clients in the targeted geographic area (for example to sensor platforms 1.6 or vehicles 1.5 and 1.7 in the targeted geographic area), and instruct them to perform the required measurements or collect/compute the required information/data and to send the result back 1.14. The instructions in the request message 1.13 may comprise a duration for the measurement. The GE collects the result from the individual sensor platforms (for example CAMs), optionally aggregates and/or analyses/processes them 1.15, and sends a response 1.16 back to the GR 1.2. The GR may further process or aggregate the information in the response before forwarding 1.17 it to the SP 1.1. Alternatively the GE may send the response directly to the SP and so bypassing the GR (1.16*).
The GR 1.2 may also receive information from unsolicited Event Notifications 1.10 originating for example from vehicles 1.4 or sensors (not shown, for example sensors along roads). Those unsolicited Event Notifications 1.10 could be for example DENMs uploaded by IVSs or CAMs and DENMs collected by IRSs. Unsolicited Event Notifications may be generated in a periodic manner and may be also received by the GE 1.3 (not shown).
The information may be transmitted by using standard CAMs with for example different parameter set. The CAM itself may be anonymized or may be authenticated by a public key system, so when it is for example broadcasted over a 5.9 GHz WLAN the speed information cannot be used for law enforcement. When the CAM is sent over a mobile network the identity of the SIM card is known so there should be a layered structure to ensure privacy of the client/vehicle.
There may be many parameters in the CAM, the most relevant for floating car data are:
The above list is non-exhaustive, the CAM may comprise additional parameters as well.
As explained above the GE 1.3 holds information about different sensors and devices (for example vehicles) and their location in an area where the GE is responsible for.
When the vehicle reaches a tile border it contacts the GE server and gets the coordinates of the new tile it is moving in. The GE updates its database with the information that the vehicle is now located in the new tile. Thus the GE has an overview about the vehicles in his responsible area 2 and in which tile they are located. With this concept traffic inside the underlying communication network (for example a mobile communication network) connecting the vehicles and the GE is optimized, since vehicles only report a tile change and do not need to send periodic updates of their location (which will load the underlying communication network). The GE itself has the knowledge about the vehicles in a certain tile or sub-set of tile, and can send messages targeted to this area only to vehicles located in the tile or the sub-set of tiles, and so minimize the traffic in the underlying telecommunication network by not addressing all vehicles in the area 2 where the GE is responsible for.
In
Instead of an area 2.4 the SP may also request traffic related information of a specific location (for example the crossing of roads 2.6 and 2.7). The GE will then map the specific location to one or more belonging tiles (for example tile 2.3 in case of the crossing between roads 2.6 and 2.7).
The above described method to request and provide information offers the advantage that the information can be collected in (almost) real time, that the request can be limited to a geographical area 3.6 and that the information can be collected independent from the availability of RSU in the area of interest. This has the effect that the underlying communication network load is reduced and that only the requested information can be collected.
However there are vehicles (3.8, 3.9) in area 3.6 which will be reached and which will respond that are outside the area 3.5. The SP may be not interested in the reported information of vehicles 3.8 and 3.9, since it was not requested. Due to the mapping of area 3.5 to tiles 3.6, a bigger area is selected by the GE (area 3.6 is bigger than area 3.5). Therefore the GE will send requests also to vehicles located in area 3.6 which are not located in area 3.5. Those vehicles (3.8, 3.9) will then also respond to the request (3.14, 3.17) and will provide (3.14*, 3.17*) the requested information. Thus additional load on the underlying communication network is generated by sending requests and getting responses to/from vehicles which are located inside area 3.6 but outside area 3.5 and are therefore not targeted by the request 3.12. Further the information quality of the collected responses is not optimum since the collected responses comprise responses of vehicles 3.8 and 3.9 inside area 3.6 but outside of area 3.5.
To overcome those disadvantages it is proposed that the requests 3.14 to 3.18, which are send by the GE 3.2 to the vehicles 3.7 to 3.11, comprise a condition defining when a vehicle shall respond.
As shown in
However the situation shown in
As shown in
With respect to
Requests 3.14 to 3.18 of
The condition defining when a vehicle shall respond may be received together with the request 3.12 at the GE 3.2, or the condition may be generated or modified by the GE 3.2. For example request 3.12 may ask for information about vehicles driving on highways in area 3.5 with a speed below 50 km/h. GE 3.2 is aware about the highways in the area 3.3 and translates the general “on highways” in request 3.12 to the highways in the area 3.3 (in the present example this will be only highway 3.4). Requests 3.14 to 3.18 transmitted by the GE 3.2 to the vehicles 3.7 to 3.11 in area 3.6 comprise then the condition that the vehicles shall only respond if they are on highway 3.4 and drive below 50 km/h. The condition “on highway 3.4” may be added to the requests 3.14 to 3.18 by giving the highway name (where the vehicle then knows due its navigation system if it is on the highway or not) or by giving the highway coordinates.
The above described speed and area parameters, which are used by the condition for defining when a vehicle shall respond, are non-limiting examples. Any kind or combination of parameter(s) related to a vehicle or any other kind of client could be used instead.
Further parameters that could be used by the condition in the context of vehicles are for example:
The above list is non-exhaustive and focuses on parameters for vehicles as clients. For other clients (for example any kind of sensors) different parameters may apply, for example depending on what the sensor measures and where the sensor is located. In addition to those parameters the condition may also comprise a time, time interval or a frequency requirement defining a time or time point during/at which the information is requested.
Some advantages of the method as described in connection with
1. Improving of data quality
2. Reduction of transmission resources
One example of a service provided by a SP utilizing the above described mechanisms is a traffic density service, which provides information on traffic density and vehicle speed for selected areas. The authority which owns the GE provides access to the vehicle information/data for the specified area, which can be tailored and shaped according to the service needs. It is proposed that information which can be accessed by the service provider should not contain individual location or identity information/data, but instead anonymized information/data from devices which fulfil the given condition. Since the GE acts as a broker for all information/data from relevant sensors and devices it is possible to combine requests on device information/data (e.g. for different services or different service providers) and thus reduce the number of communication transactions per sensor or device/client even further.
By using the tile-based concept, the GE can distribute the requests to vehicles in the tiles which are overlapping with the relevance area. The targeted relevance area may be forwarded to the vehicles possibly together with some other condition. A local filtering process can take place by vehicles in the targeted tiles to check, if the vehicle is in the targeted relevance area and/or fulfils the other condition. Only if the vehicle is actually within the relevance area and/or fulfils the other condition, it will answer to the request and provide the requested information (for example perform the requested measurement strategy).
The requested information from the vehicles/clients may be specific information or known standard messages (like for example CAMs). Responding to the information request may be based on different strategies:
SP 5.10 sends a request (5.1) for information related to clients located in a first area to a network entity 5.11. Network entity 5.11 serves the first area or a part of the first area. The request 5.11 may, in addition to the first area, comprise additional information (for example spatial information related to the requested information or details when the requested information should be reported).
The network entity 5.11 receives the request and determines in step 5.2 a second area based on the first area, wherein the second area overlaps with the first area. The second area may comprise the first area or only parts of the first area. Optionally the network entity 5.11 may determine a condition 5.3 defining when a client should respond to a request. The condition may be determined based on information in the request 5.1, for example the condition may be the first area, a subset of the first area or may relate to the requested information. Alternatively the condition may be received already with the request 5.1. The network entity sends an information request 5.4 comprising the condition to one or more clients 5.21 located in the second area.
The client 5.21 receives the information request 5.4, determines in step 5.5 if the condition received with the information request 5.4 is met, and if the condition is met provides the requested information in step 5.6. Providing the requested information may comprise for example measuring the requested information, calculating the requested information, extracting the requested information from history data or requesting the requested information from other clients (non-exhaustive list). Finally the client responds to the request 5.4 and sends the requested information either to the network entity 5.11 (step 5.7b) or directly to the SP 5.10 (step 5.7a) if the condition is met.
Network entity 5.11 may receive the requested information in step 5.7b from one or more clients, may aggregate and/or process in step 5.8 the requested information, and sends it in step 5.9 back to the SP 5.10 in response to the request 5.1.
By limiting the request 5.4 transmitted from the network entity 5.11 to the client 5.21 to the second area, and by providing a condition (5.3, 5.4) defining when the client should respond, traffic in the underlying communication network is reduced/optimized and it is ensured that only responses containing the requested information are send by client 5.21. The later aspect leads to better quality of collected responses information.
In a first optional method step 6.1 a request is received requesting information related to a first area. Such a request may be received from a service provider or a GR.
In a second step 6.2 a second area is determined overlapping with the first area. The second area may comprise the first area completely or may partly overlap with the first area.
In a third optional step 6.3 a condition is determined defining when a client shall respond to an information request. The condition may be determined based on information being part of the request received in step 6.1. The condition may be also extracted from the request received in step 6.1.
Then in step 6.4 an information request is transmitted to at least one client located in the second area, wherein the information request comprises the condition. The information request maybe a combined information request based on several received requests under step 6.1, especially if those several requests relate to the same first area. This has the effect of further optimising the utilisation of transmission resources of the underlying communication network (reducing of transmission load).
In optional step 6.5 the requested information is received from one or more clients. This step is optional, since the client may also send the requested information directly to a service provider or another entity (for example the network entity which has send the request received in step 6.1) and so bypass the network entity (bypass for example network enity 5.11 of
The optional received requested information may be then aggregated or processed in step 6.6 before it is further transmitted in step 6.7 which is also optional. The requested information may be also transmitted without aggregation/processing, in this case step 6.6 is skipped.
For the purpose of aggregation or processing step 6.6, earlier collected and stored history information may be used and may be combined together with the received requested information. Information from several independent requests received in step 6.1 may be also aggregated together, especially when those requests relate to the same first area. This has the further effect of optimising the utilisation of transmission resources of the underlying communication network when performing the transmitting of the aggregated information in step 6.7 (reducing of transmission load).
In step 7.1 the client receives an information request comprising a condition.
The client determines in step 7.2 if the condition is met and provides in step 7.3 the requested information. The providing of the requested information may be done before or after step 7.2. If the providing is done after step 7.2, the providing of the requested information may be only done when the condition is met. Providing may be done by measuring/collecting the requested information utilizing for example sensors or other clients. Further providing may be to calculate the requested information (for example by taking several measurements or collected information elements into account) or by using history information which may be stored in a memory of the client.
Finally the client transmits in step 7.4 the requested information when the condition is met.
Client 8.1 comprises an interface 8.21 which may further comprise of a means 8.11 for receiving information 8.2, and a means 8.14 for transmitting information 8.3. The means 8.11 and the means 8.14 may be combined in one transceiver means (not shown). The received information 8.2 may be a received information request (see for example step 7.1 of
Client 8.1 further comprises a processing unit 8.22 which may further comprise a means 8.12 for determining if a condition is met (see step 7.2 of
Network entity 9.1 comprises an interface 9.21 which may further comprise of means 9.11/9.15 for receiving information 9.2/9.4 and means 9.14/9.17 for transmitting information 9.3/9.5. The two means 9.2 and 9.4 may be combined in one means for receiving (not shown), the two means 9.3 and 9.5 may be combined in one means for transmitting (not shown). Further the means for receiving and transmitting may be combined in one or two transceiver means (not shown).
The received information 9.2 may be a received request (see for example step 6.1 of
Client 9.1 further comprises a processing unit 9.22 which may further comprise a means 9.12 for determining a second area (see step 6.2 of
The element may comprise an interface 10.2, a processor 10.12 and a memory 10.13. The interface 10.2 may further comprise a receiver 10.11 and a transmitter 10.14. The receiver 10.11 and the transmitter 10.14 may be combined in a transceiver (not shown). The receiver may receive signals 10.3 and the transmitter may transmit signals 10.4 from and to the element 10.1. Signals may be transmitted wirelessly (e.g., via an antenna which is not shown). Processor 10.12 may execute instructions to provide some or all of the functionality described above as being provided by the network entity and the client (refer to
Processor 10.12 may comprise any suitable combination of hardware and software implemented in one or more modules to execute instructions and manipulate information/data to perform some or all of the described functions of the elements (for example the client or the network entity). In some embodiments, processor 10.12 may comprise one or more computers, one or more central processing units (CPUs), one or more microprocessors, one or more applications, and/or other logic.
Memory 10.13 may be generally operable to store instructions, such as a computer program, software, an application comprising one or more of logic, rules, algorithms, code, tables, etc. and/or other instructions capable of being executed by a processor. Examples of memory 10.13 may comprise computer memory (for example, Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (for example, a hard disk), removable storage media (for example, a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or or any other volatile or non-volatile, non-transitory computer-readable and/or computer-executable memory devices that store information.
Alternative embodiments of the client 8.1, the network entity 9.1 and the element 10.1 may comprise additional components beyond those shown in
Various different types of elements may comprise components having the same physical hardware but may be configured (e.g., via programming) to support different radio access technologies, or may represent partly or entirely different physical components.
Some embodiments of the disclosure may provide one or more technical advantages. Some embodiments may benefit from some, none, or all of these advantages. Other technical advantages may be readily ascertained by one of ordinary skill in the art.
In a first example embodiment a method for a first network entity requesting information from clients located in a first area is provided, said method comprising determining a second area overlapping with the first area, and transmitting an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request.
Refinements of the method according to the first example embodiment may be wherein
In a second example embodiment a method for a client for providing information requested by a first network entity is disclosed, said method comprises receiving an information request from the first network entity, wherein said information request comprising a condition defining when to respond to the information request. The method further comprises determining if the condition is met, providing the requested information, and transmitting the requested information when the condition is met.
Refinements of the method according to the second example embodiment may be wherein
In a third example embodiment a network entity configured to request information from clients located in a first area is provided, the first network entity comprising at least one processing unit configured to determine a second area overlapping with the first area, and an interface configured to transmit an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request.
Refinements of the network entity according to the third example embodiment may be wherein
In a fourth example embodiment a network entity for requesting information from clients located in a first area is provided, the first network entity comprising a means for determining a second area overlapping with the first area, and a means for transmitting an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request.
Refinements of the network entity according to the fourth example embodiment may be according to the refinements of the network entity of the third example embodiment.
In a fifth example embodiment a client configured to provide information requested by a first network entity, the client comprising an interface configured to receive an information request from the first network entity, wherein said information request comprises a condition defining when to respond to the information request, and to transmit the requested information when a condition is met. The client further comprises at least one processing unit configured to provide the requested information, and to determine if the condition is met.
Refinements of the client according to the fifth example embodiment may be wherein
In a sixth example embodiment a client for providing information requested by a first network entity is provided, the client comprising a means for receiving an information request from the first network entity, wherein said information request comprises a condition defining when to respond to the information request. The client further comprising a means for determining if the condition is met, a means for providing the requested information and a means for transmitting the requested information when the condition is met.
Refinements of the network entity according to the sixth example embodiment may be according to the refinements of the network entity of the fifth example embodiment.
In a seventh example embodiment a computer program comprising program code to be executed by at least one processing unit of a first network entity is provided, wherein execution of the program code causes the at least one processing unit to execute a method according to the first example embodiment.
Refinements of the computer program according to the seventh example embodiment may be according to the refinements of the method of the first example embodiment.
In an eighth example embodiment a computer program comprising program code to be executed by at least one processing unit of a first network entity is provided, wherein execution of the program code causes the at least one processing unit to execute a method according to the second example embodiment.
Refinements of the computer program according to the eighth example embodiment may be according to the refinements of the method of the second example embodiment.
In a ninth example embodiment a system for providing requested information from clients located in a first area is provided, the system comprising a first network entity according to the third or fourth embodiment and at least one client according the fifth or sixth embodiment.
In a tenth example embodiment a method for providing requested information from clients located in a first area is disclosed, the method comprising determining a second area overlapping with the first area, transmitting an information request to clients located in the second area, wherein said information request comprises a condition defining when a client shall respond to the information request. The method further comprising receiving the information request, determining if the condition is met, providing the requested information, and transmitting the requested information when the condition is met.
It is to be understood that the examples and embodiments as explained above are merely illustrative and susceptible to various modifications. For example, the concepts could be used in other types of communication networks, not explicitly mentioned so far. Further, it is to be understood that the above concepts may be implemented by using correspondingly designed software in existing nodes, or by using dedicated hardware in the respective nodes.
Abbreviations:
5G 5th Generation (5th Generation Mobile Network)
CAM Cooperative Awareness Message
CD Compact Disk
C-ITS Cooperative Intelligent Traffic System
DENM Decentralized Environmental Notification Message
DVD Digital Video Disk
ETSI European Telecommunications Standards Institute
EU European Union
FCD Floating Car Data
GE Geographic Enabler
GLM Geo Location Messaging
GPS Global Positioning System
GSM Global System for Mobile Communications
GR Geographic Receiver
Hz Hertz
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
IRS ITS road side station/Roadside Station
ITS Intelligent Transport System
IVS In vehicle system/ITS Vehicle Station
LTE Long Term Evolution
NFC Near Field Communication
RAM Random Access Memory
ROM Read Only Memory
RSU Road Site Unit
SP Service Provider
TMC Traffic Management Center
UMTS Universal Mobile Telecommunications System
US United States
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
WiFi any kind of WLAN network, synonym to WLAN
WLAN Wireless Local Area Network
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/070583 | 9/9/2015 | WO | 00 |