Some embodiments described herein relate generally to secure and/or multi-factor authentication for a compute device.
Devices such as smart phones, tablets, and the like are increasingly used for sensitive operations and/or business purposes. The mobility of these devices introduces risks of the use of these devices, and/or the information stored thereon, for malicious purposes. It is now commonplace for these devices to include built in security features that are directed to user authentication, such as lock screens. Such security features are either too simple (e.g., a four-digit pin), or too cumbersome (e.g., a lengthy password having a necessary mix of alphabets, numbers, etc.) for entry on the relatively small input screen associated with such devices.
Accordingly, a need exists for secure authentication that provides adequate security without significant modification of the operating components of the device.
An apparatus includes a memory of a mobile compute device, and a hardware processor of the mobile compute device. The hardware processor is configured to implement an operating system and an authentication module. The operating system is configured to receive a first authentication identifier, and is also configured to authorize use of the mobile compute device based on the first authentication identifier meeting a first criterion. The authentication module is configured to, in response to the operating system authorizing use of the mobile compute device, disable at least one function of the mobile compute device and request a second authentication identifier. The authentication module is also configured to receive the second authentication identifier. The authentication module is also configured to enable the at least one function in response to the second authentication identifier meeting a second criterion.
As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a communication module” is intended to mean a single module or a combination of modules.
In some embodiments, an apparatus includes an authentication module implemented as a native application in at least one of a memory or a processor of a mobile device. The apparatus also includes the authentication module configured to, at a first time, disable at least one function of the mobile device and request an authentication identifier from a Near Field Communication (NFC) device associated with the mobile device. The authentication module is also configured to receive, from the NFC device via an NFC communication channel and at a second time after the first time, the authentication identifier. The authentication module is also configured to compare the authentication identifier with a predetermined criterion. The authentication module is also configured to enable the at least one function of the mobile device when the authentication identifier meets the predetermined criterion.
In some embodiments, a non-transitory processor-readable medium stores code representing instructions to be executed by a processor. The code includes code to cause the processor to send a signal to display a primary lock screen on a mobile device. The primary lock screen is integrated with an operating system of the mobile device, and the primary lock screen requests a first authentication identifier from a user. The code also includes code to cause the processor to receive an indication of the first authentication identifier, and compare the first authentication identifier to a first criterion associated with the operating system. The code also includes code to cause the processor to send, in response to the indication of the first authentication identifier meeting the first criterion, a signal to remove the primary lock screen. The code also includes code to cause the processor to send, in response to removing the primary lock screen, a signal to display a secondary lock screen. The secondary lock screen is associated with an application not integrated with the operating system of the mobile device. The secondary lock screen requests a second authentication identifier from the user. The code also includes code to cause the processor to receive an indication of the second authentication identifier, and compare the second authentication identifier to a second criterion associated with the native application. The code also includes code to cause the processor to send, based on the indication of the second authentication identifier meeting the second criterion, a signal to remove the secondary lock screen and provide the user access to functionality of the mobile device.
The memory 160 can be, for example, a Random-Access Memory (RAM) (e.g., a dynamic RAM, a static RAM), a flash memory, a removable memory, and/or so forth. In some embodiments, instructions associated with performing the operations described herein (e.g., user authentication) can be stored within the memory 160 and executed at the processor 110.
The hardware processor 110 can be any element configured to execute program code, such as a general purpose processor, a field-programmable gate array (FPGA), an application-Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Digital Signal Processor (DSP), and/or the like, and combinations thereof. The processor 110 includes a communication module 120, a notification module 124, an authentication module 128, and/or other module(s) (not shown). For example, the processor can include a control module (not shown) for configuring operational parameters of the other modules. In some embodiments, the processor can include one or more modules (collectively, the reference character 116) based on executing instructions that manage hardware resources of the compute device 100, and that provide consumable services, such as application programming interface (API) calls, for software and/or hardware modules of the compute device and/or otherwise interacting with the compute device.
In some embodiments, the processor 110 can also execute instructions to run an operating system (OS) 116. The OS 116 can include, but not be limited to, a real-time OS, a multi-user OS, a multi-tasking OS, a distributed OS, a templated OS, an embedded OS, and/or the like. In some embodiments, the OS is any suitable OS for operating a mobile device, such as, for example, a mobile OS. The term “operating system” and “OS” as used herein indicate any module(s) executed by the processor and configurable to interact with the notification module 124 and the authentication module 128 as described herein.
Each module in the processor 110 can be any combination of hardware-based module (e.g., a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP)), hardware-based module executing software (e.g., a module of computer code stored in the memory 160 and/or executed at the processor 110), and/or a combination of hardware- and software-based modules. Each module in the processor 110 is capable of performing one or more specific functions/operations as described in further detail with respect to
In some embodiments, the processor 110 can include more or less modules than those shown in
In some embodiments, the compute device is operatively coupled to a network (not shown). The network can be any type of network that can operatively connect and enable data transmission between the compute device 100 and other entities in the network. The network can be, for example, a wired network (an Ethernet, a local area network (LAN), etc.), a wireless network (e.g., a wireless local area network (WLAN), a Wi-Fi network, cellular network, etc.), or a combination of wired and wireless networks (e.g., the Internet, etc.). In some embodiments, the network can be multiple networks connected together to form a larger network (e.g., the Internet).
In some embodiments, the notification module 124 can be configured to interact with the OS 116 to receive one or more notifications of actions and/or occurrences detected by the OS. In some embodiments, the notification module 124 can register with the OS to receive the notification. In other embodiments, the notification module 124 can periodically check for notification. In other embodiments, the notification module 124 monitors for notifications that are broadcasted by the OS 116.
In some embodiments, a notification can be related to user interaction with the compute device 100. In some embodiments, a notification can be related to an interaction of the user with the compute device 100 such as, for example, after the compute device 100 is powered up, or upon passage of a prespecified amount of time (e.g., an hour) after the user has powered up the compute device, or when the user interacts with the compute device after a period of inactivity, and/or the like. In some embodiments, the interaction can include one or more authentication steps (also referred to as a first authentication) provided by the OS 116. In some embodiments, the OS 116 is configured to receive a first authentication identifier. In such embodiments, the operating system can be configured to authorize use of the mobile compute device based on the first authentication identifier meeting a first predetermined criterion. In some embodiments, the first authentication identifier is associated with an operating system-based authentication mode. For example, the first authentication identifier (also referred to simply as first authentication, or as first authentication information) can be a password or Personal Identification Number (PIN) entry by a user on a keyguard to unlock the compute device 100. The term “keyguard” as used herein refers to a user interface that disables (“locks”) usage of the compute device 100 to prevent interaction with a user, such that a special key combination received from the user, unlikely to be entered accidentally, can be used to unlock the device. In some embodiments, the notification can indicate that the user has cleared the first authentication, and is now able to interact with the compute device 100. A non-limiting example of such a notification is the ACTION_USER_PRESENT action broadcast by Android operating systems after the keyguard is removed due to successful authentication (i.e., meets the first criterion). Another non-limiting example of such a notification is the BOOT_COMPLETED action broadcast by Android operating systems after a successful startup operation.
In some embodiments, the authentication module 128 is configured to receive the notification from the notification module 124, and is further configured to substantially immediately disable usage of aspects of the compute device 100, pending additional authentication (also referred to as a second authentication, as second authentication information, or as a second authentication identifier). In some embodiments, the second authentication identifier is associated with any suitable non-operating system-based authentication mode. The term “substantially immediately” as used herein generally indicates the capability of compute devices, and of the compute device 100 in particular, operating at speeds far in excess of average human response times, to disable usage of the compute device 100 after the first authentication and prior to any subsequent human interaction. Disabling usage of the compute device 100 can include disabling one or more of the I/O interfaces 180. For example, a touchscreen (not shown) of the compute device 100 can be disabled, while still permitting the user to still effect volume control via volume control buttons (not shown). Further, disabling usage of one or more I/O interfaces 180 can include disabling interacting with some aspects of the compute device 100, while still permitting others. For example, a touchscreen of the compute device 100 may permit the user to manipulate a music player service, but otherwise forbid interaction. As another example, disabling usage of the compute device 100 can include disabling access to the functionality of one or more other modules (not shown) of the compute device 100.
In some embodiments, disabling one or more of the I/O interfaces 180 as described herein includes specifying, to the OS 116, the I/O interfaces 180 to be disabled, and the manner of disabling the I/O interfaces 180. In this manner, aspects of the modules disclosed herein can interact with the OS 116 in a manner similar to any other modules implemented by the processor 110 that do not form part of the OS. As an example, the specification provided to the OS 116 can include an opaque view to be presented on a touchscreen interface of the compute device 100, where the opaque view cannot be removed without second authentication, and may or may not consume touch events received at the touchscreen.
The second authentication can necessitate any suitable form of input from the user via the I/O interfaces 180 to permit usage of the compute device 100. In some embodiments, the second authentication includes receiving a unique identifier (e.g., a PIN number, a password, a unique swipe pattern, etc.) via a touchscreen or via a keypad of the compute device 100. In some embodiments, the second authentication includes receiving biometric information via a biometric scanning interface of the compute device 100. In some embodiments, the second authentication includes receiving audio and/or visual information via (for example) a microphone and/or a camera of the compute device 100. An example of visual information can be the image of a unique code such as a barcode, a quick response (QR) code, and/or the like. In some embodiments, the second authentication can include a hardware component such as, for example, an NFC card/device, a keychain dongle, and/or the like. In some embodiments, the second authentication implements Federal Information Processing Standards (FIPS) 196. In some embodiments, the second authentication can request a second authentication identifier (e.g., in response to a request from the authentication module 128) from a user-specific NFC device associated with the compute device 100. The second authentication identifier can be received from the NFC device via an NFC communication channel.
In some embodiments, the first authentication information/identifier is provided via a first input mode, such as via a first I/O interface from the I/O interfaces 180, and the second authentication information/identifier is provided via a second input mode, such as via a second I/O interface from the I/O interfaces 180. In some embodiments, the first input mode and the second input mode can be the same (e.g., both entered via a keyboard), while in other embodiments, the first input mode and the second input mode can be different. For example, the first input mode can be a biometric input such as a fingerprint, and the second input mode can be a touch-screen input, such as via an on-screen keyboard or via a swipe pattern.
In some embodiments, interaction of the notification module 124 and the authentication module 128 with the OS 116 can be substantially similar to other modules/processes running outside the context of the OS itself. Said another way, such interaction may be akin to a “system call” and/or an “interprocess communication” (IPC). In this manner, second authentication is available without modifying the OS 116. In some embodiments, the notification module 124 and the authentication module 128 encompass an application 140 running on the compute device 100 and can include a native application that is not part of or included in the OS 116. Applications that are not part of the OS 116 can be installed on the compute device already running the OS. In some embodiments, the native application 140 is not part of the OS 116 (e.g., not integrated with the OS and/or the OS kernel) but can be executed and/or triggered by the OS (e.g., can be installed and run by the OS). The Applications interact with the compute device via the OS and do not modify the underlying functionality of the OS. For example, application 140 can access functions of the OS 116 via public application programming interface (API) calls, public dynamic link library (DLL) calls and/or the like, but may be unable to access or modify private internal functions or capabilities of the OS 116. Application 140 can also register to receive public events or notifications from the OS 116, but may be unable to receive private signals related to the internal function of the OS 116. Application 140 can include, for example, applications acquired through an online store or marketplace such as Android Applications available on Google Play, the iTunes store by Apple, Inc., the Apps for Android store provided by Amazon, and/or the like. Examples of the OS 116 executed on the compute device 100 can be, but are not limited to, operating systems such as Android, Blackberry OS, the iOS, Windows Phone, Firefox OS, Palm OS, and/or the like.
In other embodiments, either a first authentication process and/or a second authentication process can be at least partially performed by an authentication server (not shown in
In some embodiments, and as illustrated in
In some embodiments, the authentication module 128 is configured to initiate the authentication request from the authenticating entity 200, such as (for example) by broadcasting a request for authentication information, by sending a targeted/unicast request to the authenticating entity, and/or the like. In other embodiments, the authenticating entity 200 broadcasts the authentication information, and the broadcasted authentication information is uniquely usable by the authentication module 128 to carry out the second authentication. In some embodiments, the authenticating entity 200 sends the authentication information to the compute device 100 in a targeted manner. In some embodiments, both the authentication module 128 and the authenticating entity 200 are configurable and/or otherwise programmable to be otherwise associated with the same authentication information. For example, the authentication information can include a key pair associated with the authenticating entity 200, and the authentication module 128 can receive the public key from the authenticating entity 200 for purposes of second authentication. Once the association/pairing between the authenticating entity 200 and the compute device 100 is established in this manner (i.e., once the authentication module 128 receives the public key), in some embodiments, the authenticating entity 200 can use the private key for carrying out strong cryptographic authentication when providing the second authentication information to the compute device 100. In other embodiments, the public/private key pair can be generated by the authentication module 128 or another compute device. In some embodiments, the second authentication information/identifier includes a cryptographic signature, and the authentication module 128 is configured to use the public key to verify the cryptographic signature. Generally, in some embodiments, the communication between the authentication module 128 and the authenticating entity 200 can employ a cryptographic approach such as, for example, encryption of information for transmission, and decryption of the encrypted information upon receipt. In some embodiments, successful decryption by the authentication module 128, such as via use of the public key, can itself serve as verification of the second authentication information.
In some embodiments, additional information can be exchanged between the compute device 100 and the authenticating entity 200 over the connection 210. In some embodiments, the connection 210 serves additional purposes, such as, for example, using one of the compute device 100 and the authenticating entity 200 to power the other. For example, in some embodiments, the authenticating entity 200 can include an unpowered NFC chip or tag, which in turn can be powered during authentication by an NFC-enabled smartphone as the compute device 100. In some embodiments, the authenticating entity 200 includes at least one of a processor and a memory.
While
Referring again to
In some embodiments, the authentication module 128 is further configured, when the second authentication identifier meets a second predetermined criterion, to enable use of the compute device 100 by a user. For example, once the correct authentication information is received for second authentication, the authentication module 128 can enable usage of the compute device 100 by a user. In some embodiments, the authentication module 128 specifies to the OS 116 to remove the usage constraints for the compute device 100 that were previously specified by the authentication module 128. In this manner, the compute device 100 acquires enhanced protection based on the usage of both the OS-initiated first authentication and the non-OS second authentication. In some embodiments, the nature of the first authentication and the second authentication can be substantially similar (e.g., both require PIN entry); in such embodiments, the first authentication information and the second authentication information can be the same or different. In other embodiments, the nature of the first authentication and the second authentication can be different and independent of each other; for example, the first authentication can include PIN entry, while the second authentication can include NFC card-based identification.
While described here using a two-factor authentication approach for simplicity, the systems and methods disclosed herein are extendible to three-factor, four-factor or more, and generally multi-factor, authentication. Further, the order of authentication for multi-factor authentication can take any suitable form; for example, if a notification of user interaction is available prior to first (OS-initiated) authentication as described here, the second authentication can be performed prior to the first authentication.
While described herein as multi-factor authentication, in other embodiments, single factor-authentication can be used. For example, an authentication module (e.g., authentication module 128 of
In still other embodiments, different types of authentication modes and/or different numbers of authentication modes can be requested to unlock and/or use different functions of a compute device. For example, an authentication module (e.g., authentication module 128 of
In some embodiments, a second authentication step can be required before a user can access a mobile device already having an OS-initiated first authentication step, thereby providing two factor authentication. In some embodiments, a mobile application on a mobile device can include a service application and an activity application (not shown in
The activity application is used to configure a secondary lock screen (i.e., the second authentication) and specify appropriate authentication credentials (i.e., the second authentication information). As an example, the activity application can be used to configure the opacity of the secondary lock screen, textual and/or visual content of the secondary lock screen, whether the secondary lock screen will consume events such as touch, softkey events, home screen events (i.e., events that during use of the compute device direct to the first screen of information displayed when the compute device is powered up and/or that are displayed when a home button is pressed), whether the secondary lock screen will include interactive elements such as buttons, the layout of the interactive elements, and/or the like.
In some embodiments, for example, the service application is configured to start and/or be activated when the OS of the mobile device finishes booting, e.g., by registering for a BOOT_COMPLETED broadcast intent in Android. Additionally, in some embodiments, for example, the service application can receive a notification whenever a user provides correct first authentication information and is able to use the mobile device, e.g., by registering for the USER_PRESENT intent in Android, which is broadcast whenever a user unlocks the mobile device via the built in lock screen mechanism (i.e., the first authentication). In such embodiments, when the service application receives such a notification (e.g., the USER_PRESENT intent), the service application can present an interface for the user requesting second authentication. For example, the service application can present an opaque view with any desired text on the screen of the mobile device such as product branding, instructions to unlock, etc. In some embodiments, the service application can request second authentication via OS controls, such as, for example by establishing a connection to a screen control service (such as WindowManagerService for Android) of the OS of the mobile device and adding the opaque view with appropriate flags to ensure that the opaque view is full screen, always on top (i.e., not overlapping and/or overlaid by other interfaces and/or applications of the mobile device), and consumes events including, but not limited to, touch and/or softkey events, home screen events, and/or the like. In some embodiments, the opaque view may consume these events, for example, by a button and/or icon behind the opaque view and not visible to the user. In other embodiments (not shown), the button and/or icon is visible to the user and forms part of the opaque view.
At this point, the service application waits to receive proper, second authentication. Referring to the example above, because the opaque view has been added to screen control service, the user is unable to view content on the mobile device or interact with the applications installed on the device. Proper secondary authentication could be any additional information supplied to the device. This can include (but is not limited to): a second password, pin, or pattern; proper authentication via an NFC token; proper recognition of a token such as a QR code via a camera; biometric information from the user such as a fingerprint or facial recognition; environmental information such as a GPS location; and/or the presence of specific wireless networks such as 802.11 access points (AP)s or Bluetooth devices, etc. After the service application has received the correct secondary authentication, the service application can allow the user to interact with the mobile device such as by, for example, connecting to the screen control service and removing the opaque view.
In some embodiments, the service application can register for notifications indicating that first authentication is pending, such as, for example, SCREEN LOCKED events in Android. In such embodiments, the service application can initiate second authentication such that a user must provide correct second authentication information prior to providing correct first authentication information. For example, the service application can add the opaque view discussed earlier with flags to ensure that the opaque view is displayed on top of the built-in lock screen (i.e., the first authentication), forcing the user to authenticate to the service application first, and then authenticating to the built in lock screen (i.e., perform second authentication prior to first authentication).
In some embodiments, the authentication module 128 can be configured to enable at least one function of the compute device 100 at a first time (e.g., after second authentication is successfully performed), and is further configured to disable the function at a subsequent, second time. The second time can be, for example, a predetermined time period after the first time, such as every few hours. The authentication module 128 can be further configured to request the second authentication identifier at the second time, upon disabling the function. In some embodiments, the second authentication identifier is received from a Near Field Communication (NFC) device associated with the compute device 100 via an NFC communication channel.
The authentication module 128 can be further configured to enable the function at a third time subsequent to/after the second time, such as upon verification of the second authentication identifier, and then disable the function again at a fourth time. The authentication module 128 can be further configured to request the second authentication identifier again upon disabling the function for the fourth time. In this manner, in some embodiments, the second authentication can be performed periodically, i.e., the user might have to perform secondary authentication once per day, once per hour, and/or the like. In some embodiments, the second authentication is carried out periodically and independently from the first authentication (e.g., a lock screen). For example, regardless of whether the compute device is pending first authentication or not (e.g., is locked or not), the user must reauthenticate using the second authentication every hour.
In some embodiments, the OS 116 can maintain the user as authenticated, based on the first authentication, during the predetermined period and at the second time. In some embodiments, a timeout time period is associated with the first authentication, after which the OS 116 can reauthenticate the user by requesting the first authentication information/identifier again. In some embodiments, the timeout time period associated with the first authentication is independent of and/or different from the timeout time period (similar to the predetermined time period discussed above) associated with the second authentication. In some embodiments, the first authentication and/or the second authentication timeout periods can be based on time since last authentication, time since last user interaction with the compute device (and/or a specific functionality of the compute device), geographic location of the compute device (e.g., a timeout period can be greater when the compute device is at a first geographic location than when the compute device is at a second geographic location), and/or the like.
Describing the activity application mentioned above, in some embodiments, the activity application is responsible for configuring the second authentication. The activity application provides menus, commands, and/or the like for specifying the second authentication mechanism and for pairing the compute device with the specific authentication data. The activity application and the service application can also include an “Administrator” authentication token/mechanism that can also unlock the compute device in the event a user loses credentials (e.g., loses an NFC card required for second authentication). Referring again to
In some embodiments, the second authentication can control specific access to the compute device. For example, upon second authentication, the opaque view described above can be removed and an encrypted storage container can be made available to the user and to applications installed on the compute device. As another example, the second authentication can provide for functionality that controls access to a subset of the applications installed on the compute device.
In some embodiments, a non-transitory processor-readable medium stores code representing instructions to be executed by a processor, such as the processor 110, to perform user authentication. As illustrated in
The code also includes code to cause the processor to, at 830, compare the first authentication identifier to a first criterion associated with the operating system. The code also includes code to cause the processor to, at 840, send, in response to the indication of the first authentication identifier meeting the first criterion, a signal to remove the primary lock screen. The code also includes code to cause the processor to, at 850, send, in response to removing the primary lock screen, a signal to display a secondary lock screen. The secondary lock screen is associated with an application not integrated with the operating system of the mobile device. The secondary lock screen requests a second authentication identifier from the user. In some embodiments, a timeout time period associated with the primary lock screen is different than a timeout time period associated with the secondary lock screen.
The code also includes code to cause the processor to, at 860, receive an indication of the second authentication identifier. In some embodiments, the indication of the second authentication identifier is received from an authentication entity associated with the user. In some embodiments, the code also includes code to cause the processor to receive a public key from the authentication entity, and verify a cryptographic signature of the second authentication identifier using the public key. For example, during a setup procedure and/or upon an initial interaction between the processor and the authentication entity, the processor can receive the public key from the authentication entity. The processor can them employ the public key for verifying the cryptographic signature multiple times, such as for each subsequent time the second authentication identifier is received. In some embodiments, the indication of the second authentication identifier is received via a second input mode that is different from the first input mode.
The code also includes code to cause the processor to, at 870, compare the second authentication identifier to a second criterion associated with the native application. The code also includes code to cause the processor to, at 880, send, based on the indication of the second authentication identifier meeting the second criterion, a signal to remove the secondary lock screen and to provide the user access to functionality of the mobile device. In some embodiments, the signal to remove the secondary lock screen is sent at a first time, and the code also includes code to cause the processor to send a signal to display the secondary lock screen at a second time a predetermined time period after the first time.
Some embodiments described herein relate to a computer storage product with a non-transitory computer-readable medium (also can be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also can be referred to as code) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to: magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices. Other embodiments described herein relate to a computer program product, which can include, for example, the instructions and/or computer code discussed herein.
Examples of computer code include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. For example, embodiments may be implemented using Java, C++, .NET, or other programming languages (e.g., object-oriented programming languages) and development tools. Additional examples of computer code include, but are not limited to, control signals, encrypted code, and compressed code.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods and/or schematics described above indicate certain events and/or flow patterns occurring in certain order, the ordering of certain events and/or flow patterns may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made.
This application is a continuation application of U.S. application Ser. No. 14/717,422, entitled “Methods and Devices for Secure Authentication to a Compute Device”, filed May 20, 2015, now U.S. Pat. No. 9,692,879, which claims priority to U.S. Provisional Application No. 62/000,835 entitled “Methods and Devices for Authentication”, filed May 20, 2014, the entire disclosure of each of which is incorporated herein by reference.
This invention was made with government support under contract no. H98230-13-C-1435 awarded by the United States Government. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
6615191 | Seeley | Sep 2003 | B1 |
6742121 | Safadi | May 2004 | B1 |
7231199 | Adams et al. | Jun 2007 | B2 |
7665146 | Munje et al. | Feb 2010 | B2 |
7706837 | Ladouceur | Apr 2010 | B2 |
7784088 | Darbha et al. | Aug 2010 | B2 |
7823214 | Rubinstein et al. | Oct 2010 | B2 |
7912455 | Adams et al. | Mar 2011 | B2 |
7929960 | Martin et al. | Apr 2011 | B2 |
8046721 | Chaudhri et al. | Oct 2011 | B2 |
8117651 | Novotney et al. | Feb 2012 | B2 |
8136053 | Miller et al. | Mar 2012 | B1 |
8185097 | Vanderlinden et al. | May 2012 | B2 |
8190913 | Adams et al. | May 2012 | B2 |
8209637 | Chaudhri et al. | Jun 2012 | B2 |
8249556 | Olsen et al. | Aug 2012 | B2 |
8249558 | Olsen et al. | Aug 2012 | B2 |
8250371 | Darbha et al. | Aug 2012 | B2 |
8285949 | De Atley et al. | Oct 2012 | B2 |
8321922 | Lo et al. | Nov 2012 | B1 |
8407768 | Hayter | Mar 2013 | B1 |
8407773 | Hayter et al. | Mar 2013 | B1 |
8484728 | De Atley et al. | Jul 2013 | B2 |
8489890 | Darbha et al. | Jul 2013 | B2 |
8504842 | Meacham | Aug 2013 | B1 |
8555363 | Lo et al. | Oct 2013 | B2 |
8560004 | Tsvetkov et al. | Oct 2013 | B1 |
8590036 | Novotney et al. | Nov 2013 | B2 |
8638385 | Bhogal | Jan 2014 | B2 |
8638939 | Casey et al. | Jan 2014 | B1 |
8763079 | Rubinstein et al. | Jun 2014 | B2 |
8782775 | Fadell et al. | Jul 2014 | B2 |
8788838 | Fadell et al. | Jul 2014 | B1 |
8810367 | Mullins | Aug 2014 | B2 |
8873147 | Rhodes et al. | Oct 2014 | B1 |
8874624 | Serlet et al. | Oct 2014 | B2 |
8875268 | Swerdlow et al. | Oct 2014 | B2 |
8880736 | Cooper et al. | Nov 2014 | B2 |
8881263 | Hewinson | Nov 2014 | B2 |
8881310 | Hajj et al. | Nov 2014 | B2 |
8903141 | Heilpern | Dec 2014 | B2 |
8925069 | Louboutin et al. | Dec 2014 | B2 |
8943580 | Fadell et al. | Jan 2015 | B2 |
8954736 | Miller et al. | Feb 2015 | B2 |
8973104 | Rokek et al. | Mar 2015 | B2 |
8994499 | Zhao et al. | Mar 2015 | B2 |
9030293 | Tabak et al. | May 2015 | B1 |
9038167 | Fadell et al. | May 2015 | B2 |
9043887 | McLachlan et al. | May 2015 | B2 |
9070149 | Lin et al. | Jun 2015 | B2 |
9113333 | Lo et al. | Aug 2015 | B2 |
9118666 | Naguib | Aug 2015 | B2 |
9134896 | Fadell et al. | Sep 2015 | B2 |
9152309 | Arréhn et al. | Oct 2015 | B1 |
9160541 | Novotney et al. | Oct 2015 | B2 |
9195388 | Shepherd et al. | Nov 2015 | B2 |
9213822 | Dellinger et al. | Dec 2015 | B2 |
9223937 | Flowers et al. | Dec 2015 | B2 |
9225753 | Maxwell | Dec 2015 | B1 |
9239912 | Dorwin et al. | Jan 2016 | B1 |
9245100 | Marco et al. | Jan 2016 | B2 |
9250795 | Fadell et al. | Feb 2016 | B2 |
9262612 | Cheyer | Feb 2016 | B2 |
9264421 | Dermu | Feb 2016 | B2 |
9298361 | Shepherd et al. | Mar 2016 | B2 |
9363251 | Morikuni et al. | Jun 2016 | B2 |
9372978 | Dellinger et al. | Jun 2016 | B2 |
9519771 | Fadell et al. | Dec 2016 | B2 |
9542783 | Slaby et al. | Jan 2017 | B2 |
9590352 | Bilbrey et al. | Mar 2017 | B2 |
9633247 | Pope et al. | Apr 2017 | B2 |
9672350 | De Atley et al. | Jun 2017 | B2 |
9706032 | Pai et al. | Jul 2017 | B2 |
9721107 | Han et al. | Aug 2017 | B2 |
9729380 | Chung | Aug 2017 | B1 |
9778837 | Shepherd et al. | Oct 2017 | B2 |
9785759 | Dorwin et al. | Oct 2017 | B1 |
20060026689 | Barker et al. | Feb 2006 | A1 |
20060123056 | Darbha et al. | Jun 2006 | A1 |
20060156415 | Rubinstein et al. | Jul 2006 | A1 |
20070016804 | Kemshall | Jan 2007 | A1 |
20070050632 | Matsuoka | Mar 2007 | A1 |
20070083467 | Lindahl et al. | Apr 2007 | A1 |
20070234420 | Novotney et al. | Oct 2007 | A1 |
20070260655 | Adams et al. | Nov 2007 | A1 |
20070300063 | Adams et al. | Dec 2007 | A1 |
20080058006 | Ladouceur | Mar 2008 | A1 |
20080077986 | Rivera | Mar 2008 | A1 |
20080172750 | Keithley et al. | Jul 2008 | A1 |
20080229389 | Singh et al. | Sep 2008 | A1 |
20080318550 | DeAtley | Dec 2008 | A1 |
20090061907 | Richardson et al. | Mar 2009 | A1 |
20090083834 | Rubinstein et al. | Mar 2009 | A1 |
20090083847 | Fadell et al. | Mar 2009 | A1 |
20090083850 | Fadell et al. | Mar 2009 | A1 |
20090096573 | Graessley | Apr 2009 | A1 |
20090165125 | Brown et al. | Jun 2009 | A1 |
20090187676 | Griffin et al. | Jul 2009 | A1 |
20090205041 | Michalske | Aug 2009 | A1 |
20090249064 | De Atley et al. | Oct 2009 | A1 |
20090249065 | De Atley et al. | Oct 2009 | A1 |
20090249075 | De Atley et al. | Oct 2009 | A1 |
20090254753 | De Atley et al. | Oct 2009 | A1 |
20100293606 | Darbha et al. | Nov 2010 | A1 |
20100312966 | De Atley et al. | Dec 2010 | A1 |
20100313196 | De Atley et al. | Dec 2010 | A1 |
20100322485 | Riddiford | Dec 2010 | A1 |
20110010699 | Cooper et al. | Jan 2011 | A1 |
20110010701 | Cooper et al. | Jan 2011 | A1 |
20110061113 | Rubinstein et al. | Mar 2011 | A1 |
20110154041 | Godfrey et al. | Jun 2011 | A1 |
20110283241 | Miller et al. | Nov 2011 | A1 |
20110313922 | Ben Ayed | Dec 2011 | A1 |
20120015629 | Olsen et al. | Jan 2012 | A1 |
20120021724 | Olsen et al. | Jan 2012 | A1 |
20120060128 | Miller et al. | Mar 2012 | A1 |
20120079582 | Brown et al. | Mar 2012 | A1 |
20120079609 | Bender et al. | Mar 2012 | A1 |
20120137351 | Kiester et al. | May 2012 | A1 |
20120167199 | Riddiford | Jun 2012 | A1 |
20120207296 | George et al. | Aug 2012 | A1 |
20120208511 | Vanderlinden et al. | Aug 2012 | A1 |
20120233459 | Adams et al. | Sep 2012 | A1 |
20120235790 | Zhao et al. | Sep 2012 | A1 |
20120238206 | Singh et al. | Sep 2012 | A1 |
20120245941 | Cheyer | Sep 2012 | A1 |
20120260095 | Von Hauck et al. | Oct 2012 | A1 |
20120278614 | Choi | Nov 2012 | A1 |
20120307126 | Bhogal | Dec 2012 | A1 |
20120311499 | Dellinger et al. | Dec 2012 | A1 |
20120317618 | Darbha et al. | Dec 2012 | A1 |
20130014247 | Novotney et al. | Jan 2013 | A1 |
20130036461 | Lowry | Feb 2013 | A1 |
20130052947 | Kole et al. | Feb 2013 | A1 |
20130054732 | Serlet et al. | Feb 2013 | A1 |
20130061314 | De Atley et al. | Mar 2013 | A1 |
20130074170 | Lo et al. | Mar 2013 | A1 |
20130088192 | Eaton | Apr 2013 | A1 |
20130097672 | Pathiyal | Apr 2013 | A1 |
20130104187 | Weidner | Apr 2013 | A1 |
20130104196 | Singh et al. | Apr 2013 | A1 |
20130104203 | Davis | Apr 2013 | A1 |
20130187753 | Chiriyankandath | Jul 2013 | A1 |
20130191910 | Dellinger et al. | Jul 2013 | A1 |
20130191911 | Dellinger et al. | Jul 2013 | A1 |
20130194067 | Kimbrell | Aug 2013 | A1 |
20130219454 | Hewinson | Aug 2013 | A1 |
20130294660 | Heilpern | Nov 2013 | A1 |
20130303085 | Boucher et al. | Nov 2013 | A1 |
20130331027 | Rose et al. | Dec 2013 | A1 |
20130345981 | van Os et al. | Dec 2013 | A1 |
20140024330 | Chu et al. | Jan 2014 | A1 |
20140026202 | Lo et al. | Jan 2014 | A1 |
20140047523 | Swerdlow et al. | Feb 2014 | A1 |
20140068456 | Chan et al. | Mar 2014 | A1 |
20140075528 | Matsuoka | Mar 2014 | A1 |
20140101768 | Miller et al. | Apr 2014 | A1 |
20140109197 | Schneider | Apr 2014 | A1 |
20140112555 | Fadell et al. | Apr 2014 | A1 |
20140115694 | Fadell et al. | Apr 2014 | A1 |
20140115695 | Fadell et al. | Apr 2014 | A1 |
20140115696 | Fadell et al. | Apr 2014 | A1 |
20140137191 | Goldsmith et al. | May 2014 | A1 |
20140187207 | Slack et al. | Jul 2014 | A1 |
20140189801 | Rokek et al. | Jul 2014 | A1 |
20140189829 | McLachlan et al. | Jul 2014 | A1 |
20140196142 | Louboutin et al. | Jul 2014 | A1 |
20140201120 | Lydon et al. | Jul 2014 | A1 |
20140201531 | Toy et al. | Jul 2014 | A1 |
20140201532 | Toy et al. | Jul 2014 | A1 |
20140215086 | Pitschel et al. | Jul 2014 | A1 |
20140223184 | Novotney et al. | Aug 2014 | A1 |
20140223322 | Slack et al. | Aug 2014 | A1 |
20140230049 | Fadell et al. | Aug 2014 | A1 |
20140263648 | Van Bosch et al. | Sep 2014 | A1 |
20140283012 | Eggerton et al. | Sep 2014 | A1 |
20140283013 | Marco et al. | Sep 2014 | A1 |
20140310350 | Borggaard et al. | Oct 2014 | A1 |
20140359750 | Adams et al. | Dec 2014 | A1 |
20140361872 | Garcia et al. | Dec 2014 | A1 |
20140364085 | Garcia | Dec 2014 | A1 |
20140364099 | Pai et al. | Dec 2014 | A1 |
20140378063 | Nathwani et al. | Dec 2014 | A1 |
20150058942 | Dermu | Feb 2015 | A1 |
20150081837 | Bernier et al. | Mar 2015 | A1 |
20150082421 | Flowers et al. | Mar 2015 | A1 |
20150094023 | Abramson et al. | Apr 2015 | A1 |
20150096001 | Morikuni et al. | Apr 2015 | A1 |
20150113271 | Jooste et al. | Apr 2015 | A1 |
20150137938 | Slaby et al. | May 2015 | A1 |
20150200934 | Naguib | Jul 2015 | A1 |
20150213443 | Geffon et al. | Jul 2015 | A1 |
Entry |
---|
US 9,230,088 B2, 01/2016, Dellinger et al. (withdrawn) |
“Operating system—OS” by Beal, retrieved from https://www.webopedia.com/TERM/O/operating_system.html. |
Karl Dyer, NFC World, “IBM launches two-factor authentication for NFC devices,” Oct. 21, 2013. 3 pages. |
Office Action dated Aug. 23, 2016 for U.S. Appl. No. 14/717,422. |
No Lock—Android Apps on Google Play, Aug. 23, 2013, BoD, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20130823055956/https://play.google.com/store/apps/details?id=org.jraf.android.nolock&hl=en>, 2 pages. |
Screen Lock—Android Apps on Google Play, Apr. 28, 2014, Prahallad, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140428064635/https://play.google.com/store/apps/details?id=com.iglint.android.screenlock>, 4 pages. |
Screen Off and Lock—Android Apps on Google Play, Feb. 10, 2014, Katecca, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140210063448/https://play.google.com/store/apps/details?id=com.katecca.screenoflock>, 2 pages. |
WidgetLocker—Android Lockscreen Replacement, Jan. 3, 2014, Prahallad, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140103090558/https://teslacoilsw.com/widgetlocker/>, 11 pages. |
App Lock (Smart App Protector)—Android Apps on Google Play, Apr. 4, 2014, SpSoft, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140404003019/https://play.google.com/store/apps/details?id=com.sp.protector.free>, 4 pages. |
AppLock—Android Apps on Google Play, Apr. 13, 2014, DoMobile Lab, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140413014312/https://play.google.com/store/apps/details?id=com.domobile.applock>, 4 pages. |
CM Security—Free Antivirus—Android Apps on Google Play, Feb. 22, 2014, KS Mobile Inc., Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140222012137/https://play.google.com/store/apps/details?id=com.cleanmaster.security>, 4 pages. |
Fingerprint Locking—Android Apps on Google Play, Feb. 10, 2014, Softwego, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140210051013/https://play.google.com/store/apps/details?id=com.softwego.lockscreen>, 2 pages. |
Fingerprint/Keypad Lock Screen—Android Apps on Google Play, Feb. 22, 2014, Softwego, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20140222013504/https://play.google.com/store/apps/details?id=com.softwego.lockscreen>, 3 pages. |
Mac App Store—Lock Screen Plus, Nov. 3, 2013, Retrieved from the Internet on Oct. 6, 2017: <https://web.archive.org/web/20131103032944/https://itunes.apple.com/us/app/lock-screen-plus/id523667569?mt=12>, 3 pages. |
Number | Date | Country | |
---|---|---|---|
62000835 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14717422 | May 2015 | US |
Child | 15632808 | US |