This application is the US National Stage of International Application No. PCT/EP2006/001629, filed Feb. 22, 2006 and claims the benefit thereof and is incorporated by reference herein in its entirety.
The invention relates to a communication network in accordance with the claims.
In distributed communication networks, especially packet-oriented communication networks, a precise time synchronization of the components of the communication network is increasingly required. For this purpose, a “Precision Time Protocol”, known in the technical world as PTP, is used for packet-oriented communication networks, with which real time clocks of spatially-distributed components of the communication network, especially of an ethernet, can be synchronized. The known PTP is standardized in IEEE Standard 1588, which for example is described in the Publication 2004 Conference on IEEE 1588, Sep. 28, 2004, “Implementation and Performance of Time Stamping Techniques, Hans Weibel, Dominic Béchaz
According to this standard, a master, shown in
If there has been no delay in the transmission path, then both clocks will already be synchronized. A second phase of the synchronization process determines the delay time between the slaves S and the master M, i.e. the measurement of the transit time. For this purpose, the slave S sends a “delay request” or request message DREQ-N to the master M in accordance with IEEE Standard 1588 and for this again determines the exact transmission time point tST. The master M generates a piece of reception-time information tME on receipt of the request message DREQ-N and sends the reception-time information tME back to the slave S in a “delay response” or response message DRES-N. From the local transmitted and received pieces of reception-time information tST, tME or from both time stamps, the slave S determines the delay time or transit time tL in the communication network KN between the slave S and master M. The transit time measurement takes place irregularly and at longer time intervals as a measurement for synchronization of the two clocks.
For determining the reception time points of received synchronization-relevant messages or the transmission time points of the synchronization-relevant messages to be sent, a time stamp unit, which determines the time points or time stamps, is provided in the devices. The determination of the deviations tA of the real time clocks and the transit times tL is performed with the aid of the PTP (Precision Time Protocol), with the PTP being realized in the application layers of the devices or terminals. Because the time points or the time stamps are formed in the physically close layer, in order to be able to determine the deviations tA of the clocks and of the transit time tL in the communication network as accurately as possible the time points or time information is buffer stored in memories of the physical layer until they are called up by the PTP in the application layer. This means that in practice several pieces of time information for several messages and several PTP have to be stored in the memories for several applications in the physical layer. Furthermore, not only is it necessary to store the time information in the memories but a piece of information which enables the assignment of the time information to the respective message also has to be stored, so that the respective PTP in the application layer can appropriately call up the time information from the memories.
For the realization of the PTP according to the IEEE 1588 Standard therefore extensive memories and protocols, to be realized in extensive circuits and programs, are necessary to call up the time information from the memories in the circuit layers or in the hardware layer of the device or terminals of a communication network, such as in an intranet or in the Internet.
The object of the invention is to improve the realization of PTP according to the IEEE Standard 1588 or other protocols by means of time stamps. The object is achieved by the features of the Claims.
A fundamental aspect of the invention can be seen in that on reception of a synchronization-relevant message, which is formed in or at a physical layer (PH) of a device, the formed reception-time information is inserted into the received message and forwarded in such a way that the reception-time information can be received by at least one program of the device. A further fundamental aspect is that when sending a synchronization-relevant message which is formed in the circuit in a device, the formed transmission-time information is provided to at least one program of the device initializing the message.
A fundamental advantage of the invention can be seen in that, in the physical layer formed in the circuit the memories for storing the reception-time or transmission-time information, the application-specific information and the protocols for calling up the stored synchronization-relevant information are no longer required and the cost of circuitry or the economic outlay for the realization of the synchronization of the clocks and for determining the transmission times of the communication network or transmission medium is substantially reduced.
Advantageous developments of the inventive methods and inventive embodiments of a device and a time stamp unit are given in the further patent claims.
In the following, the invention is described in more detail by means of the three drawings based on the method described in
For the exemplary embodiment, it is assumed that in the structure shown in
In the physical layer PH, a time stamp unit TU is provided for determining the transmission time points and reception time points of synchronization-relevant messages N, with a piece of reception time and transmission-time information tE, tS being formed from the determined transmission and reception time points. For the exemplary embodiment, it is further assumed that the synchronization-relevant messages N are represented by a synchronization message SYNC-N given in the IEEE Standard 1588, a follow-up message FUP-N, a request message DREQ-N and a response message DRES-N.
For the exemplary embodiment in
The reception-time information tSE, tME formed in the physical layer PH is now not stored in a memory of the physical layer PH for a call-up by the application APP but instead according to the invention is inserted into the received synchronization message SYN-N or request message DREQ-N, shown in
Furthermore, in the precision time protocol PTP in field F according to the example in the standard, bytes 86 and 90 are provided for sending the reception time and transmission-time information tME, tST. Check information pi is entered in a further standard check field PF at the end of the synchronization-relevant message N, with whose help a check of the complete message N can be carried out in the master M and slave S. This is a piece of standard CRC check information (cyclic redundancy check). To ensure integrity, a hash value H is formed, usually by means of a hash process (e.g. HMAC-SHA1 according to the RFC Standard 2104), by using a secret key, for the precision time control PTP of the message N, which is then inserted at the end of the precision time protocol PTP of the message N.
Further information in the headers for the other protocol layers MAC, IP, IDP is not given.
In the exemplary embodiment it is assumed that the reception-time information tSE, tME covers only up to two seconds because the synchronization operation is regularly performed in corresponding time intervals. If the extent of the reception-time information tSE, tME exceeds one second, only the time information which follows the seconds information, for example given in nanoseconds, is inserted as reception-time information tSE, tME into the synchronization-relevant message N and forwarded to the relevant application APP. In the synchronization application PTP assigned to the application APP it is determined by the evaluation of two pieces of successive reception-time information tSE, tME, whether the seconds were overshot between both and, depending on the result of the evaluation, either the current transmitted reception-time information tSE, tME is not changed or is incremented by one second, i.e. the original reception-time information tSE, tME is restored.
Before forwarding the synchronization-relevant message N to the relevant application APP in the application layer APPS or to the assigned precision timed protocol PTP, the check information pi or the hash value H is to be deleted according to a first variant, or according to a second variant a piece of check information pi or a hash value H is to be determined for the synchronization-relevant information including the additional reception-time information tSE, tME and is to be inserted into the check field PF or appended to the message N instead of the transmitted check information pi or hash value H. The first variant is advantageously in the physical layer PH during a check of the transmitted synchronization-relevant information and the second variant is provided during a check of the synchronization-relevant information in one of the following layers MAC, IP, UDP, APPS, with further check information in the headers for the other layers MAC, IP, UDP to be deleted or updated, provided the information also includes the precision time protocol PTP in the check information.
The synchronization-relevant message N is then forwarded with a piece of reception-time information tSE, tME through the succeeding layers MAC, IP, UDP to the precision time protocol PTP in the application layer APPS. There, depending on the reception-time information tSE, tME in each case, either the time deviation tA for the clock of the master or the transit time tL in the Internet IN is determined, see also
For the exemplary embodiment in
According to the invention, the transmission-time information tST, tMT is not stored in the physical layer PH but is instead forwarded directly, or after a short buffer storage, to the precision time protocol PTP in the relevant application APP and there it is buffer stored in the application APP or the application program until determination of the deviations tA of the clocks of the master M and of the transit times tL of synchronization-relevant messages N in the Internet IN or ethernet, as shown by an arrow represented by a broken line in
The invention is not limited to the exemplary embodiment but can also be used in communication networks where a boundary clock concept is provided in accordance with the IEEE Standard 1588, especially with the inclusion of routers in the communication network, and can also be used in communication networks where the synchronization-relevant messages are transmitted at least for comparing the clocks in the components of a communication network. In this case, parts of the message not used in the synchronization-relevant messages or for further applications are used for insertion of the reception-time information.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/001629 | 2/22/2006 | WO | 00 | 8/21/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/098775 | 9/7/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5884171 | Tanabe et al. | Mar 1999 | A |
6208665 | Loukianov et al. | Mar 2001 | B1 |
6725240 | Asad et al. | Apr 2004 | B1 |
7558270 | Wilford et al. | Jul 2009 | B1 |
20030021274 | Siikaniemi et al. | Jan 2003 | A1 |
20030235216 | Gustin | Dec 2003 | A1 |
20040243686 | Schilders | Dec 2004 | A1 |
20050117596 | Kopetz | Jun 2005 | A1 |
20050213524 | Doragh et al. | Sep 2005 | A1 |
20060239300 | Hannel et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
WO 0188746 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20090013330 A1 | Jan 2009 | US |