Sinusitis is a condition affecting over 35 million Americans, and similarly large populations in the rest of the developed world. Sinusitis occurs when one or more of the four paired sinus cavities (i.e., maxillary, ethmoid, frontal, sphenoid) becomes obstructed, or otherwise has compromised drainage. Normally the sinus cavities, each of which are lined by mucosa, produce mucous which is then moved by beating cilia from the sinus cavity out to the nasal cavity and down the throat. The combined sinuses produce approximately one liter of mucous daily, so the effective transport of this mucous is important to sinus health.
Each sinus cavity has a drainage pathway or outflow tract opening into the nasal passage. This drainage passageway can include an ostium, as well as a “transition space” in the region of the ostia, such as the “frontal recess,” in the case of the frontal sinus, or an “ethmoidal infundibulum,” in the case of the maxillary sinus. When the mucosa of one or more of the ostia or regions near the ostia become inflamed, the egress of mucous is interrupted, setting the stage for an infection and/or inflammation of the sinus cavity, i.e., sinusitis. Though many instances of sinusitis may be treatable with appropriate medicates, in some cases sinusitis persists for months or more, a condition called chronic sinusitis, and may not respond to medical therapy. Some patients are also prone to multiple episodes of sinusitis in a given period of time, a condition called recurrent sinusitis.
Balloon dilation has been applied to treat constricted sinus passageways for the treatment of sinusitis. These balloon dilation devices typically involve the use of an inflatable balloon located at the distal end of a catheter such as a balloon catheter. Generally, the inflatable balloon is inserted into the constricted sinus passageway in a deflated state. The balloon is then expanded to open or reduce the degree of constriction in the sinus passageway being treated to facilitate better sinus drainage and ventilation. At the same time most, if not all, of the functional mucosal tissue lining of the sinuses and their drainage passageways are preserved.
Exemplary devices and methods particularly suited for the dilation of anatomic structures associated with the maxillary and anterior ethmoid sinuses are disclosed, for example, in U.S. Pat. No. 7,520,876 and U.S. Patent Application Publication No. 2008/0172033. Other systems have been described for the treatment of various other sinuses including the frontal sinus. For example, U.S. Patent Application Publication No. 2008/0097295 discloses a frontal sinus guide catheter (
The invention describes a sinus balloon catheter and methods of use. Specifically the present invention provides a sinus balloon catheter for dilating a sinus cavity lumen. The catheter comprises a guide tube with a proximal and distal end, a sleeve member, a balloon disposed upon the sleeve member and an extendable rounded tip coupled to the distal end.
The invention is best understood from the following detailed description when read in connection with accompanying drawings, in which:
The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the invention. The embodiments may be combined, other embodiments may be utilized, or structural, and logical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
In this document, the terms “a” or “an” are used to include one or more than one and the term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. In addition, it is to be understood that the phraseology or terminology employed herein, and not otherwise defined, is for the purpose of description only and not of limitation. Furthermore, all publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.
U.S. Patent Application Publication No. 2010/0312101, the entire teachings of which are incorporated herein by reference, was filed by Drontle, et al. on Jun. 5, 2009. Drontle, et al. describe sinus balloon dilation catheters that includes a balloon and shaft slidably mounted on a substantially rigid inner guide member. To treat a sinus cavity of a subject, the substantially rigid inner guide member is advanced into a drainage pathway of the sinus cavity via a nasal passageway. The shaft and balloon are advanced in a distal direction over the substantially-rigid inner guide member to place the balloon in the drainage pathway. The balloon is inflated to expand or otherwise remodel the drainage pathway.
PCT publication No. WO 2011/140535, the entire teachings of which are incorporated herein by reference, was filed by Ressemann, et al. on May 7, 2011. Ressemann, et al. describe sinus balloon dilation catheters that include a guide tube, a sleeve member annularly positioned over the guide tube, and a balloon coupled to the sleeve member. The sleeve member and balloon can be advanced over the guide tube to a position at or beyond the end of the guide tube. To treat a sinus cavity of a subject, the guide tube is advanced to a position within or near a sinus drainage pathway of the sinus cavity via a nasal passageway. The sleeve member and balloon are advanced over the guide tube to a position at or beyond the distal end of the guide tube. The balloon is inflated to expand or otherwise remodel the drainage pathway.
It has been discovered that when a tubular guide or substantially rigid inner guide member is pre-shaped into a bend and a sleeve member or balloon shaft is situated over that bend for an extended period of storage time (e.g., weeks, months or years), the bend of the guide may impart a bend or deformity into the material of the distal portion of the sleeve member. Such an imparted bend in the sleeve member material may cause the sleeve member to move into undesired positions if translated off of a distal end of the tubular guide. Applicants have recognized this long-term storage problem and some of the embodiments of the present invention are directed towards solutions to that problem. It will be apparent to those of skill in the art that the features found in the balloon catheters described by Drontle, et al. and Ressemann, et al. can be incorporated into the various embodiments of the present invention.
Inner guide member 214 defines lumen 213 and is statically secured to handle 212 at guide member attachment point 234. The distal end of inner guide member 214 is made of a malleable material (e.g., a stainless steel hypotube) and allows an operator to bend the distal tip of inner guide member 214 to any desired angle relative to more proximal portions of inner guide member 214. As shown in
Sleeve member 216 defines a lumen through which extends inner guide member 214. Sleeve member 216 includes proximal rigid portion 215 and distal flexible portion 217. Proximal rigid portion 215 is secured to balloon advancement member 232. A proximal end of distal flexible portion 217 is secured to the distal end of proximal rigid portion 215. Sleeve member 216 includes balloon 218 (which can be either a compliant or non-compliant balloon) which is in fluidic communication with inflation port 230 via inflation lumen 236 in a manner similar to that taught in incorporated U.S. Patent Application Publication No. 2010/0312101. Inflation lumen 236 is sufficiently long to allow for the full distal extension of balloon 218. Flexible portion 217 is made of a soft or compliant material (e.g., polyethylene or PEBAX). As used herein, the terms “soft” and “compliant” refers to materials or elements of the invention that are capable of being shaped, bent, or otherwise deformed by relatively small forces (e.g., those typically produced by manual manipulation of a human user or from slight pressure by being pressed against tissue) but do not retain the deformation once the force is removed. “Soft” and “compliant” materials are not malleable. While
Catheter 200 also includes rounded tip member 225 which is secured to the distal end of wire 229. Wire 229 extends through lumen 213. Catheter 200 also includes a means for moving rounded tip member 225 in the form of spring 227. Spring 227 is secured to a proximal end of wire 229 and to the handle at spring attachment point 223 at proximal end 224 of catheter 200. In some embodiments, spring 227, wire 229, and/or rounded tip member 225 are formed from a single portion of material while in other embodiments one or more of those elements are formed from separate portions of material that are then secured together.
During use, a physician or other user of catheter 200 imparts the desired shape to the distal end of inner guide member 214 and, while gripping handle 212, inserts end 200 through a patient's nostril. By manipulating handle 212, the user can position the distal end of guide member 214 at a desired location within the nasal or nasal sinus anatomy (e.g., in or near a sinus drainage passage). Once at the desired location, the user advances balloon advancement member 232 distally with a finger of the hand gripping handle 212 to further position balloon 218 at a desired location. This distal advancement of member 232 causes sleeve member 216 to advance distally along inner guide member 214. If member 232 is advanced sufficiently distally, the distal end of sleeve member 216 will contact rounded tip member 225. If member 232 is advanced further and with sufficient force to overcome the tension force supplied by spring 227, the distal end of sleeve member 216 will force rounded tip member 225 away from the distal end of inner guide member 214. When the user has positioned balloon 218 as a desired location within the anatomy, a fluid is directed through inflation port 230 and into balloon 218 to inflate and dilate that portion of the anatomy. After the dilation is complete, the user deflates balloon 218 by evacuating the fluid and slides balloon advancement member 232 proximally to retract sleeve member 216 and balloon 218 back over inner guide member 214.
Spring 227 pulls on wire 229 urging rounded tip member 225 against the distal end of either sleeve member 216 or inner guide member 214 during positioning of the distal end of inner guide member 214 at the desired location within the anatomy and during advancement and retraction of balloon 218. Rounded tip member 225 protects delicate anatomy from being damaged by the distal end of sleeve member 216 or inner guide member 214.
Another embodiment of the invention is illustrated in
Balloon dilation catheter 400 includes handle 412 and sleeve member 416. Sleeve member 416 includes proximal rigid portion 415 and distal flexible portion 417. Sleeve member 416 also includes balloon 418 disposed on distal flexible portion 417. Balloon 418 is in fluidic communication with inflation port 430 and inflation lumen 436. Sleeve member 416 defines a lumen through which extends substantially rigid inner guide member 414. At least the distal end of substantially rigid inner guide member 414 is malleable and can be shaped by a user (e.g., into bend 420). Sleeve member 416 is slidably disposed on rigid inner guide member 414. Balloon advancement member 432 is secured to sleeve member 416. Rounded tip member 425 is secured to the distal end of wire 429. Wire 429 is disposed within a lumen defined by inner guide member 414. Inner guide member 414 is secured to handle 412 by one or more static attachment points (not illustrated) that extend through longitudinal windows in sleeve member 416 and hold guide member 414 static relative to handle 412.
Many of the components of balloon dilation catheter 400, as well as its use, are similar to those found in balloon dilation catheter 200. However, balloon dilation catheter 400 includes a means for moving rounded tip member 425 that is different from spring 227 of balloon dilation catheter 200.
The means of moving rounded tip member 425 includes end portion 424 and bar 438. End portion 424 forms proximal end 423 of sleeve member 416 (alternatively, end portion 424 is formed from a separate portion of material and is secured to the proximal end of sleeve member 416) and includes a pair of parallel prongs 402. Each prong 402 defines a slot 422 and detents 428. Bar 438 is disposed within slot 422. A proximal portion of wire 429 extends through narrowed wire lumen 426 and between prongs 402. The proximal end of wire 429 is secured to or forms bar 438. Each slot 422 of prongs 402 is partially divided into distal and proximal portion by detents 428.
The ends of bar 438 are also movably secured to handle 412 within a longitudinal sliding track (not illustrated) attached to or formed by the handle. The longitudinal sliding track restrict the movement of bar 438 to generate enough force to cause bar 438 to pass over detents 438. In some alternative embodiments bar 438 is not movably secured to handle 412 and instead detents 428 are shaped to allow bar 438 to pass across detents 438 with less force in one direction (e.g., passing from a distal to a proximal position, relative to detents 438) than in another direction (e.g., passing from a proximal to a distal position, relative to detents 438), so that bar 438 can more easily pass into one portion of slots 422 (e.g., the portion of slots 422 proximal to detents 438) than out of that portion. For example, one side of detents 438 may be formed with a steeper angle relative to the opposite side of detents 438.
The spring-based means for moving rounded tip member of catheter 200 and the bar-based means for moving rounded tip member of catheter 400 may provide some dissimilar benefits that could be advantageous in different situations. For example, the spring-based embodiment of catheter 200 may be advantageous in sinus treatment procedures where the user desires some form of constant tension pulling the rounded tip member against the distal ends of the inner guide member or sleeve member. In another example, the bar-based embodiment of catheter 400 may be advantageous in sinus treatment procedures where the user does not want to apply a constant counter-force to keep the sleeve member and balloon at a desired extended location.
While embodiments of the present invention have been shown and described, various modifications may be made without departing from the scope of the present invention. Relative sizes and dimensions shown in the various figures can be altered in order to suite a specific application. Accordingly, the invention is defined by the recitations in the claims appended hereto and equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 16/111,077, filed on Aug. 23, 2018, which is a divisional of U.S. patent application Ser. No. 15/049,800, filed on Feb. 22, 2016, which is a continuation of U.S. application Ser. No. 13/674,734 filed on Nov. 12, 2012, which claims priority to U.S. Provisional Application No. 61/558,142 filed on Nov. 10, 2011 and entitled “Methods and Devices for Treating Sinusitis.” Priority is claimed pursuant to 35 U.S.C. §§ 119 and 120. The above-noted Patent Applications are incorporated by reference as if set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
2525183 | Robison | Oct 1950 | A |
3800788 | White | Apr 1974 | A |
4737141 | Spits | Apr 1988 | A |
5021043 | Becker et al. | Jun 1991 | A |
5024658 | Kozlov et al. | Jun 1991 | A |
5169386 | Becker et al. | Dec 1992 | A |
5222951 | Abidin et al. | Jun 1993 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5415634 | Glynn et al. | May 1995 | A |
5443483 | Ben-Haim | Aug 1995 | A |
5466222 | Ressemann et al. | Nov 1995 | A |
5470315 | Adams | Nov 1995 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5591129 | Shoup et al. | Jan 1997 | A |
5632762 | Myler | May 1997 | A |
5645628 | Thome | Jul 1997 | A |
5795325 | Valley et al. | Aug 1998 | A |
5964767 | Tapia et al. | Oct 1999 | A |
6013052 | Durman | Jan 2000 | A |
6083188 | Becker | Jul 2000 | A |
6090132 | Fox | Jul 2000 | A |
6113567 | Becker | Sep 2000 | A |
6206870 | Kanner | Mar 2001 | B1 |
6238364 | Becker | May 2001 | B1 |
6491940 | Levin | Dec 2002 | B1 |
6543452 | Lavigne | Apr 2003 | B1 |
D501677 | Becker | Feb 2005 | S |
6851424 | Scopton | Feb 2005 | B2 |
7520876 | Ressemann et al. | Apr 2009 | B2 |
7678099 | Ressemann et al. | Mar 2010 | B2 |
7785315 | Muni et al. | Aug 2010 | B1 |
7842062 | Keith et al. | Nov 2010 | B2 |
7879061 | Keith et al. | Feb 2011 | B2 |
7918871 | Truitt et al. | Apr 2011 | B2 |
8241266 | Keith et al. | Aug 2012 | B2 |
8277478 | Drontle et al. | Oct 2012 | B2 |
8282667 | Drontle et al. | Oct 2012 | B2 |
8348969 | Keith et al. | Jan 2013 | B2 |
8568439 | Keith et al. | Oct 2013 | B2 |
8585728 | Keith et al. | Nov 2013 | B2 |
8585729 | Keith et al. | Nov 2013 | B2 |
8623043 | Keith et al. | Jan 2014 | B1 |
8657846 | Keith et al. | Feb 2014 | B2 |
8801670 | Drontle et al. | Aug 2014 | B2 |
8834513 | Hanson et al. | Sep 2014 | B2 |
8882795 | Drontle et al. | Nov 2014 | B2 |
8888686 | Drontle et al. | Nov 2014 | B2 |
8915938 | Keith et al. | Dec 2014 | B2 |
8986340 | Drontle et al. | Mar 2015 | B2 |
9005284 | Ressemann | Apr 2015 | B2 |
9011412 | Albritton, IV et al. | Apr 2015 | B2 |
9101739 | Lesch, Jr. et al. | Aug 2015 | B2 |
9192748 | Ressemann et al. | Nov 2015 | B2 |
9278199 | Keith et al. | Mar 2016 | B2 |
9282986 | Hanson et al. | Mar 2016 | B2 |
9283360 | Lesch et al. | Mar 2016 | B2 |
9320876 | Ressemann et al. | Apr 2016 | B2 |
9333327 | Setliff, III et al. | May 2016 | B2 |
9339637 | Drontle et al. | May 2016 | B2 |
9370650 | Hanson et al. | Jun 2016 | B2 |
9433343 | Drontle et al. | Sep 2016 | B2 |
9440049 | Drontle et al. | Sep 2016 | B2 |
9486614 | Drontle et al. | Nov 2016 | B2 |
9550049 | Hanson et al. | Jan 2017 | B2 |
9694167 | Keith et al. | Jul 2017 | B2 |
9700705 | Lesch, Jr. et al. | Jul 2017 | B2 |
9775975 | Ressemann et al. | Oct 2017 | B2 |
10022525 | Hanson et al. | Jul 2018 | B2 |
10029069 | Keith et al. | Jul 2018 | B2 |
10086181 | Lesch | Oct 2018 | B2 |
10881843 | Lesch | Jan 2021 | B2 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020138121 | Fox | Sep 2002 | A1 |
20040064083 | Becker | Apr 2004 | A1 |
20040064150 | Becker | Apr 2004 | A1 |
20040068299 | Laske et al. | Apr 2004 | A1 |
20050059931 | Garrison et al. | Mar 2005 | A1 |
20050240147 | Makower et al. | Oct 2005 | A1 |
20050245906 | Makower et al. | Nov 2005 | A1 |
20060004286 | Chang et al. | Jan 2006 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060063973 | Makower et al. | Mar 2006 | A1 |
20060095066 | Chang et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060106361 | Muni et al. | May 2006 | A1 |
20060111691 | Bolmsjo et al. | May 2006 | A1 |
20060149310 | Becker | Jul 2006 | A1 |
20060210605 | Chang et al. | Sep 2006 | A1 |
20060284428 | Beadle et al. | Dec 2006 | A1 |
20060293612 | Jenson et al. | Dec 2006 | A1 |
20070005094 | Eaton et al. | Jan 2007 | A1 |
20070073269 | Becker | Mar 2007 | A1 |
20070129751 | Muni et al. | Jun 2007 | A1 |
20070135789 | Chang et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070167682 | Goldfarb et al. | Jul 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070208301 | Evard et al. | Sep 2007 | A1 |
20070249896 | Goldfarb et al. | Oct 2007 | A1 |
20070250105 | Ressemann et al. | Oct 2007 | A1 |
20070270644 | Goldfarb et al. | Nov 2007 | A1 |
20070282305 | Goldfarb et al. | Dec 2007 | A1 |
20070293726 | Goldfarb et al. | Dec 2007 | A1 |
20070293727 | Goldfarb et al. | Dec 2007 | A1 |
20080015472 | Ressemann et al. | Jan 2008 | A1 |
20080015540 | Muni et al. | Jan 2008 | A1 |
20080082045 | Goldfarb et al. | Apr 2008 | A1 |
20080097154 | Makower et al. | Apr 2008 | A1 |
20080097239 | Chang et al. | Apr 2008 | A1 |
20080097295 | Makower et al. | Apr 2008 | A1 |
20080097400 | Chang et al. | Apr 2008 | A1 |
20080097514 | Chang et al. | Apr 2008 | A1 |
20080097515 | Chang et al. | Apr 2008 | A1 |
20080097516 | Chang et al. | Apr 2008 | A1 |
20080103521 | Makower et al. | May 2008 | A1 |
20080119693 | Makower et al. | May 2008 | A1 |
20080125626 | Chang et al. | May 2008 | A1 |
20080132938 | Chang et al. | Jun 2008 | A1 |
20080154237 | Chang et al. | Jun 2008 | A1 |
20080154250 | Makower et al. | Jun 2008 | A1 |
20080172033 | Keith et al. | Jul 2008 | A1 |
20080195041 | Goldfarb et al. | Aug 2008 | A1 |
20080228085 | Jenkins et al. | Sep 2008 | A1 |
20080234720 | Chang et al. | Sep 2008 | A1 |
20080249500 | Keith et al. | Oct 2008 | A1 |
20080269596 | Revie et al. | Oct 2008 | A1 |
20080275483 | Makower et al. | Nov 2008 | A1 |
20080281156 | Makower et al. | Nov 2008 | A1 |
20080287908 | Muni et al. | Nov 2008 | A1 |
20080319424 | Muni et al. | Dec 2008 | A1 |
20090005763 | Makower et al. | Jan 2009 | A1 |
20090028923 | Muni et al. | Jan 2009 | A1 |
20090030274 | Goldfarb et al. | Jan 2009 | A1 |
20090093823 | Chang et al. | Apr 2009 | A1 |
20090187098 | Makower et al. | Jul 2009 | A1 |
20090198216 | Muni et al. | Aug 2009 | A1 |
20090216196 | Drontle et al. | Aug 2009 | A1 |
20100030113 | Moriss et al. | Feb 2010 | A1 |
20100168511 | Muni et al. | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100211007 | Lesch et al. | Aug 2010 | A1 |
20100241155 | Chang et al. | Sep 2010 | A1 |
20100274222 | Setliff, III et al. | Oct 2010 | A1 |
20100312101 | Drontle | Dec 2010 | A1 |
20110071349 | Drontle et al. | Mar 2011 | A1 |
20110224652 | Drontle et al. | Sep 2011 | A1 |
20120010646 | Keith et al. | Jan 2012 | A1 |
20120071727 | Hanson et al. | Mar 2012 | A1 |
20120283625 | Keith et al. | Nov 2012 | A1 |
20130030458 | Drontle et al. | Jan 2013 | A1 |
20130030459 | Drontle et al. | Jan 2013 | A1 |
20130041463 | Ressemann | Feb 2013 | A1 |
20130072958 | Ressemann et al. | Mar 2013 | A1 |
20140350520 | Drontle et al. | Nov 2014 | A1 |
20140357959 | Hanson et al. | Dec 2014 | A1 |
20140364700 | Hanson et al. | Dec 2014 | A1 |
20140378776 | Hanson et al. | Dec 2014 | A1 |
20150031950 | Drontle et al. | Jan 2015 | A1 |
20150045827 | Drontle et al. | Feb 2015 | A1 |
20150105818 | Keith et al. | Apr 2015 | A1 |
20160151614 | Ressemann et al. | Jun 2016 | A1 |
20160166814 | Lesch et al. | Jun 2016 | A1 |
20160367286 | Drontle et al. | Dec 2016 | A1 |
20170007282 | Drontle et al. | Jan 2017 | A1 |
20170028112 | Drontle et al. | Feb 2017 | A1 |
20170050001 | Drontle et al. | Feb 2017 | A1 |
20170113027 | Drontle et al. | Apr 2017 | A1 |
20170368319 | Ressemann et al. | Dec 2017 | A1 |
20180008806 | Ressemann et al. | Jan 2018 | A1 |
20180304051 | Keith et al. | Oct 2018 | A1 |
20180304058 | Hanson et al. | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
0129634 | Jan 1985 | EP |
159815 | Nov 2005 | EP |
91177787 | Nov 1991 | WO |
9600033 | Jan 1996 | WO |
2005086945 | Sep 2005 | WO |
2010014799 | Feb 2010 | WO |
2011140535 | Nov 2011 | WO |
Entry |
---|
Iro, H., J. Zenk, “A new device for frontal sinus endoscopy: First Clinical Report”, Department of Otorhinolaryngology, University of Eralngen-Nuremberg, Germany. Otorhinolaryngology, Head and Neck Surgery vol. 125 No. 6, Dec. 2001, pp. 613-616 (4 pages). |
Petersen, Robert J., Canine Fossa Puncture, The Laryngoscope Office, Oct. 5, 1972, pp. 369-371. |
Elidan, J., MD., Irrigation of the Maxillary Sinus by Canine Fossa Puncture Experience with 202 Patients, Ann Otol Rinol Laryngol, 92:1983, pp. 528-529. |
Yanagisawa, Eiji, et al, Trans-Canine-Fossa Maxillary Sinoscopy for Biopsy Via the Stammberger Technique, ENT Rhinoscopic Clinic, Aug. 2001 Rhino, pp. 1-3. |
Yanagisawa, Eiji, et aL, Powered Endoscopic Inferior Meatal Antrostomy Under Canine Fossa Telescopic Guidance, ENT-Ear, Nose & Throat Journal, Sep. 2001, pp. 618-620. |
Sathananthar, Shanmugam, et al., Canine Fossa Puncture and Clearance of the Maxillary Sinus for the Severely Diseased Maxillary Sinus, The Laryngoscope 115: Jun. 2005, pp. 1026-1029. |
Robinson, Simon, et aL, Patterns of Innervation of the Anterior Maxilla: A Cadaver Study with Relevance to Canine Fossa Puncture of the Maxillary Sinus, Laryngoscope 115: Oct. 2005, pp. 1785-1788. |
Bolger, William, E., et aL, Catheter-Based Dilation of the Sinus Ostia: Initial Safety and Feasibility Analysis in a Cadaver Model, Maryland Sinus Clinic, Bethesda, Maryland, and California Sinus Institute, Palo Alto, California, OceanSide Publications, Inc., May-Jun. 2006, vol. 20, No. 3, pp. 290-294. |
Friedman, Michael, M.D. et aL, Functional Endoscopic Dilatation of the Sinuses {FEDS): Patient Selection and Surgical Technique, Operative Technologies in Otolaryngology, vol. 17, No. 2, Jun. 2006, pp. 126-134. |
Jones, Nick, Commentary on “Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation”, Annals of Otology, Rhinology & Laryngology 115(4), pp. 300-301 (2006). |
Bolger, William E., Commentary Misconceptions Regarding Balloon Catheter Dilation of Paranasal Sinus Ostia, Annals of Otology, Rhinology & Laryngology 115(10): 791-792 (2006). |
Lanza, Donald, C., et al., Commentary Balloon Sinuplasty: Not Ready for Prime Time, Annals of Otology, Rhinology & Laryngology 115(10): 789-790 (2006). |
Brown, Christopher, L, et al., “Safety and Feasibility of Balloon Catheter Dilation of Paranasal Sinus Ostia: A Preliminary Investigation”, Annals of Otology, Rhinology & Laryngology 115(4):293-299 (2006). |
Gottman, D., et al., “Balloon Dilatation of Recurrent Ostia Occlusion of the Frontal Sinus”, ECR Mar. 3, 2001, 2:-3:30 PM, Vienna Austria (1 page). |
Entellus Medical, 510(k) Premarket Notification cover letter and Attachment B: Predicate Device Labeling, dated Aug. 15, 2007. |
R. Peterson, Sinus Puncture Therreapy: Canine Fossa Puncture Method “How I Do It” Head and Neck, The Larynsgoscope 91: Dec. 1981, pp. 2126-2128. |
T.G.A. Ijaduola, Use of a Foley Catheter For Short-Tern Drainage of Frontal Sinus Surgery, Journ. of Laryngology and Otology, Apr. 1989, vol. 103, pp. 375-378. |
A. Gatot et al., Early Treatment of Oribital Floor Fractures with Catheter Balloon in Childre, Int'l. J. of Ped. Otorhinolaryngology, 21 (1991) 97-101. |
D.I. Tarasov et al., Treatment of Chronic Ethmoiditis by IntraCellular Administration of Medicines to the Ethmoidal Labyrinth, Vestn Otorinolaringol. Nov.-Dec. 1978; (6):45-47 (Abstract in English). |
J.M. Robison, Pressure Treatment of Maxillary Sinusitis, J.A.M.A., May 31, 1952, pp. 436-440. |
J.M. Robison, Pressure Treatment of Purulent Maxillary Sinusitis, Texas State Journal of Medicine, May 1952, pp. 281-288. |
Entellus Medical, 510(k) Letter (Amendment 1) and Attachment D&E, dated Mar. 13, 2008. |
Gottman et al., Balloon Dilation of Recurrent Ostial Occlusion of the Frontal Sinus, Gottman et al.: Abstract (B-0453) Mar. 2001, 22 pages. |
PCT International Search Report for PCT/US2007/088834, Applicant: Entellus Medical, Inc., Forms PCT/ISA/220 and PCT/ISA/210, dated May 20, 2008 (4 pages). |
PCT Written Opinion for PCT/US2007/088834, Applicant: Entellus Medical, Inc., Forms PCT/ISA/237, dated May 20, 2008 (10 pages). |
PCT International Search Report for PCT/US2007/66187, Applicant: Entellus Medical, Inc., Forms PCT/ISA/220 and PCT/ISA/210, dated Apr. 17, 2008 (5 pages). |
PCT Written Opinion for PCT/US2007/66187, Applicant: Entellus Medical, Inc., Forms PCTIISA/237, dated Apr. 17, 2008 (5 pages). |
Folweiler, David S., Nasal Specific Technique as Part of a Chropractic Approach to Chronic Sinusitis and Sinus Headaches, Journal of Manipulative and Physiological Therapeutics, vol. 18, No. 1 (Jan. 1995). |
PCT International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) of the International Bureau for PCT/US2007/066187, Applicant: Entellus Medical, Inc., Form PCTIIB/326, dated Oct. 30, 2006 (4 pages). |
Medtronic, ENT Image-Guided Surgery System, http://www.xomed.com/xomed_products_element.html, Jun. 3, 2009 (2 pages). |
International Search Report dated Aug. 2, 2010, for PCT/US2010/037508, Applicant: Entellus Medical, Inc. (4 pages). |
Written Opinion of the International Search Authority dated Aug. 2, 2010, for PCT/US2010/037508, Applicant: Entellus Medical, Inc. (4 pages). |
International Preliminary Report on Patentability dated Jul. 30, 2009, for PCT/US2007/088834, Applicant: Entellus Medical, Inc. (9 pages). |
PCT International Preliminary Report on Patentability (Chapter I of the Patent Cooperation Treaty) for PCT/US2010/037508, Applicant: Entellus Medical Inc., Form PCT/IB/326 and 373, dated Dec. 15, 2011 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20210085938 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
61558142 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15049800 | Feb 2016 | US |
Child | 16111077 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16111077 | Aug 2018 | US |
Child | 17111104 | US | |
Parent | 13674734 | Nov 2012 | US |
Child | 15049800 | US |