1. Field of the Invention
The present invention relates generally to methods and devices for use in performing pulmonary procedures, and more particularly, procedures for treating various diseases of the lungs.
2. Description of the Related Art
Pulmonary diseases such as emphysema and chronic obstructive pulmonary disease (COPD) reduce the ability of one or both lungs to fully expel air during the exhalation phase of the breathing cycle. The diseased lung tissue is less elastic than healthy lung tissue, which is one factor that prevents full exhalation of air. During breathing, the diseased portion of the lung does not fully recoil due to the tissue being less elastic. Consequently, the diseased (e.g., emphysematic) lung tissue exerts a relatively low driving force, which results in the diseased lung expelling less air volume than a healthy lung. The reduced air volume exerts less force on the airway which allows the airway to close before all air has been expelled, another factor that prevents full exhalation.
The problem is further compounded by the diseased, less elastic tissue that surrounds the very narrow airways that lead to the alveoli (the air sacs where oxygen-carbon dioxide exchange occurs). This tissue has less tone than healthy tissue and is typically unable to maintain the narrow airways open until the end of the exhalation cycle. This traps air in the lungs and exacerbates the already-inefficient breathing cycle. The trapped air causes the tissue to become hyper-expanded and no longer able to effect efficient oxygen-carbon dioxide exchange. Applying suction to these narrow airways (a procedure proposed in the literature for deflating the diseased portion of the lung) may collapse the airways due to the surrounding diseased tissue, thereby preventing successful fluid removal.
In addition, hyper-expanded lung tissue occupies more of the pleural space than healthy lung tissue. In most cases, a portion of the lung is diseased while the remaining part is healthy and therefore still able to efficiently carry out oxygen exchange. By taking up more of the pleural space, the hyper-expanded lung tissue reduces the amount of space available to accommodate the healthy, functioning lung tissue. As a result, the hyper-expanded lung tissue causes inefficient breathing due to its own reduced functionality and because it adversely affects the functionality of adjacent healthy tissue.
Lung reduction surgery is a conventional method of treating lung diseases such as emphysema. A diseased portion of the lung is surgically removed which makes more of the pleural space available to accommodate the functioning, healthy portion of the lung. The lung is typically accessed through a median sternotomy or small lateral thoracotomy. A portion of the lung, typically the upper lobe of each lung, is freed from the chest wall and then resected, e.g., by a stapler lined with bovine pericardium to reinforce the lung tissue adjacent the cut line and also to prevent air or blood leakage. The chest is then closed and tubes are inserted to remove air and fluid from the pleural cavity. The conventional surgical approach is relatively traumatic and invasive, and, like most surgical procedures, is not a viable option for all patients.
More recently proposed treatments include the use of devices that employ RF or laser energy to cut, shrink or fuse diseased lung tissue. Another lung volume reduction device utilizes a mechanical structure that is used to roll the lung tissue into a deflated, lower profile mass that is permanently maintained in a compressed condition. As for the type of procedure used, open surgical, minimally invasive and endobronchial approaches have all been proposed. Another proposed device (disclosed in publication no. WO 98/48706) is positioned at a location in the lung to block airflow and isolate a part of the lung. The publication states that the occlusion device is introduced through an endobronchial delivery device, and is resiliently deformable in order to provide a complete seal against airflow.
The search for new and better treatments underscores the drawbacks associated with existing pulmonary procedures. Accordingly, there is a need in the art for improved methods and devices for performing pulmonary procedures, and in particular, treating lung diseases such as emphysema.
In one embodiment, there is disclosed a method for treating a patient's lung. The method includes steps of selecting a hollow structure in a patient's lung, the hollow structure defining a pathway for conducting fluid flow in at least first and second directions, and allowing fluid flow within the pathway in the first direction while controlling fluid flow in the second direction.
In another embodiment, there is disclosed a method for treating a patient's lung. This method includes steps of providing a valve which allows fluid flow in a first direction and limits fluid flow in a second direction, and positioning the valve at a desired location in a lung of a patient with the first direction corresponding to an exhalation direction and the second direction corresponding to an inhalation direction.
In another embodiment, there is disclosed a method for treating a patient's lung that includes steps of providing a flow control element that limits fluid flow in at least one direction, positioning the flow control element at a location in a lung of a patient with the one direction substantially corresponding to an inhalation direction, and removing the flow control element after a period of time.
In another embodiment, there is disclosed a method for treating a patient's lung, the method comprising steps of selecting a hollow structure in a patient's lung, the hollow structure defining a pathway for conducting fluid flow in at least first and second directions, applying suction to draw fluid through the pathway in the first direction, and substantially preventing fluid flow through the pathway in the second direction.
In another embodiment, there is disclosed a system for treating a patient's lung. The system includes a flow control element sized and configured to be positioned in a hollow structure located in a patient's lung, the flow control element including a valve member that permits fluid flow in a first direction while substantially preventing fluid flow in a second direction. A delivery device is sized and configured to be guided to and positioned in or adjacent the hollow structure, and the flow control element is removably mounted on the delivery device. This valve may be a poppet, ball, duckbill, heimlick, flat or leaflet valve.
In another embodiment, there is disclosed a system for treating a patient's lung. The system includes a measuring device for determining the approximate size of a hollow structure in a patient's lung, and a flow control element sized and configured to be positioned in a hollow structure located in a patient's lung, wherein the flow control element allows fluid flow in a first direction but substantially prevents fluid flow in a second direction.
In another embodiment, there is disclosed a system for treating a patient's lung. This system includes a flow control element sized and configured to be positioned in a hollow structure located in a patient's lung, wherein the flow control element allows fluid flow in a first direction but substantially prevents fluid flow in a second direction, and a removal device for removing the flow control element from the hollow structure subsequent to positioning the flow control element in the hollow structure.
In another embodiment, a blocking element is coupled to a delivery element. The blocking element is advanced to a location in a patient's lung. An expandable member is expanded to occlude a pulmonary passageway and air is then withdrawn from the lung. The blocking element is released to block air flow into the isolated portion of the lung. The blocking element may also be a valve. The expandable member may be carried by the delivery element or by a separate element.
In still another embodiment, a device is advanced through the blocking element after implantation of the blocking element. A procedure, such as delivery or evacuation of fluids or liquids, may then be performed with the device. The device is then removed with the blocking element again preventing air from passing in the inhalation direction. The blocking element may also be a valve which permits air flow in an expiratory direction.
The present invention provides methods and devices for performing pulmonary procedures, for example, treating various lung diseases such as emphysema and COPD. One preferred embodiment of the invention provides a flow control element that allows fluid flow in a first direction and controls fluid flow in a second direction. As used herein, fluid means gas, liquid, or a combination of a gas(es) and liquid(s). In addition, controlled fluid flow, as used herein, means that the flow is altered in some manner, i.e., the flow is not unimpeded in the second direction. The specific manner in which fluid flow is controlled in the second direction depends on the construction of the flow control element. The flow control element may, for example, completely block, substantially block, limit, meter or regulate fluid flow in the second direction by a valve or other suitable structure.
As an example, when positioned in a hollow structure in a patient's body, such as a bronchiole in one of the lungs, the flow control element is oriented to allow flow in the exhalation direction but prevent fluid flow in the inhalation direction. The flow control element has a valve member that opens during exhalation in order to deflate or decompress the isolated lung portion distal to the flow control element. This maintains the diseased tissue in a decompressed state which prevents further hyper-expansion of the tissue. The invention also permits slow decompression of the lung tissue over a short or extended period of time.
The invention thus may be used to prevent fluid being drawn into one or more portion of a patient's lung. According to another aspect of the invention, a portion of the lung may be deflated by applying gentle suction (via the flow control element) to the hyper-expanded tissue without collapsing the walls of the narrow airways surrounded by diseased tissue. The suction draws air, liquid, mucous, etc., out of the lung portion to evacuate the diseased tissue. It will be recognized that these and other aspects of the invention may be practiced independently or in conjunction with each other.
Referring to
As noted above, the valve member 32 of the flow control element 22 controls fluid flow by completely blocking such flow in the second direction. As such, the valve member 32 effectively functions as a one-way valve. Alternative embodiments of the invention utilize flow control elements that control fluid flow in the second direction without completely blocking such flow.
When the flow control element 38 is in its flow-allowing orientation (not shown), the flaps 44 spread apart and allow essentially unimpeded fluid flow out of the diseased lung portion. When the flow control element 38 is in its flow-controlling orientation, as shown in
According to another aspect of the invention, the flow control element may be constructed to provide a pumping action that aids in moving gas or liquid within a hollow structure, such as a bronchiole. For instance, when the lung distorts during inhalation and/or exhalation, a mechanical pumping action is produced that may be used to move the gas or liquid to further deflate the isolated region of the lung.
The valve member 54 is coupled to a bellows 60 to enhance the pumping action and/or to control the amount of force needed to open the valve member. The wall 62 defining the chamber 58 is secured to the ring 56 so that the chamber 58 occupies the entire interior of the ring 56. The flow control element 50 may have a different configuration wherein the chamber 58 is defined by an air pocket located within the wall 62. This may prevent fluid collecting in the chamber 58. In addition, a power-driven pump may be used to draw fluid out of the lungs, e.g., a miniature batter-powered electric pump, or pumps that use physical or chemical characteristics, e.g., a change in air temperature, presence of an additional gas or liquid, change in pH, etc., to generate pumping force that evacuates air and mucous.
The flow control element of the invention may be guided to and positioned at a desired location in the pulmonary system, such as the bronchiole 28 shown in
The invention is preferably carried out by first determining the approximate size of the target lumen, i.e., the hollow structure in which the flow control element will be placed.
The positioning element 96 is optional and may be used to fix the position of the measuring elements 98 within the bronchiole so as to obtain more precise measurement. The illustrated element 96 is an inflatable balloon, although other elements could be used to center and hold the shaft 96 within the bronchiole. Any suitable means may be used for ensuring that the measuring elements 98 do in fact contact the bronchiole wall in order to provide a true reading. The measuring elements 98 may be moved distally (to the right in
In use, the shaft 94 of the measuring device 90 is passed through the bronchoscope working channel 26 and delivered to the site. The device 90 is then operated as described above to determine the approximate size of the bronchiole. The degree of precision with which the size of the hollow structure is measured will depend on the procedure being performed and user preference. After determining the size of the bronchiole the device 90 is removed from working channel 26, and delivery device 20 is inserted into the channel to deploy the flow control element in the bronchiole.
It may in some instances be necessary or desirable to remove a flow control element from a hollow structure in which it has been deployed. As an example, it may be the case that placement of a flow control element for a given period of time effects beneficial results on the diseased lung tissue. The time during which the diseased tissue is deflated and decompressed may allow the tissue to regain some elasticity as a result of being temporarily inactive. After the tissue has regained some or all of its elasticity, it would be better to remove the flow control element and allow the tissue to function efficiently. The flow control element, however, is preferably not removed before the tissue has a sufficient chance to recover.
Accordingly, the invention also provides methods and devices for removing a flow control element from a hollow structure such as a bronchiole in a patient's body.
The flow control element of the invention is secured in position in the hollow structure, such as bronchiole 28, so as to remain in place during breathing. The exterior of the flow control element may be configured along all or part of its exterior to aid in fixing the element in place, for instance, as schematically indicated by reference numeral 48 in
Placement of a flow control element constructed according to the invention in a patient's pulmonary system achieves several benefits. With reference to the illustrated flow control element 22, when deployed in the bronchiole 28 as shown in
Referring to
The flow control element 22 has an expandable support structure 130. The support structure 130 is metallic and preferably a superelastic material such as Nitinol. The support structure 130 is formed by cutting, etching or otherwise removing material from a tube to form openings 132 as is generally known in the art of forming small, metallic tubes such as stents. Of course, the support structure 130 may be made in any other suitable manner and with other suitable materials. As an example, the support structure 130 may be a Nitinol tube which is laser cut to have six diamond-shaped openings 132.
The flow control element 22 has a body 134 coupled to the support structure 130. The body is preferably molded silicone or urethane but may be any other suitable material. The valve 124 is mounted to the body 134 and may be integrally formed with the body 134 as described below. The body 134 may be attached to the support structure 130 in any suitable manner. For example, the body 134 may be positioned in the support structure 130 and an end 136 averted over an end 138 of the support structure 130. The end 136 is attached to the rest of the body 134 through the openings 132 in the support structure 130 at connections 140 with an adhesive, adhesive rivet, heat weld or any other suitable method. An advantage of coupling the body 134 to the support structure 130 with the connections 140 is that the support structure 130 and body 134 may collapse and expand somewhat independently since the connections 140 are free to move in the openings 132.
The flow control element 22 may also have a sealing portion 142 which forms a seal with the wall of the pulmonary passage. The sealing portion 142 may be attached to the body 134 separately (
The sealing portion 142 forms a ring 146 around the body 134. The ring 146 is made of a resilient, elastomeric material which improves sealing with the wall of the pulmonary passage. The ring 146 may have any suitable shape such as straight, tapered, angled or could have frustoconical surface 143 which angles the ring 146. The sealing portion 142 preferably forms two rings 146, and preferably three, which each have a different diameter to seal with different size passages. In this manner, the device may be used within a given size range. The ring 146 also may be designed to deflect to permit exhalation air to pass. During coughing, for example, the valve 124 will, of course, open to permit air to escape, however, the pressure force on the valve 124 can be reduced if the sealing portion 142 also opens to permit further venting of the isolated portion of the lung. As will be explained below, various other structures may also be used to provide valves which cooperate with the wall of the pulmonary passageway to permit venting of the isolated area.
The body 134 is coupled to the support structure 130 to provide an exposed part 135 of the support structure 130 which helps to anchor the device. The term exposed part shall mean a part of the support structure 130 not covered by the body 134. Of course, the exposed part 135 may be covered by another material so long as it is not covered by the body 134. The exposed part 135 of the support structure 130 may form anchoring elements 148 which anchor the support structure 130. The anchoring elements 148 are preferably v-shaped to improve anchoring. Of course, the anchoring elements 148 may also be barbs or the like. Referring to
Referring to
Referring to
Referring to
Any of the flow control elements of the present invention may also be used with a sealant 162, such as an adhesive, which seals and/or anchors the device. Referring to
Referring to
The valve 166 cooperates with the wall of the pulmonary passageway to vent the isolated area. The valve 166 is generally conical, however, any other shape may be used. The valve 166 may engage the pulmonary wall with a number of different configurations without departing from the scope of the invention, thus, the following preferred embodiments do not limit the scope of the invention. The valve 166 is elastic and yields to permit expiratory air to pass between the valve and the wall of the passageway. Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The delivery element 202 may also be used to remove air, and even fluid if necessary, from the isolated portion of the lung. The expandable member 208 is expanded to isolate a portion of the lung and suction is applied to deflate the lung. The isolated portion of the lung may be deflated with the device contained within the delivery element 202 or may be deflated after delivery of the device. An advantage of using the valves of the present invention is that air can be drawn through the valve even after the valve has been deployed. Referring to
Referring now to
Referring to
An advantage of the present invention is that the isolated portion may be deflated after implantation of the valve without penetrating the valve. The device may be positioned proximal to the valve and the expandable element expanded to occlude the pulmonary passageway. Suction is then applied through the device so that a low pressure area develops between the valve and occluding member. When the pressure differential is large enough, the valve will open to vent and deflate the isolated portion of the lung. This process can be continued in a controlled manner until the desired amount of deflations is achieved or when a target pressure has been reached. When suction is stopped, the valve will close to isolate part of the lung.
After deployment of the valve, the delivery device, or other suitable device, may also be used as a diagnostic tool. For example, the balloon may be deflated momentarily so that the isolated area between the balloon and valve increases in pressure. If the pressure decreases after the balloon is inflated again it may indicate that the valve is not sealing properly since the air may be passing around or through the valve and into the isolated portion. An alternative diagnostic would be to pressurize the space between the valve and expandable member. The pressure response can then be monitored to determine if the valve provides an adequate seal.
The devices and valves of the present invention provide the ability to prevent inflation of diseased areas of the lung while also permitting venting of these portions of the lung. The valves preferably open with a relatively small pressure differential across the valve. For example, the valves preferably open with a pressure differential of no more than 10 inches water more preferably no more than 5 inches water and most preferably no more than 1 inch water. Although the valves and valve elements of the present invention may open with relatively small pressure differentials, the valves and valve elements may also have higher opening pressures. For example, the valves may also be designed to open only for high pressure events such as coughing. For such valves, the opening pressure, or differential pressure, is at least 25 inches water but still no more than 120 inches water. In accordance with a method of the present invention, coughing may be induced to increase the driving force and respiratory pressure to vent the isolated portions of the lung.
The flow control elements of the invention permit the diseased tissue to gradually deflate, either under the patient's own power or by applying relatively gentle suction for a given period of time. The suction may be applied intermittently or continuously by any suitable means. For example, a suction catheter could be passed through the flow control element in the bronchiole and into the distal tissue. The flow control element, for example, a valve member, would preferably seal around the catheter in order to prevent fluid moving distally past the valve.
The invention thus provides significant benefits as it permits fluid to be evacuated from the alveoli without collapsing the floppy walls of the narrow airways leading to them, problem with common lung diseases such as emphysema and COPD, as discussed above. Accordingly, the invention facilitates removal of more fluid from the diseased lung tissue than prior art approaches, the effect of which is more pleural space available to the healthy lung tissue.
In addition, as noted above, using the invention to deflate the diseased lung tissue for a selected period of time., e.g., one month, may have beneficial results on the tissue by temporarily removing it from the respiratory circuit. The flow control element is preferably removed before the tissue begins to necrose, but is left in place a sufficiently long enough time that the tissue will not revert to its floppy, toneless state when the element is removed. Stated otherwise, it may be possible to use the invention as a means for repairing (rather than removing or obliterating) diseased lung tissue, either by controlling the fluid flow in the lung tissue or by controlling the fluid flow in combination with delivering one or more substances.
For example, some possible substances with which the invention may be used include gene therapy or angiogenesis factors for lung repair or reestablishment of tissue elasticity; growth factors; anti-growth or anti-angiogenesis factors (or substances to cause necrosis or apoptosis) to prevent re-establishment of air and blood flow; antibiotics to prevent infection; anti-inflammatory agents including steroids and cortisones; sclerosing drugs or materials to promote rapid healing, for example, to allow earlier removal of the flow control element; agents for absorbing remaining fluids; and sealing substances for enhancing isolation of the diseased tissue.
The portion of the lung being treated may de deflated over time through repeated natural inhalation and exhalation with the flow control element in place. Alternatively or additionally, a vacuum source may be coupled to the flow control element to draw fluid out of the diseased tissue in the manner discussed above. This deflation of the diseased portion may be performed alone or in conjunction with delivering biological substances. The pressures used to suction the lung portion are preferably low to avoid collapsing the walls of the narrow airways.
In the embodiments in which the flow control element comprises a valve, it may be formed of various materials and may be constructed in various manners. As an example, the valve may comprise an annulus or support ring formed of any suitable metal or synthetic material, with the valve member being formed of silicone, natural rubber, latex, polyurethane, polytetrafluoroethylene, a thermoplastic elastomer, tissue, etc. The valve member may be integral with the support ring or it may be a separate member attached thereto by suitable means, e.g., suture, adhesives, mechanical fasteners. If the flow control element comprises a stent with a valve prior art attachment methods may be used. For example, see U.S. Pat. No. 5,954,766, the content of which is incorporated herein in reference.
The specific characteristics of the flow control element may be varied depending on the particular application. It may be desirable to provide multiple flow control elements with valve members that require different exhale pressures to open, for example, in order to allow treatment of patients who generate different exhalation pressures. The different flow control elements could be provided in a kit and be distinguished from each other based on required opening force, size, material, etc. The kit could include a color or other coding system to indicate these factors.
The flow control elements of the invention are preferably constructed so as to require a relatively low opening force in order to allow fluid flow in the first direction. Emphysema patients typically exhale a small quantity of low-pressure fluid. The invention preferably allows any such fluid to escape via the flow control element in the hollow structure. As such, the flow control element is designed to open and allow flow in the first direction in response to any positive pressure generated by the patient. Put another way, as long as some pressure differential exists between the distal lung tissue and the proximal portion of the bronchiole, the flow control element will open to allow fluid to escape the tissue. It will nonetheless be recognized that the particular force required to open the flow control element may be varied depending on exhalation pressures associated with the intended patient population.
It will be appreciated that features of the various preferred embodiments of the invention may be used independently or in conjunction with one another, while the illustrated methods and devices may be modified or combined in whole or in part. The inventive devices may include removable or detachable components, and may comprise disposable or reusable components, or a combination of disposable and reusable components. Likewise, it will be understood that the invention may be practiced with one or more of the steps specifically illustrated and described herein modified or omitted.
It should also be recognized that the invention is not limited to treating lung diseases as is shown in the Figures, although that is a preferred application. The invention may be used in any pulmonary or non-pulmonary procedure in which it is desirable to allow fluid flow in a first direction and-control fluid flow in a second, different direction within a hollow structure. Finally, it will be understood that although a minimally invasive, endobronchial approach is shown in the Figures, other approaches may used, for example, an open surgical procedure using a median sternotomy, a minimally invasive procedure using a mini thoracotomy, or a still less invasive procedure using one or more ports or openings in the thorax, etc.
The preferred embodiments of the invention are described above in detail for the purpose of setting forth a complete disclosure and for sake of explanation and clarity. It will be readily understood that the scope of the invention defined by the appended claims will encompass numerous changes and modifications.
This application is a continuation of U.S. patent application Ser. No. 09/797,910, filed Mar. 2, 2001, now U.S. Pat. No. 6,694,979 entitled “Methods and Devices for use in Performing Pulmonary Procedures” by Deem et al., which is a continuation-in-part of U.S. patent application Ser. No. 09/519,735 filed Mar. 4, 2000, now U.S. Pat. No. 6,679,264 entitled “Methods and Devices for use in Performing Pulmonary Procedures” by Deem et al., the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2981254 | Vanderbilt | Apr 1961 | A |
3657744 | Ersek | Apr 1972 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3874388 | King et al. | Apr 1975 | A |
4014318 | Dockum et al. | Mar 1977 | A |
4086665 | Poirier | May 1978 | A |
4212463 | Repinski et al. | Jul 1980 | A |
4250873 | Bonnet | Feb 1981 | A |
4302854 | Runge | Dec 1981 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4795449 | Schneider et al. | Jan 1989 | A |
4808183 | Panje | Feb 1989 | A |
4819664 | Nazari | Apr 1989 | A |
4830003 | Wolff et al. | May 1989 | A |
4832680 | Haber et al. | May 1989 | A |
4846836 | Reich | Jul 1989 | A |
4850999 | Planck | Jul 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4877025 | Hanson | Oct 1989 | A |
4934999 | Bader | Jun 1990 | A |
4968294 | Salama | Nov 1990 | A |
5061274 | Kensey | Oct 1991 | A |
5116360 | Pinchuk et al. | May 1992 | A |
5116564 | Jansen et al. | May 1992 | A |
5123919 | Sauter et al. | Jun 1992 | A |
5151105 | Kwan-Gett | Sep 1992 | A |
5161524 | Evans | Nov 1992 | A |
5306234 | Johnson | Apr 1994 | A |
5352240 | Ross | Oct 1994 | A |
5358518 | Camilli | Oct 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5382261 | Palmaz | Jan 1995 | A |
5392775 | Adkins et al. | Feb 1995 | A |
5409019 | Wilk | Apr 1995 | A |
5411507 | Heckele | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5413599 | Imachi et al. | May 1995 | A |
5417226 | Juma | May 1995 | A |
5445626 | Gigante | Aug 1995 | A |
5486154 | Kelleher | Jan 1996 | A |
5499995 | Teirstein | Mar 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5562608 | Sekins | Oct 1996 | A |
5645565 | Rudd et al. | Jul 1997 | A |
5660175 | Dayal | Aug 1997 | A |
5662713 | Andersen et al. | Sep 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5697968 | Rogers et al. | Dec 1997 | A |
5755770 | Ravenscroft | May 1998 | A |
5800339 | Salama | Sep 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5851232 | Lois | Dec 1998 | A |
5855587 | Hyon et al. | Jan 1999 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5947997 | Pavcnik et al. | Sep 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5984965 | Knapp et al. | Nov 1999 | A |
6007575 | Samuels | Dec 1999 | A |
6009614 | Morales | Jan 2000 | A |
6020380 | Killian | Feb 2000 | A |
6022312 | Chaussy et al. | Feb 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6051022 | Cai et al. | Apr 2000 | A |
6068635 | Gianotti | May 2000 | A |
6068638 | Makower | May 2000 | A |
6077291 | Das | Jun 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6123663 | Rebuffat | Sep 2000 | A |
6135729 | Aber | Oct 2000 | A |
6135991 | Muni et al. | Oct 2000 | A |
6141855 | Morales | Nov 2000 | A |
6162245 | Jayaraman | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6174323 | Biggs et al. | Jan 2001 | B1 |
6183520 | Pintauro et al. | Feb 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6206918 | Campbell et al. | Mar 2001 | B1 |
6234996 | Bagaoisan et al. | May 2001 | B1 |
6240615 | Kimes et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6258100 | Alferness et al. | Jul 2001 | B1 |
6270527 | Campbell et al. | Aug 2001 | B1 |
6287290 | Perkins et al. | Sep 2001 | B1 |
6293951 | Alferness et al. | Sep 2001 | B1 |
6302893 | Limon et al. | Oct 2001 | B1 |
6312407 | Zadno-Azizi et al. | Nov 2001 | B1 |
6325777 | Zadno-Azizi et al. | Dec 2001 | B1 |
6325778 | Zadno-Azizi et al. | Dec 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6328689 | Gonzalez | Dec 2001 | B1 |
6355014 | Zadno-Azizi et al. | Mar 2002 | B1 |
6398775 | Perkins et al. | Jun 2002 | B1 |
6402754 | Gonzalez | Jun 2002 | B1 |
6416554 | Alferness et al. | Jul 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6491706 | Alferness et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6510846 | O'Rourke | Jan 2003 | B1 |
6527761 | Soltesz et al. | Mar 2003 | B1 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20010037808 | Deem et al. | Nov 2001 | A1 |
20010041906 | Gonzalez | Nov 2001 | A1 |
20010051799 | Ingenito | Dec 2001 | A1 |
20010052344 | Doshi | Dec 2001 | A1 |
20010056274 | Perkins et al. | Dec 2001 | A1 |
20020007831 | Davenport et al. | Jan 2002 | A1 |
20020062120 | Perkins et al. | May 2002 | A1 |
20020077593 | Perkins et al. | Jun 2002 | A1 |
20020077696 | Zadno-Azizi et al. | Jun 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020095209 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020111619 | Keast et al. | Aug 2002 | A1 |
20020111620 | Cooper et al. | Aug 2002 | A1 |
20020112729 | DeVore et al. | Aug 2002 | A1 |
20020138135 | Duerig et al. | Sep 2002 | A1 |
20030018327 | Truckai et al. | Jan 2003 | A1 |
20030018344 | Kaji et al. | Jan 2003 | A1 |
20030050648 | Alferness et al. | Mar 2003 | A1 |
20030083671 | Rimbaugh et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
0621 015 | Oct 1994 | EP |
0621 015 | Oct 1994 | EP |
1 078 601 | Feb 2001 | EP |
0128433 | Apr 2001 | EP |
1 151 729 | Nov 2001 | EP |
2324729 | Apr 1998 | GB |
2140211 | Oct 1999 | RU |
852321 | Jul 1981 | SU |
1371700 | Feb 1988 | SU |
1593651 | Sep 1990 | SU |
9426175 | Nov 1994 | WO |
9532018 | Nov 1995 | WO |
9634582 | Nov 1996 | WO |
9744085 | Nov 1997 | WO |
9800840 | Jan 1998 | WO |
9819633 | May 1998 | WO |
9839047 | Sep 1998 | WO |
9844854 | Oct 1998 | WO |
9848706 | Nov 1998 | WO |
9901076 | Jan 1999 | WO |
9913801 | Mar 1999 | WO |
9926692 | Jun 1999 | WO |
9932040 | Jul 1999 | WO |
9942059 | Aug 1999 | WO |
9942161 | Aug 1999 | WO |
9964109 | Dec 1999 | WO |
0042950 | Jul 2000 | WO |
0051510 | Sep 2000 | WO |
0062699 | Oct 2000 | WO |
0078386 | Dec 2000 | WO |
0078407 | Dec 2000 | WO |
0102042 | Jan 2001 | WO |
0103642 | Jan 2001 | WO |
0105334 | Jan 2001 | WO |
0110313 | Feb 2001 | WO |
0110314 | Feb 2001 | WO |
0112104 | Feb 2001 | WO |
0113839 | Mar 2001 | WO |
0113908 | Mar 2001 | WO |
0145590 | Jun 2001 | WO |
0149213 | Jul 2001 | WO |
0154585 | Aug 2001 | WO |
0154625 | Aug 2001 | WO |
0154685 | Aug 2001 | WO |
0166190 | Sep 2001 | WO |
0174271 | Oct 2001 | WO |
0187170 | Nov 2001 | WO |
0189366 | Nov 2001 | WO |
0195786 | Dec 2001 | WO |
0205884 | Jan 2002 | WO |
0222072 | Mar 2002 | WO |
0232333 | Apr 2002 | WO |
0234322 | May 2002 | WO |
0238038 | May 2002 | WO |
0247575 | Jun 2002 | WO |
02056794 | Jul 2002 | WO |
02064045 | Aug 2002 | WO |
02064190 (A2 | Aug 2002 | WO |
02069823 (A2 | Sep 2002 | WO |
02094087 | Nov 2002 | WO |
03022124 | Mar 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20030075169 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09797910 | Mar 2001 | US |
Child | 10303240 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09519735 | Mar 2000 | US |
Child | 09797910 | US |