The prevent invention relates generally to medical devices and methods. More particularly, the present invention relates to devices, systems, kits, and methods for removing clips and other implanted prostheses from heart valves.
Mitral regurgitation is a commonly encountered valvular disorder and prevalence increases with age. In this condition, blood regurgitates abnormally from the left ventricle into the left atrium during cardiac systole, and this condition can result in numerous adverse consequences such as heart failure due to left ventricular dysfunction, atrial fibrillation, pulmonary hypertension, and death. Published guidelines recommend surgical or transcatheter correction of mitral regurgitation to improve the clinical condition.
Transcatheter correction of mitral regurgitation by implantation of a mitral valve clip (in particular the MitraClip® system from Abbott Vascular) has become a standard therapy for patients at high risk for open surgical corrective procedures. Such clip implantation procedures are performed through a guiding catheter that is inserted into the right femoral vein. One or more mitral valve clips can be delivered through the guiding catheter and implanted to re-approximate the anterior and posterior mitral leaflets (often referred to as an “edge-to-edge” repair). The MitraClip® mitral valve clip is metallic implant made of a cobalt chromium alloy and covered with a fabric mesh.
To date, over 45,000 procedures using the MitraClip® valve clip have been performed globally and there are currently nearly 1000 procedures performed each month. The MitraClip® procedure has been found to be very safe procedure and provides a therapeutic option for patients at high surgical risk.
There are, however, some significant limitations to conventional mitral valve clip technology. First, once a mitral valve clip is implanted, removal typically requires open surgical excision. Second, not all patients achieve satisfactory MR reduction at the time of the procedure due to technical challenges. Finally, up to 1 in 5 patients may have return of significant MR or have need for a repeat intervention within 6 months of the MitraClip® procedure.
If patients have recurrent MR after a mitral valve clip procedure, current options for additional treatment are limited. One option would be to place another mitral valve clip but this is often not possible due to concern for creating mitral stenosis (a mitral valve clip often narrows the valve so that the valve no longer opens properly).
Other options include a variety of mitral valve repair and replacement technologies which are becoming available. Of great interest are transcatheter mitral valve replacement procedures where a bio-prosthetic mitral valve mounted on an expandable frame is deployed in a defective native mitral valve. Such transcatheter “replacement” valves offer complete elimination of mitral regurgitation and would mimic the surgical “gold standard” of mitral valve replacement in selected patients.
At the present time, it can be difficult or impossible to implant a transcatheter mitral valve when a prior mitral valve clip procedure has been performed, since the mitral valve clip(s) interfere and will not allow complete expansion of the new valve. It would therefore be desirable to provide devices, systems, kits, and methods for the transcatheter removal of clips and other implanted prostheses from heart valves. It would be particularly desirable that such devices, systems, kits, and methods for the transcatheter removal of clips and other implanted prostheses from heart valves would leave the heart valve in condition to receive a subsequent transcatheter procedure, such as prosthetic valve implantation, to treat the valve pathology. At least some of these objectives will be met by the inventions described herein.
See US Patent Publs. 2014/0228871; US2015257883; and US2014135799; U.S. Pat. Nos. 8,500,768; 7,955,340; and 5,895,404; as well as the following guidelines and publications: Nishimura R A, Otto C M, Bonow R O et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63:2438-88; Feldman T, Kar S, Elmariah S et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of EVEREST II. J Am Coll Cardiol 2015; 66:2844-54; and Maisano F, Alfieri O, Banai S et al. The future of transcatheter mitral valve interventions: Competitive or complementary role of repair vs. replacement?, Eur Heart J 2015; 36:1651-9.
The present invention provides transcatheter tools and procedures that can be used to separate and optionally remove one or more mitral valve clips from native mitral leaflet tissue. In such procedures, the physician can insert specifically designed catheters either from the left atrium or left ventricle. A guidewire may be placed around the leaflet and valvular tissue adjacent to the previously implanted mitral valve clip. Utilizing mechanical cutting or abrasion, or radiofrequency energy, the mitral valve clips may be excised from either the anterior or posterior leaflets, or both, restoring the native valve orifice and allowing future repair or replacement therapy. After separation of the mitral valve clips from native leaflet tissue, the degree of mitral regurgitation would be expected to worsen acutely. The separation procedure of the present invention in contrast can be performed immediately prior to transcatheter valve implantation or another transcatheter corrective procedure. For instance, if transapical access were used for deployment of a new transcatheter mitral valve, then transseptal access could be used to release the mitral valve clips, or vice versa.
In a first aspect of the present invention, a method for excising a clip approximating an opposed pair of valve leaflets in a heart valve comprises introducing a capture catheter into a heart chamber adjacent to the valve leaflets on one side of the clip. A transfer catheter is also introduced into the heart chamber adjacent to the valve leaflets on another side of the clip, and a cutting member is deployed between the transfer catheter and the capture catheter to place or engage the cutting member against tissue of at least one of the valve leaflets. The cutting number is then used to excise the clip from at least one of the valve leaflets to release fixation and allow separation of the valve leaflets.
The excision methods of the present invention are useful on any heart valve where a clip may have been placed to enhance coaptation or for other reasons. Most typically, the heart valve is a mitral valve, and the catheters may be introduced transseptally into the left atrium above the valve or may introduced transapically into the left ventricle beneath the mitral valve. In other instances, the target heart valve can be a tricuspid valve, and the catheters may be introduced into the right atrium above the tricuspid valve or into the right ventricle below the tricuspid valve.
In exemplary embodiments, deploying the cutting member comprises steering a tip of at least one and usually both of the capture catheter and the transfer catheter to bring the tips of both catheters into proximity with the valve clip. Typically, at least one of the capture catheter and transfer catheter may be advanced through an opening between the valve leaflets adjacent to the fixed valve clip, where the advanced catheter may then be steered around the opposite side of the valve clip and brought up through the space between the valve leaflets on an opposite side of the valve clip. The cutting member may then be passed between the transfer catheter and the capture catheter to span a target region of the valve leaflet to be excised. The catheters may then be manipulated to extend the cutting member past a side of the valve clip so that the cutting member is positioned to excise a portion of the valve leaflet on one side of the valve. As will be described in more detail below, the valve clip may be left implanted in the opposed valve leaflet, and a subsequent valve intervention procedure performed with the clip left attached to the opposed valve leaflet. Alternatively, the capture and transfer catheters may be used to reposition the cutting member on the other side of the valve clip so that the opposed leaflet may be excised from the clip to completely release the clip and allow the clip to be removed from the heart prior to performing a subsequent intervention on the heart valve. When releasing and removing the valve clip, it will of course be necessary that the valve clip be constrained, typically by a removal catheter as described herein below.
In still further specific examples, the cutting member may be deployed by engaging a magnetic element on the capture catheter against a magnetic element on the cutting member. The magnetic elements are typically at the tip of the capture catheter and an end of the cutting member, and the catheter(s) may be manipulated to draw the cutting member past either or both sides of the valve clip in order to excise of the valve leaflet tissue to release the clip.
In an alternative embodiment, the cutting element may comprise a loop which is used to capture a free end of the cutting member, and the capture catheter may then be manipulated to advance the loop over a free end of the cutting member and draw the cutting member past the clip through the valve tissue.
In still further embodiments, deploying the cutting member may comprise drawing the tips of the capture catheter and the transfer catheter together to form a path past the valve clip and advancing the element over the path. After such advancement and positioning of the cutting member, the capture catheter and/or the transfer catheter may be manipulated to manipulate the cutting member to excise the valve tissue to release the clip.
As discussed above, in some embodiments of the methods of the present invention, the clip(s) will be excised from one valve leaflet only, leaving the clip(s) implanted in an opposed valve leaflet. Freeing of the clip(s) from at least one valve leaflet will in at least some cases be sufficient to release the opposed valve leaflets and enable performance of the subsequent valve replacement or other interventional procedure. In other instances, however, it will be preferable to completely remove the valve clip(s) from the heart valve prior to performing a subsequent valve implantation or other intervention. In such cases, a removal catheter or other device will typically be used to constrain or capture the clip(s) during the excision and withdraw the excised clip(s) from the heart chamber prior to any further intervention.
In still other specific embodiments of the methods of the present invention, the clip(s) may be excised from the valve leaflet tissue in a variety of ways. For example, the cutting member may comprise an electrode segment or other electrically conductive region capable of delivering a radiofrequency (RF) cutting current to the tissue. In particular, the RF current would be delivered in a cutting mode so that the cutting member could excise the valve tissue adjacent to the valve clip. In other instances, the cutting member could comprise a sharpened or abrasive region which could be used to mechanically cut through the valve tissue. For example, a sharpened or abrasive cutting region could be reciprocated so that it would “saw” through the tissue in order to excise the valve. Other known tissue cutting modalities could also be employed.
As described thus far, the capture catheter, transfer catheter, and cutting member are used to excise the tissue from a single valve leaflet, leaving the valve clip attached to the opposed valve leaflet. While removing the valve from a single leaflet will allow sufficient opening of the leaflets for subsequent prosthetic valve implantation or other corrective procedures, it will sometimes be desirable to remove the valve clip from both opposed valve leaflets. In such instances, it will be preferred to introduce a clip removal catheter into the heart chamber in order to stabilize the eventually remove the valve clip. A distal end of the clip removal catheter can be engaged against the clip and will usually be attached to the clip while the clip is excised from one or both valve leaflets using the cutting member.
In still further exemplary embodiments, the capture catheter, the transfer catheter, and optionally the clip removal catheter can be introduced transseptally, usually simultaneously through a transseptal catheter or sheath. In still other specific embodiments, the capture catheter, the transfer catheter, and optionally the clip removal catheter can be introduced transapically, typically simultaneously through a transapical sheath or catheter.
In a second aspect of the present invention, a system for excising an implanted clip approximating opposed valve leaflets in the heart valve comprises a capture catheter, a transfer catheter, and a cutting member. The capture catheter is configured to be introduced into a heart chamber adjacent to the valve leaflets on one side of the clip. The transfer catheter is configured to be introduced into the heart chamber adjacent to the valve leaflets on another side of the clip, and the cutting member is configured to be deployed from the transfer catheter to the capture catheter to place the cutting element against tissue of at least one of the valve leaflets to excise the clip.
In specific aspects of the system, at least one of the capture catheter and the transfer catheter will have a steerable tip, usually both having a steerable tip. The capture catheter will often have a magnetic distal tip configured to engage and capture a magnetic element disposed at the distal end of the cutting member. In this way, the magnetic tip on the capture catheter can be used to attract and engage the magnetic end of the cutting member so that the cutting member can be deployed between the capture catheter and the transfer catheter. Thus, a cutting region of the cutting member can be positioned to engage the valve leaflet tissue adjacent to the valve clip so that the cutting region can be used to cut the tissue and excise the clip. For example, the cutting region could comprise a sharpened or abrasive region which can be used to mechanically cut the valve tissue. Alternatively, the cutting region could comprise an RF electrode which can be powered with a cutting current to excise the valve leaflet tissue adjacent to the clip.
The systems of the present invention may further comprise an introductory sheath, typically a transseptal sheath or a transapical sheath, for delivering the catheters of the present invention to a heart chamber. Usually, the introductory sheath will be sufficiently large to accommodate at least the capture catheter and the transfer catheter simultaneously. Often times, the system will further comprise a removal catheter, and the introductory sheath will be sized to be sufficiently large to simultaneously accommodate each of the capture catheter, transfer catheter, and removal catheter.
The clip removal catheter of the present invention will typically have a distal end configured to engage and capture the clip Certain valve clips, such as the MitraClip® valve clip, have a unique shape that provides a “docking” feature which can be used by the clip removal and optionally other catheters of the present invention to “dock” with either the atrial or ventricular aspect of the valve clip. The shape of the valve clip(s) is typically easy to discern on fluoroscopy which facilitates targeting and optionally docking a removal or other catheter with the clip during a removal procedure. Such docking has several advantages. First, docking can stabilize the valve clip relative to the catheter system which is advantageous as the valves are moving during the beating heart procedure. Second, docking facilitates orienting the catheter(s) to improve position of the cutting member, e.g. looping a cutting wire so that it encircles the clip using either the magnetic or snare techniques shown above. Third, by docking a removal or other catheter with the valve clip, the catheter and cutting member can be stably positioned in close proximity to the valve clip, thus minimizing the risk of entangling or snaring the chordal apparatus with the loop wire or other cutting member. Fourth, docking can be performed either from an atrial or a ventricular aspect. For example, atrial docking can be achieved by docking into a groove on the top of a “Y” portion of the MitraClip® clip. Ventricular docking may be achieved by docking with the bottom of the “Y” portion of the MitraClip® clip. The docking can be passive, e.g. via an interference fit, or can be active where the removal or other catheter has a “grasping” feature to securely attach the MitraClip® clip. Docking can be performed on each valve clip individually or on several at the same time with modification in the docking feature.
The removal catheters of the present invention may be designed to dock with the MitraClip® or other valve clips to place a snare around the clip. After the clip is freed from both the anterior and posterior leaflets (or septal leaflet in case of a tricuspid valve) using the previously described catheters, the clip can be removed from the body through the access sheath by the removal catheter. The removal catheter may have any one of a variety of clip-grasping features, such as a snare, biopsy-type forceps, or jaws that secure the valve clip to hold it after it has been freed from both leaflets so it can be removed from the body. The capture and/or transfer catheter may also be configured to dock with the valve clip, e.g. have a distal tip with a shape complementary to the shape of the valve clip. The catheter that removes the clip can be placed via a tranvenous transseptal approach or left ventricular transapical approach. In some instances, a removal catheter can be designed with a funnel shaped tip to allow the valve clip to be drawn into the catheter with proper orientation.
The catheter systems of the present invention can also be used to encircle and remove pacemaker or defibrillator leads. For example, by sliding a loop encircling the lead along a length of the lead, the lead can be excised from the heart or vascular tissue in which it has been implanted. In particular, the catheters of the present invention can be used to free leads from vascular venous tissue such as the axillary vein, brachiocephalic vein, and/or superior vena cava. The catheters of the present invention can also be used to free leads from a tricuspid valve or the right ventricular myocardium. In particular, a lead may be freed from the tricuspid valve in situations where the lead may be causing tricuspid regurgitation (TR). The lead could optionally be repositioned to reduce TR. The catheters can also be used to free a lead to allow the lead to be repositioned in the tricuspid valve orifice as desired to facilitate placement of a transcatheter valve in the tricuspid position.
The novel features believed characteristic of the illustrative examples are set forth in the appended claims. The illustrative examples, however, will best be understood by reference to the following detailed description of an illustrative example of the present disclosure when read in conjunction with the accompanying drawings, wherein:
The present invention provides apparatus and methods for the separation of one or more valve clips from mitral and other heart valve leaflets. The valve clips can be located anywhere along the valve coaptation plane (central, medial, lateral, or commissural), and in some embodiments the valve clips are removed from one of the coapting valve leaflets while being left in placed in the other of the coapting valve leaflets. In other embodiments, the valve clips will be removed from both valve leaflets and be extracted entirely from the heart.
The technology of the present invention can be deployed from a left atrial aspect (transseptal or direct atrial access), or from the left ventricular aspect (transapical, direct ventricular puncture, or retrograde aortic access). The cutting action can be provided by a “noose,” by a scissor-like device, by a wire-based cutter similar to a “cheese cutter,” by a radiofrequency electrode cutting element, or the like. In some instances, the mitral valve clips may be removed from both anterior and posterior leaflets, and a snare, bioptome-type device, or other removal catheter may be used to completely remove the mitral valve clip from the body. The present invention may be used to remove valve clips from tricuspid valves as well as mitral valves, and the catheters be placed through transseptal and transapical guiding catheter which are typically large enough to accommodate all catheters being used in the procedure simultaneously.
Referring now to
Referring now to
Referring now to
Referring now to
As shown in
The magnetic distal element 58 of the cutting member 50 may also have a variety of configurations. Most simply, the magnetic distal element 58 will have a sphere shape as shown in
As described thus far, the capture catheter 10 and the cutting member 50 will each have magnetic elements to allow capture of the cutting member by the capture catheter 50. While this is a preferred design, a variety of other capture mechanisms could also be employed. For example, as shown in
Referring now to
After the guidewire is placed, as shown in
After the cutting member 50 and capture catheter 10 are coupled together, the capture catheter 10 may be pulled back to expose the cutting region 54, and the catheters manipulated to engage the cutting region 54 against the second valve clip C2, as shown in
Referring now to
Referring now to
Referring now to
Although certain embodiments of the disclosure have been described in detail, certain variations and modifications will be apparent to those skilled in the art, including embodiments that do not provide all the features and benefits described herein. It will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative or additional embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while a number of variations have been shown and described in varying detail, other modifications, which are within the scope of the present disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the present disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the present disclosure. Thus, it is intended that the scope of the present disclosure herein disclosed should not be limited by the particular disclosed embodiments described above. For all of the embodiments described above, the steps of any methods need not be performed sequentially.
The present application claims the benefit of provisional application No. 62/359,121, filed on Jul. 6, 2016, and of provisional application No. 62/418,571, filed on Nov. 7, 2016, the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1996261 | Storz | Apr 1935 | A |
2097018 | Chamberlain | Oct 1937 | A |
2108206 | Meeker | Feb 1938 | A |
3296668 | Aiken | Jan 1967 | A |
3378010 | Codling et al. | Apr 1968 | A |
3470875 | Johnson et al. | Oct 1969 | A |
3557780 | Sato | Jan 1971 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3675639 | Cimber | Jul 1972 | A |
3874338 | Happel | Apr 1975 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4091815 | Larsen | May 1978 | A |
4112951 | Hulka et al. | Sep 1978 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4297749 | Davis et al. | Nov 1981 | A |
4312337 | Donahue | Jan 1982 | A |
4458682 | Cerwin | Jul 1984 | A |
4425908 | Simon | Nov 1984 | A |
4484579 | Meno et al. | Nov 1984 | A |
4487205 | Di Giovanni et al. | Dec 1984 | A |
4498476 | Cerwin et al. | Feb 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4641366 | Yokoyama et al. | Feb 1987 | A |
4686965 | Bonnet et al. | Aug 1987 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4872455 | Pinchuk et al. | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4917089 | Sideris | Apr 1990 | A |
4944295 | Gwathmey et al. | Jul 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5015249 | Nakao et al. | May 1991 | A |
5019096 | Fox, Jr. et al. | May 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5071428 | Chin | Oct 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5078723 | Dance et al. | Jan 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5125758 | DeWan | Jun 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5190554 | Coddington et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5275578 | Adams | Jan 1994 | A |
5282845 | Bush et al. | Feb 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306283 | Conners | Apr 1994 | A |
5306286 | Stack et al. | Apr 1994 | A |
5312415 | Palermo | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336227 | Nakao et al. | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350397 | Palermo et al. | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5359994 | Krauter et al. | Nov 1994 | A |
5368564 | Savage | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5383886 | Kensey et al. | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5391182 | Chin | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5423858 | Bolanos et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5447966 | Hermes et al. | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5462527 | Stevens-Wright et al. | Oct 1995 | A |
5472044 | Hall et al. | Dec 1995 | A |
5472423 | Gronauer | Dec 1995 | A |
5476470 | Fitzgibbons, Jr. | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5520701 | Lerch | May 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5562678 | Booker | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5575802 | McQuilkin et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5593424 | Northrup, III | Jan 1997 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5618306 | Roth et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5620461 | Muijs Van De Moer et al. | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5634932 | Schmidt | Jun 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5639277 | Mariant et al. | Jun 1997 | A |
5640955 | Ockuly et al. | Jun 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5702825 | Keita et al. | Dec 1997 | A |
5706824 | Whittier | Jan 1998 | A |
5709707 | Lock et al. | Jan 1998 | A |
5713910 | Gordon et al. | Feb 1998 | A |
5713911 | Racene et al. | Feb 1998 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5719725 | Nakao | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5738649 | Macoviak | Apr 1998 | A |
5741280 | Fleenor | Apr 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5759193 | Burbank et al. | Jun 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5782845 | Shewchuk | Jul 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810853 | Yoon | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5820592 | Hammerslag | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5824065 | Gross | Oct 1998 | A |
5827237 | Macoviak et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5833671 | Macoviak et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843031 | Hermann et al. | Dec 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855271 | Eubanks et al. | Jan 1999 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5868733 | Ockuly et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879307 | Chio et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5908420 | Parins | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5928224 | Laufer | Jul 1999 | A |
5944733 | Engelson | Aug 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5957949 | Leonhard et al. | Sep 1999 | A |
5957973 | Quiachon et al. | Sep 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5980455 | Daniel et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6022360 | Reimels et al. | Feb 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6036699 | Andreas et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6059757 | Macoviak et al. | May 2000 | A |
6060628 | Aoyama et al. | May 2000 | A |
6060629 | Pham et al. | May 2000 | A |
6063106 | Gibson | May 2000 | A |
6066146 | Carroll et al. | May 2000 | A |
6068628 | Fanton et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6088889 | Luther et al. | Jul 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6099505 | Ryan et al. | Aug 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6110145 | Macoviak | Aug 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6126658 | Baker | Oct 2000 | A |
6132447 | Dorsey | Oct 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6139508 | Simpson | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6165164 | Hill et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6180059 | Divino, Jr. et al. | Jan 2001 | B1 |
6182664 | Cosgrove | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190408 | Melvin | Feb 2001 | B1 |
6197043 | Davidson | Mar 2001 | B1 |
6203531 | Ockuly et al. | Mar 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6210419 | Mayenberger et al. | Apr 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6267746 | Bumbalough | Jul 2001 | B1 |
6267781 | Tu | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6277555 | Duran et al. | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6283962 | Tu et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6306133 | Tu et al. | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6319250 | Falwell et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6352708 | Duran et al. | Mar 2002 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6368326 | Dakin et al. | Apr 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6402780 | Williamson et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6419640 | Taylor | Jul 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6517550 | Konya et al. | Feb 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6540755 | Ockuly et al. | Apr 2003 | B2 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6585761 | Taheri | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6701929 | Hussein | Mar 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709382 | Homer | Mar 2004 | B1 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6740107 | Loeb et al. | May 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755777 | Schweich et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6860179 | Hopper et al. | Mar 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
6932810 | Ryan | Aug 2005 | B2 |
6945978 | Hyde | Sep 2005 | B1 |
6949122 | Adams et al. | Sep 2005 | B2 |
6966914 | Abe | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
7004970 | Cauthen, III et al. | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7033390 | Johnson et al. | Apr 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7291168 | Macoviak et al. | Nov 2007 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7497822 | Kugler et al. | Mar 2009 | B1 |
7533790 | Knodel et al. | May 2009 | B1 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7651502 | Jackson | Jan 2010 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7955340 | Michlitsch et al. | Jun 2011 | B2 |
8216234 | Long | Jul 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8500768 | Cohen | Aug 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8623077 | Cohn | Jan 2014 | B2 |
8690858 | Machold et al. | Apr 2014 | B2 |
8821518 | Saliman et al. | Sep 2014 | B2 |
8926588 | Berthiaume et al. | Jan 2015 | B2 |
9126032 | Khairkhahan et al. | Sep 2015 | B2 |
9211119 | Hendricksen | Dec 2015 | B2 |
9498331 | Chang et al. | Nov 2016 | B2 |
9770256 | Cohen et al. | Sep 2017 | B2 |
9949833 | McCleary et al. | Apr 2018 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010004715 | Duran et al. | Jun 2001 | A1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010010005 | Kammerer et al. | Jul 2001 | A1 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010022872 | Marui | Sep 2001 | A1 |
20010037084 | Nardeo | Nov 2001 | A1 |
20010039411 | Johansson et al. | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20010044635 | Niizeki et al. | Nov 2001 | A1 |
20020013547 | Paskar | Jan 2002 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020022848 | Garrison et al. | Feb 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020055767 | Forde et al. | May 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020055775 | Carpentier et al. | May 2002 | A1 |
20020058910 | Hermann et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020107534 | Schaefer et al. | Aug 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020156526 | Hilavka et al. | Oct 2002 | A1 |
20020158528 | Tsuzaki et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020169360 | Taylor et al. | Nov 2002 | A1 |
20020173811 | Tu et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020183766 | Seguin | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20030005797 | Hopper et al. | Jan 2003 | A1 |
20030045778 | Oh Line et al. | Mar 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030069636 | Solem et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030078654 | Taylor et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Lisk et al. | Jun 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030130669 | Damarati | Jul 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030171776 | Adams et al. | Sep 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030195562 | Collier et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233038 | Hassett | Dec 2003 | A1 |
20040002719 | Oz et al. | Jan 2004 | A1 |
20040003819 | St. Goar et al. | Jan 2004 | A1 |
20040015232 | Shu et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040039443 | Solem et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040073302 | Rourke et al. | Apr 2004 | A1 |
20040078053 | Berg et al. | Apr 2004 | A1 |
20040087975 | Lucatero et al. | May 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040097878 | Anderson et al. | May 2004 | A1 |
20040097979 | Svanidze et al. | May 2004 | A1 |
20040106989 | Wilson et al. | Jun 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040116848 | Gardeski et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040127849 | Kantor | Jul 2004 | A1 |
20040127981 | Randert et al. | Jul 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133062 | Pai et al. | Jul 2004 | A1 |
20040133063 | McCarthy et al. | Jul 2004 | A1 |
20040133082 | Abraham-Fuchs et al. | Jul 2004 | A1 |
20040133192 | Houser et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040147826 | Peterson | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040152847 | Emri et al. | Aug 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040153144 | Seguin | Aug 2004 | A1 |
20040158123 | Jayaraman | Aug 2004 | A1 |
20040162610 | Laiska et al. | Aug 2004 | A1 |
20040167539 | Kuehn et al. | Aug 2004 | A1 |
20040186486 | Roue et al. | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040225233 | Frankowski et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040243229 | Vidlund et al. | Dec 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040260393 | Randert et al. | Dec 2004 | A1 |
20050004583 | Oz et al. | Jan 2005 | A1 |
20050004665 | Aklog | Jan 2005 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050021056 | St. Goar et al. | Jan 2005 | A1 |
20050021057 | St. Goer et al. | Jan 2005 | A1 |
20050021058 | Negro | Jan 2005 | A1 |
20050033446 | Deem et al. | Feb 2005 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050038508 | Gabbay | Feb 2005 | A1 |
20050049698 | Bolling et al. | Mar 2005 | A1 |
20050055089 | Macoviak et al. | Mar 2005 | A1 |
20050059351 | Cauwels et al. | Mar 2005 | A1 |
20050065453 | Shabaz et al. | Mar 2005 | A1 |
20050085903 | Lau | Apr 2005 | A1 |
20050119735 | Spence et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050159763 | Mollenauer | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050228422 | Machold et al. | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050251001 | Hassett | Nov 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20050273160 | Lashinski et al. | Dec 2005 | A1 |
20050277876 | Hayden | Dec 2005 | A1 |
20050287493 | Novak et al. | Dec 2005 | A1 |
20060004247 | Kute et al. | Jan 2006 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060015003 | Moaddes et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060030866 | Schreck | Feb 2006 | A1 |
20060030867 | Zadno | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064118 | Kimblad | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060135993 | Seguin | Jun 2006 | A1 |
20060184198 | Bales | Aug 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195012 | Mortier et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060252984 | Randert et al. | Nov 2006 | A1 |
20070038293 | St. Goar et al. | Feb 2007 | A1 |
20070060997 | de Boer | Mar 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070118155 | Goldfarb et al. | May 2007 | A1 |
20070129737 | Goldfarb et al. | Jun 2007 | A1 |
20070173757 | Levine et al. | Jul 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070260225 | Sakakine et al. | Nov 2007 | A1 |
20080009858 | Rizvi | Jan 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080045936 | Vaska et al. | Feb 2008 | A1 |
20080051703 | Thorton et al. | Feb 2008 | A1 |
20080051807 | St. Goar et al. | Feb 2008 | A1 |
20080097467 | Gruber et al. | Apr 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080183194 | Goldfarb et al. | Jul 2008 | A1 |
20080188850 | Mody et al. | Aug 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080243249 | Kohm et al. | Oct 2008 | A1 |
20080294175 | Bardsley et al. | Nov 2008 | A1 |
20090012538 | Saliman et al. | Jan 2009 | A1 |
20090036768 | Seehusen et al. | Feb 2009 | A1 |
20090156995 | Martin et al. | Jun 2009 | A1 |
20090163934 | Raschdorf, Jr. et al. | Jun 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090198322 | Deem et al. | Aug 2009 | A1 |
20090204005 | Keast et al. | Aug 2009 | A1 |
20090209955 | Forster et al. | Aug 2009 | A1 |
20090209991 | Hinchliffe et al. | Aug 2009 | A1 |
20090270858 | Hauck et al. | Oct 2009 | A1 |
20090276039 | Meretei | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090326567 | Goldfarb et al. | Dec 2009 | A1 |
20100016958 | St. Goar et al. | Jan 2010 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
20100044410 | Argentine et al. | Feb 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100217261 | Watson | Aug 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20100268226 | Epp et al. | Oct 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20110009864 | Bucciaglia et al. | Jan 2011 | A1 |
20110184405 | Mueller | Jul 2011 | A1 |
20110224710 | Bleich | Sep 2011 | A1 |
20110238052 | Robinson | Sep 2011 | A1 |
20120022527 | Woodruff | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120150194 | Odermatt et al. | Jun 2012 | A1 |
20120172915 | Fifer et al. | Jul 2012 | A1 |
20120179184 | Orlov | Jul 2012 | A1 |
20120265222 | Gordin et al. | Oct 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120316639 | Kleinschrodt | Dec 2012 | A1 |
20120330348 | Strauss et al. | Dec 2012 | A1 |
20130041314 | Dillon | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130066342 | Dell et al. | Mar 2013 | A1 |
20140039511 | Morris et al. | Feb 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140228871 | Cohen | Aug 2014 | A1 |
20140276913 | Tah et al. | Sep 2014 | A1 |
20140309670 | Bakos et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140350662 | Vaturi | Nov 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140379074 | Spence et al. | Dec 2014 | A1 |
20150005704 | Heisel et al. | Jan 2015 | A1 |
20150005801 | Marquis et al. | Jan 2015 | A1 |
20150051698 | Ruyra Baliarda et al. | Feb 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150112430 | Creaven et al. | Apr 2015 | A1 |
20150230947 | Krieger et al. | Aug 2015 | A1 |
20150257877 | Hernandez | Sep 2015 | A1 |
20150257883 | Basude et al. | Sep 2015 | A1 |
20150306806 | Dando et al. | Oct 2015 | A1 |
20160015410 | Asirvatham et al. | Jan 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170143330 | Basude et al. | May 2017 | A1 |
20170202559 | Taha | Jul 2017 | A1 |
20170232238 | Biller et al. | Aug 2017 | A1 |
20180028215 | Cohen | Feb 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180161159 | Lee et al. | Jun 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190183571 | De Marchena | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
1469724 | Jan 2004 | CN |
102770080 | Nov 2012 | CN |
103841899 | Jun 2014 | CN |
3504292 | Jul 1986 | DE |
9100873 | Apr 1991 | DE |
10116168 | Nov 2001 | DE |
0179562 | Jul 1989 | EP |
0558031 | Feb 1993 | EP |
0684012 | Nov 1995 | EP |
0727239 | Aug 1996 | EP |
0782836 | Jul 1997 | EP |
1230899 | Aug 2002 | EP |
1674040 | Jun 2006 | EP |
1980288 | Oct 2008 | EP |
2005912 | Dec 2008 | EP |
2537487 | Dec 2012 | EP |
2641570 | Sep 2013 | EP |
2702965 | Mar 2014 | EP |
3009103 | Apr 2016 | EP |
2705556 | Dec 1994 | FR |
2768324 | Mar 1999 | FR |
1598111 | Sep 1981 | GB |
2151142 | Jul 1985 | GB |
H09253030 | Sep 1997 | JP |
H11089937 | Apr 1999 | JP |
2000283130 | Oct 2000 | JP |
2006528911 | Dec 2006 | JP |
2013516244 | May 2013 | JP |
2014523274 | Sep 2014 | JP |
2015502548 | Jan 2015 | JP |
WO 1981000668 | Mar 1981 | WO |
WO 1991001689 | Feb 1991 | WO |
WO 1991018881 | Dec 1991 | WO |
WO 1992012690 | Aug 1992 | WO |
WO 1994018881 | Sep 1994 | WO |
WO 1994018893 | Sep 1994 | WO |
WO 199508292 | Mar 1995 | WO |
WO 1995011620 | May 1995 | WO |
WO 1995015715 | Jun 1995 | WO |
WO 1996014032 | May 1996 | WO |
WO 1996020655 | Jul 1996 | WO |
WO 1996022735 | Aug 1996 | WO |
WO 1996030072 | Oct 1996 | WO |
WO 1997018746 | May 1997 | WO |
WO 1997025927 | Jul 1997 | WO |
WO 1997026034 | Jul 1997 | WO |
WO 1997038748 | Oct 1997 | WO |
WO 1997039688 | Oct 1997 | WO |
WO 1997048436 | Dec 1997 | WO |
WO 1998007375 | Feb 1998 | WO |
WO 1998024372 | Jun 1998 | WO |
WO 1998030153 | Jul 1998 | WO |
WO 1998032382 | Jul 1998 | WO |
WO 1998035638 | Aug 1998 | WO |
WO 1999000059 | Jan 1999 | WO |
WO 1999001377 | Jan 1999 | WO |
WO 199907295 | Feb 1999 | WO |
WO 1999007354 | Feb 1999 | WO |
WO 1999013777 | Mar 1999 | WO |
WO 1999044524 | Sep 1999 | WO |
WO 1999066967 | Dec 1999 | WO |
WO 2000002489 | Jan 2000 | WO |
WO 2000003651 | Jan 2000 | WO |
WO 2000003759 | Jan 2000 | WO |
WO 2000012168 | Mar 2000 | WO |
WO 2000044313 | Aug 2000 | WO |
WO 2000059382 | Oct 2000 | WO |
WO 2000060995 | Oct 2000 | WO |
WO 2001000111 | Jan 2001 | WO |
WO 2001000114 | Jan 2001 | WO |
WO 2001003651 | Jan 2001 | WO |
WO 2001026557 | Apr 2001 | WO |
WO 2001026586 | Apr 2001 | WO |
WO 2001026587 | Apr 2001 | WO |
WO 2001026588 | Apr 2001 | WO |
WO 2001026703 | Apr 2001 | WO |
WO 2001028432 | Apr 2001 | WO |
WO 2001028455 | Apr 2001 | WO |
WO 2001047438 | Jul 2001 | WO |
WO 2001049213 | Jul 2001 | WO |
WO 2001050985 | Jul 2001 | WO |
WO 2001054618 | Aug 2001 | WO |
WO 2001056512 | Aug 2001 | WO |
WO 2001066001 | Sep 2001 | WO |
WO 2001070320 | Sep 2001 | WO |
WO 2001089440 | Nov 2001 | WO |
WO 2001095831 | Dec 2001 | WO |
WO 2001095832 | Dec 2001 | WO |
WO 2001097741 | Dec 2001 | WO |
WO 2002000099 | Jan 2002 | WO |
WO 2002001999 | Jan 2002 | WO |
WO 2002003892 | Jan 2002 | WO |
WO 2002034167 | May 2002 | WO |
WO 2002060352 | Aug 2002 | WO |
WO 2002062263 | Aug 2002 | WO |
WO 2002062270 | Aug 2002 | WO |
WO 2002062408 | Aug 2002 | WO |
WO 2003001893 | Jan 2003 | WO |
WO 2003003930 | Jan 2003 | WO |
WO 2003020179 | Mar 2003 | WO |
WO 2003028558 | Apr 2003 | WO |
WO 2003037171 | May 2003 | WO |
WO 2003047467 | Jun 2003 | WO |
WO 2003049619 | Jun 2003 | WO |
WO 2003073910 | Sep 2003 | WO |
WO 2003073913 | Sep 2003 | WO |
WO 2003082129 | Oct 2003 | WO |
WO 2003105667 | Dec 2003 | WO |
WO 2004004607 | Jan 2004 | WO |
WO 2004006810 | Jan 2004 | WO |
WO 2004012583 | Feb 2004 | WO |
WO 2004012789 | Feb 2004 | WO |
WO 2004014282 | Feb 2004 | WO |
WO 2004019811 | Mar 2004 | WO |
WO 2004030570 | Apr 2004 | WO |
WO 2004037317 | May 2004 | WO |
WO 2004045370 | Jun 2004 | WO |
WO 2004045378 | Jun 2004 | WO |
WO 2004045463 | Jun 2004 | WO |
WO 2004047679 | Jun 2004 | WO |
WO 2004062725 | Jul 2004 | WO |
WO 2004082523 | Sep 2004 | WO |
WO 2004082538 | Sep 2004 | WO |
WO 2004093730 | Nov 2004 | WO |
WO 2004103162 | Dec 2004 | WO |
WO 2004112585 | Dec 2004 | WO |
WO 2004112651 | Dec 2004 | WO |
WO 2005002424 | Jan 2005 | WO |
WO 2005018507 | Mar 2005 | WO |
WO 2005027797 | Mar 2005 | WO |
WO 2005032421 | Apr 2005 | WO |
WO 2005062931 | Jul 2005 | WO |
WO 2005112792 | Dec 2005 | WO |
WO 2006037073 | Apr 2006 | WO |
WO 2006105008 | Oct 2006 | WO |
WO 2006105009 | Oct 2006 | WO |
WO 2006113906 | Oct 2006 | WO |
WO 2006115875 | Nov 2006 | WO |
WO 2006115876 | Nov 2006 | WO |
WO 2007136829 | Nov 2007 | WO |
WO 2008103722 | Aug 2008 | WO |
WO 2010024801 | Mar 2010 | WO |
WO 2010121076 | Oct 2010 | WO |
WO 2012020521 | Feb 2012 | WO |
WO 2013049734 | Apr 2013 | WO |
WO 2013103934 | Jul 2013 | WO |
WO 2014064694 | May 2014 | WO |
WO 2014121280 | Aug 2014 | WO |
WO 2016022797 | Feb 2016 | WO |
WO 2016144708 | Sep 2016 | WO |
WO 2016150806 | Sep 2016 | WO |
WO 2017223073 | Dec 2017 | WO |
WO 2018106482 | Jun 2018 | WO |
Entry |
---|
Feldman, et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of Everest II. J Am Coll Cardiol. Dec. 29, 2015;66(25):2844-2854. |
International Search Report and Written Opinion dated Sep. 11, 2017 for International PCT Patent Application No. PCT/US2017/040977. |
Maisano, et al. The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J. Jul. 7, 2015;36(26):1651-9. |
Nishimura, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. Jun. 10, 2014;63(22):2438-88. |
U.S. Appl. No. 62/359,121, filed Jul. 6, 2016, Khairkhahan. |
U.S. Appl. No. 62/418,571, filed Nov. 7, 2016, Khairkhahan. |
U.S. Appl. No. 62/748,947, filed Oct. 22, 2018, Dale et al. |
Abe et al, De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients, Ann. Thorac. Surg., Jan. 1989, pp. 670-676, vol. 48. |
Ali Khan et al, Blade Atrial Septostomy: Experience with the First 50 Procedures, Cathet. Cardiovasc. Diagn., Aug. 1991, pp. 257-262, vol. 23. |
Alvarez et al, Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, Journal of Thoracic Cardiovascular Surgery, Aug. 1996, pp. 238-247, vol. 112, No. 2. |
Bach et al, Early Improvement in Congestive Heart Failure After Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy, American Heart Journal, Jun. 1995, pp. 1165-1170, vol. 129, No. 6. |
Bach et al, Improvement Following Correction of Secondary Mitral Regurgitation in End-stage Cardiomyopathy With Mitral Annuloplasty, Am. J. Cardiol., Oct. 15, 1996, pp. 966-969, vol. 78. |
Bolling et al, Surgery for Acquired Heart Disease: Early Outcome of Mitral Valve Reconstruction in Patients with End-stage Cardiomyopathy, Journal of Thoracic and Cariovascular Surgery, Apr. 1995, pp. 676-683, vol. 109, No. 4. |
Dec et al, Idiopathic Dilated Cardiomyopathy, The New England Journal of Medicine, Dec. 8, 1994, pp. 1564-1575, vol. 331, No. 23. |
Fucci et al, Improved Results with Mitral Valve Repair Using New Surgical Techniques, Eur. J. Cardiothorac. Surg., Nov. 1995, pp. 621-627, vol. 9. |
Kameda et al, Annuloplasty for Severe Mitral Regurgitation Due to Dilated Cardiomyopathy, Ann. Thorac. Surg., 1996, pp. 1829-1832, vol. 61. |
Maisano et al, The Edge-to-edge Technique: A Simplified Method to Correct Mitral Insufficiency, Eur. J. Cardiothorac. Surg., Jan. 14, 1998, pp. 240-246, vol. 13. |
McCarthy et al, Tricuspid Valve Repair with the Cosgrove-Edwards Annuloplasty System, Ann. Thorac. Surg., Jan. 16, 1997, pp. 267-268, vol. 64. |
Park et al, Clinical Use of Blade Atrial Septostomy, Circulation, 1978, pp. 600-608, vol. 58, No. 4. |
Ricchi et al, Linear Segmental Annuloplasty for Mitral Valve Repair, Ann. Thorac. Surg., Jan. 7, 1997, pp. 1805-1806, vol. 63. |
Tager et al, Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement With Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiol., Apr. 15, 1998, pp. 1013-1016, vol. 81. |
Uchida et al, Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., Apr. 1991, pp. 1221-1224, vol. 121. |
Umana et al, ‘Bow-Tie’ Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, Ann. Thorac. Surg., May 12, 1998, pp. 1640-1646, vol. 66. |
U.S. Appl. No. 14/216,787, dated Apr. 8, 2016, Office Action. |
U.S. Appl. No. 14/216,787, dated Nov. 7, 2016, Notice of Allowance. |
U.S. Appl. No. 14/216,813, dated Mar. 9, 2017, Office Action. |
U.S. Appl. No. 14/216,813, dated Dec. 15, 2017, Office Action. |
U.S. Appl. No. 14/216,813, dated Apr. 6, 2018, Office Action. |
U.S. Appl. No. 14/577,852, dated Oct. 20, 2016, Office Action. |
U.S. Appl. No. 14/577,852, dated May 16, 2017, Office Action. |
U.S. Appl. No. 14/577,852, dated Sep. 7, 2017, Office Action. |
U.S. Appl. No. 14/577,852, dated Apr. 25, 2018, Notice of Allowance. |
U.S. Appl. No. 15/423,060, dated Apr. 25, 2019, Office Action. |
Agricola et al., “Mitral Valve Reserve in Double Orifice Technique: an Exercise Echocardiographic Study,” Journal of Heart Valve Disease, 11(5):637-643 (2002). |
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,” J. Card Surg., 14:468-470 (1999). |
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,” Annals of Thoracic Surgery, 74:1488-1493 (2002). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic and Cardiovascular Surgery, 122:674-681 (2001). |
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting, Oct. 7-11, 2000, Book of Proceedings. |
Alfieri, “The Edge-to-Edge Repair of the Mitral Valve,” [Abstract] 6th Annual New Era Cardiac Care: Innovation & Technology, Heart Surgery Forum, (Jan. 2003) pp. 103. |
Arisi et al., “Mitral Valve Repair with Alfieri Technique in Mitral Regurgitation of Diverse Etiology: Early Echocardiographic Results,” Circulation Supplement II, 104(17):3240 (2001). |
Bailey, “Mitral Regurgitation” in Surgery of the Heart, Chapter 20, pp. 686-737 (1955). |
Bernal et al., “The Valve Racket': a new and different concept of atrioventricular valve repair,” Eur. J. Cardio-thoracic Surgery 29:1026-1029 (2006). |
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,” Ann Thorac Surg, 77:1598-1606 (2004). |
Bhudia, #58 Edge-to-edge mitral repair: a versatile mitral repair technique, 2003 STS Presentation, [Abstract Only], 2004. |
Borghetti et al., “Preliminary observations on haemodynamics during physiological stress conditions following ‘double-orifice’ mitral valve repair,” European Journal of Cardio-thoracic Surgery, 20:262-269 (2001). |
Castedo, “Edge-to-Edge Tricuspid Repair for Redeveloped Valve Incompetence after DeVega's Annuloplasty,” Ann Thora Surg., 75:605-606 (2003). |
Chinese Office Action issued in Chinese Application No. 200980158707.2 dated Sep. 9, 2013. |
Communication dated Apr. 16, 2018 from the European Patent Office in counterpart European application No. 04752603.3. |
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2. |
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2. |
Communication dated May 8, 2017, from the European Patent Office in counterpart European Application No. 04752714.8. |
Dottori et al., “Echocardiographic imaging of the Alfieri type mitral valve repair,” Ital. Heart J., 2(4):319-320 (2001). |
Downing et al., “Beating heart mitral valve surgery: Preliminary model and methodology,” Journal of Thoracic and Cardiovascular Surgery, 123(6):1141-1146 (2002). |
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1. |
Falk et al., “Computer-Enhanced Mitral Valve Surgery: Toward a Total Endoscopic Procedure,” Seminars in Thoracic and Cardiovascular Surgery, 11(3):244-249 (1999). |
Filsoufi et al., “Restoring Optimal Surface of Coaptation With a Mini Leaflet Prosthesis: A New Surgical Concept for the Correction of Mitral Valve Prolapse,” Intl. Soc. For Minimally Invasive Cardiothoracic Surgery 1(4):186-87 (2006). |
Frazier et al., #62 Early Clinical Experience with an Implantable, Intracardiac Circulatory Support Device: Operative Considerations and Physiologic Implications, 2003 STS Presentation, 1 page total. [Abstract Only]. |
Fundaro et al., “Chordal Plication and Free Edge Remodeling for Mitral Anterior Leaflet Prolapse Repair: 8-Year Follow-up,” Annals of Thoracic Surgery, 72:1515-1519 (2001). |
Garcia-Rinaldi et al., “Left Ventricular Volume Reduction and Reconstruction is Ischemic Cardiomyopathy,” Journal of Cardiac Surgery, 14:199-210 (1999). |
Gateliene, “Early and postoperative results results of metal and tricuspid valve insufficiency surgical treatment using edge-to-edge central coaptation procedure,” (Oct. 2002) 38 (Suppl 2):172-175. |
Gatti et al., “The edge to edge technique as a trick to rescue an imperfect mitral valve repair,” Eur. J. Cardiothorac Surg, 22:817-820 (2002). |
Gundry, “Facile mitral valve repair utilizing leaflet edge approximation: midterm results of the Alfieri figure of eight repair,” Presented at the Meeting of the Western Thoracic Surgical Association, (1999). |
Gupta et al., #61 Influence of Older Donor Grafts on Heart Transplant Survival: Lack of Recipient Effects, 2003 STS Presentation, [Abstract Only]. |
Ikeda et al., “Batista's Operation with Coronary Artery Bypass Grafting and Mitral Valve Plasty for Ischemic Dilated Cardiomyopathy,” The Japanese Journal of Thoracic and Cardiovascular Surgery, 48:746-749 (2000). |
International Search Report and Written Opinion of PCT Application No. PCT/US2009/068023, dated Mar. 2, 2010, 10 pages total. |
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,” Annuals of Thoracic Surgery, 67:1703-1707 (1999). |
Kallner et al., “Transaortic Approach for the Alfieri Stitch,” Ann Thorac Surg, 71:378-380 (2001). |
Kavarana et al., “Transaortic Repair of Mitral Regurgitation,” the Heart Surgery Forum, #2000-2389, 3(1):24-28 (2000). |
Kaza et al., “Ventricular Reconstruction Results in Improved Left Ventricular Function and Amelioration of Mitral Insufficiency,” Annals of Surgery, 235(6):828-832 (2002). |
Kherani et al., “The Edge-To-Edge Mitral Valve Repair: The Columbia Presbyterian Experience,” Ann. Thorac. Surg., 78:73-76 (2004). |
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Annals. of Thoracic Surgery, 74:600-601 (2002). |
Kruger et al., “P73—Edge to Edge Technique in Complex Mitral Valve Repair,” Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000). |
Langer et al., “Posterier mitral leaflet extensions: an adjunctive repair option for ischemic mitral regurgitation?” J Thorac Cardiovasc Surg, 131:868-877 (2006). |
Lorusso et al., “The double-orifice technique for mitral valve reconstruction: predictors of postoperative outcome,” Eur J. Cardiothorac Surg, 20:583-589 (2001). |
Maisano et al., “The double orifice repair for Barlow Disease: a simple solution for a complex repair,” Supplement I Circulation, (Nov. 1999); 100(18):1-94. |
Maisano et al., “The double orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique,” European Journal of Cardio-thoracic Surgery, 17:201-205 (2000). |
Maisano et al., “The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model,” European Journal of Cardio-thoracic Surgery, 15:419-425 (1999). |
Maisano et al., “Valve repair for traumatic tricuspid regurgitation,” Eur. J. Cardio-thorac Surg, 10:867-873 (1996). |
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,” J. Heart Valve Dis., 9:641-643 (2000). |
McCarthy et al., “Partial left ventriculectomy and mitral valve repair for end-stage congestive heart failure,” European Journal of Cardio-thoracic Surgery, 13:337-343 (1998). |
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,” Annals of Thoracic Surgery, 73:963-965 (2002). |
Morales et al., “Development of an Off Bypass Mitral Valve Repair,” The Heart Surgery Forum #1999-4693, 2(2):115-120 (1999). |
Nakanishi et al., “Early Outcome with the Alfieri Mitral Valve Repair,” J. Cardiol., 37: 263-266 (2001) [Abstract in English; Article in Japanese]. |
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,” Circulation, 104(Suppl. I):I-29-I-35 (2001). |
Noera et al., “Tricuspid Valve Incompetence Caused by Nonpenetrating Thoracic Trauma”, Annals of Thoracic Surgery, 51:320-322 (1991). |
Osawa et al., “Partial Left Ventriculectomy in a 3-Year Old Boy with Dilated Cardiomyopathy,” Japanese Journal of Thoracic and Cardiovascular Surg, 48:590-593 (2000). |
Patel et al., #57 Epicardial Atrial Defibrillation: Novel Treatment of Postoperative Atrial Fibrillation, 2003 STS Presentation, [Abstract Only]. |
Privitera et al., “Alfieri Mitral Valve Repair: Clinical Outcome and Pathology,” Circulation, 106:e173-e174 (2002). |
Redaelli et al., “A Computational Study of the Hemodynamics After ‘Edge-To-Edge’ Mitral Valve Repair,” Journal of Biomechanical Engineering, 123:565-570 (2001). |
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,” Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997). |
Robicsek et al., #60 The Bicuspid Aortic Valve: How Does It Function? Why Does It Fail? 2003 STS Presentation, [Abstract Only]. |
Supplemental European Search Report of EP Application No. 02746781, dated May 13, 2008, 3 pages total. |
Supplementary European Search Report issued in European Application No. 05753261.6 dated Jun. 9, 2011, 3 pages total. |
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of a Case,” Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001). |
Tibayan et al., #59 Annular Geometric Remodeling in Chronic lschemic Mitral Regurgitation, 2003 STS Presentation, [Abstract Only]. |
Timek et al., “Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation,” Eur J. of Cardiothoracic Surg., 19:431-437 (2001). |
Timek, “Edge-to-Edge Mitral Valve Repair without Annuloplasty Ring in Acute Ischemic Mitral Regurgitation,” [Abstract] Clinical Science, Abstracts from Scientific Sessions, 106(19):2281 (2002). |
Totaro, “Mitral valve repair for isolated prolapse of the anterior leaflet: an 11-year follow-up,” European Journal of Cardio-thoracic Surgery, 15:119-126 (1999). |
Umana et al., “‘Bow-tie’ Mitral Valve Repair Successfully Addresses Subvalvular Dysfunction in Ischemic Mitral Regurgitation,” Surgical Forum, XLVIII:279-280 (1997). |
Votta et al., “3-D Computational Analysis of the Stress Distribution on the Leaflets after Edge-to-Edge Repair of Mitral Regurgitation,” Journal of Heart Valve Disease, 11:810-822 (2002). |
U.S. Appl. No. 15/423,090, dated Aug. 19, 2019, Office Action. |
U.S. Appl. No. 15/423,060, dated Oct. 28, 2019, Office Action. |
U.S. Appl. No. 15/724,545, dated Dec. 27, 2019, Office Action. |
Dang N C et al., “Surgical Revision After Percutaneous Mitral Valve Repair with a Clip: Initial Multicenter Experience”, The Annals of Thracic Surgery, Elsevier, United States, vol. 80, No. 6, pp. 2338-42, (Dec. 1, 2005), XP027732951, ISSN:0003-4975 [retrieved on Dec. 1, 2005]. |
Rose et al., “Late MitraClip Failure: Removal Technique for Leaflet-Sparing Mitral Valve Repair”, Journal of Cardiac Surgery, (Jul. 4, 2012). XP055047339, DOI: 10.111/j. 1540-8191.2012.01483.x [retrieved on Dec. 11, 2012]. |
Takizawa H et al: “Development of a microfine active bending catheter equipped with MIF tactile sensors”, Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfthe IEEE International Conference on Orlando, FL, USA Jan. 17-21, 1999, Piscataway, NJ, USA, IEEE, US, Jan. 17, 1999. (Jan. 17, 1999), pp. 412-417, XP010321677, ISBN: 978-0-7803-5194-3 figures 1-3. |
U.S Appl. No. 15/423,060, dated Jan. 27, 2020, NOA. |
Number | Date | Country | |
---|---|---|---|
20180008268 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62359121 | Jul 2016 | US | |
62418571 | Nov 2016 | US |