The present invention relates generally to medical systems and methods. More particularly, the invention relates to delivery systems having an ultrasound probe for improved imaging and curved needle for ablation treatment and methods for using the same.
Treatment of the female reproductive tract and other conditions of dysfunctional uterine bleeding and fibroids remain with unmet clinical needs. Fibroids are benign tumors of the uterine myometria (muscle) and are the most common tumor of the female pelvis. Fibroid tumors affect up to 30% of women of childbearing age and can cause significant symptoms such as discomfort, pelvic pain, mennorhagia, pressure, anemia, compression, infertility, and miscarriage. Fibroids may be located in the myometrium (intramural), adjacent the endometrium (submucosal), or in the outer layer of the uterus (subserosal). Most common fibroids are a smooth muscle overgrowth that arise intramurally and can grow to be several centimeters in diameter.
Current treatments for fibroids include either or both pharmacological therapies and surgical interventions. Pharmacological treatments includes the administration of medications such as NSAIDS, estrogen-progesterone combinations, and GnRH analogues. All medications are relatively ineffective and are palliative rather than curative.
Surgical interventions include hysterectomy (surgical removal of the uterus) and myomectomy. Surgical myomectomy, in which fibroids are removed, is an open surgical procedure requiring laparotomy and general anesthesia. Often these surgical procedures are associated with the typical surgical risks and complications along with significant blood loss and can only remove a portion of the culprit tissue.
To overcome at least some of the problems associated with open surgical procedures, laparoscopic myomectomy was pioneered in the early 1990's. However, laparoscopic myomectomy remains technically challenging, requiring laparoscopic suturing, limiting its performance to only the most skilled of laparoscopic gynecologists. Other minimally invasive treatments for uterine fibroids include hysteroscopy, uterine artery ablation, endometrial ablation, and myolysis.
While effective, hysterectomy has many undesirable side effects such as loss of fertility, open surgery, sexual dysfunction, and long recovery time. There is also significant morbidity (sepsis, hemorrhage, peritonitis, bowel and bladder injury), mortality and cost associated with hysterectomy. Hysteroscopy is the process by which a thin fiber optic camera is used to image inside the uterus and an attachment may be used to destroy tissue. Hysteroscopic resection is a surgical technique that uses a variety of devices (loops, roller balls, bipolar electrodes) to ablate or resect uterine tissue. The procedure requires the filling of the uterus with fluid for better viewing and thus has potential side effects of fluid overload. Hysteroscopic ablation is limited by its visualization technique and thus, only appropriate for fibroids which are submucosal and/or protrude into the uterine cavity.
Uterine artery embolization was introduced in the early 1990's and is performed through a groin incision by injecting small particles into the uterine artery to selectively block the blood supply to fibroids and refract its tissue. Complications include pelvic infection, premature menopause and severe pelvic pain. In addition, long term MRI data suggest that incomplete fibroid infarction may result in regrowth of infarcted fibroid tissue and symptomatic recurrence.
Endometrial ablation is a procedure primarily used for dysfunctional (or abnormal) uterine bleeding and may be used, at times, for management of fibroids. Endometrial ablation relies on various energy sources such as cryo, microwave and radiofrequency energy. Endometrial ablation destroys the endometrial tissue lining the uterus, and although an excellent choice for treatment of dysfunctional uterine bleeding, it does not specifically treat fibroids. This technique is also not suitable treatment of women desiring future childbearing.
Myolysis was first performed in the 1980's using lasers or radio frequency (RF) energy to coagulate tissue, denature proteins, and necrose myometrium using laparoscopic visualization. Laparoscopic myolysis can be an alternative to myomectomy, as the fibroids are coagulated and then undergo coagulative necrosis resulting in a dramatic decrease in size. As with all laparoscopic techniques, myolysis treatment is limited by the fact that it can only allow for visualization of subserosal fibroids.
Needle myolysis uses a laparoscope, percutaneous, or open technique to introduce one or more needles into a fibroid tumor under direct visual control. Radio frequency current, cryo energy, or microwave energy is then delivered between two adjacent needles (bipolar), or between a single needle and a distant dispersive electrode affixed to the thigh or back of the patient (unipolar). The aim of needle myolysis is to coagulate a significant volume of the tumor, thereby cause substantial shrinkage. The traditional technique utilizes making multiple passes through different areas of the tumor using the coagulating needle to destroy many cylindrical cores of the abnormal tissue. However, the desirability of multiple passes is diminished by the risk of adhesion formation which is thought to escalate with increasing amounts of injured uterine serosa, and by the operative time and skill required. Myolysis can be an alternative to myomectomy, as the fibroids are coagulated and then undergo coagulative necrosis resulting in a dramatic decrease in size. Myolysis is generally limited by its usage with direct visualization techniques, thus being limited to the treatment of subserosal fibroids.b monologue
To overcome the limitations of current techniques, it would be desirable to provide a minimally invasive approach to visualize and selectively eradicate fibroid tumors within the uterus. The present invention addresses these and other unmet needs.
The present invention is directed to delivery systems, and methods using the same, having an ultrasound probe for improved imaging and a needle for ablation treatment of target tissues. In an embodiment, the needle is curved with the ultrasound probe having an ultrasound array at a distal portion. In an embodiment, the target tissue is a fibroid within a female's uterus. In an embodiment the delivery system includes a rigid shaft having a proximal end, a distal end, and an axial passage extending through the rigid shaft. In an embodiment, the axial passage is configured for removably receiving an ultrasound imaging insert having the ultrasound array disposed at a distal portion. As can be appreciated, the viewing mechanism may be of any other suitable type such as Optical Coherence Topography (OCT).
A needle extends adjacent an exterior surface of the rigid delivery shaft and is configured to deliver to the target site radio frequency energy (or other ablative energy such as, but not limited to, electromagnetic energy including microwave, resistive heating, cryogenic) generated at a relatively low power and for relatively a short duration of active treatment time. In an embodiment, the needle is disposed within a needle guide which extends along an exterior of the rigid shaft. In an embodiment, the needle has a hollow body and a solid distal tip formed from conductive material. The needle, optionally, may be covered, at least along a distal portion of the needle body, with a sheath. In an embodiment, the sheath is retractable such that the needle distal tip is extendable from a sheath's distal end thereby adjusting the length of the exposed conductive distal tip. In an embodiment, the sheath is formed from non-conductive material such as Parylene ®.
The target site undergoing treatment may be any target site which may benefit from the treatment devices and methods according to the present invention. Usually the target site is a uterus within a female's body. The target site in need of treatment generally has an initial (e.g. prior to treatment) approximate diameter which is greater than about two (2) centimeters (“cm”). Usually, the target site's initial diameter ranges from about 1 to about 6 cm. Normally the initial untreated diameter is about 2 cm.
In an embodiment of methods according to the present invention for visualization and ablation of fibroid tissues needing treatment within a patient's body include providing a visualization and ablation system according the device and system embodiments described herein. An ultrasound imaging, embodying features of the present invention is inserted within the axial passage of the rigid shaft with the distal portion of the imaging insert conforming to a shaft distal portion. Under the guidance of the imaging system, the needle is inserted into the tissue site. The RF generator is set to deliver and/or maintain a target temperature at the target site for a treatment period.
In an embodiment, the power and temperature are generated by a radio frequency energy generator. The radio frequency energy generator is generally configured to deliver energy at a power from about 1 to about 50 watts (“W”), generally from about 1 to about 40 W, usually from about 20 to about 40 W, and normally about 30 W. The radio frequency energy generator is further configured to provide a target temperature at the target site ranging from about 50 to about 110 degrees Celsius (“° C.”), usually from about 60 to about 100° C., normally about 90° C. In an embodiment, the needle's conductive tip is at approximately body temperature as it is initially disposed within the patient's body.
In an embodiment, the target site is treated for a period of time ranging from about 1 to about 10 minutes, generally from about 1 to about 8 minutes, usually from about 3 to about 8 minutes, normally about 6 minutes.
In an embodiment, at least one fluid lumen extends along the rigid shaft for delivering fluids to a distal portion of the delivery system. The at least one fluid lumen may be configured for delivery of any one or more of fluids such as those for enhancing acoustic coupling between the ultrasound imaging insert and the target site, contrasting dyes, therapeutic agents, and the like. In an embodiment, the at least one fluid lumen includes acoustic coupling lumens including an internal lumen extending along the axial passage and terminating at an internal port within its distal end and an external lumen extending along the axial passage and terminating at an external port in fluid communication with the outside of the axial lumen. In an embodiment, the external lumen is formed by an external hollow tubular body extending along the needle guide, while the internal lumen is formed by an internal hollow tubular body extending along the underside of the axial hollow tubular body forming the axial passage. It should be appreciated, however, that the external and internal fluid lumens may be oriented in any other suitable location along the shaft. In the embodiment, as shown, the external lumen is located along the needle guide such that the fluid may exit near the ultrasound window, while the internal lumen extends along the underside of the axial hollow tubular body which forms the axial passage so as to allow the fluid to be delivered to the inner tip without trapping air inside the shaft.
In an embodiment, the present invention includes a visualization and ablation system generally having a delivery device, an ultrasound imaging probe detachable from the delivery system, a radio frequency energy generator, and an ultrasound system. An exemplary delivery system having inclined ultrasound and ablation needle is described in more detail in co-pending U.S. patent application Ser. No. 11/409,496, filed Apr. 20, 2006, which is assigned to the assignee of the present application and incorporated herein by reference in its entirety.
The following drawings should be read with reference to the detailed description. Like numbers in different drawings refer to like elements. The drawings illustratively depict embodiments including features of the present invention. The drawings are not necessarily drawing to scale and are not intended to limit the scope of the invention.
Referring to
The curved needle 14 has a needle body 50 with a shaped needle distal end 52 and a solid needle distal tip 54, as best seen in
Now referring back to
The shaft axial passage 32 is configured for removably and replaceably receiving and housing an ultrasound imaging insert 70. A sealing element 72 may be provided between the ultrasound imaging insert 70 and the shaft handle 40 to provide sufficient sealing around the imaging insert 70 at a proximal end.
The ultrasound imaging insert 70 as shown in
The delivery system 10, as shown in various
The shaft 24 of the present invention as described herein may serve several functions including delivering ultrasound, diagnostic, and/or interventional treatments, bending of the ultrasound insert via the deflectable distal tip, and/or providing a sterile barrier between the ultrasound and/or interventional components. As shown in
Generally, the delivery system shaft 24 will have a length in a range from about 20 cm to about 40 cm and an outer diameter in a range from about 3 mm to about 10 mm, while the ultrasound imaging insert 70 will have a length in a range from about 50 cm to about 90 cm and an outer diameter in a range from about 2 mm to about 4 mm. Delivery system Shaft 24 and the ultrasound imaging insert 70 may be acoustically coupled in one or more of several ways to enable the effective passage of ultrasound energy from one component to the other. For example, the ultrasound insert 70 may be placed in close mechanical contact with the shaft 24 so as to provide a dry coupling. In addition or alternatively, a thin compliant layer (e.g., pad or sheet) may be disposed between the viewing windows 82 and 12, of the ultrasound insert 70 and the shaft 24, respectively, so as to provide further interference between such components. It will be appreciated that a thinner layer may be preferred to minimize unwanted acoustic loss, index of refraction, impedance, and/or other material property effects. Alternatively, or in addition to, the shaft axial passage 32 in which the ultrasound imaging insert 70 is disposable, may be filled with a fluid (e.g., water or oil) or gel to further provide a wet coupling between the shaft and the imaging insert which may compensate for any mechanical tolerances.
Now referring to
The ultrasound probe 300 embodying features of the present invention, as shown in
The ultrasound system 500, embodying features of the present invention, as shown in
The radio frequency energy 410, embodying features of the present invention, and as shown in
Now referring to
The needle body 50 is formed from an RF energy conductive material such as stainless steel. As will be appreciated, the solid tip 54 may comprise a variety of dimensions and shapes and is not limited to
In an embodiment, as shown in
The insulating sheath 140 may be formed from one or more suitable insulating material such as polyester shrink tubing, and Parylene ®(vapor deposited poly(p-xylene) polymer) coating such as Parylene ®C. Generally, the length of the conductive distal tip 54 ranges from about 1 to about 4 cm, usually from about 2 to about 3 cm, normally about 2 cm. In an embodiment, the conductive distal end is a T-type active electrode.
Now referring back to
The target site 16, such as fibroid 18, generally has an initial untreated diameter greater than about 2 cm, usually from about 1 to about 6 cm, normally about 2 cm. During the treatment of the fibroid 18, the needle 14 may be inserted one or more times into the tissue as may be necessary. In an embodiment, the needle distal tip 54, may be deployed into the tissue, up to 3 cm as measured from the distal end of the of the delivery device 10. During the treatment, the deployed length of the needle penetrating the tissue is visualized through the ultrasound imaging system 500.
By way of operation, in an embodiment, the deflectable distal tip 26 of the rigid shaft 24 may be deflected by the use of pull or tensioning wire(s) housed within the shaft 24. In another embodiment, the distal tip may have pre-determined deflection as compared to a longitudinal axis at a proximal portion of the device. Deflection may occur at a true mechanical pivot or at a flexible zone at the shaft distal end. When the delivery shaft 24 is deflectable by a user, various needles 14 may be used to match the amount of deflection provided by the distal tip 26 as well as the amount of tilt provided by the ultrasound array 80. Hence, the needle guide 58 may be empty until the distal end 26 of the shaft 24 is deflected. For example, the shaft 24 may be inserted in a straight configuration. The distal tip 26 may then be deflected until a target anatomy is identified. A needle 14 is then back loaded within the guide passage 70 that corresponds to the amount of the deflection. Alternatively, the needle may be pre-loaded in the shaft to provide a sterile and convenient delivery device to the user.
In exemplary embodiments, the therapeutic needle 14 advancement from the guide 58 via needle advancement portion on the shaft handle 40 can be viewed in the ultrasound system 500 in real time as it is penetrated into the uterine fibroid 18 inside the uterus 17. The therapeutic needle 14 may be penetrated in several configurations (e.g., lateral, side, axially extending) depending on the ultrasound viewing angle. Advantageously, tilting of the ultrasound array 80 and angling of the distal tip 26 allows a treating physician to image most or all of the cornua and fundus of the uterus 17 with a single device 10.
Although certain exemplary embodiments and methods have been described in some detail, for clarity of understanding and by way of example, it will be apparent from the foregoing disclosure to those skilled in the art that variations, modifications, changes, and adaptations of such embodiments and methods may be made without departing from the true spirit and scope of the invention. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 11/409,496 filed Apr. 20, 2006, entitled “Rigid Delivery Systems Having Inclined Ultrasound and Curved Needle”, the disclosure of which is incorporated herein by reference, in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4289132 | Rieman | Sep 1981 | A |
4802487 | Martin et al. | Feb 1989 | A |
4936281 | Stasz | Jun 1990 | A |
5372587 | Hammerslag et al. | Dec 1994 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5492126 | Hennige et al. | Feb 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5531676 | Edwards et al. | Jul 1996 | A |
5649911 | Trerotola | Jul 1997 | A |
5666954 | Chapelon et al. | Sep 1997 | A |
5697897 | Buchholtz et al. | Dec 1997 | A |
5730752 | Alden et al. | Mar 1998 | A |
5741287 | Alden et al. | Apr 1998 | A |
5769880 | Trukai et al. | Jun 1998 | A |
5860974 | Abele | Jan 1999 | A |
5863294 | Alden | Jan 1999 | A |
5873828 | Fujio et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5891137 | Chia et al. | Apr 1999 | A |
5906615 | Thompson | May 1999 | A |
5916198 | Dillow | Jun 1999 | A |
5957941 | Ream | Sep 1999 | A |
5964740 | Ouchi | Oct 1999 | A |
5979452 | Fogarty et al. | Nov 1999 | A |
5979453 | Savage et al. | Nov 1999 | A |
5984942 | Alden et al. | Nov 1999 | A |
6002968 | Edwards | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6032673 | Savage et al. | Mar 2000 | A |
6039748 | Savage et al. | Mar 2000 | A |
6059766 | Greff | May 2000 | A |
6077257 | Edwards et al. | Jun 2000 | A |
6141577 | Rolland et al. | Oct 2000 | A |
6146378 | Mikus et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6158250 | Tibbals, Jr. et al. | Dec 2000 | A |
6171249 | Chin et al. | Jan 2001 | B1 |
6190383 | Schmaltz et al. | Feb 2001 | B1 |
6193714 | McGaffigan et al. | Feb 2001 | B1 |
6211153 | Garnick et al. | Apr 2001 | B1 |
6238336 | Ouchi | May 2001 | B1 |
6254601 | Burbank et al. | Jul 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6296639 | Truckai et al. | Oct 2001 | B1 |
6306129 | Little et al. | Oct 2001 | B1 |
6315741 | Martin et al. | Nov 2001 | B1 |
6379348 | Onik | Apr 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6419653 | Edwards et al. | Jul 2002 | B2 |
6419673 | Edwards et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6432067 | Martin et al. | Aug 2002 | B1 |
6447477 | Burney et al. | Sep 2002 | B2 |
6463331 | Edwards | Oct 2002 | B1 |
6482203 | Paddock et al. | Nov 2002 | B2 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6506154 | Ezion et al. | Jan 2003 | B1 |
6506156 | Jones et al. | Jan 2003 | B1 |
6506171 | Vitek et al. | Jan 2003 | B1 |
6507747 | Gowda et al. | Jan 2003 | B1 |
6508815 | Strulet al. | Jan 2003 | B1 |
6522142 | Freundlich | Feb 2003 | B1 |
6540677 | Angelsen et al. | Apr 2003 | B1 |
6543272 | Vitek | Apr 2003 | B1 |
6550482 | Burbank et al. | Apr 2003 | B1 |
6554780 | Sampson et al. | Apr 2003 | B1 |
6559644 | Froundlich et al. | May 2003 | B2 |
6569159 | Edwards et al. | May 2003 | B1 |
6572613 | Ellman et al. | Jun 2003 | B1 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6602251 | Burbank et al. | Aug 2003 | B2 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6612988 | Maor et al. | Sep 2003 | B2 |
6613004 | Vitek et al. | Sep 2003 | B1 |
6613005 | Friedman et al. | Sep 2003 | B1 |
6623481 | Garbagnati et al. | Sep 2003 | B1 |
6626854 | Friedman et al. | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6632193 | Davison et al. | Oct 2003 | B1 |
6635055 | Cronin | Oct 2003 | B1 |
6635065 | Burbank et al. | Oct 2003 | B2 |
6638275 | McGaffigan | Oct 2003 | B1 |
6638286 | Burbank et al. | Oct 2003 | B1 |
6645162 | Friedman et al. | Nov 2003 | B2 |
6645202 | Pless et al. | Nov 2003 | B1 |
6652516 | Gough | Nov 2003 | B1 |
6660002 | Edwards et al. | Dec 2003 | B1 |
6660024 | Flaherty et al. | Dec 2003 | B1 |
6663624 | Edwards et al. | Dec 2003 | B2 |
6663626 | Truckai et al. | Dec 2003 | B2 |
6666833 | Friedman et al. | Dec 2003 | B1 |
6679855 | Horn et al. | Jan 2004 | B2 |
6685639 | Wang et al. | Feb 2004 | B1 |
6689128 | Sliwa, Jr. et al. | Feb 2004 | B2 |
6692490 | Edwards | Feb 2004 | B1 |
6701931 | Sliwa, Jr. et al. | Mar 2004 | B2 |
6705994 | Vortman et al. | Mar 2004 | B2 |
6712815 | Sampson et al. | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6719755 | Sliwa, Jr. et al. | Apr 2004 | B2 |
6728571 | Barbato | Apr 2004 | B1 |
6730081 | Desai | May 2004 | B1 |
6735461 | Vitek et al. | May 2004 | B2 |
6743184 | Sampson et al. | Jun 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6764488 | Burbank et al. | Jul 2004 | B1 |
6773431 | Eggers et al. | Aug 2004 | B2 |
6790180 | Vitek | Sep 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6805129 | Pless et al. | Oct 2004 | B1 |
6813520 | Truckai et al. | Nov 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6840935 | Lee | Jan 2005 | B2 |
6936048 | Hurst | Aug 2005 | B2 |
6994706 | Chornenky et al. | Feb 2006 | B2 |
7517346 | Sloan et al. | Apr 2009 | B2 |
20010014805 | Burbank et al. | Aug 2001 | A1 |
20010051802 | Woloszko et al. | Dec 2001 | A1 |
20020002393 | Mitchell | Jan 2002 | A1 |
20020022835 | Lee | Feb 2002 | A1 |
20020052600 | Davison et al. | May 2002 | A1 |
20020068871 | Mendlein et al. | Jun 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020183735 | Edwards et al. | Dec 2002 | A1 |
20030009164 | Woloszko et al. | Jan 2003 | A1 |
20030014046 | Edwards | Jan 2003 | A1 |
20030028111 | Vaezy et al. | Feb 2003 | A1 |
20030032896 | Bosley et al. | Feb 2003 | A1 |
20030130575 | Desai | Jul 2003 | A1 |
20030130655 | Woloszko et al. | Jul 2003 | A1 |
20030195420 | Mendlein et al. | Oct 2003 | A1 |
20030195496 | Maguire et al. | Oct 2003 | A1 |
20030199472 | Al-Hendy et al. | Oct 2003 | A1 |
20030216725 | Woloszko et al. | Nov 2003 | A1 |
20030216759 | Burbank et al. | Nov 2003 | A1 |
20040002699 | Ryan et al. | Jan 2004 | A1 |
20040006336 | Swanson | Jan 2004 | A1 |
20040030268 | Weng et al. | Feb 2004 | A1 |
20040054366 | Davison et al. | Mar 2004 | A1 |
20040120668 | Loeb | Jun 2004 | A1 |
20040143252 | Hurst | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040175399 | Schiffman | Sep 2004 | A1 |
20040176760 | Qiu | Sep 2004 | A1 |
20040193028 | Jones et al. | Sep 2004 | A1 |
20040215182 | Lee | Oct 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20040254572 | McIntyre et al. | Dec 2004 | A1 |
20050038340 | Vaezy et al. | Feb 2005 | A1 |
20050107781 | Ostrovsky et al. | May 2005 | A1 |
20050124882 | Ladabaum et al. | Jun 2005 | A1 |
20050149013 | Lee | Jul 2005 | A1 |
20050177209 | Leung et al. | Aug 2005 | A1 |
20050197577 | Makin et al. | Sep 2005 | A1 |
20050215990 | Govari | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050228288 | Hurst | Oct 2005 | A1 |
20050255039 | Desai | Nov 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20060010207 | Akerman et al. | Jan 2006 | A1 |
20060058680 | Solomon | Mar 2006 | A1 |
20060178665 | Sloan | Aug 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20070006215 | Epstein et al. | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 9717105 | May 1997 | WO |
WO 9811834 | Mar 1998 | WO |
WO 9814169 | Apr 1998 | WO |
WO 9943366 | Sep 1999 | WO |
WO 0000098 | Jan 2000 | WO |
WO 0180723 | Nov 2001 | WO |
WO 0195819 | Dec 2001 | WO |
WO 0211639 | Feb 2002 | WO |
WO 03005882 | Jan 2003 | WO |
WO 03005882 | Jan 2003 | WO |
WO 03065908 | Aug 2003 | WO |
WO 2004002293 | Jan 2004 | WO |
WO 2004002550 | Jan 2004 | WO |
WO 2004020011 | Mar 2004 | WO |
WO 2004035110 | Apr 2004 | WO |
WO 2004058328 | Jul 2004 | WO |
WO 2004064658 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070249936 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11409496 | Apr 2006 | US |
Child | 11564164 | US |