Methods and devices to disrupt and contain pathogens

Information

  • Patent Grant
  • 12076215
  • Patent Number
    12,076,215
  • Date Filed
    Wednesday, June 3, 2020
    4 years ago
  • Date Issued
    Tuesday, September 3, 2024
    3 months ago
Abstract
Provided herein are fabric materials and debridement devices comprising gel-forming hydrofibres for disrupting a biofilm, loosening, or sequestering unwanted materials from wounds, and uses thereof. In particular, debridement and detection devices for selective and atraumatic removal of unwanted tissues and for detection of a wound infection are provided.
Description
BACKGROUND

In mammals, injury triggers an organized complex cascade of cellular and biochemical events that result in a healed wound. Wound healing is a complex dynamic process that results in the restoration of anatomic continuity and function: an ideally healed wound is one that has returned to normal anatomic structure, function, and appearance. Infection of the wound results in either a slower or an arrested healing process. Pathogens in a wound can produce toxins (e.g., Clostridium spp), noxious metabolites like ammonia that raise pH (e.g., Proteus spp), tissue-lytic enzymes like proteases, or further invade tissue by other means leading to an increase in wound area. In a worst case, pathogens can leave the wound and cause sepsis.


Unwanted biological soft tissues such as devitalized tissue (e.g. slough, necrosis, eschar) or exogenous tissues (e.g. microbial biofilm) are a significant source of soft tissue infections. Removal of such unwanted tissues from surgical or chronic wounds, for example, is vital to help prevent infection and allow the site or wound to heal. Such tissue removal (debridement) is achieved by various methods such as surgical debridement, sharp debridement, use of digesting enzymes, and biosurgery.


Antimicrobial agents, including antiseptics and antibiotics, are widely used to treat microbial infections. However, the emergence of antibiotic resistance and the ability of microorganisms to tolerate antimicrobial agents through their production of protective biofilm have significantly reduced their effectiveness. Therefore, new ways to disturb microbial habitats by disrupting biofilm, for example, increase susceptibility of microorganisms to antimicrobial agents, and develop alternative strategies to antimicrobial agents are required. Moreover, because conventional methods of debridement often cause pain and trauma, alternative methods that are effective but also less traumatic and painful are required.


SUMMARY

Disclosed herein are devices, methods and kits for debridement of a wound, comprising a wound contacting layer with a plurality of bristles in contact with a layer of gel-forming fibres. In some embodiments, the plurality of bristles comprises a pile of monofilaments or fibres. In some embodiments, the monofilaments comprise nylon, acetal, polypropylene, acrylic, polyvinyl chloride (PVC), polycarbonate, silicone, wool, or any combination thereof. In yet other embodiments, the bristles comprise a pile of nylon monofilaments. In still other embodiments, the bristles comprise nonwoven or woven filaments arranged perpendicular to the wound contacting layer.


In some embodiments, the layer of gel-forming fibres are woven, non-woven, and/or knitted. In yet other embodiments, the layer of gel-forming fibres is selected from the group consisting of sodium carboxymethylcellulose, alginate, cellulose, carboxyethylcellulose, cellulose ethyl sulfonate, modified cellulose, pectin, chitosan, modified chitosan, hyaluronic acid, polysaccharide, gum-derived polymer, and any combination thereof. In yet other embodiments, the layer of gel-forming fibres comprises sodium carboxymethylcellulose. In some embodiments, the layer of gel-forming fibres has an absorbency of at least 10 g/g and resists lateral spread of a fluid upon absorption. In other embodiments, the layer of gel-forming fibres has an absorbency of 15 g/g to 50 g/g and resists lateral spread of a fluid upon absorption. In yet other embodiments, the carboxymethylcellulose has a degree of substitution of at least 0.05 carboxymethyl groups per cellulose unit. In still other embodiments, the carboxymethylcellulose has a degree of substitution of at least 0.2 carboxymethyl groups per cellulose unit. In yet other embodiments, the carboxymethylcellulose has a degree of substitution of between 0.3 and 0.5 carboxymethyl groups per cellulose unit.


In some embodiments, the devices, methods and kits for debridement disclosed herein are capable of disrupting a biofilm on a wound. In some embodiments, the devices and methods for debridement disclosed herein are capable of sequestering metal ions. In some embodiments, the devices and methods for debridement disclosed herein further comprise anti-biofilm agents, metal chelators, surfactants, or any combination thereof. In other embodiments, the devices and methods for debridement disclosed herein are capable of removing or loosening unwanted tissue or biofilm on a wound. In yet other embodiments, the devices and methods for debridement disclosed herein are capable of sequestering bacteria and other components of a biofilm or unwanted tissue.


In some embodiments, the devices, methods and kits for debridement disclosed herein further comprise one or more support layers in contact with the layer of gel-forming fibres, wherein the support layer comprises foam, fabric, blended fabric, paper, polymer, plastic, or any combination thereof. In some embodiments, the one or more support layers form a backing. In yet other embodiments, an outer support layer comprises an anti-slip material. In still other embodiments, the anti-slip material comprises silicone.


In other embodiments, the devices, methods and kits disclosed herein further comprise a diagnostic unit in fluid communication with the layer of gel-forming fibres. In some embodiments, the diagnostic unit comprises an enzyme-based assay or an electronic sensor. In other embodiments, the diagnostic unit comprises one or more fibres or diagnostic disks, comprising: a) a reaction layer comprising one or more reagents that interact with a target enzyme indicative of a microbial infection, wherein the reagents are affixed to a solid phase; b) each reagent is sprayed, printed, or deposited in a reagent area separated by impermeable separators; c) each reagent area comprises a reporter area wherein a color, color change, or other detectable signal is observed; and d) a transparent cover comprising a window for visualizing the signal in the reporter area. In some embodiments, the fluid communication comprises a wicking material, an opening, a channel, or a conduit. In yet other embodiments, the wicking material comprises hydrophilic fibres, gelling fibres, filter paper, or any combination thereof. In some embodiments, the diagnostic disks comprise one or more reagents selected from the group consisting of enzyme-reactive indicators, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents. In other embodiments, the enzyme-reactive indicators interact with one or more enzymes selected from the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and any combination thereof to produce a visible color or an electronic change in the reporter area of the diagnostic disk.


In some embodiments, the devices, methods and kits disclosed herein further comprise a handle attached to a non-wound-contacting surface of the debridement device. In some embodiments, the handle comprises a loop, a stick, a tube, a tab, a bar, a pocket, a fold, a sleeve, or a protrusion on the non-wound-contacting surface. In other embodiments, the handle is removably attached to the non-wound-contacting surface using a detachable securing member. In yet other embodiments, the detachable securing member comprises a hook-and-loop element, an adhesive, or a sticker.


Disclosed herein are devices, methods and kits for detecting a wound infection, comprising debriding a wound using the debridement devices described herein, extracting a sample of wound tissue from the debridement device, and analyzing the sample for presence of a microbial infection using a diagnostic assay. In some embodiments, the diagnostic assay comprises PCR, enzyme-linked immunosorbent assay (ELISA), or an immunoassay. In other embodiments, the immunoassay comprises one or more reagents selected from the group consisting of enzyme-reactive indicators, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents, and wherein the enzyme-reactive indicators interact with one or more enzymes selected from the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and any combination thereof to produce a detectable signal indicative of a microbial infection.


Disclosed herein are methods, devices and kits for treating a wound, comprising cleaning a wound using a debridement device as described herein, analyzing a wound sample removed by the debridement device for presence of a microbial infection using a diagnostic assay; and applying a wound dressing comprising gel-forming fibres with or without an antimicrobial agent according to a result of the diagnostic assay. In some embodiments, the diagnostic assay comprises one or more diagnostic disks in fluid communication with the debridement device, a standalone immunoassay, PCR, or ELISA. In yet other embodiments, the diagnostic disks comprise: a) a reaction layer comprising one or more reagents that interact with a target enzyme indicative of a microbial infection, wherein the reagents are affixed to a solid phase; b) each reagent is sprayed, printed, or deposited in a reagent area separated by impermeable separators; c) each reagent area comprises a reporter area wherein a color, color change, or other detectable signal is observed; and d) a transparent cover comprising a window for visualizing the signal in the reporter area. In some embodiments, the fluid communication comprises a wicking material, an opening, a channel, or a conduit. In other embodiments, the wicking material comprises hydrophilic fibres, gelling fibres, or filter paper. In yet other embodiments, the diagnostic disks comprise one or more reagents selected from the group consisting of enzyme-reactive indicators, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents. In still other embodiments, the enzyme-reactive indicators interact with one or more enzymes selected from the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and any combination thereof to produce a visible color or an electronic change in the reporter area of the diagnostic disk.


Disclosed herein are devices, methods and kits for debridement of a wound, comprising a wound contacting layer with a plurality of nylon monofilaments or bristles in contact with a layer of gel-forming fibres comprising carboxymethylcellulose. In some embodiments, the layer of gel-forming fibres has an absorbency of at least 10 g/g and resists lateral spread of a fluid upon absorption. In yet other embodiments, the devices and methods for debridement of a wound as disclosed herein are capable of disrupting a biofilm, or loosening or removing unwanted tissue on a wound. In yet other embodiments, the devices and methods for debridement disclosed herein are capable of sequestering metal ions, bacteria, and/or unwanted wound tissue. In still other embodiments, the devices and methods for debridement disclosed herein comprise anti-biofilm agents, metal chelators, surfactants, or any combination thereof.


In some embodiments, the devices, methods and kits for debridement disclosed herein further comprise a handle attached to a non-wound-contacting surface of the debridement device. In some embodiments, the handle comprises a loop, a stick, a tube, a tab, a bar, a pocket, a fold, a sleeve, a protrusion on the non-wound-contacting surface, or a detachable bar or stick. In some embodiments, the devices and methods for debridement disclosed herein further comprise one or more diagnostic disks in fluid communication with the debridement device, comprising: a) a reaction layer comprising one or more reagents that interact with a target enzyme indicative of a microbial infection, wherein the reagents are affixed to a solid phase; b) each reagent is sprayed, printed, or deposited in a reagent area separated by impermeable separators; c) each reagent area comprises a reporter area wherein a color, color change, or other detectable signal is observed; and d) a transparent cover comprising a window for visualizing the signal in the reporter area. In some embodiments, the fluid communication comprises wicking fibres, an opening, or a filter paper. In other embodiments, one or more reagents in conjunction with the devices and methods for debridement disclosed herein are selected from the group consisting of enzyme-reactive indicators, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents, and wherein the enzyme-reactive indicators interact with one or more enzymes selected from the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and any combination thereof to produce a detectable signal indicative of a microbial infection.


Disclosed herein are methods, devices and kits for disrupting a biofilm or removing unwanted tissue on a wound, comprising debriding a wound using the devices for debridement disclosed herein.


Also disclosed herein are methods, devices and kits for treating a wound, comprising debriding a wound using the debridement device as described herein; analyzing a wound sample adsorbed to the debridement device using a diagnostic assay for presence of a microbial infection; optionally repeating the debriding step; and applying a wound dressing with or without an antimicrobial agent according to the diagnostic assay. In some embodiments, the diagnostic assay comprises one or more diagnostic disks in fluid communication with the debridement device, a standalone immunoassay, PCR, or ELISA.


Disclosed herein are fabric materials and kits encompassing the same comprising gel-forming fibres and an anti-biofilm agent. In some embodiments, the gel-forming fibres sequester disrupted biofilm, microorganisms, wound debris, metal ions, or combinations thereof. In yet other embodiments, the gel-forming fibres are woven, non-woven, knitted, or combinations thereof. In still other embodiments, the gel-forming fibres is selected from the group consisting of sodium carboxymethylcellulose, alginate, cellulose, carboxyethylcellulose, cellulose ethyl sulfonate, modified cellulose, pectin, chitosan, modified chitosan, hyaluronic acid, polysaccharide, gum-derived polymer, and any combination thereof. In still other embodiments, the gel-forming fibres comprise sodium carboxymethylcellulose. In yet other embodiments, the gel-forming fibres comprise an absorbency of at least 10 g/g. In some embodiments, the gel-forming fibres comprise an absorbency of 15 g/g to 50 g/g. In still other embodiments, the sodium carboxymethylcellulose has a degree of substitution of at least 0.05 carboxymethyl groups per cellulose unit. In still other embodiments, the sodium carboxymethylcellulose has a degree of substitution of at least 0.2 carboxymethyl groups per cellulose unit. In yet other embodiments, the sodium carboxymethylcellulose has a degree of substitution of between 0.3 and 0.5 carboxymethyl groups per cellulose unit. In yet other embodiments, the anti-biofilm agent is selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), tetrasodium EDTA, disodium EDTA, epigallocatechin gallate (EGCG), ellagic acid, esculetin, fisetin, reserpine, quercetin, linoleic acid, berberine, chitosan, eugenol, curcumin, synthetic halogenated furanone (F-56), Peptide 1018, CFT073 group-II capsular polysaccharide (Serotype K2), Pel polysaccharide, Psl polysaccharide, sophorolipid, colistin, nisin, subtilin, epidermin, gallidermin, sodium citrate, tannic acid, deoxyribonuclease I, glycoside hydrolase, bacteriophage-encoded endolysin (PlyC), silver, octenidine hydrochloride, chlorhexidine, cadexomer iodine, polyhexamethylene biguanide, usnic acid, benzethonium chloride (BC), aryl rhodanines, cis-2-decenoid acid (C2DA), and dispersin B.


Disclosed herein are methods, devices and kits for debridement of a wound, comprising: a) a device for debridement of a wound as described herein; and b) a solution or formulation for enhancing or assisting in debridement of the wound. In some embodiments, the solution or formulation for enhancing or assisting in debridement of the wound comprises antimicrobial agents, anti-biofilm agents, metal chelators, surfactants, or any combination thereof. In some embodiments, anti-biofilm agent is selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), tetrasodium EDTA, disodium EDTA, epigallocatechin gallate (EGCG), ellagic acid, esculetin, fisetin, reserpine, quercetin, linoleic acid, berberine, chitosan, eugenol, curcumin, synthetic halogenated furanone (F-56), Peptide 1018, CFT073 group-II capsular polysaccharide (Serotype K2), Pel polysaccharide, Psl polysaccharide, sophorolipid, colistin, nisin, subtilin, epidermin, gallidermin, sodium citrate, tannic acid, deoxyribonuclease I, glycoside hydrolase, bacteriophage-encoded endolysin (PlyC), silver, octenidine hydrochloride, chlorhexidine, cadexomer iodine, polyhexamethylene biguanide, usnic acid, benzethonium chloride (BC), aryl rhodanines, cis-2-decenoid acid (C2DA), and dispersin B. In some embodiments, the anti-biofilm agent is present between 0.01-5% by weight. In some embodiments, the metal chelator comprises ethylenediaminetetraacetic acid (EDTA). In some embodiments, the EDTA is present at a concentration of at least 0.01% by weight. In some embodiments, the EDTA is present at a concentration between 0.2-0.8% by weight. In some embodiments, the surfactant comprises a cationic surfactant, an anionic surfactant, a zwitterionic surfactant, a non-ionic surfactant, or a combination thereof. In some embodiments, the surfactant is present at less than 2% by weight. In some embodiments, the surfactant is present at 0.01-2% by weight. In yet other embodiments, the solution or formulation comprises sterile water or saline. In yet other embodiments, the solution or formulation comprises an oxidizing agent. In some embodiments, the oxidizing agent is hydrogen peroxide. In yet other embodiments, the solution or formulation comprises iodine, polyhexanide (PHMB), chlorhexidine, hypochlorous acid, sodium hypochlorite, chlorine dioxide, acetic acid, or a combination thereof. Methods, devices, and kits, in some embodiments, further comprise a treating agent. In some embodiments, the treating agent comprises an antimicrobial or anti-biofilm composition. Methods, devices, and kits, in some embodiments, further comprise instructions for use.


Disclosed herein are methods, devices and kits for detecting an infection in a sample, comprising: a) a debridement device as described herein for collecting the sample; b) a diagnostic unit in fluid communication with the debridement device, wherein the diagnostic unit comprises an enzyme-based assay, an electronic sensor, or one or more reagents for indicating the infection; and c) a viewing window or reporter area wherein a color, color change, or other detectable signal based on the enzyme-based assay, the electronic sensor, or the one or more reagents for indicating the infection is observed. In some embodiments, the one or more reagents is selected from the group consisting of enzyme-reactive indicators, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents. In some embodiments, the enzyme-reactive indicators interact with one or more enzymes selected from the group consisting of elastase, lysozyme, cathepsin G, and myeloperoxidase. Methods, devices, and kits, in some embodiments, further comprise a wound dressing comprising gel-forming fibres with or without an antimicrobial agent. Methods, devices, and kits, in some embodiments, further comprise instructions for use.


Disclosed herein are methods, devices and kits for debridement of a wound, comprising a wound contacting layer comprising one or more foams. In some embodiments, the one or more foams comprises open pore foams. In some embodiments, a first foam of the one or more foams is on a first side and a second foam of the one or more foams is on a second side. In some embodiments, the first foam comprises a rough texture. In some embodiments, the second foam comprises a smooth texture. In some embodiments, a first foam of the one or more foams and a second foam of the one or more foams are on a same side. In some embodiments, the one or more foams comprises polyurethane. In some embodiments, the one or more foams is in a butterfly shape. In some embodiments, a pore of the one or more open foams comprises at diameter in a range of about 10 um to about 500 um. In some embodiments, a height of the one or more open foams is in a range of about 1 centimeter to about 5 centimeters. In some embodiments, a width of the one or more open foams is in a range of about 1 centimeter to about 10 centimeters. In some embodiments, a length of the one or more open foams is in a range of about 1 centimeter to about 15 centimeters.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the disclosure are utilized, and the accompanying drawings of which:



FIGS. 1A-1C illustrate various forms of a debridement device 100 comprising a wound contacting layer 102 with a layer of monofilaments or bristles 104 in contact with a layer of gel-forming fibres 106. Some embodiments have a base layer for support 108. The debridement device 100 can be in the form of a stick or swab, with different shapes for the wound contacting surface, including a rectangular shape (FIG. 1A), a tubular shape (FIG. 1B), and a rounded or spear shape (FIG. 1C). A stick or handle 110 can comprise a hollow tube, a shaft, or a flat stick.



FIGS. 2A-2C illustrate various forms of another embodiment of a debridement device 200, comprising a layer of monofilaments 202 in contact with a layer of gel-forming fibres 204. In some embodiments, the debridement device 200 further comprises a support layer 206 that may be formed of foam, fabric, paper, polymer, plastic, or any other similar material or combination of material. The support layer 206 may be in contact with the fibres 202. In some embodiments, the debridement device 200 comprises fibre blends within or between layers. In FIG. 2A (magnified image), for example, the support layer 206 may comprise a fabric layer and a foam layer on top of a hydrofibre and monofilament layer. In some embodiments, the debridement device 200 is a square or rectangular shape (FIG. 2A), a circular or elliptical shape (FIG. 2B), or a triangular shape (FIG. 2C). In some embodiments, the debridement device 200 is a pad with a plurality of bristles 208 or a pile of monofilaments in contact with a layer of gel-forming fibres 208. In some embodiments, the pad has a backing 210, comprising a fabric or fiber blends. Further still, the backing 210 may have an anti-slip surface. The debridement device 200 may also have a diagnostic unit 212 that is in fluid communication with a wound contacting layer 214.



FIGS. 3A-3F illustrate types of handles 302, 304, 306, 308, 310 in contact with an outer support layer or a non-wound-contacting surface 312 of debridement pads 300. The debridement pads 300 may have a layer of gel-forming fibres with a pile of monofilaments or synthetic fibres on its surface as discussed herein. Different forms of handle include a soft fabric grip handle 302, soft fabric pocket or sleeve handle 308, fins 304 or tabs 310 that can be lifted when in use or folded flat when not in use, a Velcro® or hook-an-loop securing unit that allows one to removably attach a plastic handle or knob 306, or an anti-slip layer 316 comprising silicone.



FIG. 4 illustrates a debridement device 400 in fluid communication with a diagnostic unit 402 that detects a wound infection. In one example, the diagnostic unit 402 comprises a diagnostic disk comprising reagents printed or deposited on a solid phase, such as filter paper, and wicking fibres or threads 404, such as gelling fibres, that provide a fluid communication between the debridement device 400 and the diagnostic unit/disk 402. In some embodiments, the debridement device 400 with infection detection comprises either a separate sticker 406 that is placed onto the debridement device 400, or is directly printed onto the debridement device. In some embodiments, the sticker 406 or infection detection design can comprise different patterns. In yet another embodiment, the diagnostic unit 402 may be an electronic sensor 408 capable of detecting infection.



FIGS. 5A-5D illustrate wicking guide mechanisms 500 that provide a fluid communication between the debridement device and the diagnostic unit, including a hole 502 that allows fluid flow (FIG. 5A), wicking material 504 such as gelling fibres or similar wicking fibres that wick fluid from the debridement device to the diagnostic unit (FIG. 5B), a dimple or concave feature 506 comprising a non-woven material, fabric, or filter paper protruding outward to wick fluid (FIG. 5C), and a hydrophilic or gelling fiber disk 508 (FIG. 5D



FIGS. 6A-6B illustrate types of diagnostic units 600, 602 for detecting a microbial infection (FIG. 6A), including different shapes (including, but not limited to, square and rectangle and circle shapes), sizes and arrangement of the control and detection panels, as well as different arrangements of reagents 604 and reservoirs or reagent areas 606 (FIG. 6B). The arrangement of the different panels or separators 608 on the diagnostic unit allows for easy differentiation between the control and detection panels. The control(s) and reagents can be arranged in a radial manner with the signal reported in various forms to allow easy and fast detection of a microbial infection.). In some embodiments, one or more reagents of the diagnostic disk interacts with an enzyme marker for a microbial infection to produce a detectable signal in a reporter area 614 of the diagnostic unit 600, 602 which is visible through a window 610, such as a color change or an appearance of a signal or mark.



FIG. 7 illustrates a schematic flow chart 700 for one embodiment of this disclosure. More specifically, a debridement device of this disclosure may be provide in box 702. The debridement device may be utilized to debride a wound in box 704. In one aspect of this disclosure, the debridement device may provide a sample of wound tissue in box 706. In box 708, the wound tissue may be analyzed for infection utilizing the methods and devices of this disclosure. In box 710, a wound dressing may be applied to the wound based on the results of the infection analysis of box 708 wherein the wound dressing is specifically tailored to address the type of infection identified in box 708.



FIG. 8 illustrates one non-exclusive example of a kit 800 of this disclosure. The kit 800 may include a debridement device 802 having a diagnostic unit 804 of this disclosure. The kit 800 may also comprise a debridement solution 806 to assist in the debridement of a wound while using the debridement device 802. Further, the kit 800 may also include a treating agent 808 that assists with treating the wound after debridement. In one non-exclusive example, multiple treating agents 808 may be provided to allow specific treatment of the wound based on the type of infection identified by the diagnostic unit 804.





DETAILED DESCRIPTION

Provided herein are devices and methods for debridement, optionally in combination with diagnosis or testing of wound exudate or surface. In some embodiments, the devices provided herein comprise a wound contacting layer, the wound contacting layer comprising at least one layer, a plurality of layers, or a pile of fibres, filaments or bristles, the wound contact layer optionally in contact with or used in conjunction or in combination with the surface of a layer of hydrophilic fibres or gelling fibres. The layer of gelling fibres may comprise an absorbent material. In some embodiments, the gelling fibres are arranged as one or more layers. In some embodiments, the fibres, filaments or bristles protrude from a layer of gelling fibres or are perpendicular to the layer of gelling fibres. In some embodiments, the bristles comprise a pile of nylon monofilaments that can loosen or remove unwanted tissue on a wound without causing significant trauma to the wound site. The bristles may also comprise other synthetic fibres with textured surfaces to allow efficient debridement. In some embodiments, the devices and methods for debridement disclosed herein are capable of absorbing and sequestering wound exudate, metal ions, or bacteria. In some embodiments, the devices and methods for debridement disclosed herein are capable of selectively and atraumatically removing unwanted tissues from infected sites. In some embodiments, the devices and methods for debridement disclosed herein are capable of disrupting and sequestering microbial biofilm. In some embodiments, the devices and methods for debridement disclosed herein are in fluid communication with a diagnostic unit for in situ detection of a microbial infection. In some embodiments, a sample of wound tissue can be obtained from the devices for debridement disclosed herein, and analyzed for the presence of a microbial infection using, for example, any standard diagnostic assay, including PCR, enzyme-linked immunosorbent assay (ELISA), and other immunoassays.


Definitions


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, references to “the method” includes one or more methods, and/or steps of the type described herein which will become apparent to those persons skilled in the art upon reading this disclosure and so forth.


“About” as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of ±20% or ±10%, or ±5%, or even ±1% from the specified value, as such variations are appropriate for the disclosed values or to perform the disclosed methods.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this disclosure belongs.


As used herein, the term “filament” may refer to a “monofilament.” In some embodiments, the term “monofilament” refers to a single strand of thread or yarn. The thread or yarn can be a synthetic material. Monofilaments may form bristles. Non-limiting examples of synthetic materials that form monofilaments or bristles include nylon, polyester, polypropylene, polygalactic acid, acrylic, acetal, polyvinyl chloride (PVC), polycarbonate, silicone, chemically modified fibres, or any combination thereof. In some embodiments, monofilaments comprise textured surfaces, such as micro-hooks or barbs that help to debride a wound surface, i.e., loosen or remove unwanted tissue. In some cases, monofilaments may also be referred to as bristles or debridement fibres.


As used herein, the terms “hydrophilic fibres” or “hydrofibres” or “gel-forming fiber” refer to fibres that have high absorption capability and resist lateral spread or diffusion of a liquid upon absorption. In some embodiments, hydrophilic fibres form a gel upon contact with a fluid to sequester or lock in the fluid, thus resisting lateral spread of the fluid. One example of gel-forming fibres is AQUACEL®. In some embodiments, gelling fibres can sequester unwanted wound materials, such as loosened biofilm, wound debris, metal ions, and bacteria, thus preventing or mitigating further infection and helps to keep a wound clean and dry. For examples, gel-forming fibres have an absorbency of at least 10 g/g or 15 g/g to 50 g/g and resists lateral spread of a fluid upon absorption may be used.


In some embodiments, gelling fibres comprise carboxymethylcellulose with varying degree of substitution, e.g., at least 0.05, at least 0.2, or between 0.3 and 0.5 carboxymethyl groups per cellulose unit. In some embodiments, gelling fibres comprise a surfactant, metal chelator, or antimicrobial agent. In other embodiments, gel-forming fibres are selected from the group consisting of sodium carboxymethylcellulose, alginate or derivatized alginate, cellulose, carboxyethylcellulose, cellulose ethyl sulfonate, modified cellulose or derivatized cellulose, pectin, chitosan, modified chitosan or derivatized chitosan, hyaluronic acid or derivatives, polysaccharide, gum-derived polymer, polyacrylic acid or derivatives, and any combination thereof.


As used herein, “degree of substitution” refers to the average number of carboxymethylated hydroxyl groups per glucose or cellulose unit present in a cellulosic polymer such as carboxymethylcellulose. Degrees of substitution of carboxymethylcellulose can range from about 0.05 to about 0.5 carboxymethyl groups per cellulose unit, about 0.2 to about 0.5 carboxymethyl groups per cellulose unit, about 0.3 to about 0.5 carboxymethyl groups per cellulose unit. Degree of substitution can be about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, or about 1.0 carboxymethyl groups per cellulose unit.


As used herein, the term “swab tip” or “swabbing end” refers to the wound-contacting end of a debridement device that can comprise one or more support layers, fibres or a fiber blend, or monofilaments. The terms swab tip and swabbing end are used interchangeably.


As used herein, the term “sensor unit” or “diagnostic unit” refers to a separate unit or chamber that comprises reagents for the detection of an infection. The terms sensor unit, diagnostic unit, and sensor chamber are used interchangeably herein.


In some embodiments, the devices and methods for debridement disclosed herein may comprise other materials that absorb wound exudate, including fabric materials. Such fabric materials are broadly known, and may include foams, superabsorbent fibres, gelling foams, directional foams and the like.


According to certain embodiments, the herein described devices for wound debridement and disruption of microbial biofilm comprise a layer monofilaments or bristles that loosen or remove unwanted or necrotic tissue on a wound surface and a layer of high-absorbency gel-forming fibres, such as AQUACEL®, or similar hydrophilic fibres, that can sequester wound fluid, bacteria, metal ions, and other unwanted tissue. In some embodiments, the gelling fibres or hydrophilic fibres form an absorbent layer. The gelling fibres suitable for use in the absorbent layer of the present disclosure include hydrophilic fibres, which upon contact with a fluid or wound exudate, form a gel and sequester moisture and absorbed materials, such as disrupted biofilm, bacteria, or unwanted wound tissue, for examples.


Further described herein are fabric materials capable of disrupting biofilm and/or adsorbing disrupted biofilm. In some embodiments, the fabric materials comprise anti-biofilm activity. In some embodiments, the fabric materials sequester wound fluid, bacteria, metal ions, or other wound debris. In some embodiments, the fabric materials comprise anti-biofilm activity and sequester wound fluid, bacteria, metal ions, or other wound debris. In some embodiments, the fabric materials improve susceptibility of microorganisms to antimicrobial agents. In some instances, the fabric materials as described herein reduce microbial burden at a colonized or infected site. In some instances, the fabric materials reduce microbial burden at a colonized or infected site without antimicrobial agents. In some instances, the fabric materials reduce microbial burden at a colonized or infected site with a low amount of antimicrobial agents.


The fabric materials as described herein, in some embodiments, comprise various structures. Such structures include nonwoven fabrics, woven fabrics, composites, laminates, foams, knitted fabrics and combinations thereof. In some embodiments, the fabric materials comprise gelling fibres or hydrophilic fibres.


In some embodiments, the gelling fibres disrupt the biofilm by removing moisture from the biofilm. In some embodiments, the gelling fibres remove moisture by forming an absorbent layer. In some embodiments, the gelling fibres form a gel on contact with the moisture.


In some embodiments, the gelling fibres comprises gel-forming polymers or gelling fibres that have high absorbency and resist lateral spread upon absorption of a fluid. In some embodiments, the gelling fibres absorb and retain disrupted biofilm, microorganisms, and/or other wound debris. In some embodiments, the gelling fibres are configured to sequester metal ions. In some embodiments, the gelling fibres form a layer. Non-limiting examples of gel-forming polymers include cellulose, carboxymethylcellulose (CMC), carboxyethylcellulose, AQUACEL®, oxidized cellulose (or a derivative thereof), cellulose ethyl sulfonate, other chemically modified cellulose, pectin, alginate, chitosan, modified chitosan, hyaluronic acid, polysaccharide, gum-derived polymer, or any combination thereof. In some embodiments, the fibres comprise polyvinylpyrrolidone, polyvinyl alcohols, polyvinyl ethers, polyurethanes, polyacrlyates, polyacrylamides, collagen, gelatin or mixtures thereof. In some embodiments, the gelling fibres comprise a blend of carboxymethylcellulose and alginate. In some embodiments, the gelling fibres comprise a nonwoven layer of gel-forming fibres.


In other embodiments, the gel-forming fibres are selected from the group consisting of sodium carboxymethylcellulose, alginate, cellulose, carboxyethylcellulose, cellulose ethyl sulfonate, modified cellulose, pectin, chitosan, modified chitosan, hyaluronic acid, polysaccharide, gum-derived polymer, and any combination thereof.


In some embodiments, the cellulosic gelling fibres may have a degree of substitution of at least 0.05 carboxymethyl groups per cellulose unit. In some embodiments, the degree of substitution of the carboxymethylcellulose gel-forming fibres is at least 0.2 carboxymethyl groups per cellulose unit, more particularly between 0.3 and 0.5. In some embodiments, the gelling fibres comprise sodium carboxymethylcellulose with a comparatively lower degree of substitution.


The ability to absorb moisture, gel, and disrupt materials such as biofilm is related to the degree of substitution of the cellulosic gelling fiber, including carboxymethylcellulose, as well as to the type of gelling fiber. In some embodiments, the gelling fibres comprise a blend of carboxymethylcellulose with different degrees of substitution, thereby providing for different rates of disruption, absorption, and gelling. In some embodiments, the gelling fibres comprise a blend of different fiber types to provide for disruption and absorption at the same time. In some embodiments, the gel-forming action of the fibres helps to sequester or lock in unwanted wound materials, such as exudate, bacteria, or biofilm, which helps to keep a wound clean and dry, and mitigates or prevents the spread of an infection.


In some embodiments, the fabric material described herein comprises an agent comprising anti-biofilm activity. In some embodiments, the agent comprising anti-biofilm activity comprises no antimicrobial activity. In some embodiments, the agent comprising anti-biofilm activity comprises low levels of antimicrobial activity. Exemplary agents comprising antimicrobial activity include, but are not limited to, silver, antibiotics, antiseptics, antivirals, or antifungals.


In some embodiments, the fabric material comprises one or more agents comprising anti-biofilm activity. In some embodiments, the agent comprising anti-biofilm activity is isolated from natural sources or is a synthetic compound, a chelating agent, a lantibiotic, a small molecule, an ion, a peptide, an enzyme, or a nanoparticle. Exemplary agents comprising anti-biofilm activity include, but are not limited to, ethylenediaminetetraacetic acid (EDTA), tetrasodium EDTA, disodium EDTA, epigallocatechin gallate (EGCG), ellagic acid, esculetin, fisetin, reserpine, quercetin, linoleic acid, berberine, chitosan, eugenol, curcumin, synthetic halogenated furanone (F-56), Peptide 1018, CFT073 group-II capsular polysaccharide (Serotype K2), Pel polysaccharide, Psl polysaccharide, sophorolipid, colistin, nisin, subtilin, epidermin, gallidermin, sodium citrate, tannic acid, deoxyribonuclease I, glycoside hydrolase, bacteriophage-encoded endolysin (PlyC), silver, octenidine hydrochloride, chlorhexidine, cadexomer iodine, polyhexamethylene biguanide, usnic acid, benzethonium chloride (BC), aryl rhodanines, cis-2-decenoid acid (C2DA), and dispersin B.


The fabric material comprising anti-biofilm activity, in some embodiments, further comprises low levels of antimicrobial activity. In some embodiments, the fabric material comprising anti-biofilm activity further comprises no antimicrobial activity.


Described herein are fabric materials comprising agents capable of sequestering biofilm components. In some embodiments, the agents capable of sequestering biofilm components include, but are not limited to, ethylenediaminetetraacetic acid (EDTA), alkali metal salts, alkaline earth metal salts, ammonium salts thereof, and tetraalkylammonium salts.


Fabric materials as described herein may improve the susceptibility of microorganisms to antimicrobial agents. In some instances, the fabric materials improve the susceptibility of microorganisms to antimicrobial agents by disrupting of biofilm and/or sequestering biofilm structural components, metal ions, wound exudate, microorganisms, and/or other wound debris. In some instances, the fabric materials comprise an agent that provides anti-biofilm activity and low antimicrobial activity. Antimicrobial activity may be provided by an antimicrobial agent including, but are not limited to, silver, antibiotics, antiseptics, antivirals, or antifungals. In some instances, following disruption of the biofilm and/or sequestration, the fabric materials further provides antimicrobial effects.


Fabric materials as described herein comprising anti-biofilm activity and/or sequestration ability, in some embodiments, improve efficacy of biofilm disruption over, for example, standard debridement methods, including use of saline and gauze. In some instances, the improved efficacy of biofilm disruption is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 99%, or more than 99%. In some embodiments, fabric materials improve susceptibility of microorganisms to antibacterial agents. In some instances, the improved susceptibility of microorganisms to antibacterial agents is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 99%, or more than 99%.


In some instances, the fabric materials as described herein reduce microbial burden at a colonized or infected site by at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 95%, 99%, or more than 99%. In some instances, the fabric materials reduce microbial burden at a colonized or infected site in a range of about 10% to about 99%, about 20% to about 80%, about 30% to about 70%, or about 40% to about 60%.


Debridement Fibres


In some embodiments, the bristles, monofilaments, or debridement fibres are textured fibres or filaments that withstand the debriding action and help to loosen or remove unwanted tissue on a wound. In some embodiments, bristles or monofilaments comprise nylon, acetal, polypropylene, acrylic, polyvinyl chloride (PVC), polycarbonate, silicone, wool, or any combination thereof.


In some embodiments, the debridement fibres are woven or nonwoven. In some embodiments, the nonwoven fibres form a layer. In some embodiments, the fibres are woven into a perpendicular or bristle-type arrangement. In some embodiments, the perpendicular or bristle-like arrangement comprises monofilaments.


In some embodiments, the debridement fibres are on the surface of or are in contact with the layer of gelling fibres to provide a disruptive or loosening effect followed by an absorptive effect by the gelling fibres. Thus, contacting a wound or biofilm with the debridement fibres may result in physically breaking up wound debris or biofilm, allowing for absorption of the material. In some embodiments, the gelling action of certain fibres, such as AQUACEL®, further provides for sequestration of the absorbed materials. Such sequestration helps to clean a wound efficiently before applying a wound dressing, comprising gelling fibres.


In some embodiments, the debridement device includes anti-biofilm agents such as metal chelators or surfactants. In some embodiments, the debridement fibres loosen unwanted tissues and materials through the action of surfactants and anti-biofilm components. In some embodiments, the debridement device, which has high absorbency and sequesters wound particulates, provides an easy and fast means for diagnosis or detection of a microbial infection in a wound. In such embodiments, the debridement device is in fluid communication with a diagnostic unit, such as a diagnostic disk comprising one or more reagents printed on or deposited on a filter paper, for in situ diagnosis. Fluid communication in such embodiment comprises gelling fibres or hydrophilic threads, an opening, or filter paper that help to wick wound fluid or material from the layer of gelling fibres to the reagents in the diagnostic disk. In some embodiments, the diagnostic disk is embedded in or inserted into a debridement device to allow facile detection of a bacterial infection in situ. In some embodiments, such diagnostic disk is used in a standalone diagnostic device, wherein a sample of a wound can be extracted from the debridement device for further analysis using one or more conventional diagnostic assays, such as PCR, ELISA, or immunoassay.


Debridement Devices


In some embodiments, the debridement devices disclosed herein comprise debridement sticks or stick-swab devices. In some embodiments, the debridement devices disclosed herein comprise debridement swabs. In some embodiments, the debridement devices comprise debridement pads or pads with a backing, optionally with a handle. In some embodiments, the debridement devices disclosed herein comprise gel-forming fibres and a layer of bristles or monofilaments. In some embodiments, the gel-forming fibres comprise carboxymethylcellulose, such as AQUACEL®.


In some embodiments, the debridement devices comprise a pile of monofilaments or bristles that protrude from the gel-forming fibres or are perpendicular to and in contact with the layer of gel-forming fibres. In some embodiments, the monofilaments or bristles comprise nylon fibres. Other materials that can be used for monofilaments or bristles for debriding a wound include, but are not limited to, acetal, polypropylene, acrylic, polyvinyl chloride (PVC), polycarbonate, silicone, wool, or any combination thereof.


In some embodiments, the layer of gel-forming fibres is arranged in a layered structure that comprises support materials. Support materials can form a base layer that is in contact with the layer of gel-forming fibres. Support materials include foam, fabric, paper, plastic, wood, polymer, or any combination thereof, for example. The layered structure may further comprise an outer layer that covers the base layer or an outer transparent layer to allow visual detection of a diagnostic insert embedded or inserted in a debridement device for in situ detection of a microbial infection. For example, fabric as an outer layer may cover a foam layer, with the foam layer located between the gel-forming fiber layer and the outer fabric layer. In some embodiments, the outermost layer comprises an anti-slip material for holding the debridement device, such as silicone.


Debridement devices as described herein, in some embodiments, comprise one or more foams. In some embodiments, the one or more foams comprises open pore foams. In some embodiments, the one or more foams are the same type of foam. In some embodiments, the one or more foams are different types of foam. In some embodiments, the one or more foams comprise variable abrasiveness. For example, a first foam on a first side comprises a rough texture and a second foam of a second side comprises a smooth texture. In some embodiments, the first foam and the second foam are on a same side. In some embodiments, the first foam comprising a rough texture is used for debridement. In some embodiments, the second foam comprising a smooth texture is used for absorbance.


In some embodiments, the one or more foams are porous. In some embodiments, the one or more foams comprise different pore sizes. In some embodiments, a first foam on a first side comprises a first pore size. In some embodiments, a second foam on a second side comprises a second pore size. In some embodiments, the first foam on the first side and the second foam on the second side comprise the same pore size. In some embodiments, the first foam and the second foam are on the same side and comprise the same pore size. In some embodiments, a pore of the one or more foams comprises a diameter of at least or about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 500, 600, 700, 800, 900, 1000, or more than 1000 micrometers (um). In some embodiments, a pore of the one or more foams comprises a diameter in a range of about 10 um to about 1000 um, about 20 um to about 800 um, about 30 to about 700 um, about 40 to about 600 um, about 50 to about 500 um, about 60 um to about 400 um, about 70 um to about 300 um, about 80 um to about 200 um, or about 90 um to about 150 um.


In some embodiments, the one or more foams comprise various materials. In some embodiments, the one or more foams comprises polyurethane, polyethylene, a silicone resin, a natural and synthetic rubber, polyglycolic acid, polylactic acid, or a copolymer thereof a synthetic polymer, such as polyvinyl alcohol and polyvinylpyrolidone; a natural polymer, such as collagen, gelatin, karaya gum, guar gum, hyaluronic acid, sodium alginate, chitin, chitosan, fibrin, and cellulose, or a synthetic polymer derived therefrom; and a mixture thereof. In some embodiments, the one or more foams polyurethane.


In some embodiments, a first foam on a first side comprises a first material. In some embodiments, a second foam on a second side comprises a second material. In some embodiments, a the first foam and the second foam are on a same side. In some embodiments, the first material and the second material are the same. In some embodiments, the first material and the second material are different. In some embodiments, the first material comprises polyurethane, polyethylene, a silicone resin, a natural and synthetic rubber, polyglycolic acid, polylactic acid, or a copolymer thereof; a synthetic polymer, such as polyvinyl alcohol and polyvinylpyrolidone; a natural polymer, such as collagen, gelatin, karaya gum, guar gum, hyaluronic acid, sodium alginate, chitin, chitosan, fibrin, and cellulose, or a synthetic polymer derived therefrom; and a mixture thereof. In some embodiments, the second material comprises polyurethane, polyethylene, a silicone resin, a natural and synthetic rubber, polyglycolic acid, polylactic acid, or a copolymer thereof; a synthetic polymer, such as polyvinyl alcohol and polyvinylpyrolidone; a natural polymer, such as collagen, gelatin, karaya gum, guar gum, hyaluronic acid, sodium alginate, chitin, chitosan, fibrin, and cellulose, or a synthetic polymer derived therefrom; and a mixture thereof.


In some embodiments, the debridement devices comprise one or more foams, wherein the one or more foams are of various shapes. In some embodiments, the one or more foams are a butterfly shape. In some embodiments, the one or more foams are a rectangular shape. In some embodiments, the one or more foams are a circular shape. In some embodiments, the one or more foams are a cylindrical shape.


In some embodiments, the debridement device comprises one or more foams of varying sizes. In some embodiments, a length of the one or more foams is at least or about 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, or more than 10 centimeters (cm). In some embodiments a width of the one or more foams is at least or about 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, or more than 10 centimeters (cm). In some embodiments, a height of the one or more foams is at least or about 1.0, 1.5, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, or more than 10 centimeters (cm). In some embodiments, a length, width, or height is in a range of about 1 centimeter to about 15 centimeters, about 2 centimeters to about 12 centimeters, about 3 centimeters to about 10 centimeters, or about 4 to about 8 centimeters.


In some embodiments, the debridement devices disclosed herein further comprise a mechanism that allows for detection of infection of a wound. An exemplary mechanism that allows for detection of infection of a wound comprises a diagnostic unit. The diagnostic unit may be attached to the debridement device. Attachment may be in the form of an adhesive or any other suitable means that allows the diagnostic unit to be in fluid communication with the layer of gel-forming fibres in the debridement device. As an example, one or more diagnostic disks, comprising reagents deposited or printed on filter paper or similar support phase, may be attached to a debridement device, such as the handle of a stick-swab debridement device, with fluid communication between the diagnostic disk and the layer of gel-forming fibres formed by a wicking mechanism, such as wicking threads, filter paper, or a conduit for fluid flow. Additional mechanisms that allow for detection of infection with the combined use of a debridement device include embedding reagents or a diagnostic disk containing such reagents in a layer of gel-forming fibres with a transparent cover that allows visualization of the diagnostic disk, for example.


A diagnostic disk can comprise a reaction layer comprising one or more reagents that interact with a target enzyme indicative of a microbial infection, wherein the reagents are affixed to a solid phase; each reagent is sprayed, printed, or deposited in a reagent area separated by impermeable separators; each reagent area comprises a reporter area wherein a color, color change, or other detectable signal is observed; and a transparent cover comprising a window for visualizing the signal in the reporter area.


In still further embodiments, a wound sample can be extracted from the debridement device, which can be analyzed separately by any suitable diagnostic assay.


In some embodiments, the wound contacting layer further comprises a wicking guide mechanism, including, for example, one or more wicking stitching or wicking tufting or wicking threads, comprising gelling fibres or hydrophilic threads. The wicking guide mechanism provides fluid communication between reagents, such as reagents in a reagent layer of a diagnostic disk, for example, and the debridement device, such as the layer of gel-forming fibres. The wicking action allows fluid and unwanted materials, such as disrupted biofilm, bacteria, and wound debris, to be directed from the debridement device to a diagnostic disk or a reaction area where reagents are deposited for analyzing a wound sample for the presence of a microbial infection. Thus, the wicking guide mechanism provides a means for fluid communication between the debridement device and a diagnostic unit, either attached to the debridement device externally or embedded in a debridement device or a debridement pad in the form of a diagnostic disk. Wicking fibres that are wettable and exhibit capillary action may be used for wicking stitching or wicking tufting or as fiber threads to form fluid communication between the wound material sequestered by the debridement device and the diagnostic reagents. In some embodiments, the wicking fibres are solid or hollow. Examples of wicking fibres include, but are not limited to, cotton, rayon, viscose, wool, silk, polyester, polyamide, CMC, and polypropylene.


Reagents And Assays


Any assay for the detection of an analyte associated with an infection can be used. Analytes associated with infection include structural components of an infectious organism such as a bacterium, fungus, protist, or a virus, for example. Analytes associated with infection also include biomarkers that are upregulated in response to infection. Such biomarkers may be associated with a host immune response to the infection. Exemplary biomarkers include lysozyme, MPO, cathepsin G, elastase, catalase, lipase, or esterase.


Assays for the detection of infection include immunoassays, such as enzyme-linked immunosorbent assay (ELISA), Western Blotting, or any other immunoassay that allows for the detection of an analyte associated with an infection. Additional assays for the detection of infection include polymerase chain reaction (PCR). These assays may be used to directly test for the presence of an infectious organism, such as a bacterium, fungus, protist, or a virus. For example, PCR may be used to test for the presence of DNA and RNA such as transcripts or structural RNA molecules of an infectious organism. These assays may also be used to determine upregulation of a biomarker in response to infection. Examples of biomarkers upregulated in response to infection include proteins, cytokines, and chemokines associated with a host immune response to infection.


Assays further include reactions or processes that produce a visible color change or other detectable signal under conditions associated with the presence of infection. Suitable reagents include enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents, for example. Moieties of enzyme-reactive indicators that are capable of producing a color change or detectable signal include, for example, a peroxidase substrate, arylamine, an amino phenol, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, or an analog thereof. Examples of pH-sensitive reagents capable of producing a color change or detectable signal include bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple, nitrazine yellow, or other sulfonephthalein dyes.


Kits And Instructions


Provided herein are containers and kits that can be used in combination with the herein described devices for debridement and microbial/infection detection. The present disclosure further provides instructions that can direct a user (e.g., a human user) to use the devices and methods disclosed herein, as well as the containers and kits that comprise such debridement and microbial/infection detection devices and methods disclosed herein.


Containers for use with the methods and devices disclosed herein can be used to store, transport, and/or aliquot the devices and solutions useful for debridement and/or diagnosing and detecting a microbial infection. In some embodiments, the containers provided herein may also include cleansing agents, therapeutic agent(s), such as antimicrobial and/or anti-biofilm compositions, and combinations thereof, for treatment of detected infections. Such containers can, for example, provide conditions suitable for transport and/or storage (e.g., ambient or cooled storage for solution or therapeutic agent transport). In yet other embodiments, the containers provided herein may contain compartments to divide or segregate parts or solutions of the methods and devices disclosed herein.


Kits of the present disclosure provide various components for using the debridement and microbial/infection detection methods and devices described herein. Such components can include containers, storage equipment, debridement devices, swab or other collection devices, analyzer, control samples, and/or solutions or compositions for cleaning or detecting a microbial infection. Generally, kits allow for user-friendly, accurate and reliable use of the debridement and infection detection devices and methods described herein, including, but not limited to testing, administration, storage, transport, and other components needed to perform the methods and devices for debridement and microbial/infection detection disclosed herein.


In some embodiments, the kits disclosed herein include solutions or formulations that assist in debridement of a wound by lubricating the debridement device prior to wound treatment. The solutions or formulations are physiologically-compatible and may be applied to the debridement device on an as-needed basis. In some instances, the solution or formulations may be physiological saline or other solution compatible with skin and wound surfaces.


The kits disclosed herein may also include solutions or formulations that enhance debridement of a wound. In some embodiments, the solutions or formulations may contain agents that enhance or assist in debridement of a wound. In other embodiments, the debridement devices may include agents that enhance or assist in debridement of a wound. In both instances, a liquid formulation, such as sterile water or saline, is added to assist and/or activate the agents that enhance debridement of a wound.


In some embodiments, the solutions or formulations assist in breaking down biofilm and/or preventing its re-formation in or around the wound. In some embodiments, the solutions or formulations disclosed herein include a metal chelating agent, including but not limited to ethylenediaminetetraacetic acid (EDTA), present as the di-, tri- or tetra-basic salt of EDTA. In some embodiments, the EDTA is present at concentration of at least 0.01%, at least 0.025%, at least 0.05%, at least 0.1%, at least 0.25%, at least 0.5%, at least 1%, at least 2%, at least 4% or at least 5% by weight. In other embodiments, the EDTA is present at levels of between 0.01-4%, between 0.1-4%, between 0.1-3%, between 0.2-3%, between 0.2-2%, between 0.2-1%, or between 0.2-0.8% by weight.


In some embodiments, the solutions or formulation comprise a surface acting agent, including but not limited to cationic surfactants, anionic surfactants, zwitterionic surfactants and non-ionic surfactants compatible with and safe for use with a wound and skin surface. Examples include, but are not limited to, cationic surfactants, including quaternary ammonium salts, alkyl pyridinium salt, alkyl imidazolium salt, alkyl morpholinium salt, a benzethonium salt or an ethoxylated quaternary ammonium salt or mixtures thereof. In some instances, the quaternary ammonium salt may include monoalkyl trimethyl ammonium salt, dialkyl dimethyl ammonium salts, and monoalkyl monobenzyl dimethyl ammonium salts. In some instances the cationic surfactant may include a quaternary cationic surfactant, including a quaternary ammonium surfactant. In some instances the cationic surfactant is chosen from the group consisting of benzethonium, benzalkonium, dimethyldialkylonium, alkylpyridinium and alkyltrimethylammonium cations with any counter ion, for example, bromide, chloride, acetate or methyl sulfate. In some embodiments, the surfactant is present at levels of at least 0.01%, at least 0.025%, at least 0.5%, at least 1%, at least 2% or at least 4% by weight. In some embodiments, the surfactant is present at levels of less than 2%, less than 1%, less than 0.5%, less than 0.25%, less than 0.1%, less than 0.05% and less than 0.025% by weight. In other embodiments, the surfactant is present at levels of between 0.01-2%, between 0.05-2%, between 0.05-1%, between 0.075-1%, between 0.01-1%, or between 0.2-1% by weight.


In some embodiments, the solutions or formulations comprise an antimicrobial and/or anti-biofilm agent. In some embodiments, the antimicrobial and/or anti-biofilm agent is an oxidizing agent, such as peroxides, including hydrogen peroxide, and halogens, such as chlorine, fluorine or iodine, and combinations thereof, that are compatible with and safe for use with a wound and skin surface. In some instances, the antimicrobial and/or anti-biofilm agent is iodine (for example, povidone iodine, cadexomer iodine), polyhexanide (PHMB), chlorhexidine, hypochlorous acid, sodium hypochlorite, chlorine dioxide, acetic acid, and the like and combinations thereof. In some embodiments, the antimicrobial and/or anti-biofilm agent is present at levels of about at least 0.01%, at least 0.05%, at least 0.1%, at least 0.25%, at least 0.5%, at least 1%, at least 2% or at least 5% by weight. In other embodiments, the antimicrobial and/or anti-biofilm agent is present at levels of about between 0.01-5%, between 0.05-4%, between 0.05-3%, between 0.05-2%, between 0.075-1%, between 0.01-1%, or between 0.5-2% by weight.


In yet other embodiments, the antimicrobial and/or anti-biofilm agent is a metal ion, for example, silver, iron, nickel, copper, chromium, manganese, gold, gallium, magnesium, zinc, bismuth, tin and palladium, and combinations thereof, which are compatible with and safe for use with a wound and skin surface. In some embodiments, the metal ion(s) is present at levels of about at least 0.00001%, at least 0.005%, at least 0.01%, at least 0.025%, at least 0.1%, at least 0.5%, at least 1%, at least 2% or at least 5% by weight. In other embodiments, the antimicrobial and/or anti-biofilm agent is present at levels of about between 0.00001-5%, between 0.0001-4%, between 0.001-4%, between 0.05-4%, between 0.1-4%, between 0.5-2%, or between 0.1-1% by weight.


In some embodiments, the kits may include an after-care agent, including agents that assist in periwound skin recovery, including barrier creams and/or ointments, emollients, moisturizers, anti-inflammatory agents, steroids, skin sealants or agents, and combinations thereof, and/or dressings and/or adhesive tape that maintain a moisture balance of the periwound periphery and avoid maceration and further damage to this area.


In some embodiments, buffering agents are included to maintain the pH of the composition about between 4 and 8, between 4 and 6 or between 4.5 and 5.5. The desired pH may be achieved by incorporating buffering agents in the composition. Examples of buffering agents which may be included are citric acid/di-sodium hydrogen phosphate, citric acid/sodium citrate, acetic acid/sodium acetate. The buffering agent may conveniently be present in an amount of about 0.5% to 2% by weight of the composition so as to provide an isotonic composition.


In some embodiments, the kit may contain two or more parts or containers for performing the methods disclosed herein. In some embodiments, the kit may be a two-part system to be used sequentially, for example, a first part comprising a cleansing/loosening step comprising cleansing/loosening solutions, followed by a treatment step comprising, for example, an antimicrobial or anti-biofilm composition. In other embodiments, the first part or second part may also comprise a physical debridement step. In still other instances, the first and second parts of the kits disclosed herein could also comprise debridement tools to assist in physical debridement using the methods and compositions disclosed herein. In yet other instances, the debridement tools may comprise two types of cleansing pads that differ in roughness of the pads: a rougher side of the pad towards cleansing of the wound area, and a smoother pad to allow effective application of the antimicrobial and/or anti-biofilm agent to the cleansed wound tissue.


The present disclosure provides instructions for using kits and/or containers in combination with the methods and devices described herein. The instructions may be on “printed matter,” e.g., on paper or cardboard within or affixed to the kit, or on a label affixed to the kit or packaging material, or attached to a vial or tube containing a component of the kit. Instructions may additionally be included on a computer readable medium. Such instructions can direct a user to use the debridement and/or infection detection devices as well as the containers and kits that comprise such methods and devices.


The following Examples are presented by way of illustration and not limitation.


EXAMPLE 1
Stick-Type Debridement Devices

This example describes devices for debridement in the form of a stick with a debridement device at one end of the stick.


Debridement devices 100 that take the form of a stick 110 with a debridement tip 112 are shown in FIGS. 1A-C.


Stick type of debridement devices 100 can take a variety of forms. For example, the debridement device on one end can be rectangular (FIG. 1A), cylindrical, oval, tubular (FIG. 1B), or round (FIG. 1C). A stick-type of debridement device 100 with a round end can take the form of a spear, as shown in FIG. 1C. The debridement device at one end of the stick 110 can be attached to a handle that is a hollow tube, a shaft, a flat bar, or a stick.


The debridement device on one end of the stick 110 comprises a layered structure that comprises a base layer for support (i.e. support layer 108), an absorbent layer of gel-forming fibres 106 in contact with a layer or a pile of monofilaments in the form of a plurality of bristles 104. The absorbent or gel-forming fibres 106 can be hydrophilic fibres, CMC, or AQUACEL®. The layered structure for a rectangular debridement end is shown in FIG. 1A comprises a base or support layer 108 surrounded by gelling fibres from which a pile of monofilaments protrude. Exemplary cross-sectional views of the layered structure of rectangular and cylindrical, oval, or tubular debridement devices in stick format are shown in FIG. 1A and FIG. 1B, respectively.


EXAMPLE 2
Debridement Pads

This example describes debridement devices in the form of debridement pads 200.


Debridement pads 200 are shown in FIGS. 2A-2C. In some embodiments, the debridement pad 200 may be square or rectangular (FIG. 2A), circular or elliptical (FIG. 2B), or triangular (FIG. 2C) in shape. The shape of the debridement pad/device 200 is not important and can be adapted for various types of wounds of different sizes. The important features of a debridement device 200 comprise bristles or brush-like features 208 and gel-forming absorbent material, such as gel-forming fibres 204. The bristles or brush-like features 208 provide debriding function that helps to loosen or remove wound biofilm, unwanted material, or wound debris. Once such wound materials are loosened or removed by the bristles or brush-like features 208, gel-forming absorbent material 204 in contact with the bristles or brush 208 can absorb or sequester such wound materials to clean, treat, or prepare a wound for wound dressing or further treatment. As shown in the inset of FIG. 2A, the pad 200 may form a layered structure comprising a support fabric or backing 210, a support layer 206 that may be foam for further support, and an absorbent fiber layer comprising gel-forming fiber 204 with a layer or a pile of monofilaments or synthetic fibres on a wound contacting layer 214. Alternatively, the layered structure may comprise a blend of different fibres. The outer layer can comprise monofilaments that form the wound contacting layer 214.


EXAMPLE 3
Debridement Pad Handles and Support Layers

This example describes debridement pad handles and support layers.


Various embodiments of debridement pad handles 302, 304, 306, 308, 310 and support layer structures along the non-wound contacting surface 312 are shown in FIGS. 3A-3F.


A handle may be directly attached to the support layer of the debridement pad (i.e. the surface of the debridement pad that is not in contact with the wound or the back of the debridement pad or the non-wound-contacting surface 312) as shown in FIGS. 3A-3D, or the handle 306 may be detachable as shown in FIG. 3E.


As shown in FIG. 3A, the support layer of the debridement pad 300 can comprise a soft fabric grip 302 attached to the pad for holding the device 300. The debridement pad can also comprise a soft fabric pocket 308 for sliding fingers inside, thus allowing the user to hold the pad (FIG. 3B). Further types of handles attached to the support layer comprise fins 304 that are flat when not in use (FIG. 3C). The fins 304 can comprise a soft or thin back support. The debridement pad may also possess a handle or flap 310 in the form of a smaller central support grip that can be folded up for use (FIG. 3D).


Detachable or external handles 306 may be attached to the outer surface of the support layer by a fastening member 314 (FIG. 3E). The fastening member 314 may be Velcro® or similar hook-and-loop securing member present on both the outer surface of the debridement pad 300 and on the attachment edge of the handle 306, thus allowing the external handle 306 to be removably attached to the pad 300. The detachable or external handle 306 may be a plastic handle.


Alternatively, the outer surface of the support layer 312 of the debridement pad 300 may comprise a thin, flexible layer of silicone, for example, that provides a textured anti-slip surface 316 (FIG. 3F).


EXAMPLE 4
Debridement Device Combined with Infection Detection

This example describes the combination of a debridement device with the ability to detect infection in a wound.


As shown in FIG. 4, one or more diagnostic units or diagnostic disks 402 capable of detecting infection may be combined with a debridement device 400, for example. One or more diagnostic disks 402 may be attached to the handle of the debridement device 400. Such diagnostic disks 402 can be manufactured in sheets 406, comprising reagents printed or deposited on a solid phase, such as filter paper, wherein individual diagnostic disks 402 can be applied, attached to, or embedded in a debridement device 400 using an adhesive or a sticker. Thus, one or more diagnostic disks 402 may be attached to the handle or another part of a debridement device 400 to allow detection of a microbial infection in situ.


The debridement device can be used with or without an infection detection device, as needed. In some embodiments, one or more diagnostic disks 402 are embedded in a debridement device 400, wherein an outermost layer of the debridement device 400 comprises a transparent cover or film to allow visualization of a signal from the diagnostic disks 402. This allows detection of an infection during debridement of a wound or in situ within a single device. In other embodiments, the debridement device 400 may be in fluid communication with an electronic sensor 408 external to the debridement device 400 or partially in contact with the debridement device 400 through, for example, a sensor wire or a probe.


In various embodiments, a diagnostic unit 402 comprises a wicking guide mechanism 404 that allows fluid communication between the wound contacting layer and the reagents of the diagnostic unit or disk 402. The wicking guide mechanism 404 allows wound exudate or materials to be drawn into the diagnostic unit 402, thereby allowing detection of infection. The wicking guide mechanism 404 may comprise threads of fiber. As shown in FIG. 4, the fibres may be gelling fiber. Additional materials that can be used for wicking include non-woven material, fabric, filter paper, or any combination of materials.


EXAMPLE 5
Wicking Guide Mechanism

This example describes wicking guide mechanisms 500 for use with a diagnostic unit 402 for infection detection.



FIGS. 5A-5D illustrate various wicking guide mechanisms 500 that can be used with a sensor or diagnostic unit 402 for detection of infection in combination with a debridement device. Any suitable wicking material 504 can be used. Suitable wicking materials 504 include gelling fiber hydrophilic fibres, non-woven material, fabric, filter paper, or any combination of materials.


As shown in FIG. 5A, the diagnostic or sensor unit can comprise a hole 502 in the bottom of the diagnostic unit, with the interior of the diagnostic unit comprising a wicking material 504 such as gelling fiber, a non-woven material, fabric, filter paper, or any combination of materials. The hole 502 in the bottom allows fluid to flow from the wound contacting layer into the diagnostic unit or disk and to come in contact with the reagents 512 in a reaction layer 514, with the fluid being drawn up by the wicking material 504.



FIG. 5B illustrates the use of threads or fibres as a wicking material 504. The threads or fibres protrude from a hole 502 in the bottom of the sensor unit and allow fluid to flow from the wound contacting layer into the diagnostic or senor unit, with the fluid being drawn up by the wicking material 504. The wicking material 504 may be gelling fiber or any other suitable wicking material 504.



FIG. 5C shows a diagnostic or sensor unit with a dimple feature 506 that allows for wicking to take place. The diagnostic unit may be concave at the top surface, with the dimple feature 506 comprising a suitable wicking material 504 projecting out from the diagnostic unit.



FIG. 5D illustrates use of a hydrophilic or gelling fiber disk 510 as a wicking guide. The hydrophilic or gelling fiber disk 510 is attached to the bottom of the diagnostic unit and allows fluid to be drawn through a hole 502 in the bottom of the sensor unit at the site of attachment or contact with the debridement device. The disk 510 may comprise gelling fibres or any other suitable wicking materia1504, including a non-woven material, fabric, filter paper, or any combination of materials.


EXAMPLE 6
Detection of Infection

This example illustrates various arrangements of indicators, reagents, and diagnostic units 600, 602.


A diagnostic unit or disk 600, 602 may be a lateral flow or dipstick device. As shown in FIG. 6A, a diagnostic unit comprising reagents 604 for detection of infection of a wound can be in the form of a square, rectangular 600, or round 602. The diagnostic disk 600, 602 may have clear areas or windows 610 for reading a detectable signal that can be of various shapes as shown in FIG. 6A. A detectable signal may include a color change, the appearance of a line or mark, or a digital display, for example. The diagnostic disk 600, 602 may further comprise a control window, indicating that a test has taken place or for comparing with the detectable signal.


A diagnostic unit 600, 602 may comprise one or more diagnostic disks comprising reagents 604 or indicators for detection of infection. The diagnostic disk may comprise multiple lanes or sections arranged in a linear or radial configuration (FIG. 6B). Each lane or section comprises reagents or indicators for detection of infection that produce a detectable signal upon change of pH or as a result of an enzymatic reaction, for example. Each reagent 604 or indicator may be printed, sprayed, or deposited onto a solid phase, such as filter paper, with reagent lanes or sections separated by impermeable separators 608. The impermeable separators 608 also demarcate reservoirs 612 comprising wound exudate to be analyzed after wound exudate is drawn into the disk by fluid communication with a wound contacting layer.


Reagents 604 can include reagents or indicators that interact with enzymes or analytes that are associated with the presence of infection. Reagents or indicators may detect the presence of host enzymes or biomarkers that are upregulated in response to infection. Examples of enzymes associated with the presence of infection include, but are not limited to, lysozyme, MPO, cathepsin G, elastase, catalase, lipase, or esterase. Alternatively, reagents or indicators may detect the presence of analytes or enzymes associated with an infectious organism.


Reagents or indicators may also comprise pH-sensitive moieties or pH indicators that signal a change of pH over a variety of pH ranges. In some embodiments, the pH-sensitive moiety presents a visible color change at alkaline pH. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-9.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-9.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-8.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-8.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.5-8.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.5-9.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=8.0-9.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, or 9.5, or increments thereof.


In some embodiments, the pH-sensitive moiety presents a visible color change at neutral pH. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=6.9, 7.0, or 7.1, or increments thereof.


In some embodiments, the pH-sensitive moiety presents a visible color change at acidic pH. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=4.5-6.8. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=4.5-6.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=5.0-6.8. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=5.4-6.8. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=5.4-6.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, or 6.9, or increments thereof.


In some embodiments, the pH-sensitive moiety is bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple, nitrazine yellow, or other sulfonephthalein dyes.


In some embodiments, the diagnostic disk 600, 602 comprises a solid phase material selected from the group consisting of paper, viscose, regenerated cellulose, glass fiber, and similar material.


EXAMPLE 7
Anti-Biofilm Fabric Material

This example describes fabric material for breaking down biofilm and absorbing disrupted biofilm, associated microorganisms, and other wound debris.


The fabric material may comprise gel-forming fibres and an anti-biofilm agent. The gel-forming fibres may comprise carboxymethylcellulose. In some instances, the gel-forming fibres comprise cellulose, carboxymethylcellulose (CMC), carboxyethylcellulose, AQUACEL®, oxidized cellulose (or a derivative thereof), cellulose ethyl sulfonate, other chemically modified cellulose, pectin, alginate, chitosan, modified chitosan, hyaluronic acid, polysaccharide, or gum-derived polymer, or any combination thereof.


The fabric material may further comprise an anti-biofilm agent. The anti-biofilm agent may be ethylenediaminetetraacetic acid (EDTA), tetrasodium EDTA, disodium EDTA, epigallocatechin gallate (EGCG), ellagic acid, esculetin, fisetin, reserpine, quercetin, linoleic acid, berberine, chitosan, eugenol, curcumin, synthetic halogenated furanone (F-56), Peptide 1018, CFT073 group-II capsular polysaccharide (Serotype K2), Pel polysaccharide, Psl polysaccharide, sophorolipid, colistin, nisin, subtilin, epidermin, gallidermin, sodium citrate, tannic acid, deoxyribonuclease I, glycoside hydrolase, bacteriophage-encoded endolysin (PlyC), silver, octenidine hydrochloride, chlorhexidine, cadexomer iodine, polyhexamethylene biguanide, usnic acid, benzethonium chloride (BC), aryl rhodanines, cis-2-decenoid acid (C2DA), or dispersin B.


The fabric material comprising gel-forming fibres and an anti-biofilm agent may be used on a wound. Application of the fabric material on the wound can result in disruption of the biofilm and/or adsorption of the disrupted biofilm. The fabric material may also sequester wound fluid, bacteria, metal ions, and/or other wound debris. The fabric material may improve susceptibility of microorganisms to antimicrobial agents and/or reduce microbial burden.


EXAMPLE 8
Foam Debridement Device

This example describes devices for debridement comprising one or more foams.


One or more foams may be attached to the handle of the debridement device. The one or more foams may be the debridement device. The one or more foams may comprise open pore foams. The one or more foams may comprise a first side comprising a rough texture and a second side comprising a smooth texture. The one or more foams may comprise a rough texture and a smooth texture on the same side. The one or more foams may comprise various materials such as polyurethane, polyethylene, a silicone resin, a natural and synthetic rubber, polyglycolic acid, polylactic acid, or a copolymer thereof; a synthetic polymer, such as polyvinyl alcohol and polyvinylpyrolidone; a natural polymer, such as collagen, gelatin, karaya gum, guar gum, hyaluronic acid, sodium alginate, chitin, chitosan, fibrin, and cellulose, or a synthetic polymer derived therefrom; and a mixture thereof. The one or more foams may comprise polyurethane. The one or more foams may comprise a height in a range of about 1 centimeter to about 5 centimeters. The one or more foams may comprise a width in a range of about 1 centimeter to about 10 centimeters. The one or more foams may comprise a length in a range of about 1 centimeter to about 15 centimeter.


In use, the foam comprising a first side comprising a rough texture may be used to gently scrub the wound area. The foam may be in a butterfly shape such that the first side is hidden. Following scrubbing of the wound area, the foam comprising a second side comprising a smooth texture may be used to absorb the wound debris and wound liquid.


The debridement devices comprising one or more foams may be combined with the ability to detect infection in a wound. One or more diagnostic units or diagnostic disks capable of detecting infection may be combined with the debridement devices comprising one or more foams.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A debridement device having a wound contacting layer for debridement of a wound, the debridement device comprising: a stick comprising an end portion defining a base layer, wherein the base layer is flat;a layer of gel-forming fibres surrounding the base layer; anda layer of bristles in direct contact with the gel-forming fibres, wherein the layer of bristles surrounds the layer of gel-forming fibres;wherein the layer of bristles is configured to directly contact the wound and is directly adjacent the layer of gel-forming fibres; andwherein the layer of gel-forming fibres is partially positioned on opposite sides of the flat base layer.
  • 2. The device of claim 1, wherein the layer of bristles comprises a pile of monofilaments or fibres.
  • 3. The device of claim 2, wherein the layer of bristles comprises nylon, acetal, polypropylene, acrylic, polyvinyl chloride (PVC), polycarbonate, silicone, wool, or any combination thereof.
  • 4. The device of claim 1, wherein the layer of bristles comprises filaments arranged perpendicular to the wound contacting layer.
  • 5. The device of claim 1, wherein the layer of gel-forming fibres are woven or knitted.
  • 6. The device of claim 1, wherein the layer of gel-forming fibres have an absorbency between 10 g/g and 50 g/g, and resists lateral spread of a fluid upon absorption.
  • 7. The device of claim 1, further comprising anti-biofilm agents, metal chelators, surfactants, or any combination thereof.
  • 8. The device of claim 1, further comprising one or more support layers in contact with the layer of gel-forming fibres, wherein the support layer comprises foam, fabric, blended fabric, paper, polymer, plastic, or any combination thereof.
  • 9. The device of claim 1, further comprising a diagnostic unit in fluid communication with the layer of gel-forming fibres, wherein the diagnostic unit comprises at least one of an enzyme-based assay or an electronic sensor.
  • 10. The device of claim 9, wherein the diagnostic unit comprises one or more diagnostic disks, comprising: a) a reaction layer comprising one or more reagents configured to interact with a target enzyme indicative of a microbial infection, wherein the reagents are affixed to a solid phase;b) each reagent is sprayed, printed, or deposited in a reagent area separated by impermeable separators;c) each reagent area comprises a reporter area wherein a color, color change, or other detectable signal is observed; andd) a transparent cover comprising a window for visualizing the signal in the reporter area.
  • 11. The device of claim 9, wherein the fluid communication comprises one or more of a wicking material that comprises hydrophilic fibres, gelling fibres, or filter paper.
  • 12. The device of claim 1, wherein the layer of gel-forming fibres is configured to absorb material dislodged by the bristles during debridement of the wound.
  • 13. The device of claim 12, wherein the material is operable to pass through the bristles directly from the wound to the layer of gel-forming fibres.
  • 14. The device of claim 1, wherein the layer of gel-forming fibres circumferentially surrounds the base layer.
  • 15. A method of detecting a wound infection, comprising: providing the debridement device of claim 1;debriding a wound using the debridement device;extracting a sample of wound tissue from the debridement device; andanalyzing the sample for presence of a microbial infection using a diagnostic assay.
  • 16. The method of claim 15, wherein the extracting and analyzing step comprises utilizing one or more diagnostic disk that utilizes a wicking material to be in fluid communication with the debridement device, the diagnostic disks comprising a reaction layer with one or more reagents that are configured to interact with a target enzyme indicative of a microbial infection, wherein each reagent is aligned with a reporter area wherein a color, color change, or other detectable signal is observable as part of the analyzing step.
  • 17. The method of claim 15, further comprising applying a wound dressing with an antimicrobial agent according to the diagnostic assay.
  • 18. A kit for debridement of a wound, comprising: the debridement device of claim 1;a solution for assisting in debridement of the wound comprising one or more of antimicrobial agents, anti-biofilm agents, metal chelators, or surfactants; anda treating agent comprising at least one of an antimicrobial or an anti-biofilm composition.
  • 19. The kit of claim 18, further comprising: a diagnostic unit in fluid communication with the debridement device, wherein the diagnostic unit comprises at least one of an enzyme-based assay, an electronic sensor, or one or more reagents for indicating infection of the wound.
  • 20. The kit of claim 18, further wherein the wound contacting layer comprises one or more foams.
  • 21. A debridement device, comprising: a stick comprising an end portion having an outer perimeter; anda wound-contacting layer for debridement of a wound, the wound-contacting layer consisting essentially of: a plurality of bristles operable to directly contact the wound; anda layer of gel-forming fibres in direct contact with the plurality of bristles;wherein the layer of gel-forming fibres completely circumferentially surrounds the outer perimeter of the end portion.
  • 22. A debridement device comprising the wound-contacting layer of claim 21, the debridement device further comprising a support layer positioned behind the layer of gel-forming fibres.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 62/856,676 filed on Jun. 3, 2019, the contents of which are incorporated herein in entirety.

US Referenced Citations (628)
Number Name Date Kind
10016537 Menon et al. Jul 2018 B2
10046096 Askem et al. Aug 2018 B2
10076447 Barta et al. Sep 2018 B2
10076587 Locke et al. Sep 2018 B2
10143784 Walton et al. Dec 2018 B2
10426670 von Blucher et al. Oct 2019 B2
10426747 Johnson Oct 2019 B2
10426874 Chien et al. Oct 2019 B2
10426875 Blott et al. Oct 2019 B2
10426938 Locke et al. Oct 2019 B2
10434015 Taylor et al. Oct 2019 B2
10434142 Niazi et al. Oct 2019 B2
10434210 Olson et al. Oct 2019 B2
10434284 Hanson et al. Oct 2019 B2
10449094 Donda et al. Oct 2019 B2
D866756 Allen et al. Nov 2019 S
10463760 Karthikeyan et al. Nov 2019 B2
10463773 Haggstrom et al. Nov 2019 B2
10470933 Riesinger Nov 2019 B2
10470936 Wohlgemuth et al. Nov 2019 B2
10471122 Shi et al. Nov 2019 B2
10471190 Locke et al. Nov 2019 B2
10478345 Barta et al. Nov 2019 B2
10478346 Knutson Nov 2019 B2
10478394 Yu Nov 2019 B2
10485707 Sexton Nov 2019 B2
10485891 Andrews et al. Nov 2019 B2
10485892 Hands et al. Nov 2019 B2
10485906 Freedman et al. Nov 2019 B2
10486135 Yang et al. Nov 2019 B2
10492956 Zamierowski Dec 2019 B2
10493178 Marchant et al. Dec 2019 B2
10493184 Collinson et al. Dec 2019 B2
10493185 Stokes et al. Dec 2019 B2
10500099 Hung et al. Dec 2019 B2
10500103 Croizat et al. Dec 2019 B2
10500104 Sookraj Dec 2019 B2
10500173 Yang et al. Dec 2019 B2
10500235 Wardell Dec 2019 B2
10500300 Dybe et al. Dec 2019 B2
10500301 Laurensou Dec 2019 B2
10500302 Holm et al. Dec 2019 B2
10501487 Andrews et al. Dec 2019 B2
10506928 Locke et al. Dec 2019 B2
10507141 Allen et al. Dec 2019 B2
10507259 Cree et al. Dec 2019 B2
10512707 Whalen, III et al. Dec 2019 B2
10525170 Havenstrite et al. Jan 2020 B2
10532137 Pratt et al. Jan 2020 B2
10532194 Locke et al. Jan 2020 B2
10537657 Phillips et al. Jan 2020 B2
10542936 Goldberg et al. Jan 2020 B2
10543133 Shaw et al. Jan 2020 B2
10543293 Suschek Jan 2020 B2
10548777 Locke et al. Feb 2020 B2
10549008 Yoo Feb 2020 B2
10549016 Bushko et al. Feb 2020 B2
10549017 Hsiao et al. Feb 2020 B2
10555838 Wu et al. Feb 2020 B2
10555839 Hartwell Feb 2020 B2
10556044 Robinson et al. Feb 2020 B2
10561533 Hoggarth et al. Feb 2020 B2
10561536 Holm et al. Feb 2020 B2
10568767 Addison et al. Feb 2020 B2
10568768 Long et al. Feb 2020 B2
10568770 Robinson et al. Feb 2020 B2
10568771 MacDonald et al. Feb 2020 B2
10568773 Tuck et al. Feb 2020 B2
10568983 Gerdes et al. Feb 2020 B2
10575991 Dunn Mar 2020 B2
10575992 Sarangapani et al. Mar 2020 B2
10576037 Harrell Mar 2020 B2
10576189 Locke et al. Mar 2020 B2
10583042 Sarangapani et al. Mar 2020 B2
10583228 Shuler et al. Mar 2020 B2
10589007 Coulthard et al. Mar 2020 B2
10590184 Kuo Mar 2020 B2
10610414 Hartwell et al. Apr 2020 B2
10610415 Griffey et al. Apr 2020 B2
10610623 Robinson et al. Apr 2020 B2
10617569 Bonn Apr 2020 B2
10617608 Shin et al. Apr 2020 B2
10617769 Huang Apr 2020 B2
10617784 Yu et al. Apr 2020 B2
10617786 Kluge et al. Apr 2020 B2
10618266 Wright et al. Apr 2020 B2
10624984 Courage et al. Apr 2020 B2
10625002 Locke et al. Apr 2020 B2
10632019 Vitaris Apr 2020 B2
10632224 Hardy et al. Apr 2020 B2
10639206 Hu et al. May 2020 B2
10639350 Arber et al. May 2020 B2
10639404 Lichtenstein May 2020 B2
10646614 Grinstaff et al. May 2020 B2
10653562 Robinson et al. May 2020 B2
10653782 Ameer et al. May 2020 B2
10653810 Datt et al. May 2020 B2
10653821 Nichols May 2020 B2
10653823 Bharti et al. May 2020 B2
10660799 Wu et al. May 2020 B2
10660851 Millis et al. May 2020 B2
10660992 Canner et al. May 2020 B2
10660994 Askem et al. May 2020 B2
10667955 Allen et al. Jun 2020 B2
10667956 Van Holten et al. Jun 2020 B2
10682257 Lu Jun 2020 B2
10682258 Manwaring et al. Jun 2020 B2
10682259 Hunt et al. Jun 2020 B2
10682318 Twomey et al. Jun 2020 B2
10682386 Ellis-Behnke et al. Jun 2020 B2
10682446 Askem et al. Jun 2020 B2
10687983 Dahlberg et al. Jun 2020 B2
10687985 Lee et al. Jun 2020 B2
10688215 Munro et al. Jun 2020 B2
10688217 Hanson et al. Jun 2020 B2
RE48117 Albert et al. Jul 2020 E
10702419 Locke et al. Jul 2020 B2
10702420 Hammond et al. Jul 2020 B2
10703942 Tunius Jul 2020 B2
10709760 Gronberg et al. Jul 2020 B2
10709807 Kshirsagar Jul 2020 B2
10709883 Spector Jul 2020 B2
10716711 Locke et al. Jul 2020 B2
10716874 Koyama et al. Jul 2020 B2
10729589 Dorian et al. Aug 2020 B2
10729590 Simmons et al. Aug 2020 B2
10729826 Lin Aug 2020 B2
10736787 Hannigan et al. Aug 2020 B2
10736788 Locke et al. Aug 2020 B2
10736985 Odermatt et al. Aug 2020 B2
10737003 Fujisaki Aug 2020 B2
10743900 Ingram et al. Aug 2020 B2
10744040 Kazala, Jr. et al. Aug 2020 B2
10744041 Hartwell Aug 2020 B2
10744225 Lindgren et al. Aug 2020 B2
10744237 Guidi et al. Aug 2020 B2
10744238 Guidi et al. Aug 2020 B2
10744239 Armstrong et al. Aug 2020 B2
10744240 Simmons et al. Aug 2020 B2
10751212 Raza et al. Aug 2020 B2
10751442 Bonnefin et al. Aug 2020 B2
10751452 Topaz Aug 2020 B2
10758423 Pigg et al. Sep 2020 B2
10758424 Blott et al. Sep 2020 B2
10758425 Blott et al. Sep 2020 B2
10758426 Eddy Sep 2020 B2
10758651 Blott et al. Sep 2020 B2
10765561 Lattimore et al. Sep 2020 B2
10765783 Locke et al. Sep 2020 B2
10772767 Bjork et al. Sep 2020 B2
10772999 Svensby Sep 2020 B2
10779993 Bishop et al. Sep 2020 B2
10780114 Udagawa et al. Sep 2020 B2
10780194 Flach et al. Sep 2020 B2
10780201 Lin Sep 2020 B2
10780202 Askem et al. Sep 2020 B2
10780203 Coulthard et al. Sep 2020 B2
10782238 Hicks et al. Sep 2020 B2
10792191 Robinson et al. Oct 2020 B2
10792192 Tout et al. Oct 2020 B2
10792337 Leung et al. Oct 2020 B2
10792404 Hu et al. Oct 2020 B2
10792482 Randolph et al. Oct 2020 B2
10800905 Delli-Santi et al. Oct 2020 B2
10806819 Shuler Oct 2020 B2
11026847 Piotrowski et al. Jun 2021 B2
11058588 Albert et al. Jul 2021 B2
11076997 Hunt et al. Aug 2021 B2
11123215 Pradhan Sep 2021 B2
11147714 Blott et al. Oct 2021 B2
11154426 Riesinger Oct 2021 B2
11191810 Gronberg et al. Dec 2021 B2
11229719 Locke et al. Jan 2022 B2
11238756 Carroll et al. Feb 2022 B2
11246761 Holm et al. Feb 2022 B2
11247034 Armstrong et al. Feb 2022 B2
11259528 Ingram et al. Mar 2022 B2
11266537 Robinson et al. Mar 2022 B2
11273077 Kubek Mar 2022 B2
11278658 Haggstrom et al. Mar 2022 B2
11291746 Chakravarthy et al. Apr 2022 B2
20060155260 Blott et al. Jul 2006 A1
20060172000 Cullen et al. Aug 2006 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070219512 Heaton et al. Sep 2007 A1
20070239078 Jaeb Oct 2007 A1
20090234307 Vitaris Sep 2009 A1
20090259203 Hu et al. Oct 2009 A1
20090293887 Wilkes et al. Dec 2009 A1
20090299303 Seegert Dec 2009 A1
20100015208 Kershaw et al. Jan 2010 A1
20100030178 MacMeccan et al. Feb 2010 A1
20100125233 Edward S. et al. May 2010 A1
20100125258 Coulthard et al. May 2010 A1
20100137775 Hu et al. Jun 2010 A1
20100185163 Heagle Jul 2010 A1
20100217357 Da Silva Aug 2010 A1
20100298790 Guidi et al. Nov 2010 A1
20110015595 Robinson et al. Jan 2011 A1
20110028918 Hartwell Feb 2011 A1
20110112457 Holm et al. May 2011 A1
20110178451 Robinson et al. Jul 2011 A1
20110224593 Tunius Sep 2011 A1
20110224630 Simmons et al. Sep 2011 A1
20110230849 Coulthard et al. Sep 2011 A1
20110251566 Zimnitsky et al. Oct 2011 A1
20110257572 Locke et al. Oct 2011 A1
20110257573 Hong et al. Oct 2011 A1
20110275972 Rosenberg Nov 2011 A1
20120046670 Engl Feb 2012 A1
20120071845 Hu et al. Mar 2012 A1
20120130332 Cotton et al. May 2012 A1
20120136325 Allen et al. May 2012 A1
20120209226 Simmons et al. Aug 2012 A1
20130053795 Coulthard et al. Feb 2013 A1
20130123728 Pratt et al. May 2013 A1
20130226063 Taylor et al. Aug 2013 A1
20140005618 Locke et al. Jan 2014 A1
20140074053 Locke et al. Mar 2014 A1
20140188060 Robinson et al. Jul 2014 A1
20140194838 Wibaux et al. Jul 2014 A1
20140200532 Robinson et al. Jul 2014 A1
20140236112 Von Wolff et al. Aug 2014 A1
20140256925 Catchmark et al. Sep 2014 A1
20140276499 Locke et al. Sep 2014 A1
20140296804 Hicks et al. Oct 2014 A1
20140308338 Nierle et al. Oct 2014 A1
20140309574 Cotton Oct 2014 A1
20150018433 Leipzig et al. Jan 2015 A1
20150057624 Simmons et al. Feb 2015 A1
20150071985 Walker et al. Mar 2015 A1
20150079152 Wuollett et al. Mar 2015 A1
20150094674 Pratt et al. Apr 2015 A1
20150104486 Bonnefin et al. Apr 2015 A1
20150112311 Hammond et al. Apr 2015 A1
20150119831 Robinson et al. Apr 2015 A1
20150119834 Locke et al. Apr 2015 A1
20150141941 Allen et al. May 2015 A1
20150148785 Kleiner May 2015 A1
20150174304 Askem et al. Jun 2015 A1
20150245949 Locke et al. Sep 2015 A1
20150246164 Heaton et al. Sep 2015 A1
20150250979 Loske Sep 2015 A1
20150265741 Duncan et al. Sep 2015 A1
20150265743 Hanson et al. Sep 2015 A1
20150320901 Chandrashekhar-Bhat et al. Nov 2015 A1
20160008293 Shi et al. Jan 2016 A1
20160038626 Locke et al. Feb 2016 A1
20160051724 Sahin et al. Feb 2016 A1
20160067107 Cotton Mar 2016 A1
20160100987 Hartwell et al. Apr 2016 A1
20160101165 Salamone et al. Apr 2016 A1
20160106878 Yang et al. Apr 2016 A1
20160106892 Hartwell Apr 2016 A1
20160166422 Karim et al. Jun 2016 A1
20160193244 Ota et al. Jul 2016 A1
20160222548 Agboh Aug 2016 A1
20160271178 Hauser et al. Sep 2016 A1
20160287743 Andrews Oct 2016 A1
20160339158 Collinson et al. Nov 2016 A1
20160374847 Lachenbruch et al. Dec 2016 A1
20170014275 Schneider Jan 2017 A1
20170049111 Patton et al. Feb 2017 A1
20170072669 Sekido et al. Mar 2017 A1
20170128269 Coulthard et al. May 2017 A1
20170151314 Salamone et al. Jun 2017 A1
20170189237 Locke et al. Jul 2017 A1
20170189575 Lee et al. Jul 2017 A1
20170209615 Tornero Garcia et al. Jul 2017 A1
20170232161 Fewkes et al. Aug 2017 A1
20170258956 Flach et al. Sep 2017 A1
20170367895 Holm et al. Dec 2017 A1
20170368239 Askem et al. Dec 2017 A1
20180008742 Hoggarth et al. Jan 2018 A1
20180014974 Hoggarth et al. Jan 2018 A1
20180023217 Patton et al. Jan 2018 A1
20180030321 Tunius Feb 2018 A1
20180042789 Bradford et al. Feb 2018 A1
20180078423 Magin et al. Mar 2018 A1
20180086903 Zhang et al. Mar 2018 A1
20180118809 Mearns Spragg May 2018 A1
20180133066 Ahsani et al. May 2018 A1
20180140467 Hunt May 2018 A1
20180140822 Robinson et al. May 2018 A1
20180200414 Askem et al. Jul 2018 A1
20180221531 Bender et al. Aug 2018 A1
20180236124 Young et al. Aug 2018 A1
20180243463 Chatterjee et al. Aug 2018 A1
20180243464 Hwang et al. Aug 2018 A1
20180244857 Lee et al. Aug 2018 A1
20180272052 Locke et al. Sep 2018 A1
20180296397 Askem et al. Oct 2018 A1
20180303873 Been et al. Oct 2018 A1
20180311419 Locke et al. Nov 2018 A1
20180333522 Pratt et al. Nov 2018 A1
20180344533 Rovaniemi Dec 2018 A1
20180353334 Locke et al. Dec 2018 A1
20180353337 Locke Dec 2018 A1
20180353339 Locke et al. Dec 2018 A1
20180353340 Robinson et al. Dec 2018 A1
20180353344 Locke et al. Dec 2018 A1
20180353662 Locke et al. Dec 2018 A1
20180353663 Locke et al. Dec 2018 A1
20180360667 Droche Dec 2018 A1
20190000677 Munro Jan 2019 A1
20190015258 Gowans et al. Jan 2019 A1
20190015468 Yadav et al. Jan 2019 A1
20190030223 Lin Jan 2019 A1
20190046682 Choi et al. Feb 2019 A1
20190060127 Locke et al. Feb 2019 A1
20190083752 Howell et al. Mar 2019 A1
20190117465 Osborne et al. Apr 2019 A1
20190117466 Kazala, Jr. et al. Apr 2019 A1
20190117861 Locke et al. Apr 2019 A1
20190125590 Rehbein et al. May 2019 A1
20190133830 Bishop May 2019 A1
20190142642 Burnet May 2019 A1
20190151155 Bonn May 2019 A1
20190151159 Gowans et al. May 2019 A1
20190151495 Helary et al. May 2019 A1
20190184052 Ilan et al. Jun 2019 A1
20190224363 Gerdes Jul 2019 A1
20190231600 Locke et al. Aug 2019 A1
20190231602 Locke et al. Aug 2019 A1
20190231943 Robinson et al. Aug 2019 A1
20190274889 Steward et al. Sep 2019 A1
20190282247 Shelton Sep 2019 A1
20190282728 Kellar et al. Sep 2019 A1
20190290799 Arshi et al. Sep 2019 A1
20190298249 Bates et al. Oct 2019 A1
20190298577 Locke et al. Oct 2019 A1
20190298578 Shulman et al. Oct 2019 A1
20190298579 Moore et al. Oct 2019 A1
20190298580 Hall et al. Oct 2019 A1
20190298582 Addison et al. Oct 2019 A1
20190298881 Ramjit et al. Oct 2019 A1
20190298882 Nelson Oct 2019 A1
20190298895 Selby et al. Oct 2019 A1
20190307611 Askem et al. Oct 2019 A1
20190307612 Hartwell et al. Oct 2019 A1
20190307934 Allen et al. Oct 2019 A1
20190307935 Simmons et al. Oct 2019 A1
20190314187 Emslander et al. Oct 2019 A1
20190314209 Ha et al. Oct 2019 A1
20190314544 Filho et al. Oct 2019 A1
20190321232 Jardret et al. Oct 2019 A1
20190321509 Chakravarthy et al. Oct 2019 A1
20190321526 Robinson et al. Oct 2019 A1
20190322795 Kubo et al. Oct 2019 A1
20190328580 Emslander et al. Oct 2019 A1
20190336343 Etchells et al. Nov 2019 A1
20190336344 Locke Nov 2019 A1
20190336345 Bannwart Nov 2019 A1
20190336346 Locke et al. Nov 2019 A1
20190336640 Vismara et al. Nov 2019 A1
20190336641 Nisbet Nov 2019 A1
20190336643 Luukko et al. Nov 2019 A1
20190336658 Heaton et al. Nov 2019 A1
20190336739 Locke et al. Nov 2019 A1
20190343687 Locke et al. Nov 2019 A1
20190343889 Luukko et al. Nov 2019 A1
20190343979 Kearney et al. Nov 2019 A1
20190343993 Weston Nov 2019 A1
20190343994 Greener Nov 2019 A1
20190344242 Kim et al. Nov 2019 A1
20190350763 Pratt et al. Nov 2019 A1
20190350764 Zochowski et al. Nov 2019 A1
20190350765 Heagle et al. Nov 2019 A1
20190350775 Biasutti et al. Nov 2019 A1
20190350970 Saphier et al. Nov 2019 A1
20190351092 Silver et al. Nov 2019 A1
20190351093 Stein et al. Nov 2019 A1
20190351094 Maher et al. Nov 2019 A1
20190351095 Maher et al. Nov 2019 A1
20190351111 Locke et al. Nov 2019 A1
20190358088 Lavocah et al. Nov 2019 A1
20190358361 McInnes et al. Nov 2019 A1
20190358372 Askem et al. Nov 2019 A1
20190365948 Deegan et al. Dec 2019 A1
20190365962 Lee et al. Dec 2019 A1
20190374408 Robles et al. Dec 2019 A1
20190374673 Hoefinghoff et al. Dec 2019 A1
20190380878 Edwards et al. Dec 2019 A1
20190380881 Albert et al. Dec 2019 A1
20190380882 Taylor et al. Dec 2019 A1
20190380883 Macphee et al. Dec 2019 A1
20190381222 Locke et al. Dec 2019 A9
20190388577 Chandrashekhar-Bhat et al. Dec 2019 A1
20190388579 Macphee et al. Dec 2019 A1
20190388589 Macphee et al. Dec 2019 A1
20200000640 Mondal et al. Jan 2020 A1
20200000642 Waite Jan 2020 A1
20200000643 Locke Jan 2020 A1
20200000955 Andrews et al. Jan 2020 A1
20200000956 Huang et al. Jan 2020 A1
20200000960 Kellar et al. Jan 2020 A1
20200000985 Seddon et al. Jan 2020 A1
20200008981 Wheldrake Jan 2020 A1
20200009289 Torabinejad et al. Jan 2020 A1
20200009400 Ribeiro et al. Jan 2020 A1
20200017650 Young et al. Jan 2020 A1
20200022844 Blott et al. Jan 2020 A1
20200023102 Powell Jan 2020 A1
20200023103 Joshi et al. Jan 2020 A1
20200023104 Eriksson et al. Jan 2020 A1
20200023105 Long et al. Jan 2020 A1
20200023106 Carroll et al. Jan 2020 A1
20200030153 Johannison et al. Jan 2020 A1
20200030480 Choi Jan 2020 A1
20200030499 Menon et al. Jan 2020 A1
20200038023 Dunn Feb 2020 A1
20200038249 Pratt et al. Feb 2020 A1
20200038250 Edwards et al. Feb 2020 A1
20200038251 Locke et al. Feb 2020 A1
20200038252 Spiro Feb 2020 A1
20200038283 Hall et al. Feb 2020 A1
20200038470 Datt et al. Feb 2020 A1
20200038544 Grover et al. Feb 2020 A1
20200038546 Dizio et al. Feb 2020 A1
20200038639 Patel et al. Feb 2020 A1
20200046565 Barta et al. Feb 2020 A1
20200046566 Carey et al. Feb 2020 A1
20200046567 Carroll et al. Feb 2020 A1
20200046568 Sexton Feb 2020 A1
20200046663 Murdock et al. Feb 2020 A1
20200046876 Liu Feb 2020 A1
20200046887 Runquist et al. Feb 2020 A1
20200054491 Hentrich et al. Feb 2020 A1
20200054781 Weiser et al. Feb 2020 A1
20200060879 Edwards et al. Feb 2020 A1
20200061253 Long et al. Feb 2020 A1
20200061254 Joshi et al. Feb 2020 A1
20200061379 Bogie et al. Feb 2020 A1
20200069183 Rice et al. Mar 2020 A1
20200069476 Randolph et al. Mar 2020 A1
20200069477 Holm et al. Mar 2020 A1
20200069478 Jabbarzadeh et al. Mar 2020 A1
20200069479 Buan et al. Mar 2020 A1
20200069835 Hissink et al. Mar 2020 A1
20200069850 Beadle et al. Mar 2020 A1
20200069851 Blott et al. Mar 2020 A1
20200069853 Hall et al. Mar 2020 A1
20200078223 Locke et al. Mar 2020 A1
20200078224 Carroll et al. Mar 2020 A1
20200078225 Grillitsch et al. Mar 2020 A1
20200078305 Auvinen et al. Mar 2020 A1
20200078330 Gay Mar 2020 A1
20200078482 Yoon et al. Mar 2020 A1
20200078499 Gadde et al. Mar 2020 A1
20200085625 Bellini et al. Mar 2020 A1
20200085626 Braga et al. Mar 2020 A1
20200085629 Locke et al. Mar 2020 A1
20200085630 Robinson et al. Mar 2020 A1
20200085632 Locke et al. Mar 2020 A1
20200085991 Coomber Mar 2020 A1
20200085992 Locke et al. Mar 2020 A1
20200086014 Locke et al. Mar 2020 A1
20200086017 Jardret et al. Mar 2020 A1
20200086049 Park et al. Mar 2020 A1
20200093646 Locke et al. Mar 2020 A1
20200093756 Sabacinski Mar 2020 A1
20200093953 Kim et al. Mar 2020 A1
20200093954 Leise, III Mar 2020 A1
20200093970 Hunt et al. Mar 2020 A1
20200095421 Kettel Mar 2020 A1
20200100945 Albert et al. Apr 2020 A1
20200101192 Folwarzny Apr 2020 A1
20200107964 Locke et al. Apr 2020 A1
20200107965 Greener Apr 2020 A1
20200107966 Francis Apr 2020 A1
20200107967 Holm et al. Apr 2020 A1
20200108169 Hu et al. Apr 2020 A1
20200113741 Rehbein et al. Apr 2020 A1
20200114039 Wang et al. Apr 2020 A1
20200114040 Waite et al. Apr 2020 A1
20200114049 Wall Apr 2020 A1
20200121509 Locke et al. Apr 2020 A1
20200121510 Hartwell et al. Apr 2020 A1
20200121513 Townsend et al. Apr 2020 A1
20200121521 Daniel et al. Apr 2020 A1
20200121833 Askem et al. Apr 2020 A9
20200129338 Gardiner et al. Apr 2020 A1
20200129341 Coulthard et al. Apr 2020 A1
20200129648 Drury et al. Apr 2020 A1
20200129654 Bouvier et al. Apr 2020 A1
20200129655 Gardiner et al. Apr 2020 A1
20200129675 Robinson et al. Apr 2020 A1
20200138754 Johnson May 2020 A1
20200139002 Dudnyk et al. May 2020 A1
20200139023 Haggstrom et al. May 2020 A1
20200139025 Robinson et al. May 2020 A1
20200141031 Kosan et al. May 2020 A1
20200146894 Long et al. May 2020 A1
20200146896 Rice et al. May 2020 A1
20200146897 Locke et al. May 2020 A1
20200146899 Pratt et al. May 2020 A1
20200155355 Hill et al. May 2020 A1
20200155358 Wheldrake May 2020 A1
20200155359 Carroll et al. May 2020 A1
20200155361 Pigg et al. May 2020 A1
20200155379 Shaw et al. May 2020 A1
20200163802 Hunt et al. May 2020 A1
20200163803 Pigg et al. May 2020 A1
20200164112 Kato et al. May 2020 A1
20200164120 Jaecklein et al. May 2020 A1
20200170841 Waite et al. Jun 2020 A1
20200170842 Locke Jun 2020 A1
20200170843 Collinson et al. Jun 2020 A1
20200171197 Hubbell et al. Jun 2020 A1
20200179300 Urban et al. Jun 2020 A1
20200179558 Munro et al. Jun 2020 A1
20200179673 Wan Jun 2020 A1
20200188179 Bugedo-Albizuri et al. Jun 2020 A1
20200188180 Akbari et al. Jun 2020 A1
20200188182 Sanders et al. Jun 2020 A1
20200188183 Hamerslagh et al. Jun 2020 A1
20200188550 Dagger et al. Jun 2020 A1
20200188564 Dunn Jun 2020 A1
20200190310 Meyer Jun 2020 A1
20200197227 Locke Jun 2020 A1
20200197228 Hartwell Jun 2020 A1
20200197559 Bourdillon et al. Jun 2020 A1
20200197580 Kilpadi et al. Jun 2020 A1
20200206035 Kantor et al. Jul 2020 A1
20200206036 Robinson et al. Jul 2020 A1
20200214637 Brownhill et al. Jul 2020 A1
20200214897 Long et al. Jul 2020 A1
20200214898 Waite et al. Jul 2020 A1
20200214899 Locke et al. Jul 2020 A1
20200215220 Schomburg et al. Jul 2020 A1
20200215226 Kitagawa et al. Jul 2020 A1
20200222469 Cotton Jul 2020 A1
20200229983 Robinson et al. Jul 2020 A1
20200230283 Yang et al. Jul 2020 A1
20200237562 Rice et al. Jul 2020 A1
20200237564 Hammond et al. Jul 2020 A1
20200237816 Lait Jul 2020 A1
20200246190 Luckemeyer et al. Aug 2020 A1
20200246191 Lu et al. Aug 2020 A1
20200246194 Gonzalez et al. Aug 2020 A1
20200246195 Robinson et al. Aug 2020 A1
20200253785 Bernet et al. Aug 2020 A1
20200253786 Harrison et al. Aug 2020 A1
20200253788 Rehbein et al. Aug 2020 A1
20200254139 Phillips et al. Aug 2020 A1
20200261275 Manwaring et al. Aug 2020 A1
20200261276 Hemandez et al. Aug 2020 A1
20200268560 Harrison et al. Aug 2020 A1
20200268561 Locke et al. Aug 2020 A1
20200269028 Hegg Aug 2020 A1
20200270484 Lipscomb et al. Aug 2020 A1
20200276055 Randolph et al. Sep 2020 A1
20200276058 Locke et al. Sep 2020 A1
20200277450 Silverstein et al. Sep 2020 A1
20200281519 Gowans et al. Sep 2020 A1
20200281529 Grubb et al. Sep 2020 A1
20200281678 Long et al. Sep 2020 A1
20200281775 Kushnir et al. Sep 2020 A1
20200282100 Gil et al. Sep 2020 A1
20200282114 Long et al. Sep 2020 A1
20200282115 Gardner et al. Sep 2020 A1
20200289326 Nielsen et al. Sep 2020 A1
20200289327 Hansen et al. Sep 2020 A1
20200289328 Luckemeyer et al. Sep 2020 A1
20200289346 Hansen et al. Sep 2020 A1
20200289347 Gowans et al. Sep 2020 A1
20200289701 Hall et al. Sep 2020 A1
20200289712 Jiang et al. Sep 2020 A1
20200289723 Gregory et al. Sep 2020 A1
20200289726 Locke et al. Sep 2020 A1
20200289727 Locke Sep 2020 A1
20200289806 Locke et al. Sep 2020 A1
20200297541 Hartwell et al. Sep 2020 A1
20200297543 Rodzewicz et al. Sep 2020 A1
20200297544 Moine et al. Sep 2020 A1
20200297892 Silcock Sep 2020 A1
20200297893 Ericson Sep 2020 A1
20200297894 Koyama et al. Sep 2020 A1
20200299865 Bonnefin et al. Sep 2020 A1
20200306089 Delury et al. Oct 2020 A1
20200306091 Lee et al. Oct 2020 A1
20200306092 Rehbein et al. Oct 2020 A1
20200306094 Kushnir et al. Oct 2020 A1
20200306426 Rice et al. Oct 2020 A1
20200306428 Ingram et al. Oct 2020 A1
20200306430 Rehbein et al. Oct 2020 A1
20200315853 Waite Oct 2020 A1
20200315854 Simmons et al. Oct 2020 A1
20200315894 Churilla et al. Oct 2020 A1
20200316271 Lin Oct 2020 A1
20200316272 Simpson Oct 2020 A1
20200316273 Hegg Oct 2020 A1
20200323692 Locke et al. Oct 2020 A1
20200324015 Kettel et al. Oct 2020 A1
20200330283 Locke et al. Oct 2020 A1
20200330284 Locke et al. Oct 2020 A1
20200330285 Rehbein et al. Oct 2020 A1
20200330658 Fujisaki Oct 2020 A1
20200330660 Patel et al. Oct 2020 A1
20200337719 Ingram et al. Oct 2020 A1
20200337904 Waite Oct 2020 A1
20200337905 Earl et al. Oct 2020 A1
20200337906 Long et al. Oct 2020 A1
20200337908 Long et al. Oct 2020 A1
20200338228 Kharkar et al. Oct 2020 A1
20200338243 Harrison et al. Oct 2020 A1
20210007764 Wilhelms Jan 2021 A1
20210177660 Rapp Jun 2021 A1
20210196310 Moore et al. Jul 2021 A1
20210205142 Rice et al. Jul 2021 A1
20210228416 Eriksson et al. Jul 2021 A1
20210228786 Perry Jul 2021 A1
20210244431 Hentrich et al. Aug 2021 A1
20210290815 Parsons et al. Sep 2021 A1
20210322666 Greener Oct 2021 A1
20210330855 Waite et al. Oct 2021 A1
20210338486 Dagger et al. Nov 2021 A1
20210338489 Hunt et al. Nov 2021 A1
20210361820 Bourdillon et al. Nov 2021 A1
20210378876 Gowans Dec 2021 A1
20210402049 Waite et al. Dec 2021 A1
20220001212 Bass et al. Jan 2022 A1
20220031231 Hunt et al. Feb 2022 A1
20220087869 Wheldrake Mar 2022 A1
20220105231 Locke et al. Apr 2022 A1
20220117794 Hartwell et al. Apr 2022 A1
20220142820 Delury et al. May 2022 A1
20220143297 Gowans et al. May 2022 A1
Foreign Referenced Citations (156)
Number Date Country
102057275 May 2011 CN
103874516 Jun 2014 CN
109310528 Feb 2019 CN
0788378 Feb 2003 EP
3187204 Jul 2017 EP
3250244 Dec 2017 EP
3556407 Oct 2019 EP
3569260 Nov 2019 EP
3622975 Mar 2020 EP
3643328 Apr 2020 EP
3643330 Apr 2020 EP
3643331 Apr 2020 EP
3669838 Jun 2020 EP
3669843 Jun 2020 EP
3669844 Jun 2020 EP
3834787 Jun 2021 EP
3836872 Jun 2021 EP
3849626 Jul 2021 EP
3858392 Aug 2021 EP
3860664 Aug 2021 EP
3866920 Aug 2021 EP
3630031 Sep 2021 EP
3876240 Sep 2021 EP
3876885 Sep 2021 EP
3876886 Sep 2021 EP
2948116 Oct 2021 EP
3908240 Nov 2021 EP
3681452 Dec 2021 EP
3914208 Dec 2021 EP
3672655 Jan 2022 EP
3142615 Feb 2022 EP
3687467 Feb 2022 EP
3801662 Feb 2022 EP
3946498 Feb 2022 EP
3952809 Feb 2022 EP
3965835 Mar 2022 EP
3969072 Mar 2022 EP
3586805 Apr 2022 EP
3982896 Apr 2022 EP
3989897 May 2022 EP
3999006 May 2022 EP
3703633 Jun 2022 EP
4007550 Jun 2022 EP
4007552 Jun 2022 EP
4009929 Jun 2022 EP
2579211 Jun 2020 GB
2579368 Jun 2020 GB
2592804 Sep 2021 GB
2592805 Sep 2021 GB
2592806 Sep 2021 GB
2593114 Sep 2021 GB
2005018543 Mar 2005 WO
2011121394 Oct 2011 WO
2011135284 Nov 2011 WO
2011144888 Nov 2011 WO
2013015827 Jan 2013 WO
2013126049 Aug 2013 WO
2014014842 Jan 2014 WO
2015145117 Oct 2015 WO
2015173546 Nov 2015 WO
2016141450 Sep 2016 WO
2017016974 Feb 2017 WO
2017125250 Jul 2017 WO
2018029231 Feb 2018 WO
2018094061 May 2018 WO
2018162613 Sep 2018 WO
2018163093 Sep 2018 WO
2018189265 Oct 2018 WO
2018226667 Dec 2018 WO
2018227144 Dec 2018 WO
2018231825 Dec 2018 WO
2018236648 Dec 2018 WO
2019002085 Jan 2019 WO
2019012068 Jan 2019 WO
2019012069 Jan 2019 WO
2019022493 Jan 2019 WO
2019027933 Feb 2019 WO
2019038548 Feb 2019 WO
2019038549 Feb 2019 WO
2019040656 Feb 2019 WO
2019050855 Mar 2019 WO
2019058373 Mar 2019 WO
2019073326 Apr 2019 WO
2019083563 May 2019 WO
2019083868 May 2019 WO
2019086911 May 2019 WO
2019091150 May 2019 WO
2019094147 May 2019 WO
2019096828 May 2019 WO
2019113275 Jun 2019 WO
2019113623 Jun 2019 WO
2019191590 Oct 2019 WO
2019193141 Oct 2019 WO
2019193333 Oct 2019 WO
2019199389 Oct 2019 WO
2019199596 Oct 2019 WO
2019199687 Oct 2019 WO
2019199798 Oct 2019 WO
2019199849 Oct 2019 WO
2019200035 Oct 2019 WO
2019215572 Nov 2019 WO
2019219613 Nov 2019 WO
2019234365 Dec 2019 WO
2020005062 Jan 2020 WO
2020005344 Jan 2020 WO
2020005536 Jan 2020 WO
2020005546 Jan 2020 WO
2020005577 Jan 2020 WO
2020007429 Jan 2020 WO
2020011691 Jan 2020 WO
2020014178 Jan 2020 WO
2020014310 Jan 2020 WO
2020018300 Jan 2020 WO
2020026061 Feb 2020 WO
2020026144 Feb 2020 WO
2020033351 Feb 2020 WO
2020035811 Feb 2020 WO
2020043665 Mar 2020 WO
2020044237 Mar 2020 WO
2020046443 Mar 2020 WO
2020047255 Mar 2020 WO
2020049038 Mar 2020 WO
2020055945 Mar 2020 WO
2020056014 Mar 2020 WO
2020056182 Mar 2020 WO
2020065531 Apr 2020 WO
2020070231 Apr 2020 WO
2020074512 Apr 2020 WO
2020078993 Apr 2020 WO
2020079009 Apr 2020 WO
2020079330 Apr 2020 WO
2020081259 Apr 2020 WO
2020081391 Apr 2020 WO
2020092598 May 2020 WO
2020136555 Jul 2020 WO
2020141059 Jul 2020 WO
2020144347 Jul 2020 WO
2020150548 Jul 2020 WO
2020159675 Aug 2020 WO
2020159677 Aug 2020 WO
2020159678 Aug 2020 WO
2020159823 Aug 2020 WO
2020159859 Aug 2020 WO
2020159892 Aug 2020 WO
2020161086 Aug 2020 WO
2020173665 Sep 2020 WO
2020173760 Sep 2020 WO
2020174264 Sep 2020 WO
2020174510 Sep 2020 WO
2020182887 Sep 2020 WO
2020185810 Sep 2020 WO
2020197759 Oct 2020 WO
2020197760 Oct 2020 WO
2020198484 Oct 2020 WO
2020201879 Oct 2020 WO
2020213998 Oct 2020 WO
Non-Patent Literature Citations (2)
Entry
International Search Report and Written Opinion for PCT/IB2020/000444; issued Sep. 22, 2020; 15 pages.
Chinese Office Action; China National Intellectual Property Administration; Chinese Patent Application No. 202080040454.5; May 7, 2022; 11 pages.
Related Publications (1)
Number Date Country
20200375802 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62856676 Jun 2019 US