This application is related to U.S. patent application Ser. No. 10/011,955, filed Nov. 5, 2001 and entitled DEFIBRILLATION PACING CIRCUITRY, now U.S. Pat. No. 6,952,608, and the disclosure of which is incorporated herein by reference.
The present invention is related to the field of electric cardiac therapy. More particularly, the present invention is related to methods and devices for inducing fibrillation with implantable medical devices.
An implantable cardioverter-defibrillator (ICD) is an implantable device designed to deliver life saving defibrillation therapy to a patient in response to potentially deadly cardiac malfunctions. Often, when an ICD is implanted, it is tested to determine whether it can function for its purpose by observing whether the ICD can provide a shock exceeding the patient's defibrillation threshold (DFT). To perform this test, the ICD is implanted and the patient's heart is caused to fibrillate in the controlled environment of an operating room. Once fibrillation is induced, the ICD is expected to shock the patient back to a normal rhythm. If so, the ICD passes at least one round of the test. This procedure may be repeated. If the ICD fails to return the patient to normal rhythm, an attending physician will take steps, such as the use of an external defibrillator, to bring the patient's heart back to normal rhythm. After failure, the ICD is normally discarded, and the procedure may be aborted or a different ICD may be used.
The present invention is directed toward methods and devices for inducing fibrillation in a patient using a controlled current AC signal applied via an implanted ICD. In some embodiments, the AC signal is applied as a series of alternating constant current pulses. Some embodiments make use of a specialized H-bridge circuit for applying the AC signal. A low-side current-controlling portion of the illustrative ICD's circuitry may make up part of the specialized H-bridge circuit. Further embodiments include devices embodying these methods.
The following detailed description should be read with reference to the drawings. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. As used herein, a switch is considered open when it does not allow current to flow therethough (as in an open circuit), and closed when current is allowed to flow. As further discussed below, switches may also modulate current flow.
Several methods for inducing fibrillation for the purpose of testing an implantable cardioverter-defibrillator (ICD) have been tried. See, for example, U.S. Pat. No. 5,643,323 to Kroll et al. Initially, when devices were implanted transthoracically, ready access to the myocardium was established during implantation. From a wall outlet, with a voltage step-down, a 1 to 20 volt AC signal at 50/60 hertz could be applied directly to heart tissue to induce fibrillation.
With less invasive and/or non-transthoracic implantations, new techniques were developed. In one such technique, a catheter was introduced to the heart and fibrillation could then be induced using, again, an AC signal at 50/60 hertz. The catheter, however, represented an added complication to the procedure.
For convenience, other techniques relying on the ICD itself were developed. Overdrive pacing, where the heartbeat is captured and then pacing pulses are applied at steadily higher rate, is one approach. Another approach is to apply a pulse at a time corresponding to the patient's T-wave. A third ICD-based approach is to apply a long pulse that exceeds the cardiac cycle period. Each of these approaches has its shortcomings, as discussed by Kroll et al. in U.S. Pat. No. 5,643,323.
Kroll et al. indicates the use of a “continuous charging” method during application of a fibrillation inducing signal that may be supplied as a single long pulse or a pulse train in the form of a series of pulses of opposing polarity. In particular, power flows through the defibrillation capacitors, which are not charged in advance, and the charging transformer directly drives the output signal. This introduces a number of extraneous reactive impedances into the output signal. The output is not controlled, and is therefore imprecise. If the applied signal fails to induce fibrillation, it will likely be repeated. Application of the fibrillation inducing signal drains battery power and is likely noticeable (and discomforting) to a patient. As a result of these factors, a more precise fibrillation inducing signal is desired.
An illustrative embodiment of the present invention provides an ICD-based method of applying a constant current AC signal to a patient's heart to induce fibrillation. The constant current AC signal comprises a series of alternating positive and negative current pulses having substantially the same magnitude, both from pulse to pulse, as well as within each pulse. Power to keep the signal constant comes from the defibrillating capacitors which, prior to applying the fibrillating signal, are charged to a predetermined level sufficient for keeping the output constant. Once charged to a desired and/or sufficient degree, the energy storage system is used to provide a voltage/current source for a controlled current fibrillation inducing method. For purposes herein, a fibrillation-inducing current is considered “constant” if it is, within a reasonable range, generally independent of patient and/or lead impedance.
The constant current AC signal can be controlled using a transistor operating linearly such that current flow may be controlled or modulated by changing a control signal supplied to the transistor. Examples of transistors having such modes of operation include a field effect transistor, such as a MOSFET, and bipolar transistors such as a bipolar junction transistor or an insulated gate bipolar transistor (IGBT). Those of skill in the art will readily identify other structures that may perform in a similar or otherwise suitable fashion to control current.
The fibrillation inducing pulse is intended to disrupt tissue electrical activity that regulates muscle contraction. Current density can be a useful metric for indicating whether a given pulse will induce fibrillation. Maintaining a constant current, rather than outputting a particular voltage, may assure that a device, regardless of individual patient physiology/impedance, reliably induces a desired level of current density and, as a result, fibrillation.
The lead assembly 16 includes conductive elements therein for providing electrical conduction between the electrodes 18 and the canister 12. The canister 12 houses a battery and circuitry for detecting when fibrillation is occurring, and for providing a defibrillation shock.
The typical operation of an ICD for defibrillation includes the following. First, the control block 54 determines, using the sensing circuitry 64, that defibrillation is needed due to the occurrence of a malignant cardiac condition. Next, the control block 54 causes the charger 56 to begin charging the energy storage 58. Once the energy storage 58 is charged to a desired level or for a predetermined time, the control block 54 causes the coupling circuitry 60 to discharge the energy storage 58 to the patient 62.
For the illustrative embodiment, it can be seen that the voltage remaining on the capacitor during controlled discharge (line 114) is reduced in a generally linear manner, while the uncontrolled discharge (line 110) causes voltage reduction in an exponential fashion. Thus, while the uncontrolled capacitor discharge starts at a much higher level, it quickly dissipates such that the controlled discharge provides a larger signal as time goes on. For controlled discharge, the capacitor may be charged sufficiently to allow the device to operate as a constant current source until the fibrillation inducing signal has been delivered. During application of the fibrillation inducing signal, the charger may continue to charge the capacitors. It is believed that delivery of a constant current signal may provide a more reliable fibrillation inducing system. The embodiments illustrated by reference to
Because patient physiology can vary, the actual amount of energy needed to produce the fibrillation inducing stimulus varies as well. More specifically, the patient impedance can vary, such that the power/energy needed varies in direct proportion thereto, as in E=P*t=I2Rp*t, with Rp being variable from patient to patient, and even sometimes changing at different times due to patient movement or respiration, or differing patient hydration and electrolyte balance. In an illustrative embodiment, a worst-case scenario is estimated or defined, and the capacitor is charged sufficiently to assure constant current can be provided in the defined worst-case scenario. For example, assuming a worst case impedance of about 200 Ohms, and assuming a desired current of 250 mA, then a minimum voltage can be estimated for the capacitor charge depending upon the period of time for which pulses are applied, and the overall capacitance. Thus, if:
VMIN ENDING=I*ZMAX+VSM;
V=Q/C; and
ΔV=ΔQ/C=I*Δt/C;
Then:
VMIN START=VMIN ENDING+ΔV=VSM+I*(ZMAX+Δt/C)
Where ZMAX is the worst case impedance, VSM is a voltage safety margin, I is the constant current magnitude, Δt is the time during which constant current is applied in the entire fibrillation pulse (both positive and negative pulses), and C is the capacitance of the capacitor(s) on which charge is stored for use in the fibrillation inducing pulse. VSM may account for voltage drops occurring across any switches, transistors, or other elements included in the coupling circuitry.
The ICD 200 includes a battery 202 that is coupled to a charger 204. The charger 204 steps up the output voltage of the battery 202 to a level appropriate for charging the high power capacitor 206. While a single high power capacitor 206 is shown, it is understood that element 206 may represent a single or more actual capacitors placed in a suitable configuration.
The capacitor 206 is coupled to a first high side switch 208 and a second high side switch 210. These switches 208, 210 may be controlled in any suitable fashion. A first low side switch 212 and a second low side switch 214 are also shown. Current is directed to the patient, P (shown schematically as an impedance), using two electrodes, with one coupled to the junction of the first high and low side switches 208, 212, and the other coupled to the junction of the second high and low side switches 210, 214.
The first and second low side switches 212, 214 have outputs going to a low side having two outlet legs. A first outlet leg is a defibrillation (DF) leg 218 having a DF switch, and the second outlet leg is a pacing leg 220. During ordinary operation, the DF switch in the first outlet leg 218 is closed, pulling the outputs of the low side switches 212, 214 to ground. This configuration is suited for application of a high voltage defibrillation pulse to the patient P. For a pacing function, the DF switch is open in DF leg 218 such that current is directed through the resistor in the pacing leg 220. Typically the pacing leg resistor will be relatively small but sufficient to allow control over current passing therethrough. In an illustrative embodiment, the resistor in the pacing leg 220 has a resistance in the range of one to five (1-5) ohms, though any suitable resistor may be used. In an illustrative method of inducing fibrillation in the patient, the DF switch 218 is opened.
The first low side switch 212 is controlled by a control signal generated using an operational amplifier 222 through a first multiplexer 224. The first multiplexer 224 has inputs A and B, and control C. The output of amplifier 222 is coupled to input A of multiplexer 224, while another input 228 is generated for input B. In response to a signal 226 applied at control C of multiplexer 224, an output is provided to control the first low side switch 212, the output being selected from inputs A and B. The operational amplifier 222 also provides a control signal that can be used by the second low side switch 214 through a second multiplexer 232. Multiplexer 232 also takes inputs A and B, with input A coming from the operational amplifier 222, and input B being generated as signal 236 from an associated control block. Control C is shown receiving a signal 234 which may also be generated by an associated control block. If desired, signals 226 and 234 may be provided as a single signal in some embodiments.
The control signal from the operational amplifier 222 is generated by the use of a digital to analog converter (DAC) 234 and feedback from the node at the output of the low side switches 212, 214. In particular, the operational amplifier 222 drives whichever low side switch 212, 214 is selected allow sufficient current flow to allow the feedback voltage to equal the voltage output by the DAC 232. The following chart illustrates operation of the system of
Control signals for several of the above elements may come from a control block (not shown).
Current from either of the high side switches 306 is directed to the patient 314 (shown as an impedance Rp) via electrodes 316, 318. Current then goes to one of a first low side switch 320 or a second low side switch 328, which are each shown at IGBT devices. Control circuitry for the first low side switch is shown schematically as including an operational amplifier 322 and a DAC 324. The inverting input of the operational amplifier 322 is coupled to node 326, while the non-inverting input of the operational amplifier 322 is coupled to the output of the DAC 324. A resistor 330 couples node 326 to ground. Control circuitry for controlling the low side leg including low side switch 328 is omitted for simplicity; it can be seen from
When a fibrillation inducing pulse train is desired, a first step is to charge a capacitor (not shown) used to provide +V 302. The capacitor may be charged to a level reasonably anticipated to allow a constant current output during application of the fibrillation inducing pulse train. With the capacitor charged, a control signal is supplied to the second control block 312 to close the second high side switch 310. At about the same time (or just earlier in time), the DAC 324 provides a signal to the operational amplifier 322 causing the operational amplifier 322 to provide a closing signal to the first low side switch 320.
With each of switches 310 and 320 closed, positive current follows a path from +V 302, through the second high side switch 310, to electrode 318 and into the patient, shown as impedance 314. The current is captured at electrode 316 and passes through the first low side switch 320 to node 326 and through the resistor 330 to ground/reference.
Initially, with no current flow, the operational amplifier 322 may provide a “HIGH” output, for example, by going directly to its rail voltage, essentially closing switch 320. Once current begins to flow through resistor 330, the voltage at node 326 rises in proportion to the amount of current flowing. As the voltage at node 326 rises, it begins to approach the output from the DAC 324. The voltage difference between node 326 and the output from the DAC 324 reaches a point where the operational amplifier 322 provides a reduced output to the first low side switch 320, causing the first low side switch 320 to modulate the current flowing therethrough. This all occurs quite quickly (typically within a few microseconds or less) and equilibrium is reached where the voltage at node 326 approximates the voltage output from the DAC 324. This configuration renders the low side leg including first low side switch 320 a constant current source, as long as the voltage +V 302 remains high enough such that the voltage drop across the patient 314, given the current flowing, allows the switch 320 to operate as an amplifier.
Those of skill in the art will readily understand operation making use of the first high side switch 304 and second low side switch 328 in like fashion will generate a constant current signal with an opposite sign.
As can be seen, the patient current is zero for a short time when both low side switches are closed, and is otherwise at either +I or −I, depending on the configuration of high and low side switches that not opened. If operating within a range of patient impedances including any predefined “worst-case” scenario impedances, the current will be constant regardless of the actual patient impedance for the duration of the fibrillation inducing signal.
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3653387 | Ceier | Apr 1972 | A |
3710374 | Kelly | Jan 1973 | A |
3911925 | Tillery, Jr. | Oct 1975 | A |
4030509 | Heilman et al. | Jun 1977 | A |
4157720 | Greatbatch | Jun 1979 | A |
4164946 | Langer | Aug 1979 | A |
4184493 | Langer et al. | Jan 1980 | A |
4191942 | Long | Mar 1980 | A |
4210149 | Heilman et al. | Jul 1980 | A |
RE30387 | Denniston, III et al. | Aug 1980 | E |
4223678 | Langer et al. | Sep 1980 | A |
4248237 | Kenny | Feb 1981 | A |
4254775 | Langer | Mar 1981 | A |
4291707 | Heilman et al. | Sep 1981 | A |
4300567 | Kolenik et al. | Nov 1981 | A |
4314095 | Moore et al. | Feb 1982 | A |
4375817 | Engle et al. | Mar 1983 | A |
4402322 | Duggan | Sep 1983 | A |
4407288 | Langer et al. | Oct 1983 | A |
4424818 | Doring et al. | Jan 1984 | A |
4450527 | Sramek | May 1984 | A |
4548209 | Weilders et al. | Oct 1985 | A |
4567900 | Moore | Feb 1986 | A |
4595009 | Leinders | Jun 1986 | A |
4602637 | Elmqvist et al. | Jul 1986 | A |
4603705 | Speicher et al. | Aug 1986 | A |
4693253 | Adams | Sep 1987 | A |
4727877 | Kallok | Mar 1988 | A |
4750494 | King | Jun 1988 | A |
4765341 | Mower et al. | Aug 1988 | A |
4768512 | Imran | Sep 1988 | A |
4800883 | Winstrom | Jan 1989 | A |
4830005 | Woskow | May 1989 | A |
4944300 | Saksena | Jul 1990 | A |
5044374 | Lindemans et al. | Sep 1991 | A |
5105810 | Collins et al. | Apr 1992 | A |
5105826 | Smits et al. | Apr 1992 | A |
5109842 | Adinolfi | May 1992 | A |
5129392 | Bardy et al. | Jul 1992 | A |
5133353 | Hauser | Jul 1992 | A |
5144946 | Weinberg et al. | Sep 1992 | A |
5184616 | Weiss | Feb 1993 | A |
5191901 | Dahl et al. | Mar 1993 | A |
5203348 | Dahl et al. | Apr 1993 | A |
5215081 | Ostroff | Jun 1993 | A |
5230337 | Dahl et al. | Jul 1993 | A |
5255692 | Neubauer et al. | Oct 1993 | A |
5261400 | Bardy | Nov 1993 | A |
5279293 | Andersen et al. | Jan 1994 | A |
5300106 | Dahl et al. | Apr 1994 | A |
5313953 | Yomtov et al. | May 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5342407 | Dahl et al. | Aug 1994 | A |
5366496 | Dahl et al. | Nov 1994 | A |
5376103 | Anderson et al. | Dec 1994 | A |
5376104 | Sakai et al. | Dec 1994 | A |
5385574 | Hauser et al. | Jan 1995 | A |
5391186 | Kroll et al. | Feb 1995 | A |
5391200 | KenKnight et al. | Feb 1995 | A |
5405363 | Kroll et al. | Apr 1995 | A |
5411539 | Neisz | May 1995 | A |
5411547 | Causey, III | May 1995 | A |
5413591 | Knoll | May 1995 | A |
5423326 | Wang et al. | Jun 1995 | A |
5439485 | Mar et al. | Aug 1995 | A |
5447521 | Anderson et al. | Sep 1995 | A |
5476503 | Yang | Dec 1995 | A |
5509923 | Middleman et al. | Apr 1996 | A |
5509928 | Acken | Apr 1996 | A |
5531765 | Pless | Jul 1996 | A |
5531766 | Kroll et al. | Jul 1996 | A |
5534019 | Paspa | Jul 1996 | A |
5534022 | Hoffmann et al. | Jul 1996 | A |
5597956 | Ito et al. | Jan 1997 | A |
5601607 | Adams | Feb 1997 | A |
5603732 | Dahl et al. | Feb 1997 | A |
5607455 | Armstrong | Mar 1997 | A |
5609618 | Archer | Mar 1997 | A |
5618287 | Fogarty et al. | Apr 1997 | A |
5620477 | Pless et al. | Apr 1997 | A |
5643323 | Kroll et al. | Jul 1997 | A |
5643328 | Cooke et al. | Jul 1997 | A |
5645586 | Meltzer | Jul 1997 | A |
5658317 | Haefner et al. | Aug 1997 | A |
5658319 | Kroll | Aug 1997 | A |
5658321 | Fayram et al. | Aug 1997 | A |
5674260 | Weinberg | Oct 1997 | A |
5690648 | Fogarty et al. | Nov 1997 | A |
5690683 | Haefner et al. | Nov 1997 | A |
5697953 | Kroll et al. | Dec 1997 | A |
5713926 | Hauser et al. | Feb 1998 | A |
5733310 | Lopin et al. | Mar 1998 | A |
5766226 | Pedersen | Jun 1998 | A |
5776169 | Schroeppel | Jul 1998 | A |
5814090 | Latterell et al. | Sep 1998 | A |
5824018 | Dreher et al. | Oct 1998 | A |
5827326 | Kroll et al. | Oct 1998 | A |
5830236 | Mouchawar et al. | Nov 1998 | A |
5836976 | Min et al. | Nov 1998 | A |
5843132 | Ilvento | Dec 1998 | A |
5895414 | Sanchez-Zambrano | Apr 1999 | A |
5904705 | Kroll et al. | May 1999 | A |
5919211 | Adams | Jul 1999 | A |
5919222 | Hjelle et al. | Jul 1999 | A |
5925069 | Graves et al. | Jul 1999 | A |
5935154 | Westlund | Aug 1999 | A |
5941904 | Johnston et al. | Aug 1999 | A |
5954753 | Alt et al. | Sep 1999 | A |
5957956 | Kroll et al. | Sep 1999 | A |
6014586 | Weinberg et al. | Jan 2000 | A |
6026325 | Weinberg et al. | Feb 2000 | A |
6058328 | Levine et al. | May 2000 | A |
6093173 | Balceta et al. | Jul 2000 | A |
6095987 | Shmulewitz et al. | Aug 2000 | A |
6096063 | Lopin et al. | Aug 2000 | A |
H1905 | Hill | Oct 2000 | H |
6128531 | Campbell-Smith | Oct 2000 | A |
6144866 | Miesel et al. | Nov 2000 | A |
6144879 | Gray | Nov 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6185450 | Seguine et al. | Feb 2001 | B1 |
6208896 | Mulhauser | Mar 2001 | B1 |
6266567 | Ishikawa et al. | Jul 2001 | B1 |
6278894 | Salo et al. | Aug 2001 | B1 |
6280462 | Hauser et al. | Aug 2001 | B1 |
6334071 | Lu | Dec 2001 | B1 |
6345198 | Mouchawar et al. | Feb 2002 | B1 |
6411844 | Kroll et al. | Jun 2002 | B1 |
6647292 | Bardy et al. | Nov 2003 | B1 |
6721597 | Bardy et al. | Apr 2004 | B1 |
6738664 | McDaniel | May 2004 | B1 |
6754528 | Bardy et al. | Jun 2004 | B2 |
6778860 | Ostroff et al. | Aug 2004 | B2 |
6788974 | Bardy et al. | Sep 2004 | B2 |
6834204 | Ostroff et al. | Dec 2004 | B2 |
6856835 | Bardy et al. | Feb 2005 | B2 |
6865417 | Rissmann et al. | Mar 2005 | B2 |
6866044 | Bardy et al. | Mar 2005 | B2 |
6952608 | Ostroff | Oct 2005 | B2 |
20010027330 | Sullivan et al. | Oct 2001 | A1 |
20030088281 | Ostroff et al. | May 2003 | A1 |
20030088282 | Ostroff | May 2003 | A1 |
20030088283 | Ostroff | May 2003 | A1 |
20030120310 | Mulhauser | Jun 2003 | A1 |
20030216786 | Russial | Nov 2003 | A1 |
20040088011 | Snyder et al. | May 2004 | A1 |
20040172068 | Sullivan et al. | Sep 2004 | A1 |
20040254611 | Palreddy et al. | Dec 2004 | A1 |
20040254613 | Ostroff et al. | Dec 2004 | A1 |
20050049644 | Warren et al. | Mar 2005 | A1 |
20050288714 | Ostroff | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
298 01 807 | Jul 1998 | DE |
202004016350 | Apr 2005 | DE |
0 095 727 | Dec 1983 | EP |
0 316 616 | May 1989 | EP |
0 316 616 | May 1989 | EP |
0 347 353 | Dec 1989 | EP |
0 517 494 | Dec 1992 | EP |
0 517 494 | Dec 1992 | EP |
0 518 599 | Dec 1992 | EP |
0 518 599 | Dec 1992 | EP |
0 536 873 | Apr 1993 | EP |
0 586 858 | Mar 1994 | EP |
0 627 237 | Dec 1994 | EP |
0 641 573 | Mar 1995 | EP |
0 641 573 | Mar 1995 | EP |
0 677 301 | Oct 1995 | EP |
0 917 887 | May 1999 | EP |
0 923 130 | Jun 1999 | EP |
1 000 634 | May 2000 | EP |
WO 9319809 | Oct 1993 | WO |
WO 9729802 | Aug 1997 | WO |
WO 9825349 | Jun 1998 | WO |
WO 9903534 | Jan 1999 | WO |
WO 9937362 | Jul 1999 | WO |
WO 9953991 | Oct 1999 | WO |
WO 0041766 | Jul 2000 | WO |
WO 0050120 | Aug 2000 | WO |
WO 0143649 | Jun 2001 | WO |
WO 0156166 | Aug 2001 | WO |
WO 0222208 | Mar 2002 | WO |
WO 0222208 | Mar 2002 | WO |
WO 0224275 | Mar 2002 | WO |
WO 0224275 | Mar 2002 | WO |
WO 02068046 | Sep 2002 | WO |
WO 03018121 | Mar 2003 | WO |
03039648 | May 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060241698 A1 | Oct 2006 | US |