Methods and implantable devices for inducing fibrillation by alternating constant current

Information

  • Patent Grant
  • 7555338
  • Patent Number
    7,555,338
  • Date Filed
    Tuesday, April 26, 2005
    19 years ago
  • Date Issued
    Tuesday, June 30, 2009
    14 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Layno; Carl H
    • Lee; Yun Haeng
    Agents
    • Pramudji Wendt & Tran, LLP
    • Pramudji; Ari
    • Schroeder; Mark
Abstract
The present invention is directed toward methods for inducing fibrillation in a patient using a controlled current AC signal applied via an implanted ICD. In some embodiments, the AC signal is applied as a series of alternating constant current pulses. Some embodiments make use of a specialized H-bridge circuit for applying the AC signal. A low-side current controlling portion of an ICD's circuitry may make up part of the specialized H-bridge circuit. Further embodiments include devices embodying these methods.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 10/011,955, filed Nov. 5, 2001 and entitled DEFIBRILLATION PACING CIRCUITRY, now U.S. Pat. No. 6,952,608, and the disclosure of which is incorporated herein by reference.


FIELD

The present invention is related to the field of electric cardiac therapy. More particularly, the present invention is related to methods and devices for inducing fibrillation with implantable medical devices.


BACKGROUND

An implantable cardioverter-defibrillator (ICD) is an implantable device designed to deliver life saving defibrillation therapy to a patient in response to potentially deadly cardiac malfunctions. Often, when an ICD is implanted, it is tested to determine whether it can function for its purpose by observing whether the ICD can provide a shock exceeding the patient's defibrillation threshold (DFT). To perform this test, the ICD is implanted and the patient's heart is caused to fibrillate in the controlled environment of an operating room. Once fibrillation is induced, the ICD is expected to shock the patient back to a normal rhythm. If so, the ICD passes at least one round of the test. This procedure may be repeated. If the ICD fails to return the patient to normal rhythm, an attending physician will take steps, such as the use of an external defibrillator, to bring the patient's heart back to normal rhythm. After failure, the ICD is normally discarded, and the procedure may be aborted or a different ICD may be used.


SUMMARY

The present invention is directed toward methods and devices for inducing fibrillation in a patient using a controlled current AC signal applied via an implanted ICD. In some embodiments, the AC signal is applied as a series of alternating constant current pulses. Some embodiments make use of a specialized H-bridge circuit for applying the AC signal. A low-side current-controlling portion of the illustrative ICD's circuitry may make up part of the specialized H-bridge circuit. Further embodiments include devices embodying these methods.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic plan view of an ICD including a lead assembly;



FIG. 2 is a block diagram illustrating the process of ICD implantation;



FIG. 3 is a block schematic for an ICD;



FIGS. 4A-4C graphically illustrate energy storage and output for several configurations;



FIG. 5 is a schematic diagram for an illustrative embodiment;



FIG. 6 is a simplified schematic diagram for another illustrative embodiment; and



FIG. 7 graphically illustrates operation of an illustrative embodiment including switch on/off and output signal.





DETAILED DESCRIPTION

The following detailed description should be read with reference to the drawings. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention. As used herein, a switch is considered open when it does not allow current to flow therethough (as in an open circuit), and closed when current is allowed to flow. As further discussed below, switches may also modulate current flow.


Several methods for inducing fibrillation for the purpose of testing an implantable cardioverter-defibrillator (ICD) have been tried. See, for example, U.S. Pat. No. 5,643,323 to Kroll et al. Initially, when devices were implanted transthoracically, ready access to the myocardium was established during implantation. From a wall outlet, with a voltage step-down, a 1 to 20 volt AC signal at 50/60 hertz could be applied directly to heart tissue to induce fibrillation.


With less invasive and/or non-transthoracic implantations, new techniques were developed. In one such technique, a catheter was introduced to the heart and fibrillation could then be induced using, again, an AC signal at 50/60 hertz. The catheter, however, represented an added complication to the procedure.


For convenience, other techniques relying on the ICD itself were developed. Overdrive pacing, where the heartbeat is captured and then pacing pulses are applied at steadily higher rate, is one approach. Another approach is to apply a pulse at a time corresponding to the patient's T-wave. A third ICD-based approach is to apply a long pulse that exceeds the cardiac cycle period. Each of these approaches has its shortcomings, as discussed by Kroll et al. in U.S. Pat. No. 5,643,323.


Kroll et al. indicates the use of a “continuous charging” method during application of a fibrillation inducing signal that may be supplied as a single long pulse or a pulse train in the form of a series of pulses of opposing polarity. In particular, power flows through the defibrillation capacitors, which are not charged in advance, and the charging transformer directly drives the output signal. This introduces a number of extraneous reactive impedances into the output signal. The output is not controlled, and is therefore imprecise. If the applied signal fails to induce fibrillation, it will likely be repeated. Application of the fibrillation inducing signal drains battery power and is likely noticeable (and discomforting) to a patient. As a result of these factors, a more precise fibrillation inducing signal is desired.


An illustrative embodiment of the present invention provides an ICD-based method of applying a constant current AC signal to a patient's heart to induce fibrillation. The constant current AC signal comprises a series of alternating positive and negative current pulses having substantially the same magnitude, both from pulse to pulse, as well as within each pulse. Power to keep the signal constant comes from the defibrillating capacitors which, prior to applying the fibrillating signal, are charged to a predetermined level sufficient for keeping the output constant. Once charged to a desired and/or sufficient degree, the energy storage system is used to provide a voltage/current source for a controlled current fibrillation inducing method. For purposes herein, a fibrillation-inducing current is considered “constant” if it is, within a reasonable range, generally independent of patient and/or lead impedance.


The constant current AC signal can be controlled using a transistor operating linearly such that current flow may be controlled or modulated by changing a control signal supplied to the transistor. Examples of transistors having such modes of operation include a field effect transistor, such as a MOSFET, and bipolar transistors such as a bipolar junction transistor or an insulated gate bipolar transistor (IGBT). Those of skill in the art will readily identify other structures that may perform in a similar or otherwise suitable fashion to control current.


The fibrillation inducing pulse is intended to disrupt tissue electrical activity that regulates muscle contraction. Current density can be a useful metric for indicating whether a given pulse will induce fibrillation. Maintaining a constant current, rather than outputting a particular voltage, may assure that a device, regardless of individual patient physiology/impedance, reliably induces a desired level of current density and, as a result, fibrillation.



FIG. 1 is a perspective view of an ICD including a lead assembly. The ICD 10 includes a canister 12 having an optional canister electrode 14 disposed thereon. A lead assembly 16 extends from the canister 12, and includes one or more electrodes 18 which may be used as shocking or sensing electrodes, or both. If desired, such an ICD may be provided in the conventional manner, including placement of the canister 12 in the patient's torso and advancement of the lead assembly 16 through the patient's vasculature to a location adjacent heart tissue or within the heart. In other embodiments, the ICD is placed subcutaneously. Examples of methods and devices for, and associated with, subcutaneous placement are illustrated in U.S. Pat. Nos. 6,788,974; 6,754,528; 6,721,597; and 6,647,292, which are assigned to the assignee of the present invention and the disclosures of which are all incorporated herein by reference.


The lead assembly 16 includes conductive elements therein for providing electrical conduction between the electrodes 18 and the canister 12. The canister 12 houses a battery and circuitry for detecting when fibrillation is occurring, and for providing a defibrillation shock.



FIG. 2 is a block diagram illustrating the process of ICD implantation. An ICD such as ICD 10 (FIG. 1) may be implanted by the following manner. First the patient is prepared 30 for implantation by creating a sterile field for placement, and, if necessary, application of general anesthesia and/or local numbing agent. Next, one or more incisions 32 are made, and the ICD/lead assembly is inserted and placed internal to the patient, as shown at 34. The lead assembly is advance to an appropriate location. Next, the ICD is tested 36 to make certain it works properly. This testing 36 may include the inducement of fibrillation and observation of whether the ICD acceptably defibrillates the patient. Finally, post-operative testing 38 may also take place. For example, within three to six months of implantation, the ICD may be tested again to determine whether physiological changes (for example, the development of scar tissue or fibroids around implanted electrodes), or other circumstances later impede ICD function.



FIG. 3 is a block schematic for an ICD. The ICD 50 typically includes batteries 52 that power a control block 54, which may include a microcontroller, logic, or the like. The control block 54 is coupled to a charger 56 that is used to relay power from the batteries 52 to energy storage 58. Energy storage 58 is a temporary energy storage system that may include one or more capacitors. The charger 56 is used to step up the voltage supplied by the batteries 52 (typically in the range of a few volts) to a voltage more suitable for defibrillation (often on the order of hundreds of volts), and store this energy at the higher voltage in the energy storage 58. The energy storage 58 is electrically connected to coupling circuitry 60 that is used to connect with the patient 62. Sensing circuitry 64 is also connected to the coupling circuitry 60, and is used by the control block 54 to determine whether defibrillation is needed. The sensing circuitry 64 may include suitable circuitry and circuit elements for amplifying, filtering, and/or analysis of cardiac signals.


The typical operation of an ICD for defibrillation includes the following. First, the control block 54 determines, using the sensing circuitry 64, that defibrillation is needed due to the occurrence of a malignant cardiac condition. Next, the control block 54 causes the charger 56 to begin charging the energy storage 58. Once the energy storage 58 is charged to a desired level or for a predetermined time, the control block 54 causes the coupling circuitry 60 to discharge the energy storage 58 to the patient 62.



FIGS. 4A-4C illustrate example output waveforms for certain fibrillation inducing waveforms. FIG. 4A shows an output current waveform over time for a typical ICD when a long pulse is emitted from a charged capacitive energy storage system. Assuming, for example, at 125 μF capacitance and a 50 ohm load resistance, a time constant of 6.3 milliseconds would occur. This means that within 6.3 milliseconds of closing the switches to discharge the capacitance, 63% of the stored charge would be discharged, shown at point tC. This discharge is quick and is not controlled, particularly because the load impedance varies from patient to patient.



FIG. 4B illustrates another uncontrolled ouput. In this example, a steady voltage is applied across a varying load. Such an example illustrates what may happen when a voltage output fibrillation-inducing signal is applied to different patients having different internal impedances. Three different current signals are shown 100, 102, 104. Signal 100 significantly larger than the amplitude of signal 102, which is still larger than signal 104. The three signals 100, 102, 104 can be produced using the same voltage output applied across three different impedances. For example, in some patient populations the impedance between implanted electrodes may vary for a subcutaneous system between 25-200 ohms. With respect to causing fibrillation in a patient, a system using such an uncontrolled output may need to be designed such that the smallest magnitude current, signal 104, is sufficient to cause fibrillation. This causes an unnecessarily large signal to be applied for some patients. With respect to the system proposed by Kroll et al. in the '323 patent, the voltage output under consideration would be the charger output voltage, as attenuated by the intervening power capacitors and whatever other circuit elements are in the current path.



FIG. 4C is a graph comparing energy storage and output signal for an illustrative embodiment. A first line 110 illustrates voltage remaining on a power capacitor during an uncontrolled discharge after high-voltage charging (similar to that shown in FIG. 4A), a second line 112 is shown representing current delivered to the patient using a controlled discharge in accordance with an illustrative embodiment, and a third line 114 illustrates the voltage remaining on a power capacitor during the controlled discharge using line 112. Within line 112, the +blocks 116 represent a first polarity of current delivery, and The −blocks 118 illustrate a second polarity for current delivery. Small blank periods are shown between +blocks and −blocks to allow the device to safely switch polarities. Each block may be about ten milliseconds in duration, though specific durations may vary.


For the illustrative embodiment, it can be seen that the voltage remaining on the capacitor during controlled discharge (line 114) is reduced in a generally linear manner, while the uncontrolled discharge (line 110) causes voltage reduction in an exponential fashion. Thus, while the uncontrolled capacitor discharge starts at a much higher level, it quickly dissipates such that the controlled discharge provides a larger signal as time goes on. For controlled discharge, the capacitor may be charged sufficiently to allow the device to operate as a constant current source until the fibrillation inducing signal has been delivered. During application of the fibrillation inducing signal, the charger may continue to charge the capacitors. It is believed that delivery of a constant current signal may provide a more reliable fibrillation inducing system. The embodiments illustrated by reference to FIGS. 5-6 are adapted to provide just such an output.


Because patient physiology can vary, the actual amount of energy needed to produce the fibrillation inducing stimulus varies as well. More specifically, the patient impedance can vary, such that the power/energy needed varies in direct proportion thereto, as in E=P*t=I2Rp*t, with Rp being variable from patient to patient, and even sometimes changing at different times due to patient movement or respiration, or differing patient hydration and electrolyte balance. In an illustrative embodiment, a worst-case scenario is estimated or defined, and the capacitor is charged sufficiently to assure constant current can be provided in the defined worst-case scenario. For example, assuming a worst case impedance of about 200 Ohms, and assuming a desired current of 250 mA, then a minimum voltage can be estimated for the capacitor charge depending upon the period of time for which pulses are applied, and the overall capacitance. Thus, if:

VMIN ENDING=I*ZMAX+VSM;
V=Q/C; and
ΔV=ΔQ/C=I*Δt/C;

Then:

VMIN START=VMIN ENDING+ΔV=VSM+I*(ZMAX+Δt/C)

Where ZMAX is the worst case impedance, VSM is a voltage safety margin, I is the constant current magnitude, Δt is the time during which constant current is applied in the entire fibrillation pulse (both positive and negative pulses), and C is the capacitance of the capacitor(s) on which charge is stored for use in the fibrillation inducing pulse. VSM may account for voltage drops occurring across any switches, transistors, or other elements included in the coupling circuitry.



FIG. 5 is a schematic diagram for an illustrative embodiment. A relatively complete embodiment is shown including various additional components that are not necessary to the practice of the present invention. A number of switches are shown without specifying the type of switch being used; any suitable switch including, for example, IGBT, MOSFET, or bipolar junction transistors may be used as switches. FIG. 6 shows a more specific illustrative example including the use of IGBT devices, but excludes certain components that do not aid in the understanding of the example. It should be noted that the “ICD” embodiments shown in FIGS. 5 and 6 are also adapted for use as pacing devices, as further noted below. Thus, the use of the term “ICD” should be understood as implying devices having at least cardioversion or defibrillation functionality, without excluding devices having further functions such as, for example, pacing functionality.


The ICD 200 includes a battery 202 that is coupled to a charger 204. The charger 204 steps up the output voltage of the battery 202 to a level appropriate for charging the high power capacitor 206. While a single high power capacitor 206 is shown, it is understood that element 206 may represent a single or more actual capacitors placed in a suitable configuration.


The capacitor 206 is coupled to a first high side switch 208 and a second high side switch 210. These switches 208, 210 may be controlled in any suitable fashion. A first low side switch 212 and a second low side switch 214 are also shown. Current is directed to the patient, P (shown schematically as an impedance), using two electrodes, with one coupled to the junction of the first high and low side switches 208, 212, and the other coupled to the junction of the second high and low side switches 210, 214.


The first and second low side switches 212, 214 have outputs going to a low side having two outlet legs. A first outlet leg is a defibrillation (DF) leg 218 having a DF switch, and the second outlet leg is a pacing leg 220. During ordinary operation, the DF switch in the first outlet leg 218 is closed, pulling the outputs of the low side switches 212, 214 to ground. This configuration is suited for application of a high voltage defibrillation pulse to the patient P. For a pacing function, the DF switch is open in DF leg 218 such that current is directed through the resistor in the pacing leg 220. Typically the pacing leg resistor will be relatively small but sufficient to allow control over current passing therethrough. In an illustrative embodiment, the resistor in the pacing leg 220 has a resistance in the range of one to five (1-5) ohms, though any suitable resistor may be used. In an illustrative method of inducing fibrillation in the patient, the DF switch 218 is opened.


The first low side switch 212 is controlled by a control signal generated using an operational amplifier 222 through a first multiplexer 224. The first multiplexer 224 has inputs A and B, and control C. The output of amplifier 222 is coupled to input A of multiplexer 224, while another input 228 is generated for input B. In response to a signal 226 applied at control C of multiplexer 224, an output is provided to control the first low side switch 212, the output being selected from inputs A and B. The operational amplifier 222 also provides a control signal that can be used by the second low side switch 214 through a second multiplexer 232. Multiplexer 232 also takes inputs A and B, with input A coming from the operational amplifier 222, and input B being generated as signal 236 from an associated control block. Control C is shown receiving a signal 234 which may also be generated by an associated control block. If desired, signals 226 and 234 may be provided as a single signal in some embodiments.


The control signal from the operational amplifier 222 is generated by the use of a digital to analog converter (DAC) 234 and feedback from the node at the output of the low side switches 212, 214. In particular, the operational amplifier 222 drives whichever low side switch 212, 214 is selected allow sufficient current flow to allow the feedback voltage to equal the voltage output by the DAC 232. The following chart illustrates operation of the system of FIG. 5 and DAC 232 in various modes, with A and B representing the direction of current flow during a given mode:


















Mode
DF - A
DF - B
Pace - A
Pace - B
Induce Fib. A
Induce Fib. B







SW 208
Closed
Open
Closed
Open
Closed
Open


SW 210
Open
Closed
Open
Closed
Open
Closed


Trans 212
Off
On
Off
Adjustable
Off
Adjustable


Trans 214
On
Off
Adjustable
Off
Adjustable
Off


SW - leg 218
Closed
Closed
Open
Open
Open
Open


MUX 224
B
B
A
A
A
A


Control 226
High
High
Low
Low
Low
Low


Input 228
Low
High
N.A.
N.A.
N.A.
N.A.


DAC 230
N.A.
N.A.
Adjustable
Adjustable
Adjustable
Adjustable


MUX 232
B
B
A
A
A
A


Control 234
High
High
Low
Low
Low
Low


Input 236
High
Low
N.A.
N.A.
N.A.
N.A.










Control signals for several of the above elements may come from a control block (not shown).



FIG. 6 illustrates, in both a more simplified and more specific manner, a circuit in accordance with another illustrative embodiment. In particular, a number of switches are omitted to provide easier analysis of circuit operation for a first polarity pulse that may form part of a constant current pulse train. The illustrative ICD 300 includes a positive high voltage +V 302 that is initially charged to a desired level. A first high side switch 304 is shown as an IGBT and is controlled by a first control block 306 which may use the output of the switch 304 to provide a reference for opening or closing the first switch 304. The first control block 306 also takes a control signal from operational circuitry C that controls the operation of the ICD. A second high side switch 310 is also shown, with a second control block 312 similar to the first control block 306. If so desired, the first and second high side switches 304, 310, may be replaced by silicon controlled rectifiers (SCR). If SCR devices are used for either or both of switches 304, 310, the control circuitry 306, 312 may be suitably modified.


Current from either of the high side switches 306 is directed to the patient 314 (shown as an impedance Rp) via electrodes 316, 318. Current then goes to one of a first low side switch 320 or a second low side switch 328, which are each shown at IGBT devices. Control circuitry for the first low side switch is shown schematically as including an operational amplifier 322 and a DAC 324. The inverting input of the operational amplifier 322 is coupled to node 326, while the non-inverting input of the operational amplifier 322 is coupled to the output of the DAC 324. A resistor 330 couples node 326 to ground. Control circuitry for controlling the low side leg including low side switch 328 is omitted for simplicity; it can be seen from FIG. 5 that the use of a few switches allows the operational amplifier 320 and DAC 322 to be reused for both legs.


When a fibrillation inducing pulse train is desired, a first step is to charge a capacitor (not shown) used to provide +V 302. The capacitor may be charged to a level reasonably anticipated to allow a constant current output during application of the fibrillation inducing pulse train. With the capacitor charged, a control signal is supplied to the second control block 312 to close the second high side switch 310. At about the same time (or just earlier in time), the DAC 324 provides a signal to the operational amplifier 322 causing the operational amplifier 322 to provide a closing signal to the first low side switch 320.


With each of switches 310 and 320 closed, positive current follows a path from +V 302, through the second high side switch 310, to electrode 318 and into the patient, shown as impedance 314. The current is captured at electrode 316 and passes through the first low side switch 320 to node 326 and through the resistor 330 to ground/reference.


Initially, with no current flow, the operational amplifier 322 may provide a “HIGH” output, for example, by going directly to its rail voltage, essentially closing switch 320. Once current begins to flow through resistor 330, the voltage at node 326 rises in proportion to the amount of current flowing. As the voltage at node 326 rises, it begins to approach the output from the DAC 324. The voltage difference between node 326 and the output from the DAC 324 reaches a point where the operational amplifier 322 provides a reduced output to the first low side switch 320, causing the first low side switch 320 to modulate the current flowing therethrough. This all occurs quite quickly (typically within a few microseconds or less) and equilibrium is reached where the voltage at node 326 approximates the voltage output from the DAC 324. This configuration renders the low side leg including first low side switch 320 a constant current source, as long as the voltage +V 302 remains high enough such that the voltage drop across the patient 314, given the current flowing, allows the switch 320 to operate as an amplifier.


Those of skill in the art will readily understand operation making use of the first high side switch 304 and second low side switch 328 in like fashion will generate a constant current signal with an opposite sign.



FIG. 7 graphically illustrates operation of an illustrative embodiment including switch on/off and output signal. The graph is divided into 10 millisecond intervals at the top. It can be seen that the high side switches are toggled every 10 milliseconds, with one switch closing and the other opening at about the same time. This gives a 20 millisecond period. The period can be selected as desired, for example, between 8 and 100 milliseconds, or between 16 and 40 milliseconds. The low side switches can be manipulated such that both are closed for a period of time before the high side switches are switched. Such a step is not required, but can be useful if there is a concern that a high side switch embodied as a silicon controlled rectifier (SCR) may remain open if current continues to flow through the switch even though it is powered down. In short, an SCR requires a minimum current flow to remain in a closed state allowing current flow, but also requires that current drop below the minimum level in order to shut off. The methods illustrated in U.S. patent application Ser. No. 10/011,957, filed Nov. 5, 2001, now U.S. Pat. No. 6,952,608, and the entire disclosure of which is incorporated herein by reference, can be used to assure positive turn-on of the high side switches.


As can be seen, the patient current is zero for a short time when both low side switches are closed, and is otherwise at either +I or −I, depending on the configuration of high and low side switches that not opened. If operating within a range of patient impedances including any predefined “worst-case” scenario impedances, the current will be constant regardless of the actual patient impedance for the duration of the fibrillation inducing signal.


Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.

Claims
  • 1. A method of inducing fibrillation in a patient, the method comprising applying an alternating current to the patient from an implantable cardioverter defibrillator (ICD), wherein: the alternating current comprises a series of alternating pulses each having a substantially constant current;the ICD comprises a stimulus delivery circuit having a high side and a low side, the high side having a first switch coupled to a first node and a second switch coupled to a second node, the first and second nodes being respectively coupled to first and second electrodes configured for delivering stimulus to the patient, the low side comprising a third switch coupling the first node to a low node and a fourth switch coupling the second node to the low node, and control circuitry coupled to the first, second, third and fourth switches and configured to perform an induction sequence including successively engaging the switches in an alternating sequence to produce an alternating output;the low node is coupled to ground or reference for the circuit via a stimulus switch in parallel with a feedback resistor; anda current modulation circuit is provided including a transistor having current inlet node, a current outlet node, and a control node, the control node being coupled to a feedback circuit that takes an input signal from the low node and a control voltage from the control circuitry to modulate current flow through the feedback resistor while the stimulus switch is open during the induction sequence such that a substantially constant current is maintained for the alternating current.
  • 2. The method of claim 1, wherein the alternating current has a period in the range of 8-100 milliseconds.
  • 3. The method of claim 2, wherein the alternating current has a period in the range of 16-40 milliseconds.
  • 4. The method of claim 1, wherein the alternating sequence includes at least the following switch states: first switch closed, second switch open, third switch open, and fourth switch engaged, wherein the fourth switch is engaged using the current modulation circuit such that the fourth switch allows a substantially constant current to flow therethrough; and first switch open, second switch closed, third switch engaged, and fourth switch open, wherein the third switch is engaged using the current modulation circuit such that the third switch allows a substantially constant current to flow therethrough.
  • 5. The method of claim 1, wherein the ICD includes a digital to analog converter (DAC) that provides the control voltage for the current modulation circuit.
  • 6. The method of claim 1, wherein the ICD includes an energy storage system for use in providing defibrillation stimulus, the method further comprising at least partly charging the energy storage system, wherein the step of applying an alternating current includes at least partly discharging the energy storage system to the patient.
US Referenced Citations (151)
Number Name Date Kind
3653387 Ceier Apr 1972 A
3710374 Kelly Jan 1973 A
3911925 Tillery, Jr. Oct 1975 A
4030509 Heilman et al. Jun 1977 A
4157720 Greatbatch Jun 1979 A
4164946 Langer Aug 1979 A
4184493 Langer et al. Jan 1980 A
4191942 Long Mar 1980 A
4210149 Heilman et al. Jul 1980 A
RE30387 Denniston, III et al. Aug 1980 E
4223678 Langer et al. Sep 1980 A
4248237 Kenny Feb 1981 A
4254775 Langer Mar 1981 A
4291707 Heilman et al. Sep 1981 A
4300567 Kolenik et al. Nov 1981 A
4314095 Moore et al. Feb 1982 A
4375817 Engle et al. Mar 1983 A
4402322 Duggan Sep 1983 A
4407288 Langer et al. Oct 1983 A
4424818 Doring et al. Jan 1984 A
4450527 Sramek May 1984 A
4548209 Weilders et al. Oct 1985 A
4567900 Moore Feb 1986 A
4595009 Leinders Jun 1986 A
4602637 Elmqvist et al. Jul 1986 A
4603705 Speicher et al. Aug 1986 A
4693253 Adams Sep 1987 A
4727877 Kallok Mar 1988 A
4750494 King Jun 1988 A
4765341 Mower et al. Aug 1988 A
4768512 Imran Sep 1988 A
4800883 Winstrom Jan 1989 A
4830005 Woskow May 1989 A
4944300 Saksena Jul 1990 A
5044374 Lindemans et al. Sep 1991 A
5105810 Collins et al. Apr 1992 A
5105826 Smits et al. Apr 1992 A
5109842 Adinolfi May 1992 A
5129392 Bardy et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144946 Weinberg et al. Sep 1992 A
5184616 Weiss Feb 1993 A
5191901 Dahl et al. Mar 1993 A
5203348 Dahl et al. Apr 1993 A
5215081 Ostroff Jun 1993 A
5230337 Dahl et al. Jul 1993 A
5255692 Neubauer et al. Oct 1993 A
5261400 Bardy Nov 1993 A
5279293 Andersen et al. Jan 1994 A
5300106 Dahl et al. Apr 1994 A
5313953 Yomtov et al. May 1994 A
5331966 Bennett et al. Jul 1994 A
5342407 Dahl et al. Aug 1994 A
5366496 Dahl et al. Nov 1994 A
5376103 Anderson et al. Dec 1994 A
5376104 Sakai et al. Dec 1994 A
5385574 Hauser et al. Jan 1995 A
5391186 Kroll et al. Feb 1995 A
5391200 KenKnight et al. Feb 1995 A
5405363 Kroll et al. Apr 1995 A
5411539 Neisz May 1995 A
5411547 Causey, III May 1995 A
5413591 Knoll May 1995 A
5423326 Wang et al. Jun 1995 A
5439485 Mar et al. Aug 1995 A
5447521 Anderson et al. Sep 1995 A
5476503 Yang Dec 1995 A
5509923 Middleman et al. Apr 1996 A
5509928 Acken Apr 1996 A
5531765 Pless Jul 1996 A
5531766 Kroll et al. Jul 1996 A
5534019 Paspa Jul 1996 A
5534022 Hoffmann et al. Jul 1996 A
5597956 Ito et al. Jan 1997 A
5601607 Adams Feb 1997 A
5603732 Dahl et al. Feb 1997 A
5607455 Armstrong Mar 1997 A
5609618 Archer Mar 1997 A
5618287 Fogarty et al. Apr 1997 A
5620477 Pless et al. Apr 1997 A
5643323 Kroll et al. Jul 1997 A
5643328 Cooke et al. Jul 1997 A
5645586 Meltzer Jul 1997 A
5658317 Haefner et al. Aug 1997 A
5658319 Kroll Aug 1997 A
5658321 Fayram et al. Aug 1997 A
5674260 Weinberg Oct 1997 A
5690648 Fogarty et al. Nov 1997 A
5690683 Haefner et al. Nov 1997 A
5697953 Kroll et al. Dec 1997 A
5713926 Hauser et al. Feb 1998 A
5733310 Lopin et al. Mar 1998 A
5766226 Pedersen Jun 1998 A
5776169 Schroeppel Jul 1998 A
5814090 Latterell et al. Sep 1998 A
5824018 Dreher et al. Oct 1998 A
5827326 Kroll et al. Oct 1998 A
5830236 Mouchawar et al. Nov 1998 A
5836976 Min et al. Nov 1998 A
5843132 Ilvento Dec 1998 A
5895414 Sanchez-Zambrano Apr 1999 A
5904705 Kroll et al. May 1999 A
5919211 Adams Jul 1999 A
5919222 Hjelle et al. Jul 1999 A
5925069 Graves et al. Jul 1999 A
5935154 Westlund Aug 1999 A
5941904 Johnston et al. Aug 1999 A
5954753 Alt et al. Sep 1999 A
5957956 Kroll et al. Sep 1999 A
6014586 Weinberg et al. Jan 2000 A
6026325 Weinberg et al. Feb 2000 A
6058328 Levine et al. May 2000 A
6093173 Balceta et al. Jul 2000 A
6095987 Shmulewitz et al. Aug 2000 A
6096063 Lopin et al. Aug 2000 A
H1905 Hill Oct 2000 H
6128531 Campbell-Smith Oct 2000 A
6144866 Miesel et al. Nov 2000 A
6144879 Gray Nov 2000 A
6148230 KenKnight Nov 2000 A
6185450 Seguine et al. Feb 2001 B1
6208896 Mulhauser Mar 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6278894 Salo et al. Aug 2001 B1
6280462 Hauser et al. Aug 2001 B1
6334071 Lu Dec 2001 B1
6345198 Mouchawar et al. Feb 2002 B1
6411844 Kroll et al. Jun 2002 B1
6647292 Bardy et al. Nov 2003 B1
6721597 Bardy et al. Apr 2004 B1
6738664 McDaniel May 2004 B1
6754528 Bardy et al. Jun 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788974 Bardy et al. Sep 2004 B2
6834204 Ostroff et al. Dec 2004 B2
6856835 Bardy et al. Feb 2005 B2
6865417 Rissmann et al. Mar 2005 B2
6866044 Bardy et al. Mar 2005 B2
6952608 Ostroff Oct 2005 B2
20010027330 Sullivan et al. Oct 2001 A1
20030088281 Ostroff et al. May 2003 A1
20030088282 Ostroff May 2003 A1
20030088283 Ostroff May 2003 A1
20030120310 Mulhauser Jun 2003 A1
20030216786 Russial Nov 2003 A1
20040088011 Snyder et al. May 2004 A1
20040172068 Sullivan et al. Sep 2004 A1
20040254611 Palreddy et al. Dec 2004 A1
20040254613 Ostroff et al. Dec 2004 A1
20050049644 Warren et al. Mar 2005 A1
20050288714 Ostroff Dec 2005 A1
Foreign Referenced Citations (36)
Number Date Country
298 01 807 Jul 1998 DE
202004016350 Apr 2005 DE
0 095 727 Dec 1983 EP
0 316 616 May 1989 EP
0 316 616 May 1989 EP
0 347 353 Dec 1989 EP
0 517 494 Dec 1992 EP
0 517 494 Dec 1992 EP
0 518 599 Dec 1992 EP
0 518 599 Dec 1992 EP
0 536 873 Apr 1993 EP
0 586 858 Mar 1994 EP
0 627 237 Dec 1994 EP
0 641 573 Mar 1995 EP
0 641 573 Mar 1995 EP
0 677 301 Oct 1995 EP
0 917 887 May 1999 EP
0 923 130 Jun 1999 EP
1 000 634 May 2000 EP
WO 9319809 Oct 1993 WO
WO 9729802 Aug 1997 WO
WO 9825349 Jun 1998 WO
WO 9903534 Jan 1999 WO
WO 9937362 Jul 1999 WO
WO 9953991 Oct 1999 WO
WO 0041766 Jul 2000 WO
WO 0050120 Aug 2000 WO
WO 0143649 Jun 2001 WO
WO 0156166 Aug 2001 WO
WO 0222208 Mar 2002 WO
WO 0222208 Mar 2002 WO
WO 0224275 Mar 2002 WO
WO 0224275 Mar 2002 WO
WO 02068046 Sep 2002 WO
WO 03018121 Mar 2003 WO
03039648 May 2003 WO
Related Publications (1)
Number Date Country
20060241698 A1 Oct 2006 US