The present disclosure relates generally to computer user interfaces, and more specifically to techniques for managing media playback devices.
The number of electronic devices, and particularly smart devices, in users' homes continues to increase. These devices are becoming increasingly complex, capable of being interconnected with each other, and capable of performing more complicated tasks. As such, these devices can benefit from additional methods and interfaces for managing media playback.
Some techniques for managing media playback devices using electronic devices, however, are generally cumbersome and inefficient. For example, some existing techniques use a complex and time-consuming user interface, which may include multiple key presses or keystrokes. Existing techniques require more time than necessary, wasting user time and device energy. This latter consideration is particularly important in battery-operated devices.
Accordingly, the present technique provides electronic devices with faster, more efficient methods and interfaces for managing media playback devices. Such methods and interfaces optionally complement or replace other methods for controlling media playback. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges.
In accordance with some embodiments, a method performed at a computer system that is in communication with a first external device is described. The method comprises: detecting a change in distance between the computer system and the first external device; and in response to detecting the change in distance: in accordance with a determination that a current distance of the computer system from the first external device is less than a first threshold distance but greater than a second threshold distance, generating feedback that indicates that a first operation will be performed when the second threshold distance is reached, wherein the feedback varies based at least in part on a distance of the computer system to the first external device, including: in accordance with a determination that the change in distance includes movement of the computer system toward the first external device, changing a current value for a feedback parameter of the feedback in a first direction; and in accordance with a determination that the change in distance includes movement of the computer system away from the first external device, changing the current value for the feedback parameter of the feedback in a second direction that is different from the first direction; and in accordance with a determination that the current distance of the computer system from the first external device is less than the second threshold distance, performing the first operation.
In accordance with some embodiments, a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system in communication with a first external device is described. The one or more programs include instructions for: detecting a change in distance between the computer system and the first external device; and in response to detecting the change in distance: in accordance with a determination that a current distance of the computer system from the first external device is less than a first threshold distance but greater than a second threshold distance, generating feedback that indicates that a first operation will be performed when the second threshold distance is reached, wherein the feedback varies based at least in part on a distance of the computer system to the first external device, including: in accordance with a determination that the change in distance includes movement of the computer system toward the first external device, changing a current value for a feedback parameter of the feedback in a first direction; and in accordance with a determination that the change in distance includes movement of the computer system away from the first external device, changing the current value for the feedback parameter of the feedback in a second direction that is different from the first direction; and in accordance with a determination that the current distance of the computer system from the first external device is less than the second threshold distance, performing the first operation.
In accordance with some embodiments, a transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system in communication with a first external device is described. The one or more programs include instructions for: detecting a change in distance between the computer system and the first external device; and in response to detecting the change in distance: in accordance with a determination that a current distance of the computer system from the first external device is less than a first threshold distance but greater than a second threshold distance, generating feedback that indicates that a first operation will be performed when the second threshold distance is reached, wherein the feedback varies based at least in part on a distance of the computer system to the first external device, including: in accordance with a determination that the change in distance includes movement of the computer system toward the first external device, changing a current value for a feedback parameter of the feedback in a first direction; and in accordance with a determination that the change in distance includes movement of the computer system away from the first external device, changing the current value for the feedback parameter of the feedback in a second direction that is different from the first direction; and in accordance with a determination that the current distance of the computer system from the first external device is less than the second threshold distance, performing the first operation.
In accordance with some embodiments, a computer system in communication with a first external device is described. The computer system comprises one or more processors, and memory storing one or more programs configured to be executed by the one or more processors. The one or more programs include instructions for: detecting a change in distance between the computer system and the first external device; and in response to detecting the change in distance: in accordance with a determination that a current distance of the computer system from the first external device is less than a first threshold distance but greater than a second threshold distance, generating feedback that indicates that a first operation will be performed when the second threshold distance is reached, wherein the feedback varies based at least in part on a distance of the computer system to the first external device, including: in accordance with a determination that the change in distance includes movement of the computer system toward the first external device, changing a current value for a feedback parameter of the feedback in a first direction; and in accordance with a determination that the change in distance includes movement of the computer system away from the first external device, changing the current value for the feedback parameter of the feedback in a second direction that is different from the first direction; and in accordance with a determination that the current distance of the computer system from the first external device is less than the second threshold distance, performing the first operation.
In accordance with some embodiments, a computer system in communication with a first external device is described. The computer system comprises means for detecting a change in distance between the computer system and the first external device; and means for, in response to detecting the change in distance: in accordance with a determination that a current distance of the computer system from the first external device is less than a first threshold distance but greater than a second threshold distance, generating feedback that indicates that a first operation will be performed when the second threshold distance is reached, wherein the feedback varies based at least in part on a distance of the computer system to the first external device, including: in accordance with a determination that the change in distance includes movement of the computer system toward the first external device, changing a current value for a feedback parameter of the feedback in a first direction; and in accordance with a determination that the change in distance includes movement of the computer system away from the first external device, changing the current value for the feedback parameter of the feedback in a second direction that is different from the first direction; and in accordance with a determination that the current distance of the computer system from the first external device is less than the second threshold distance, performing the first operation.
In accordance with some embodiments, a method performed at a computer system that is in communication with a display generation component and one or more input devices is described. The method comprises: in response to a determination that a distance between the computer system and a first external device is less than a first threshold distance: in accordance with a determination that a first set of criteria is met, wherein the first set of criteria includes a criterion that is met when the computer system is currently playing first media and the first external device is playing second media, displaying a media control user interface that includes: a first selectable graphical user interface object for starting playback of the first media on the first external device; and one or more selectable user interface objects for controlling the playback of the second media on the first external device, including a first media control selectable graphical user interface object; while displaying the media control user interface, receiving, via the one or more input devices, an input; and in response to receiving the input: in accordance with a determination that the input corresponds to the first selectable graphical user interface object, initiating a process to cause the first external device to playback the first media; and in accordance with a determination that the input corresponds to the first media control selectable graphical user interface object, initiating a process for controlling playback of the second media by the first external device.
In accordance with some embodiments, a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system in communication with a display generation component and one or more input devices is described. The one or more programs include instructions for: in response to a determination that a distance between the computer system and a first external device is less than a first threshold distance: in accordance with a determination that a first set of criteria is met, wherein the first set of criteria includes a criterion that is met when the computer system is currently playing first media and the first external device is playing second media, displaying a media control user interface that includes: a first selectable graphical user interface object for starting playback of the first media on the first external device; and one or more selectable user interface objects for controlling the playback of the second media on the first external device, including a first media control selectable graphical user interface object; while displaying the media control user interface, receiving, via the one or more input devices, an input; and in response to receiving the input: in accordance with a determination that the input corresponds to the first selectable graphical user interface object, initiating a process to cause the first external device to playback the first media; and in accordance with a determination that the input corresponds to the first media control selectable graphical user interface object, initiating a process for controlling playback of the second media by the first external device.
In accordance with some embodiments, a transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system in communication with a display generation component and one or more input devices is described. The one or more programs include instructions for: in response to a determination that a distance between the computer system and a first external device is less than a first threshold distance: in accordance with a determination that a first set of criteria is met, wherein the first set of criteria includes a criterion that is met when the computer system is currently playing first media and the first external device is playing second media, displaying a media control user interface that includes: a first selectable graphical user interface object for starting playback of the first media on the first external device; and one or more selectable user interface objects for controlling the playback of the second media on the first external device, including a first media control selectable graphical user interface object; while displaying the media control user interface, receiving, via the one or more input devices, an input; and in response to receiving the input: in accordance with a determination that the input corresponds to the first selectable graphical user interface object, initiating a process to cause the first external device to playback the first media; and in accordance with a determination that the input corresponds to the first media control selectable graphical user interface object, initiating a process for controlling playback of the second media by the first external device.
In accordance with some embodiments, a computer system in communication with a display generation component and one or more input devices is described. The computer system comprises a display generation component, one or more input devices, one or more processors, and memory storing one or more programs configured to be executed by the one or more processors. The one or more programs include instructions for: in response to a determination that a distance between the computer system and a first external device is less than a first threshold distance: in accordance with a determination that a first set of criteria is met, wherein the first set of criteria includes a criterion that is met when the computer system is currently playing first media and the first external device is playing second media, displaying a media control user interface that includes: a first selectable graphical user interface object for starting playback of the first media on the first external device; and one or more selectable user interface objects for controlling the playback of the second media on the first external device, including a first media control selectable graphical user interface object; while displaying the media control user interface, receiving, via the one or more input devices, an input; and in response to receiving the input: in accordance with a determination that the input corresponds to the first selectable graphical user interface object, initiating a process to cause the first external device to playback the first media; and in accordance with a determination that the input corresponds to the first media control selectable graphical user interface object, initiating a process for controlling playback of the second media by the first external device.
In accordance with some embodiments, a computer system in communication with a display generation component and one or more input devices is described. The computer system comprises a display generation component, one or more input devices, and means for in response to a determination that a distance between the computer system and a first external device is less than a first threshold distance: in accordance with a determination that a first set of criteria is met, wherein the first set of criteria includes a criterion that is met when the computer system is currently playing first media and the first external device is playing second media, displaying a media control user interface that includes: a first selectable graphical user interface object for starting playback of the first media on the first external device; and one or more selectable user interface objects for controlling the playback of the second media on the first external device, including a first media control selectable graphical user interface object; while displaying the media control user interface, receiving, via the one or more input devices, an input; and in response to receiving the input: in accordance with a determination that the input corresponds to the first selectable graphical user interface object, initiating a process to cause the first external device to playback the first media; and in accordance with a determination that the input corresponds to the first media control selectable graphical user interface object, initiating a process for controlling playback of the second media by the first external device.
In accordance with some embodiments, a method performed at a computer system that is in communication with a touch-sensitive surface is described. The touch-sensitive surface includes a first portion that is associated with a first operation and a second portion that is associated with a second operation, different from the first operation. The method comprises: detecting, via the touch-sensitive surface, a first input, wherein detecting the first input includes detecting first contact having a respective size; and in response to detecting the first input: in accordance with a determination that the respective size of the first contact is less than a first threshold size and that the first input is directed to the first portion of the touch-sensitive surface, initiating a process for performing the first operation; and in accordance with a determination that the respective size of the first contact is less than the first threshold size and that the first input is directed to the second portion of the touch-sensitive surface, initiating a process for performing the second operation; and in accordance with a determination that the respective size of the first contact is greater than the first threshold size, initiating a process for performing the first operation without regard for whether the first input is directed to the first portion or the second portion of the touch-sensitive surface.
In accordance with some embodiments, a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system in communication with a touch-sensitive surface is described. The touch-sensitive surface includes a first portion that is associated with a first operation and a second portion that is associated with a second operation, different from the first operation. The one or more programs include instructions for: detecting, via the touch-sensitive surface, a first input, wherein detecting the first input includes detecting first contact having a respective size; and in response to detecting the first input: in accordance with a determination that the respective size of the first contact is less than a first threshold size and that the first input is directed to the first portion of the touch-sensitive surface, initiating a process for performing the first operation; and in accordance with a determination that the respective size of the first contact is less than the first threshold size and that the first input is directed to the second portion of the touch-sensitive surface, initiating a process for performing the second operation; and in accordance with a determination that the respective size of the first contact is greater than the first threshold size, initiating a process for performing the first operation without regard for whether the first input is directed to the first portion or the second portion of the touch-sensitive surface.
In accordance with some embodiments, a transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system in communication with a touch-sensitive surface is described. The touch-sensitive surface includes a first portion that is associated with a first operation and a second portion that is associated with a second operation, different from the first operation. The one or more programs include instructions for: detecting, via the touch-sensitive surface, a first input, wherein detecting the first input includes detecting first contact having a respective size; and in response to detecting the first input: in accordance with a determination that the respective size of the first contact is less than a first threshold size and that the first input is directed to the first portion of the touch-sensitive surface, initiating a process for performing the first operation; and in accordance with a determination that the respective size of the first contact is less than the first threshold size and that the first input is directed to the second portion of the touch-sensitive surface, initiating a process for performing the second operation; and in accordance with a determination that the respective size of the first contact is greater than the first threshold size, initiating a process for performing the first operation without regard for whether the first input is directed to the first portion or the second portion of the touch-sensitive surface.
In accordance with some embodiments, a computer system in communication with a touch-sensitive surface is described. The computer system comprises a touch-sensitive surface that includes a first portion that is associated with a first operation and a second portion that is associated with a second operation, different from the first operation; one or more processors; and memory storing one or more programs configured to be executed by the one or more processors. The one or more programs include instructions for: detecting, via the touch-sensitive surface, a first input, wherein detecting the first input includes detecting first contact having a respective size; and in response to detecting the first input: in accordance with a determination that the respective size of the first contact is less than a first threshold size and that the first input is directed to the first portion of the touch-sensitive surface, initiating a process for performing the first operation; and in accordance with a determination that the respective size of the first contact is less than the first threshold size and that the first input is directed to the second portion of the touch-sensitive surface, initiating a process for performing the second operation; and in accordance with a determination that the respective size of the first contact is greater than the first threshold size, initiating a process for performing the first operation without regard for whether the first input is directed to the first portion or the second portion of the touch-sensitive surface.
In accordance with some embodiments, a computer system in communication with a touch-sensitive surface is described. The computer system comprises a touch-sensitive surface that includes a first portion that is associated with a first operation and a second portion that is associated with a second operation, different from the first operation; and means for detecting, via the touch-sensitive surface, a first input, wherein detecting the first input includes detecting first contact having a respective size; and means for in response to detecting the first input: in accordance with a determination that the respective size of the first contact is less than a first threshold size and that the first input is directed to the first portion of the touch-sensitive surface, initiating a process for performing the first operation; and in accordance with a determination that the respective size of the first contact is less than the first threshold size and that the first input is directed to the second portion of the touch-sensitive surface, initiating a process for performing the second operation; and in accordance with a determination that the respective size of the first contact is greater than the first threshold size, initiating a process for performing the first operation without regard for whether the first input is directed to the first portion or the second portion of the touch-sensitive surface.
In accordance with some embodiments, a method performed at a computer system that includes a touch-sensitive display is described. The touch-sensitive display has a first portion and a second portion, and includes one or more physical features that distinguishes the second portion from the first portion. The method comprises: while the first portion of the touch-sensitive display is configured to cause the computer system to perform a first operation in response to detecting an input on the first portion, outputting a visual indicator on the touch-sensitive display, wherein the visual indicator occupies at least a subset of the first portion of the touch-sensitive display, wherein a first visual property of the visual indicator indicates an operational state of the second portion for performing a second operation different from the first operation, including: in accordance with a determination that the second portion of the touch-sensitive display is operable to initiate a process for performing the second operation, outputting the visual indicator having a first variation of the first visual property; and in accordance with a determination that the second portion of the touch-sensitive display is not operable to initiate the process for performing the second operation, outputting the visual indicator having a second variation of the first visual property different from the first variation; detecting an input directed to the touch-sensitive display; and in response to detecting the input directed to the touch-sensitive display: in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the first variation of the first visual property, initiating a process for performing the second operation; and in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the second variation of the first visual property, forgoing initiating a process for performing the second operation.
In accordance with some embodiments, a non-transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system that includes a touch-sensitive display is described. The touch-sensitive display has a first portion and a second portion, and includes one or more physical features that distinguishes the second portion from the first portion. The one or more programs include instructions for: while the first portion of the touch-sensitive display is configured to cause the computer system to perform a first operation in response to detecting an input on the first portion, outputting a visual indicator on the touch-sensitive display, wherein the visual indicator occupies at least a subset of the first portion of the touch-sensitive display, wherein a first visual property of the visual indicator indicates an operational state of the second portion for performing a second operation different from the first operation, including: in accordance with a determination that the second portion of the touch-sensitive display is operable to initiate a process for performing the second operation, outputting the visual indicator having a first variation of the first visual property; and in accordance with a determination that the second portion of the touch-sensitive display is not operable to initiate the process for performing the second operation, outputting the visual indicator having a second variation of the first visual property different from the first variation; detecting an input directed to the touch-sensitive display; and in response to detecting the input directed to the touch-sensitive display: in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the first variation of the first visual property, initiating a process for performing the second operation; and in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the second variation of the first visual property, forgoing initiating a process for performing the second operation.
In accordance with some embodiments, a transitory computer-readable storage medium storing one or more programs configured to be executed by one or more processors of a computer system that includes a touch-sensitive display is described. The touch-sensitive display has a first portion and a second portion, and includes one or more physical features that distinguishes the second portion from the first portion. The one or more programs include instructions for: while the first portion of the touch-sensitive display is configured to cause the computer system to perform a first operation in response to detecting an input on the first portion, outputting a visual indicator on the touch-sensitive display, wherein the visual indicator occupies at least a subset of the first portion of the touch-sensitive display, wherein a first visual property of the visual indicator indicates an operational state of the second portion for performing a second operation different from the first operation, including: in accordance with a determination that the second portion of the touch-sensitive display is operable to initiate a process for performing the second operation, outputting the visual indicator having a first variation of the first visual property; and in accordance with a determination that the second portion of the touch-sensitive display is not operable to initiate the process for performing the second operation, outputting the visual indicator having a second variation of the first visual property different from the first variation; detecting an input directed to the touch-sensitive display; and in response to detecting the input directed to the touch-sensitive display: in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the first variation of the first visual property, initiating a process for performing the second operation; and in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the second variation of the first visual property, forgoing initiating a process for performing the second operation.
In accordance with some embodiments, a computer system is described. The computer system comprises a touch-sensitive display. The touch-sensitive display has a first portion and a second portion, and includes one or more physical features that distinguishes the second portion from the first portion. The computer system also comprises one or more processors, and memory storing one or more programs configured to be executed by the one or more processors. The one or more programs include instructions for: while the first portion of the touch-sensitive display is configured to cause the computer system to perform a first operation in response to detecting an input on the first portion, outputting a visual indicator on the touch-sensitive display, wherein the visual indicator occupies at least a subset of the first portion of the touch-sensitive display, wherein a first visual property of the visual indicator indicates an operational state of the second portion for performing a second operation different from the first operation, including: in accordance with a determination that the second portion of the touch-sensitive display is operable to initiate a process for performing the second operation, outputting the visual indicator having a first variation of the first visual property; and in accordance with a determination that the second portion of the touch-sensitive display is not operable to initiate the process for performing the second operation, outputting the visual indicator having a second variation of the first visual property different from the first variation; detecting an input directed to the touch-sensitive display; and in response to detecting the input directed to the touch-sensitive display: in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the first variation of the first visual property, initiating a process for performing the second operation; and in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the second variation of the first visual property, forgoing initiating a process for performing the second operation.
In accordance with some embodiments, a computer system is described. The computer system comprises a touch-sensitive display. The touch-sensitive display has a first portion and a second portion, and includes one or more physical features that distinguishes the second portion from the first portion. The computer system also comprises means for while the first portion of the touch-sensitive display is configured to cause the computer system to perform a first operation in response to detecting an input on the first portion, outputting a visual indicator on the touch-sensitive display, wherein the visual indicator occupies at least a subset of the first portion of the touch-sensitive display, wherein a first visual property of the visual indicator indicates an operational state of the second portion for performing a second operation different from the first operation, including: in accordance with a determination that the second portion of the touch-sensitive display is operable to initiate a process for performing the second operation, outputting the visual indicator having a first variation of the first visual property; and in accordance with a determination that the second portion of the touch-sensitive display is not operable to initiate the process for performing the second operation, outputting the visual indicator having a second variation of the first visual property different from the first variation; means for detecting an input directed to the touch-sensitive display; and means for in response to detecting the input directed to the touch-sensitive display: in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the first variation of the first visual property, initiating a process for performing the second operation; and in accordance with a determination that the input is directed to the second portion of the touch-sensitive display while the visual indicator has the second variation of the first visual property, forgoing initiating a process for performing the second operation.
Executable instructions for performing these functions are, optionally, included in a non-transitory computer-readable storage medium or other computer program product configured for execution by one or more processors. Executable instructions for performing these functions are, optionally, included in a transitory computer-readable storage medium or other computer program product configured for execution by one or more processors.
Thus, devices are provided with faster, more efficient methods and interfaces for managing media playback devices, thereby increasing the effectiveness, efficiency, and user satisfaction with such devices. Such methods and interfaces may complement or replace other methods for managing media playback devices.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings in which like reference numerals refer to corresponding parts throughout the figures.
The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
There is a need for electronic devices that provide efficient methods and interfaces for managing media playback devices. For example, methods and techniques for transferring or controlling media playback at electronic devices is described below. Such techniques can reduce the cognitive burden on a user who manage media playback across various devices, thereby enhancing productivity. Further, such techniques can reduce processor and battery power otherwise wasted on redundant user inputs.
Below,
Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first touch could be termed a second touch, and, similarly, a second touch could be termed a first touch, without departing from the scope of the various described embodiments. The first touch and the second touch are both touches, but they are not the same touch.
The terminology used in the description of the various described embodiments herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The term “if” is, optionally, construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” is, optionally, construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
Embodiments of electronic devices, user interfaces for such devices, and associated processes for using such devices are described. In some embodiments, the device is a portable communications device, such as a mobile telephone, that also contains other functions, such as PDA and/or music player functions. Exemplary embodiments of portable multifunction devices include, without limitation, the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, California. Other portable electronic devices, such as laptops or tablet computers with touch-sensitive surfaces (e.g., touch screen displays and/or touchpads), are, optionally, used. It should also be understood that, in some embodiments, the device is not a portable communications device, but is a desktop computer with a touch-sensitive surface (e.g., a touch screen display and/or a touchpad). In some embodiments, the electronic device is a computer system that is in communication (e.g., via wireless communication, via wired communication) with a display generation component. The display generation component is configured to provide visual output, such as display via a CRT display, display via an LED display, or display via image projection. In some embodiments, the display generation component is integrated with the computer system. In some embodiments, the display generation component is separate from the computer system. As used herein, “displaying” content includes causing to display the content (e.g., video data rendered or decoded by display controller 156) by transmitting, via a wired or wireless connection, data (e.g., image data or video data) to an integrated or external display generation component to visually produce the content.
In the discussion that follows, an electronic device that includes a display and a touch-sensitive surface is described. It should be understood, however, that the electronic device optionally includes one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick.
The device typically supports a variety of applications, such as one or more of the following: a drawing application, a presentation application, a word processing application, a website creation application, a disk authoring application, a spreadsheet application, a gaming application, a telephone application, a video conferencing application, an e-mail application, an instant messaging application, a workout support application, a photo management application, a digital camera application, a digital video camera application, a web browsing application, a digital music player application, and/or a digital video player application.
The various applications that are executed on the device optionally use at least one common physical user-interface device, such as the touch-sensitive surface. One or more functions of the touch-sensitive surface as well as corresponding information displayed on the device are, optionally, adjusted and/or varied from one application to the next and/or within a respective application. In this way, a common physical architecture (such as the touch-sensitive surface) of the device optionally supports the variety of applications with user interfaces that are intuitive and transparent to the user.
Attention is now directed toward embodiments of portable devices with touch-sensitive displays.
As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).
As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.
It should be appreciated that device 100 is only one example of a portable multifunction device, and that device 100 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in
Memory 102 optionally includes high-speed random access memory and optionally also includes non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 122 optionally controls access to memory 102 by other components of device 100.
Peripherals interface 118 can be used to couple input and output peripherals of the device to CPU 120 and memory 102. The one or more processors 120 run or execute various software programs and/or sets of instructions stored in memory 102 to perform various functions for device 100 and to process data. In some embodiments, peripherals interface 118, CPU 120, and memory controller 122 are, optionally, implemented on a single chip, such as chip 104. In some other embodiments, they are, optionally, implemented on separate chips.
RF (radio frequency) circuitry 108 receives and sends RF signals, also called electromagnetic signals. RF circuitry 108 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 108 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 108 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 108 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for e-mail (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.
Audio circuitry 110, speaker 111, and microphone 113 provide an audio interface between a user and device 100. Audio circuitry 110 receives audio data from peripherals interface 118, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 111. Speaker 111 converts the electrical signal to human-audible sound waves. Audio circuitry 110 also receives electrical signals converted by microphone 113 from sound waves. Audio circuitry 110 converts the electrical signal to audio data and transmits the audio data to peripherals interface 118 for processing. Audio data is, optionally, retrieved from and/or transmitted to memory 102 and/or RF circuitry 108 by peripherals interface 118. In some embodiments, audio circuitry 110 also includes a headset jack (e.g., 212,
I/O subsystem 106 couples input/output peripherals on device 100, such as touch screen 112 and other input control devices 116, to peripherals interface 118. I/O subsystem 106 optionally includes display controller 156, optical sensor controller 158, depth camera controller 169, intensity sensor controller 159, haptic feedback controller 161, and one or more input controllers 160 for other input or control devices. The one or more input controllers 160 receive/send electrical signals from/to other input control devices 116. The other input control devices 116 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some embodiments, input controller(s) 160 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 208,
A quick press of the push button optionally disengages a lock of touch screen 112 or optionally begins a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 206) optionally turns power to device 100 on or off. The functionality of one or more of the buttons are, optionally, user-customizable. Touch screen 112 is used to implement virtual or soft buttons and one or more soft keyboards.
Touch-sensitive display 112 provides an input interface and an output interface between the device and a user. Display controller 156 receives and/or sends electrical signals from/to touch screen 112. Touch screen 112 displays visual output to the user. The visual output optionally includes graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output optionally corresponds to user-interface objects.
Touch screen 112 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 112 and display controller 156 (along with any associated modules and/or sets of instructions in memory 102) detect contact (and any movement or breaking of the contact) on touch screen 112 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 112. In an exemplary embodiment, a point of contact between touch screen 112 and the user corresponds to a finger of the user.
Touch screen 112 optionally uses LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies are used in other embodiments. Touch screen 112 and display controller 156 optionally detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 112. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, California.
A touch-sensitive display in some embodiments of touch screen 112 is, optionally, analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 112 displays visual output from device 100, whereas touch-sensitive touchpads do not provide visual output.
A touch-sensitive display in some embodiments of touch screen 112 is described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.
Touch screen 112 optionally has a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user optionally makes contact with touch screen 112 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.
In some embodiments, in addition to the touch screen, device 100 optionally includes a touchpad for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad is, optionally, a touch-sensitive surface that is separate from touch screen 112 or an extension of the touch-sensitive surface formed by the touch screen.
Device 100 also includes power system 162 for powering the various components. Power system 162 optionally includes a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.
Device 100 optionally also includes one or more optical sensors 164.
Device 100 optionally also includes one or more depth camera sensors 175.
Device 100 optionally also includes one or more contact intensity sensors 165.
Device 100 optionally also includes one or more proximity sensors 166.
Device 100 optionally also includes one or more tactile output generators 167.
Device 100 optionally also includes one or more accelerometers 168.
In some embodiments, the software components stored in memory 102 include operating system 126, communication module (or set of instructions) 128, contact/motion module (or set of instructions) 130, graphics module (or set of instructions) 132, text input module (or set of instructions) 134, Global Positioning System (GPS) module (or set of instructions) 135, and applications (or sets of instructions) 136. Furthermore, in some embodiments, memory 102 (
Operating system 126 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.
Communication module 128 facilitates communication with other devices over one or more external ports 124 and also includes various software components for handling data received by RF circuitry 108 and/or external port 124. External port 124 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.
Contact/motion module 130 optionally detects contact with touch screen 112 (in conjunction with display controller 156) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 130 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 130 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 130 and display controller 156 detect contact on a touchpad.
In some embodiments, contact/motion module 130 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 100). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).
Contact/motion module 130 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.
Graphics module 132 includes various known software components for rendering and displaying graphics on touch screen 112 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.
In some embodiments, graphics module 132 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 132 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 156.
Haptic feedback module 133 includes various software components for generating instructions used by tactile output generator(s) 167 to produce tactile outputs at one or more locations on device 100 in response to user interactions with device 100.
Text input module 134, which is, optionally, a component of graphics module 132, provides soft keyboards for entering text in various applications (e.g., contacts 137, e-mail 140, IM 141, browser 147, and any other application that needs text input).
GPS module 135 determines the location of the device and provides this information for use in various applications (e.g., to telephone 138 for use in location-based dialing; to camera 143 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).
Applications 136 optionally include the following modules (or sets of instructions), or a subset or superset thereof:
Examples of other applications 136 that are, optionally, stored in memory 102 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, contacts module 137 are, optionally, used to manage an address book or contact list (e.g., stored in application internal state 192 of contacts module 137 in memory 102 or memory 370), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 138, video conference module 139, e-mail 140, or IM 141; and so forth.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, telephone module 138 are optionally, used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 137, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies.
In conjunction with RF circuitry 108, audio circuitry 110, speaker 111, microphone 113, touch screen 112, display controller 156, optical sensor 164, optical sensor controller 158, contact/motion module 130, graphics module 132, text input module 134, contacts module 137, and telephone module 138, video conference module 139 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, e-mail client module 140 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 144, e-mail client module 140 makes it very easy to create and send e-mails with still or video images taken with camera module 143.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, the instant messaging module 141 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages optionally include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, map module 154, and music player module, workout support module 142 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.
In conjunction with touch screen 112, display controller 156, optical sensor(s) 164, optical sensor controller 158, contact/motion module 130, graphics module 132, and image management module 144, camera module 143 includes executable instructions to capture still images or video (including a video stream) and store them into memory 102, modify characteristics of a still image or video, or delete a still image or video from memory 102.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and camera module 143, image management module 144 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, browser module 147 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, e-mail client module 140, and browser module 147, calendar module 148 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, widget modules 149 are mini-applications that are, optionally, downloaded and used by a user (e.g., weather widget 149-1, stocks widget 149-2, calculator widget 149-3, alarm clock widget 149-4, and dictionary widget 149-5) or created by the user (e.g., user-created widget 149-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, and browser module 147, the widget creator module 150 are, optionally, used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, search module 151 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 102 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, and browser module 147, video and music player module 152 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 112 or on an external, connected display via external port 124). In some embodiments, device 100 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, and text input module 134, notes module 153 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.
In conjunction with RF circuitry 108, touch screen 112, display controller 156, contact/motion module 130, graphics module 132, text input module 134, GPS module 135, and browser module 147, map module 154 are, optionally, used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.
In conjunction with touch screen 112, display controller 156, contact/motion module 130, graphics module 132, audio circuitry 110, speaker 111, RF circuitry 108, text input module 134, e-mail client module 140, and browser module 147, online video module 155 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 124), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 141, rather than e-mail client module 140, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.
Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules are, optionally, combined or otherwise rearranged in various embodiments. For example, video player module is, optionally, combined with music player module into a single module (e.g., video and music player module 152,
In some embodiments, device 100 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 100, the number of physical input control devices (such as push buttons, dials, and the like) on device 100 is, optionally, reduced.
The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 100 to a main, home, or root menu from any user interface that is displayed on device 100. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.
Event sorter 170 receives event information and determines the application 136-1 and application view 191 of application 136-1 to which to deliver the event information. Event sorter 170 includes event monitor 171 and event dispatcher module 174. In some embodiments, application 136-1 includes application internal state 192, which indicates the current application view(s) displayed on touch-sensitive display 112 when the application is active or executing. In some embodiments, device/global internal state 157 is used by event sorter 170 to determine which application(s) is (are) currently active, and application internal state 192 is used by event sorter 170 to determine application views 191 to which to deliver event information.
In some embodiments, application internal state 192 includes additional information, such as one or more of: resume information to be used when application 136-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 136-1, a state queue for enabling the user to go back to a prior state or view of application 136-1, and a redo/undo queue of previous actions taken by the user.
Event monitor 171 receives event information from peripherals interface 118. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 112, as part of a multi-touch gesture). Peripherals interface 118 transmits information it receives from I/O subsystem 106 or a sensor, such as proximity sensor 166, accelerometer(s) 168, and/or microphone 113 (through audio circuitry 110). Information that peripherals interface 118 receives from I/O subsystem 106 includes information from touch-sensitive display 112 or a touch-sensitive surface.
In some embodiments, event monitor 171 sends requests to the peripherals interface 118 at predetermined intervals. In response, peripherals interface 118 transmits event information. In other embodiments, peripherals interface 118 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).
In some embodiments, event sorter 170 also includes a hit view determination module 172 and/or an active event recognizer determination module 173.
Hit view determination module 172 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 112 displays more than one view. Views are made up of controls and other elements that a user can see on the display.
Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected optionally correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected is, optionally, called the hit view, and the set of events that are recognized as proper inputs are, optionally, determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.
Hit view determination module 172 receives information related to sub-events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 172 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 172, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.
Active event recognizer determination module 173 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 173 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 173 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.
Event dispatcher module 174 dispatches the event information to an event recognizer (e.g., event recognizer 180). In embodiments including active event recognizer determination module 173, event dispatcher module 174 delivers the event information to an event recognizer determined by active event recognizer determination module 173. In some embodiments, event dispatcher module 174 stores in an event queue the event information, which is retrieved by a respective event receiver 182.
In some embodiments, operating system 126 includes event sorter 170. Alternatively, application 136-1 includes event sorter 170. In yet other embodiments, event sorter 170 is a stand-alone module, or a part of another module stored in memory 102, such as contact/motion module 130.
In some embodiments, application 136-1 includes a plurality of event handlers 190 and one or more application views 191, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 191 of the application 136-1 includes one or more event recognizers 180. Typically, a respective application view 191 includes a plurality of event recognizers 180. In other embodiments, one or more of event recognizers 180 are part of a separate module, such as a user interface kit or a higher level object from which application 136-1 inherits methods and other properties. In some embodiments, a respective event handler 190 includes one or more of: data updater 176, object updater 177, GUI updater 178, and/or event data 179 received from event sorter 170. Event handler 190 optionally utilizes or calls data updater 176, object updater 177, or GUI updater 178 to update the application internal state 192. Alternatively, one or more of the application views 191 include one or more respective event handlers 190. Also, in some embodiments, one or more of data updater 176, object updater 177, and GUI updater 178 are included in a respective application view 191.
A respective event recognizer 180 receives event information (e.g., event data 179) from event sorter 170 and identifies an event from the event information. Event recognizer 180 includes event receiver 182 and event comparator 184. In some embodiments, event recognizer 180 also includes at least a subset of: metadata 183, and event delivery instructions 188 (which optionally include sub-event delivery instructions).
Event receiver 182 receives event information from event sorter 170. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information optionally also includes speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.
Event comparator 184 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub-event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 184 includes event definitions 186. Event definitions 186 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (187-1), event 2 (187-2), and others. In some embodiments, sub-events in an event (187) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (187-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (187-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 112, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 190.
In some embodiments, event definition 187 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 184 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 112, when a touch is detected on touch-sensitive display 112, event comparator 184 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 190, the event comparator uses the result of the hit test to determine which event handler 190 should be activated. For example, event comparator 184 selects an event handler associated with the sub-event and the object triggering the hit test.
In some embodiments, the definition for a respective event (187) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.
When a respective event recognizer 180 determines that the series of sub-events do not match any of the events in event definitions 186, the respective event recognizer 180 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.
In some embodiments, a respective event recognizer 180 includes metadata 183 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate how event recognizers interact, or are enabled to interact, with one another. In some embodiments, metadata 183 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.
In some embodiments, a respective event recognizer 180 activates event handler 190 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 180 delivers event information associated with the event to event handler 190. Activating an event handler 190 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 180 throws a flag associated with the recognized event, and event handler 190 associated with the flag catches the flag and performs a predefined process.
In some embodiments, event delivery instructions 188 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.
In some embodiments, data updater 176 creates and updates data used in application 136-1. For example, data updater 176 updates the telephone number used in contacts module 137, or stores a video file used in video player module. In some embodiments, object updater 177 creates and updates objects used in application 136-1. For example, object updater 177 creates a new user-interface object or updates the position of a user-interface object. GUI updater 178 updates the GUI. For example, GUI updater 178 prepares display information and sends it to graphics module 132 for display on a touch-sensitive display.
In some embodiments, event handler(s) 190 includes or has access to data updater 176, object updater 177, and GUI updater 178. In some embodiments, data updater 176, object updater 177, and GUI updater 178 are included in a single module of a respective application 136-1 or application view 191. In other embodiments, they are included in two or more software modules.
It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 100 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.
Device 100 optionally also include one or more physical buttons, such as “home” or menu button 204. As described previously, menu button 204 is, optionally, used to navigate to any application 136 in a set of applications that are, optionally, executed on device 100. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 112.
In some embodiments, device 100 includes touch screen 112, menu button 204, push button 206 for powering the device on/off and locking the device, volume adjustment button(s) 208, subscriber identity module (SIM) card slot 210, headset jack 212, and docking/charging external port 124. Push button 206 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 100 also accepts verbal input for activation or deactivation of some functions through microphone 113. Device 100 also, optionally, includes one or more contact intensity sensors 165 for detecting intensity of contacts on touch screen 112 and/or one or more tactile output generators 167 for generating tactile outputs for a user of device 100.
Each of the above-identified elements in
Attention is now directed towards embodiments of user interfaces that are, optionally, implemented on, for example, portable multifunction device 100.
It should be noted that the icon labels illustrated in
Although some of the examples that follow will be given with reference to inputs on touch screen display 112 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in
Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.
Exemplary techniques for detecting and processing touch intensity are found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, published as WIPO Publication No. WO/2013/169849, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, published as WIPO Publication No. WO/2014/105276, each of which is hereby incorporated by reference in their entirety.
In some embodiments, device 500 has one or more input mechanisms 506 and 508. Input mechanisms 506 and 508, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 500 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 500 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms permit device 500 to be worn by a user.
Input mechanism 508 is, optionally, a microphone, in some examples. Personal electronic device 500 optionally includes various sensors, such as GPS sensor 532, accelerometer 534, directional sensor 540 (e.g., compass), gyroscope 536, motion sensor 538, and/or a combination thereof, all of which can be operatively connected to I/O section 514.
Memory 518 of personal electronic device 500 can include one or more non-transitory computer-readable storage mediums, for storing computer-executable instructions, which, when executed by one or more computer processors 516, for example, can cause the computer processors to perform the techniques described below, including processes 700, 800, 1000, and 1200 (
As used here, the term “affordance” refers to a user-interactive graphical user interface object that is, optionally, displayed on the display screen of devices 100, 300, and/or 500 (
As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 355 in
As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally, based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds optionally includes a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation), rather than being used to determine whether to perform a first operation or a second operation.
In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface optionally receives a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location is, optionally, based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm is, optionally, applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.
The intensity of a contact on the touch-sensitive surface is, optionally, characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.
An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.
In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).
In some embodiments, the display of representations 578A-578C includes an animation. For example, representation 578A is initially displayed in proximity of application icon 572B, as shown in
In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).
For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.
Electronic device 580 includes speaker 586 for outputting audio. Device 580 can include audio circuitry (e.g., in I/O section 594) that receives audio data, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 586. Speaker 586 converts the electrical signal to human-audible sound waves. The audio circuitry (e.g., in I/O section 594) also receives electrical signals converted by a microphone (e.g., input mechanism 588) from sound waves. The audio circuitry (e.g., in I/O section 594) converts the electrical signal to audio data. Audio data is, optionally, retrieved from and/or transmitted to memory 598 and/or RF circuitry (e.g., in communication unit 590) by I/O section 594.
Memory 598 of personal electronic device 580 can include one or more non-transitory computer-readable storage mediums, for storing computer-executable instructions, which, when executed by one or more computer processors 596, for example, can cause the computer processors to perform the techniques described below, including processes 700, 800, 1000, and 1200 (
Attention is now directed towards embodiments of user interfaces (“UI”) and associated processes that are implemented on an electronic device, such as portable multifunction device 100, device 300, device 500, or device 580.
In some embodiments, the figures depict indicators 602A, 602B, 604A, 604B, and 634B to indicate different audio outputs at each of the devices. For example, indicator 602A indicates a first song is being played (output) at device 600, and indicator 602B indicates the first song is being played at device 605. Similarly, indicator 604A indicates a second song, different from the first song, is being played at device 600, and indicator 604B indicates the second song is being played at device 605. Indicator 634B indicates communication audio is being output at device 605. The indicators are displayed having different sizes to represent the volume at which the respective audio is being output. In the embodiments depicted in
In
In
Device 600 provides tactile feedback by generating a slight tactile output 606, and generates visual feedback by displaying pill interface object 615 and beginning to blur 603-1 home interface 603 (the slight blurring is represented by large diamond hatching noted with reference 603-1). Device 600 also generates an audio feedback by reducing the volume of the first song, as depicted by indicator 602A-4. Pill interface object 615 (also referred to herein as pill 615) includes text 615-1 that identifies device 605 (identified in this example as “Kitchen Speaker”) and provides instructions to a user of device 600 to move device 600 closer to device 605 or to tap pill 615 to display controls for device 605. Pill 615 also includes representation 615-2 of device 605 and representation 615-3 of the first song (e.g., album art) that is being played at device 600, which is the song that, in this example, is capable of being transferred to device 605.
Device 605 generates visual feedback by displaying light 607 (e.g., via display 605-2) and generates audio feedback by beginning to play the first song as depicted by indicator 602B-1. The output of the first song at device 605 is at a low volume and is in sync with playback of the first song at device 600, so that both device 600 and device 605 are playing the first song simultaneously, but at different volumes. In some embodiments, the audio feedback at device 605 is generated such that the first song, as outputted by device 605, has one or more audio characteristics (e.g., pitch, tone, frequency range) that approximate audio output by the audio hardware output of device 600. For example, the first song can be played at device 605 with audio characteristics that sound tinnier (e.g., having less bass, having a higher pitched frequency range) than the normal audio characteristics with which device 605 would playback the first song after transfer is complete (e.g., as described with respect to
The feedback at devices 600 and 605 provides a cue to the user of device 600 that the first song can be transferred for playback at device 605, and provides instruction to the user to initiate the transfer of the song to device 605 by moving device 600 toward device 605 or by providing further input (e.g., touch input) at device 600. Although the first song is being output at device 605 as part of the audio feedback, playback of the first song has not transferred to device 605. In some embodiments, this is because device 600 still maintains control (e.g., primary control) of playback of the song. For example, device 600 controls whether the first song is playing, paused, stopped, or whether a different song is selected for playback. Additionally, if device 600 moves outside of outer threshold 610-1, the first song stops being played at device 605 and continues playing at full volume at device 600. In some embodiments, transfer is not complete until device 605 is playing back audio (e.g., the first song) without reference to the relative distance between device 600 and device 605. In some embodiments, transfer is not complete until device 600 is no longer outputting the audio that was transferred (e.g., no longer outputting audio feedback that includes playing back the audio (e.g., the first song)).
In some embodiments, device 605 initially pulses light 607 to a bright state with a large size when device 600 reaches outer threshold 610-1, and then slightly dims and shrinks the size of the light to the state depicted in
In
In
Controls interface 612 is a user interface that provides controls that can be used to control various operations using device 605. For example, controls interface 612 includes media playback controls 612-1, which can be selected to control the playback of audio at device 605. As shown in
Controls interface 612 also includes transfer affordance 614, which can be selected to immediately transfer playback of the first song from device 600 to device 605. As shown in
In
Specifically, device 600 varies the tactile feedback by generating stronger tactile output 613. In some embodiments, the tactile feedback varies based on the distance between device 600 and device 605. For example, as device 600 gets closer to device 605, the tactile outputs get stronger, and as device 600 moves away from device 605, the tactile outputs get weaker. In some embodiments, the tactile feedback varies based on the velocity and/or direction of movement of device 600 toward device 605. For example, if device 600 moves toward or away from device 605 slowly, the tactile feedback can include a series of disbursed, and optionally slight, tactile outputs as device 600 moves toward or away from device 605. Conversely, if device 600 moves toward or away from device 605 quickly, the tactile feedback can include a series of rapid, and optionally stronger, tactile outputs as device 600 moves toward or away from device 605. In some embodiments, as device 600 accelerates toward device 605, the tactile feedback can include a series of tactile outputs that increase in frequency and, optionally, strength as device 600 moves toward device 605. In some embodiments, the tactile output has characteristics that mimic the first song. For example, the tactile output has a pattern and, optionally, different magnitudes that imitate the beat of the first song.
Device 600 varies the audio feedback by decreasing the volume of the first song as depicted by indicator 602A-3. Device 600 varies the visual feedback by increasing the blur 603-2 of home interface 603 (the increased blur is represented by medium diamond hatching noted with reference 603-2) and increasing the size of pill 615, including increasing the sizes of text 615-1, representation 615-2, and representation 615-3. Additionally, device 600 displays representation 615-3 positioned closer to representation 615-2. Thus, as device 600 moves towards 605, the tactile output increases, the audio of the first song decreases, home interface 603 gets blurrier, pill 615 increases in size, and the album art for the first song moves toward the representation of device 605. The foregoing tactile, audio, and visual feedback actions individually, and collectively, provide feedback to the user indicating that playback of the first song will transfer from device 600, thereby encouraging the user to continue moving device 600 toward device 605 in order to transfer playback of the first song from device 600 to device 605.
Device 605 varies the audio feedback by increasing the volume of the first song as depicted by indicator 602B-2, and varies the visual feedback by increasing the size and brightness of light 607, and changing the color of light 607 to purple, as indicated by the hatch pattern of light 607. In some embodiments, as part of the feedback, device 605 animates light 607 while outputting the first song. For example, device 605 causes light 607 to change colors, flicker with the beat of the first song, and/or have an appearance of moving on display 605-2. The foregoing visual and audio feedback actions individually, and collectively, provide feedback to the user that the first audio will be played at device 605, thereby encouraging the user to continue moving device 600 toward device 605 in order to transfer playback of the first song to device 605.
In
In
In some embodiments, device 600 does not generate a tactile feedback depending on the context of device 600. For example, as shown in
Referring now to
As device 600 moves toward device 605, device 600 generates visual feedback that includes increasing the blur 603-3 of home interface 603 (the increased blur is represented by small diamond hatching noted with reference 603-3), increasing the size of pill 615 (including text 615-1 and representations 615-2 and 615-3), and moving representation 615-3 toward representation 615-2, as shown in
In
In
Referring again to
As previously discussed, as device 600 moves toward device 605, device 600 decreases the volume of the first song, and device 605 increases the volume of the first song. Upon reaching inner threshold 610-2, device 600 transfers playback of the first song to device 605. As part of this transfer, device 600 continues to decrease the volume of the first song, while device 605 continues to increase the volume of the first song, as depicted by indicator 602A-2 and indicator 602B-3, respectively. Additionally, during this transfer, the audio at device 605 changes from the tinny sound to a full, rich audio sound. These changes in volume continue as device 600 transfers playback of the first song to device 605, as shown in
As depicted in
In
In
In
In
For example, as illustrated in
As shown in
In
In
In
In
In
In
In
In
In
In
As mentioned above, device 605 can play different types of audio and display light 607 having different colors based on the audio.
In some embodiments, the electronic device (e.g., 600) is a computer system (e.g., a smartphone, a smartwatch; a smart speaker; a media playback device (e.g., a digital media player)) that is in communication with a first external device (e.g., 605) (e.g., a smart speaker; a media playback device (e.g., a digital media player); a smartphone; a smartwatch). The computer system is optionally in communication (e.g., wired communication, wireless communication) with a display generation component (e.g., 601). The display generation component is configured to provide visual output, such as display via a CRT display, display via an LED display, or display via image projection. In some embodiments, the display generation component is integrated with the computer system. In some embodiments, the display generation component is separate from the computer system. Thus, the computer system can transmit, via a wired or wireless connection, data (e.g., image data or video data) to an integrated or external display generation component to visually produce the content (e.g., using a display device).
As described below, method 700 provides an intuitive way for managing media playback devices. The method reduces the cognitive burden on a user for managing media playback devices, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage media playback devices faster and more efficiently conserves power and increases the time between battery charges.
In method 700, the computer system (e.g., 600) detects (702) a change in distance between the computer system and the first external device (e.g., 605). In some embodiments, the change in distance is detected based on a change in signal strength (e.g., wireless signal strength) exchanged between the system and the first external device. In some embodiments, the change in distance is detected via one or more sensors (e.g., infrared sensors; optical sensors). In some embodiments, the change in distance is detected via data transmitted to the system from a Wi-Fi positioning system, from GPS, and/or from the first external device.
In response (704) to detecting the change in distance, the computer system (e.g., 600) performs steps 706-712 of method 700.
In response to detecting the change in distance, in accordance with a determination that a current distance of the computer system (e.g., 600) from the first external device (e.g., 605) is less than a first threshold distance (e.g., 610-1) (e.g., a predetermined threshold distance (e.g., 6 inches, 12 inches, 18 inches); an outer threshold distance from the first external device) but greater than a second threshold distance (e.g., 610-2) (e.g., a predetermined threshold distance that is less than the first threshold distance (e.g., 4 inches, 8 inches, 12 inches); an inner threshold distance from the first external device), the computer system generates (706) (e.g., outputs; initiates; initiates a process to generate) feedback (e.g., at the computer system and/or at the first external device) (in some embodiments, without performing the first operation) that indicates that a first operation (e.g., transmitting data to the first external device (e.g., data handing off media from the computer system to the first external device); retrieving media or information about media currently playing on the first external device (e.g., to play back on the computer system) will be performed when the second threshold distance is reached. The feedback varies (e.g., generating the feedback includes varying the feedback) based at least in part on a distance of the computer system to the first external device (e.g., based on distance of the computer system to the first external device, and a direction of movement of the computer system relative to the first external device). Generating feedback that varies based at least in part on a distance of the computer system to the first external device and indicates that a first operation will be performed when the second threshold distance is reached provides instruction to a user of the computer system for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen) and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
Generating the feedback includes, in accordance with a determination that the change in distance includes movement of the computer system (e.g., 600) toward the first external device (e.g., 605) (e.g., the change in distance includes a decrease in the distance between the computer system and the first external device (in some embodiments, while remaining between the first threshold distance and the second threshold distance (e.g., the computer system is located at a first distance from the first external device, between the first threshold distance and the second threshold distance))), the computer system changes (708) a current value for a feedback parameter of the feedback in a first direction (e.g., in a first manner (e.g., increasing; decreasing)) (e.g., increasing an audio volume (e.g., at the first external device); decreasing an audio volume (e.g., at the computer system), increasing a tactile output frequency, increasing a tactile output amplitude, increasing a size of a user interface element, and/or increasing a brightness of a user interface element).
Generating the feedback includes, in accordance with a determination that the change in distance includes movement of the computer system (e.g., 600) away from the first external device (e.g., 605) (e.g., the change in distance includes an increase in the distance between the computer system and the first external device (in some embodiments, while remaining between the first threshold distance and the second threshold distance (e.g., the computer system is located at a second distance from the first external device, between the first threshold distance and the second threshold distance and greater than the first distance from the first external device))), the computer system changes (710) the current value for the feedback parameter of the feedback in a second direction that is different from the first direction (e.g., in a second manner (e.g., decreasing; increasing)) (e.g., decreasing an audio volume (e.g., at the first external device); increasing an audio volume (e.g., at the computer system), decreasing a tactile output frequency, decreasing a tactile output amplitude, decreasing a size of a user interface element, and/or decreasing a brightness of a user interface element).
In response to detecting the change in distance, in accordance with a determination that the current distance of the computer system (e.g., 600) from the first external device (e.g., 605) is less than the second threshold distance (e.g., 610-2), the computer system performs (712) the first operation (e.g., transmitting data to the first external device (e.g., data handing off media from the computer system to the first external device); retrieving media or information about media currently playing on the first external device (e.g., to play back on the computer system) (in some embodiments, performing the first operation and ceasing to vary the current value for the feedback parameter based on movement of the computer system relative to the first external device (e.g., ceasing to generate the feedback; disabling varying the current value for the feedback parameter based on movement of the computer system relative to the first external device)). In some embodiments, in accordance with a determination that the current distance of the computer system from the first external device is greater than the first threshold distance (e.g., 610-1) and the second threshold distance (e.g., 610-2), the computer system forgoes generating feedback (e.g., at the computer system; at the first external device) and forgoes performing the first operation.
In some embodiments, the computer system (e.g., 600) is in communication with a display generation component (e.g., 601) (e.g., a display controller, a touch-sensitive display system). In some embodiments, generating feedback includes displaying, via the display generation component, a first visual feedback (e.g., 603-1; 603-2; 603-3; 615; 615-1; 615-2; 615-3) (e.g., at the computer system). In some embodiments, the first visual feedback includes blurring a user interface (e.g., 603) and/or user interface object. In some embodiments, the first visual feedback includes displaying an indication of content (e.g., 615-3) (e.g., media content). In some embodiments, the first visual feedback includes displaying a user interface object (e.g., 615) (e.g., an affordance) that includes an indication (e.g., 615-2) of the first external device (e.g., 605) and, optionally, status information (e.g., 615-1) for the first external device. In some embodiments, the visual feedback is optionally gradually modified or generated and is based, for example, on movement of the computer system toward or away from the first external device. For example, as the computer system moves toward the first external device, the visual feedback gradually increases (e.g., a degree of blur gradually increases, the size of a user interface object gradually increases, a user interface object gradually moves toward another user interface object), and as the computer system moves away from the first external device, the visual feedback gradually decreases (e.g., a degree of blur gradually decreases, the size of a user interface object gradually decreases, a user interface object gradually moves away from another user interface object). Displaying a first visual feedback provides instruction to a user of the computer system for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen) and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, including increasing an amount (e.g., degree) of blur (e.g., 603-1; 603-2; 603-3) (e.g., decreasing resolution) of at least a portion of a user interface (e.g., 603) (e.g., increasing blurriness of a user interface and/or one or more objects displayed on the user interface). In some embodiments, the feedback parameter is blurriness (e.g., resolution). In some embodiments, changing the current value for the feedback parameter in the second direction includes decreasing the amount of blur (e.g., increasing resolution) of at least a portion of the user interface. In some embodiments, increasing the amount of blur of at least a portion of a user interface includes increasing blurriness of a background user interface without changing a blurriness of a user interface object (e.g., the background increases in blurriness while the pill affordance remains unchanged (with respect to blurriness)).
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, including increasing a size (e.g., expanding; enlarging) of a first user interface object (e.g., 615) (e.g., an affordance; representing a “pill” view of a media control user interface). In some embodiments, the feedback parameter is size. In some embodiments, changing the current value for the feedback parameter in the second direction includes decreasing the size of the first user interface object.
In some embodiments, while the computer system (e.g., 600) is a first distance from the first external device (e.g., a distance depicted in diagram 610 of
In accordance with a determination that the current distance (e.g., after the second change in distance) of the computer system (e.g., 600) from the first external device (e.g., 605) is less than the second threshold distance (e.g., 610-2), the computer system displays the first user interface object (e.g., 615) transitioning (e.g., see controls interface 612′ in
In some embodiments, the first user interface object (e.g., 615) progressively expands as the computer system (e.g., 600) is between the first (e.g., 610-1) and second (e.g., 610-2) threshold distances and moving towards the first external device (e.g., 605) (and, in some embodiments, progressively contracts as the computer system moves away from the first external device). In some embodiments, when the computer system reaches the second threshold distance, the first user interface object transitions (e.g., “pops”) to a card appearance (e.g., 612′).
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, including increasing a size (e.g., expanding; enlarging) of a representation (e.g., 615-2) (e.g., an image; an indication) of the first external device (e.g., 605). Increasing a size of a representation of the first external device provides feedback to a user of the computer system that the first operation is associated with the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the representation of the first external device is included in the first user interface object (e.g., 615) (e.g., the pill affordance). In some embodiments, changing the current value for the feedback parameter in the second direction includes decreasing the size of the representation of the first external device.
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, including displaying a representation (e.g., 615-3) (e.g., an image; an indication; text; album artwork; text identifying the media content) of media content moving toward a representation (e.g., 615-2) (e.g., an image; an indication) of the first external device (e.g., 605). Displaying a representation of media content moving toward a representation of the first external device provides feedback to a user of the computer system that the first operation is associated playing media at the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the feedback parameter is a displayed position of the representation of the media content with respect to a representation of the first external device. In some embodiments, changing the current value for the feedback parameter in the second direction includes displaying the representation of the media moving away from the representation of the first external device.
In some embodiments, the computer system (e.g., 600) generates feedback, including causing display of a second visual feedback (e.g., 607) at the first external device (e.g., 605). Causing display of a second visual feedback at the first external device provides feedback to a user of the computer system that the first operation is associated with the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the second visual feedback includes displaying or modifying a graphical element (e.g., 605-2) at the first external device.
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, including causing an increase in one or more of: a) a size of the first set of one or more graphical elements (e.g., a size of light 607) displayed at the first external device (e.g., 605) (e.g., causing an increasing number of light elements (e.g., 605-2) to activate (e.g., glow) at the first external device); and b) a brightness (e.g., increasing size and/or brightness) of the first set of one or more graphical elements displayed at the first external device (e.g., the glow of one or more light elements at the first external device gets brighter and/or larger as the computer system moves toward the first external device). Causing an increase in at least one of a size or brightness of a first set of one or more graphical elements displayed at the first external device provides feedback to a user of the computer system that the first operation is associated with the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the feedback parameter is a size and/or brightness of an active region of one or more light elements (e.g., LEDs) at the first external device. In some embodiments, changing the current value for the feedback parameter in the second direction includes decreasing the size and/or brightness of the first set of one or more graphical elements at the first external device.
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter in the first direction, including causing a change in a set of one or more colors of a second set (e.g., the first set) of one or more graphical elements (e.g., light 607) displayed at the first external device (e.g., 605) (e.g., the glow of one or more light elements at the first external device changes colors as the computer system moves toward the first external device). In some embodiments, the feedback parameter is a color of an active region of one or more light elements (e.g., LEDs) at the first external device. In some embodiments, changing the current value for the feedback parameter in the first direction includes changing the set of one or more colors to a first set of one or more colors (e.g., colors that correspond to a media item (e.g., colors that match album art associated with a song)). In some embodiments, changing the current value for the feedback parameter in the second direction includes changing the set of one or more colors to a second set of one or more colors different from the first set of one or more colors.
In some embodiments, the first operation is associated with a type of media (e.g., playback of music; playback of a communication media (e.g., a phone call)). In some embodiments, the computer system (e.g., 600) causes a change in the set of one or more colors of the second set of one or more graphical elements (e.g., light 607) displayed at the first external device (e.g., 605), including: in accordance with a determination that the media is a first type (e.g., music), causing the set of one or more colors to have a first set of one or more colors (e.g., white) (e.g., see light 607 in
In some embodiments, the first operation is associated with playback of audio content (e.g., 602A; 602B; 604A; 604B). In some embodiments, the computer system (e.g., 600) causes display of the second visual feedback (e.g., light 607) at the first external device (e.g., 605), including causing a change in (e.g., modulating) a visual characteristic (e.g., pulse frequency, brightness, color) of the visual feedback (e.g., 607) based on an audio characteristic (e.g., volume, frequency, beat) of the audio content. Causing a change in a visual characteristic of the visual feedback based on an audio characteristic of the audio content provides feedback to a user of the computer system that the first operation is associated with playback of the audio content at the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the computer system (e.g., 600) is in communication with a tactile output generator (e.g., 167) (e.g., a linear actuator; eccentric rotating mass actuator). In some embodiments, generating feedback includes generating, via the tactile output generator, a tactile output (e.g., 606; 613; 616) (audio output is optionally generated in coordination with the tactile output) at the computer system. Generating a tactile output at the computer system provides feedback to a user of the computer system that the first operation is associated with the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, including increasing at least one of a magnitude, frequency, and/or rate of repetition (e.g., increasing the magnitude and/or frequency of vibration) of the tactile output (e.g., 606; 613; 616). In some embodiments, the computer system changes the current value for the feedback parameter of the feedback in the second direction, including decreasing at least one of the magnitude, frequency, and/or rate of repetition (e.g., decreasing the magnitude and/or frequency of vibration) of the tactile output. In some embodiments, the feedback parameter is a magnitude, frequency, and/or rate of repetition of the tactile output. Increasing or decreasing at least one of a magnitude, frequency, and/or rate of repetition of the tactile output depending on whether the change in direction includes movement of the computer system toward or away from the first external device provides feedback to a user of the computer system that the first operation is associated with the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation and the continued movement away from the first external device will cause the computer system not to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the computer system (e.g., 600) changes a current value for the feedback parameter of the feedback in the first direction, including: in accordance with a determination that the movement of the computer system toward the first external device (e.g., 605) includes a first velocity of movement, the computer system changes the current value for the feedback parameter of the feedback in the first direction by a first amount (e.g., see tactile output 606 in
In some embodiments, the computer system (e.g., 600) changes a current value for the feedback parameter of the feedback in the first direction (e.g., or the second direction), including: in accordance with a determination that the movement of the computer system toward the first external device (e.g., 605) includes at least a first threshold amount of movement toward the first external device (e.g., or away from the first external device) (e.g., see diagram 610 in
In some embodiments, the first operation is associated with playback of an audio signal (e.g., 602A; 602B; 604A; 604B). In some embodiments, the computer system (e.g., 600) generates the tactile output (e.g., 606; 613; 616), including changing (e.g., modulating) a characteristic (e.g., a tactile characteristic; frequency, rate of repetition, and/or magnitude of the tactile output) of the tactile output based on an audio characteristic (e.g., volume, frequency, beat) of the audio signal. Changing a characteristic of the tactile output based on an audio characteristic of the audio signal provides feedback to a user of the computer system that the first operation is associated with playback of the audio signal at the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the computer system (e.g., 600) is in communication with an audio output device (e.g., 111) (e.g., an internal or external speaker). In some embodiments, generating feedback includes generating, via the audio output device, a first audio feedback (e.g., 602A; 604A) (e.g., adjusting an audio output) at the computer system. Generating a first audio feedback at the computer system provides instruction to a user of the computer system for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, including decreasing an output volume of audio output (e.g., 602A; 604A) (e.g., currently output) at the computer system. Decreasing an output volume of audio output at the computer system provides feedback to a user of the computer system that the first operation is associated with playback of the audio, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the feedback parameter is the output volume of audio being output at the computer system. In some embodiments, changing the current value for the feedback parameter in the second direction includes increasing output volume of audio output at the computer system. In some embodiments, when the computer system is currently outputting audio while the current distance of the computer system from the first external device is less than the first threshold distance but greater than the second threshold distance, the computer system decreases the output volume of the audio when the computer system moves toward the first external device and increases the output volume of the audio when the computer system moves away from the first external device.
In some embodiments, while the first audio feedback (e.g., 602A; 604A) is generated at the computer system (e.g., 600), second audio feedback (e.g., 602B; 604B) (e.g., adjusting an audio output) is generated at the first external device (e.g., 605) (e.g., in response to instruction(s) from the first external device; in response to instruction(s) from the computer system). Generating a second audio feedback at the first external device while the first audio feedback is generated at the computer system provides feedback to a user of the computer system that the first operation is associated with the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, while the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, an output volume of audio output (e.g., see 602B-3 in
In some embodiments, the feedback parameter is the output volume of audio (e.g., 602B; 604B) being output at the first external device (e.g., 605). In some embodiments, the computer system (e.g., 600) changing the current value for the feedback parameter in the second direction includes decreasing output volume of audio output at the first external device. In some embodiments, when the computer system is currently outputting audio and the first external device is not outputting audio, and when the current distance of the computer system from the first external device transitions from a distance greater than the first threshold distance and the second threshold distance to a distance that is less than the first threshold distance but greater than the second threshold distance, audio begins to play at the first external device (e.g., while continuing to play at the computer system). While the current distance of the computer system from the first external device is less than the first threshold distance but greater than the second threshold distance, the output volume of the audio at the first external device is increased (e.g., while the output volume of the audio at the computer system decreases) when the computer system moves toward the first external device and is decreased (e.g., while the output volume of the audio at the computer system increases) when the computer system moves away from the first external device.
In some embodiments, when the first external device (e.g., 605) is currently outputting audio (e.g., 602B; 604B) while the current distance of the computer system (e.g., 600) from the first external device is less than the first threshold distance (e.g., 610-1) but greater than the second threshold distance (e.g., 610-2), the output volume of the audio at the first external device is decreased when the computer system moves toward the first external device and is increased when the computer system moves away from the first external device. In some embodiments, when the first external device is currently outputting audio and the computer system is not outputting audio, and when the current distance of the computer system from the first external device transitions from a distance greater than the first threshold distance and the second threshold distance to a distance that is less than the first threshold distance but greater than the second threshold distance, audio begins to play at the computer system (e.g., while continuing to play at the first external device). While the current distance of the computer system from the first external device is less than the first threshold distance but greater than the second threshold distance, the output volume of the audio (e.g., 602A; 604A) at the computer system is increased (e.g., while the output volume of the audio at the first external device decreases) when the computer system moves toward the first external device and is decreased (e.g., while the output volume of the audio at the first external device increases) when the computer system moves away from the first external device.
In some embodiments, while the computer system (e.g., 600) changes the current value for the feedback parameter of the feedback in the first direction, an equalization setting of audio output (e.g., 602B; 604B) (e.g., currently output) is adjusted at the first external device (e.g., 605) (e.g., in response to instruction(s) from the first external device; in response to instruction(s) from the computer system). Adjusting an equalization setting of audio output at the first external device while changing the current value for the feedback parameter of the feedback in the first direction provides feedback to a user of the computer system that the first operation is associated with playback of audio output at the first external device, provides instruction to the user for action needed to cause the computer system to perform the first operation without requiring additional inputs from the user (e.g., input at a touchscreen), and provides feedback to the user indicating that continued movement toward the first external device will cause the computer system to perform the first operation. Providing instruction for causing the computer system to perform an operation without requiring additional inputs and providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the feedback parameter is an equalization setting that affects audio properties that determine the fullness of the audio output at the first external device. In some embodiments, changing the current value for the feedback parameter in the first direction includes adjusting the equalization setting in a first manner such that the audio output at the first external device increases in fullness. In some embodiments, changing the current value for the feedback parameter in the second direction includes adjusting the equalization setting in a second manner such that the audio output at the first external device decreases in fullness. In some embodiments, when the first external device is currently outputting audio while the current distance of the computer system from the first external device is less than the first threshold distance but greater than the second threshold distance, the equalization setting of the audio output at the first external device changes such that the audio properties smoothly transition from having a tinny sound (e.g., having audio properties similar to audio produced from a low-power speaker (e.g., a speaker of a smartphone)) to having a full, rich sound as the computer system moves toward the first external device. Conversely, the equalization setting of the audio output at the first external device changes such that the audio properties smoothly transition from the full, rich sound to the tinny sound as the computer system moves away from the first external device.
In some embodiments, the computer system (e.g., 600) is in communication with a tactile output generator (e.g., 167) (e.g., a linear actuator; eccentric rotating mass actuator). In some embodiments, generating the feedback includes: in accordance with a determination that a first set of criteria is met, generating, via the tactile output generator, a first tactile output (e.g., 606; 613) (audio output is optionally generated in coordination with the tactile output) at the computer system; and in accordance with a determination that the first set of criteria is not met, forgoing generating the first tactile output (in some embodiments, generating a non-tactile output such as an audio output and/or a visual output) at the computer system (e.g., see
In some embodiments, the first set of criteria is not met when the computer system (e.g., 600) is in a charging state (e.g., a battery of the computer system is being charged). In some embodiments, the first set of criteria is not met when the computer system is stationary for a predetermined amount of time (e.g., the computer system is not being moved). In some embodiments, the first set of criteria is not met when a predetermined portion of the computer system (e.g., 600-1) (e.g., a display screen, a top surface, a user-facing surface) is positioned (e.g., oriented) away (e.g., facing away) from the external device (e.g., see
In some embodiments, in response to detecting the change in distance: in accordance with a determination that the current distance of the computer system (e.g., 600) from the first external device (e.g., 605) is less than the second threshold distance (e.g., 610-2), the computer system ceases to vary the current value for the feedback parameter based on movement of the computer system relative to the first external device (e.g., ceasing to generate the feedback; disabling varying the current value for the feedback parameter based on movement of the computer system relative to the first external device) (e.g., see
In some embodiments, after ceasing to vary the current value for the feedback parameter based on movement of the computer system (e.g., 600) relative to the first external device (e.g., 605) (e.g., after performing the first operation; after disabling varying the current value for the feedback parameter based on movement of the computer system relative to the first external device), the computer system detects a third change in distance between the computer system and the first external device. In response to detecting the third change in distance: in accordance with a determination that the current distance (e.g., the current distance after detecting the third change in distance) of the computer system from the first external device is greater than a third threshold distance (e.g., 610-1) (e.g., a predetermined threshold distance; the outer threshold distance; the first threshold distance; the first threshold distance plus a variance (e.g., 45%/50%/60% of the first threshold distance)), varying (e.g., re-enabling varying) the current value for the feedback parameter based on movement of the computer system relative to the first external device (e.g., see
In some embodiments, the computer system (e.g., 600) performs the first operation, including: in accordance with a determination that a second set of criteria is met, wherein the second set of criteria includes a criterion that is met when the computer system is currently playing (e.g., outputting audio and/or displaying video (e.g., at the computer system)) first media (e.g., 602A) (e.g., audio and/or video media), the computer system initiates playback of the first media at the first external device (e.g., 605), including: decreasing a first audio characteristic (e.g., a volume, an equalization setting) of the first media at the computer system (e.g., see 602A-4, 602A-3, 602A-2, and/or 602A-1 in
In some embodiments, after the computer system (e.g., 600) performs the first operation (e.g., transmitting data to the first external device (e.g., data handing off media from the computer system to the first external device); retrieving media or information about media currently playing on the first external device (e.g., to play back on the computer system), one or more of a size or brightness (e.g., reducing the size and/or brightness) of a third set of one or more graphical elements (e.g., light 607; 605-2) displayed at the first external device (e.g., 605) is reduced (e.g., see
In some embodiments, after the computer system (e.g., 600) performs the first operation (e.g., transmitting data to the first external device (e.g., data handing off media from the computer system to the first external device); retrieving media or information about media currently playing on the first external device (e.g., to play back on the computer system), an equalization setting of audio output (e.g., 602B; 604B) (e.g., currently output) at the first external device (e.g., 605) is adjusted (e.g., in response to instruction(s) from the first external device; in response to instruction(s) from the computer system) (e.g., causing the equalization setting of the audio output at the first external device to change such that the audio properties smoothly transition from having a tinny sound to having a full, rich sound). Adjusting an equalization setting of an audio output at the first external device after performing the first operation provides feedback to a user of the computer system that the first operation is associated with playback of the audio at the first external device, and provides feedback to the user that the first operation has been performed so that the user no longer attempts to execute the first operation (e.g., by providing inputs on a touchscreen or continuing to move the computer system), thereby reducing the number of inputs at the computer system. Providing improved feedback and reducing the number of inputs at the computer system enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, while the first external device (e.g., 605) is currently playing (e.g., outputting audio and/or displaying video) second media (e.g., 602B) (e.g., audio and/or video media), the computer system (e.g., 600) detects a fourth change in distance between the computer system and the first external device (e.g., see diagram 610 in
Note that details of the processes described above with respect to method 700 (e.g.,
In some embodiments, the electronic device (e.g., 600) is a computer system. The computer system is optionally in communication (e.g., wired communication, wireless communication) with a display generation component (e.g., 601) (e.g., a display controller, a touch-sensitive display system) and with one or more input devices (e.g., 601; 112) (e.g., a touch-sensitive surface). The display generation component is configured to provide visual output, such as display via a CRT display, display via an LED display, or display via image projection. In some embodiments, the display generation component is integrated with the computer system. In some embodiments, the display generation component is separate from the computer system. The one or more input devices are configured to receive input, such as a touch-sensitive surface receiving user input. In some embodiments, the one or more input devices are integrated with the computer system. In some embodiments, the one or more input devices are separate from the computer system. Thus, the computer system can transmit, via a wired or wireless connection, data (e.g., image data or video data) to an integrated or external display generation component to visually produce the content (e.g., using a display device) and can receive, a wired or wireless connection, input from the one or more input devices.
As described below, method 800 provides an intuitive way for managing media playback devices. The method reduces the cognitive burden on a user for managing media playback devices, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage media playback devices faster and more efficiently conserves power and increases the time between battery charges.
In method 800, in response to a determination (802) that a distance between the computer system (e.g., 600) and a first external device (e.g., 605) (e.g., a smart speaker; a media playback device (e.g., a digital media player); a smartphone; a smartwatch) is less than (e.g., is now less than; has transitioned and/or changed to be less than) a first threshold distance (e.g., 610-1; 610-2) (e.g., a predetermined threshold distance (e.g., 6 inches, 12 inches, 18 inches); an outer threshold distance from the first external device; an inner threshold distance from the first external device (e.g., 4 inches, 8 inches, 12 inches)), the computer system performs steps 804-812 of method 800.
In accordance with a determination that a first set of criteria is met, wherein the first set of criteria includes a criterion that is met when the computer system (e.g., 600) is currently playing (e.g., outputting audio and/or displaying video (e.g., at the computer system) or causing a connected device to output audio and/or display video) first media (e.g., 604A) (e.g., audio and/or video media) and the first external device (e.g., 605) is playing second media (e.g., 602B) (e.g., audio and/or video media) (e.g., the computer system and the first external device are simultaneously outputting different audio), the computer system displays (804) a media control user interface (e.g., 612; 612). The media control interface includes (e.g., concurrently includes) a first selectable graphical user interface object (e.g., 626) for starting playback of the first media (e.g., 604A) on the first external device (e.g., a “transfer from phone” affordance); and one or more selectable user interface objects (e.g., 612-1) for controlling the playback of the second media on the first external device (e.g., the objects, when selected, control playback). The one or more selectable user interface objects include a first media control selectable graphical user interface object (e.g., 612-1a; 612-1b) (e.g., a play affordance, a pause affordance, a next track affordance, a previous track affordance, a volume affordance, and/or an audio scrubber). Displaying a media control user interface that, when the computer system is currently playing first media and the first external device is playing second media, includes a first selectable graphical user interface object for starting playback of the first media on the first external device and one or more selectable user interface objects for controlling the playback of the second media on the first external device, including a first media control selectable graphical user interface object, provides feedback to a user of the computer system of a first function that can be performed that starts playback of the first media on the first external device, and a second function that can be performed that controls playback of the second media on the first external device, without requiring further input from the user to navigate between different user interfaces to access each of these separate functions. Moreover, the computer system automatically displays the media control user interface having the first selectable graphical user interface object and the one or more selectable user interface objects when a set of conditions are met, without requiring further input from the user to access and navigate between different user interfaces to access the first selectable graphical user interface object and the one or more selectable user interface objects. Providing improved feedback and performing an operation automatically when a set of conditions is met reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the computer system (e.g., 600) displays the media control user interface (e.g., 612; 612) in response to determining that the distance between the computer system and the first external device (e.g., 605) is less than the first threshold distance (e.g., 610-2) (e.g., when the first threshold distance is an inner threshold distance from the first external device). In some embodiments, the computer system displays the media control user interface in response to an input (e.g., 608) on a user interface object (e.g., 615) that is displayed when the distance between the computer system and the first external device is less than the first threshold distance (e.g., 610-1) and greater than a second threshold distance (e.g., 610-2) (e.g., when the first threshold distance is an outer threshold distance from the first external device and the second threshold distance is an inner threshold distance from the first external device).
While displaying the media control user interface (e.g., 612), the computer system (e.g., 600) receives (806), via the one or more input devices (e.g., 601), an input (e.g., 628; 630) (e.g., a touch input).
In response (808) to receiving the input (e.g., 628; 630), and in accordance with a determination that the input (e.g., 630) corresponds to the first selectable graphical user interface object (e.g., 626) (e.g., the input is a selection of the “transfer from phone” affordance), the computer system (e.g., 600) initiates (810) a process to cause the first external device (e.g., 605) to playback the first media (e.g., device 605 begins playing music 604B in
In response (808) to receiving the input (e.g., 628; 630), and in accordance with a determination that the input (e.g., 628) corresponds to (e.g., is a selection of) the first media control selectable graphical user interface object (e.g., 612-1a) (e.g., a pause affordance), initiating a process for controlling (e.g., modifying) playback of the second media (e.g., 602B) (e.g., the object, when selected, controls playback) by the first external device (e.g., 605) (e.g., pausing playback of the second media at the first external device (e.g., see
In some embodiments, in response to a determination that a distance between the computer system (e.g., 600) and the first external device (e.g., 605) is less than the first threshold distance (e.g., 610-1), and in accordance with a determination that a second set of criteria is met, wherein the second set of criteria includes a criterion that is met when the computer system is not playing the first media (e.g., 604A) (e.g., the computer system is not causing playback of any media) and the first external device is not playing the second media (e.g., 602B) (e.g., the first external device is not causing playback of any media), the computer system displays, via the display generation component (e.g., 601), a set of one or more representations of predetermined media content items (e.g., 612-3) (e.g., the media control user interface includes the set of one or more representations of predetermined media content items) (e.g., a set of icons or images representing recommended or recently played songs or albums that can be selected to initiate playback of the corresponding song or album). Displaying a set of one or more representations of predetermined media content items when the computer system is not playing the first media and the first external device is not playing the second media provides feedback to a user of the computer system of a function that can be performed that starts playback of predetermined media, without requiring further input from the user to navigate to a user interface to select media for playback. Moreover, the computer system automatically displays the set of one or more representations of predetermined media content items when a set of conditions are met, without requiring further input from the user to access and navigate between different user interfaces to access representations of media content items. Providing improved feedback and performing an operation automatically when a set of conditions is met reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the method further comprises: while displaying the set of one or more representations of predetermined media content items (e.g., 612-3), the computer system (e.g., 600) receives, via the one or more input devices (e.g., 601), an input directed to a first representation of a predetermined media content item; and in response to receiving the input directed to the first representation, initiates a process to cause the computer system and/or the first external device (e.g., 605) to play media corresponding to the first representation.
In some embodiments, in response to a determination that a distance between the computer system (e.g., 600) and the first external device (e.g., 605) is less than the first threshold distance (e.g., 610-1), and in accordance with a determination that a third set of criteria is met, wherein the third set of criteria includes a criterion that is met when the computer system is not playing the first media (e.g., 604A) (e.g., the computer system is not causing playback of any media) and the first external device is currently playing the second media (e.g., 602B) (e.g., see
In some embodiments, the method further comprises: while displaying the second selectable graphical user interface object (e.g., 620), the computer system (e.g., 600) receives, via the one or more input devices (e.g., 601), an input directed to the second selectable graphical user interface object; and in response to receiving the input directed to the second selectable graphical user interface object, initiates a process to cause the computer system to playback the second media (e.g., 602B). In some embodiments, the first external device continues playback of the second media when the second media is transferred to the computer system. In some embodiments, the first external device ceases playback of the second media when the second media is transferred to the computer system. In some embodiments, when the first external device hands off playback of the second media to the computer system, the first external device generates feedback to indicate the handoff process is initiated. For example, in some embodiments, the first external device includes lights, and the lights pulse and increase in brightness (and, optionally, in pulse frequency) when the handoff is initiated, and then the lights fade to an “off” setting when the handoff is complete.
In some embodiments, in response to a determination that a distance between the computer system (e.g., 600) and the first external device (e.g., 605) is less than the first threshold distance (e.g., 610-2), and in accordance with a determination that a fourth set of criteria is met, wherein the fourth set of criteria includes a criterion that is met when the computer system is currently playing the first media (e.g., 604A) and the first external device is not playing the second media (e.g., 602B) (e.g., the first external device is not causing playback of any media), the computer system initiates a process to cause the first external device to playback the first media (e.g., see
In some embodiments, in response to a determination that a distance between the computer system (e.g., 600) and the first external device (e.g., 605) is less than the first threshold distance (e.g., 610-1; 610-2), and in accordance with a determination that a fifth set of criteria is met, wherein the fifth set of criteria includes a first criterion that is met when the computer system is currently playing the first media (e.g., 604A) and the first external device is playing third media (e.g., 602B) (e.g., the second media) (e.g., the computer system and the first external device are simultaneously outputting different audio) and a second criterion that is met when the first media is different from the third media (e.g., the first and third media are different songs), the computer system adds the third media to a queue for playback at the computer system (e.g., the computer system continues to cause playback of the first media while the third media is added to the queue for future playback at the computer system). Adding the third media to a queue for playback at the computer system when the computer system is currently playing the first media and the first external device is playing third media that is different from the first media, allows the computer system to automatically add the third media to a playback queue of the computer system without requiring further input from the user to navigate various user interfaces to locate the third media (e.g., in a library of media items) and add it to the queue. Performing an operation automatically when a set of conditions is met enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the media control user interface (e.g., 612) further includes a set of one or more selectable user interface objects (e.g., 612-4; 612-6; 612-7) (e.g., timer controls; alarm controls; message controls) that includes a first selectable user interface object (612-6a; 612-6b; 612-7a) that, when selected, controls an operation at the first external device (e.g., 605) (e.g., an operation associated with a timer at the first external device; an operation associated with an alarm at the first external device; an operation associated with a message at the first external device). Displaying a media control user interface that includes a first selectable user interface object that, when selected, controls an operation at the first external device provides feedback to a user of the computer system of a function that can be performed that controls an operation at the first external device, without requiring further input from the user to navigate between different user interfaces to access the function. Moreover, the computer system automatically displays the media control user interface having the first selectable user interface object when a set of conditions are met, without requiring further input from the user to access and navigate between different user interfaces to access the first selectable user interface object. Providing improved feedback and performing an operation automatically when a set of conditions is met reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the set of one or more selectable user interface objects includes a set of controls selected from a group consisting of timer controls (e.g., 612-6) (e.g., controls for setting or adjusting a timer using the first external device), alarm controls (e.g., 612-7) (e.g., controls for setting or adjusting an alarm using the first external device), and message controls (e.g., 612-4) (e.g., controls for composing, sending, or reading a message using the first external device).
In some embodiments, in response to a determination that a distance between the computer system (e.g., 600) and the first external device (e.g., 605) is less than (e.g., is now less than; has transitioned and/or changed to be less than) a second threshold distance (e.g., 610-1) (e.g., a predetermined threshold distance (e.g., 6 inches, 12 inches, 18 inches); an outer threshold distance from the first external device) (in some embodiments, in response to a determination that the distance between the computer system and the first external device is less than the second threshold distance and greater than the first threshold distance), the computer system displays, via the display generation component (e.g., 601), a representation (e.g., 615) (e.g., an affordance (selectable graphical user interface object) representing a “pill” view) of the media control user interface (e.g., 612), wherein the representation of the media control user interface includes an indication (e.g., 615-1; 615-2) of the first external device (e.g., text and/or images that represent the first external device). Displaying, when a distance between the computer system and the first external device is less than a second threshold distance, a representation of the media control user interface that includes an indication of the first external device provides feedback to a user of the computer system of a function that can be performed with respect to the first external device, without requiring further input from the user to navigate between different user interfaces to access functionality for the first external device. Moreover, the computer system automatically displays the representation of the media control user interface having the indication of the first external device, without requiring further input from the user. Providing improved feedback and performing an operation automatically when a set of conditions is met reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In some embodiments, the indication of the first external device (e.g., 605) includes first status information (e.g., 615-1) associated with the first external device (e.g., text and/or images that indicate a current state or status of the first external device). In some embodiments, the status information includes an indication of whether media is being played back at the first external device, an indication of what media is being played back at the first external device, an indication of a type of media (e.g., call, music, podcast, voice command, virtual assistant) being played back at the first external device, and/or an indication of whether the first external device is turned on/off, connected/disconnected, and/or has sufficient power.
In some embodiments, the computer system (e.g., 600) detects a first change in distance between the computer system and the first external device (e.g., 605). In some embodiments, the change in distance is detected based on a change in signal strength (e.g., wireless signal strength) exchanged between the system and the first external device. In some embodiments, the change in distance is detected via one or more sensors (e.g., infrared sensors; optical sensors). In some embodiments, the change in distance is detected via data transmitted to the system from a Wi-Fi positioning system, from GPS, and/or from the first external device. In response to detecting the first change in distance, and in accordance with a determination that the first change in distance includes movement of the computer system toward the first external device (e.g., see
In some embodiments, the computer system (e.g., 600) detects a second change in distance between the computer system and the first external device (e.g., 605). In some embodiments, the change in distance is detected based on a change in signal strength (e.g., wireless signal strength) exchanged between the system and the first external device. In some embodiments, the change in distance is detected via one or more sensors (e.g., infrared sensors; optical sensors). In some embodiments, the change in distance is detected via data transmitted to the system from a Wi-Fi positioning system, from GPS, and/or from the first external device. In response to detecting the second change in distance, and in accordance with a determination that the second change in distance includes movement of the computer system away from the first external device (e.g., see
In some embodiments, the representation of the media control user interface (e.g., 615) includes a first subset of status information (e.g., 615-1) associated with the first external device (e.g., 605) (e.g., text and/or images that indicate a current state or status of the first external device). In some embodiments, while displaying the representation of the media control user interface, the computer system (e.g., 600) receives a second input (e.g., 608) (e.g., a touch input directed to the representation of the media control user interface; a change in the distance between the computer system and the first external device (e.g., the computer system moves closer to the first external device)). In response to receiving the second input, the computer system displays the representation of the media control user interface having an expanded state (e.g., 612; 612) that includes a second subset of status information (e.g., 612-2; 612-1) associated with the first external device that is different than the first subset of status information associated with the first external device (e.g., text and/or images that indicate a current state or status of the first external device) (e.g., status information that is not included in the first subset of status information). In some embodiments, the second subset of status information includes the first subset of status information plus additional status information. In some embodiments, displaying the representation of the media control user interface having an expanded state includes displaying an animation of the representation of the media control user interface expanding to display additional status information (e.g., the second subset of status information). In some embodiments, displaying the representation of the media control user interface having an expanded state includes displaying the representation of the media control user interface expanding to the media control user interface, wherein the second subset of status information is displayed in the media control user interface. In some embodiments, the expanded state of the representation of the media control user interface is the media control user interface.
In some embodiments, the computer system (e.g., 600) displays the representation of the media control user interface having an expanded state (e.g., 612′), including in accordance with a determination that a sixth set of criteria is met, wherein the sixth set of criteria includes a criterion that is met when the computer system is currently playing the first media (e.g., 604A) and the first external device (e.g., 605) is not playing the second media (e.g., 602B) (e.g., the first external device is not causing playback of any media), the computer system displays a third selectable graphical user interface object (e.g., 626) (e.g., the first selectable graphical user interface object) (e.g., a “transfer from phone” affordance) that, when selected, initiates playback of the first media on the first external device (e.g., the third selectable graphical user interface object is displayed without immediately handing off playback of the first media to the first external device). In some embodiments, the method further comprises: while displaying the third selectable graphical user interface object, receiving an input directed to the third selectable graphical user interface object; and in response to receiving the input directed to the third selectable graphical user interface object, initiating a process to cause the first external device to playback the first media (e.g., initiating a process for outputting the first media at the first external device (e.g., handing off the playback of the first media from the computer system to the first external device)).
In some embodiments, in response to a determination that a distance between the computer system (e.g., 600) and the first external device (e.g., 605) is less than the first threshold distance (e.g., 610-2) (e.g., an inner threshold distance from the first external device (e.g., 4 inches, 8 inches, 12 inches)), the computer system displays second status information (e.g., 612-2; 612-1) associated with the first external device (e.g., text and/or images that indicate a current state or status of the first external device). Displaying second status information associated with the first external device when the distance between the computer system and the first external device is less than the first threshold distance provides feedback to a user of the computer system indicating that the distance between the computer system and the first external device is less than the first threshold distance. Providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the status information includes an indication of whether media is being played back at the first external device, an indication of what media is being played back at the first external device, an indication of a type of media (e.g., call, music, podcast, voice command, virtual assistant) being played back at the first external device, and/or an indication of whether the first external device is turned on/off, connected/disconnected, and/or has sufficient power.
In some embodiments, the computer system (e.g., 600) displays the second status information (e.g., 612-2; 612-1) associated with the first external device (e.g., 605), including displaying a second representation (e.g., 615) (e.g., an affordance (selectable graphical user interface object) representing a “pill” view) of the media control user interface transitioning (e.g., see
In some embodiments, in response to receiving the input (e.g., 632), and in accordance with a determination that the input corresponds to a predefined gesture (e.g., an upward swipe that originates at a location on the media control user interface), the computer system (e.g., 600) ceases display of the one or more selectable user interface objects (e.g., 612-1) for controlling the playback of the second media on the first external device (e.g., 605) (e.g., see
Note that details of the processes described above with respect to method 800 (e.g.,
In
In some embodiments, the state of device 900 is indicated by one or more characteristics of light 905 such as, for example, the color, size, and/or brightness of light 905, as discussed in greater detail below.
In some embodiments, the state of device 900 is indicated by the displayed size of light 905. Examples of such embodiments are discussed in greater detail with respect to
In some embodiments, the state of device 900 is indicated by the color of light 905. For example, device 900 displays light having a green color when device 900 is in a communication state, having a multi-color pattern when device 900 is in a virtual assistant state, having a white color (or a color that corresponds to a particular song or album) when device 900 is in a music playback state, having an amber color when device 900 is in a low power state (e.g., device 900 has a low power supply), or having a red color when device 900 needs to be reset. In the embodiments depicted in
In some embodiments, the state of device 900 is indicated by the brightness of light 905 or a temporary change in brightness. For example, device 900 displays light 905 having a dim state when music is paused, and displays light 905 having a brighter state when music is playing. As another example, device 900 temporarily brightens light 905 to indicate an input is received at device 900, and dims light 905 when an input has not been received at device 900 for a predetermined amount of time. In some embodiments, device 900 brightens or dims light 905 in response to volume adjustments (e.g., increase brightness with a volume increase and decrease brightness with a volume decrease). In some embodiments, the brightness of light 905 is represented by the shade of light 905 depicted in the figures. For example, darker shades of light 905 can represent brighter display of light, and lighter shades of light 905 can represent dimmer display of light.
In some embodiments, the operation(s) that is performed at device 900 in response to an input depends on various characteristics of the input such as, for example, a size, location, and/or duration of the input. For example, in some embodiments, a respective portion of touch-sensitive surface 901 can be associated with two operations that can be performed in response to an input at the respective portion, and device 900 performs a first operation when the input has a first set of characteristics and performs a second operation when the input has a second set of characteristics.
In
In
In some embodiments, the operations associated with portions 901-1, 901-2, and 901-3 change when device 900 transitions from the music playback state to the virtual assistant state. For example, during the music playback state, portions 901-2 and 901-3 correspond to volume adjustment operations (e.g., volume up and volume down, respectively), and portion 901-1 corresponds to an operation for enabling the virtual assistant and an operation for pausing the music (as discussed in greater detail below). However, during the virtual assistant state, portions 901-1, 901-2, and 901-3 each correspond to an operation for terminating the virtual assistant. In other words, if device 900 detects an input on any of portions 901-1, 901-2, and 901-3, while in the virtual assistant state shown in
Referring again to
In
In
In
In
As depicted in
In
In
In
In
In some embodiments, the electronic device (e.g., 900) is a computer system (e.g., a speaker; a digital media player). The computer system is optionally in communication (e.g., wired communication, wireless communication) with a touch-sensitive surface (e.g., 901) (e.g., a touch-sensitive display). The touch-sensitive surface includes a first portion (e.g., 901-1) that is associated with a first operation (e.g., a playback control operation; pause; play; mute; unmute) and a second portion (e.g., 901-2) that is associated with (e.g., primarily associated with; by default) a second operation (e.g., a volume increase operation; a volume decrease operation), different from the first operation (e.g., the second portion is separate (e.g., physically distanced) from the first portion). In some embodiments the computer system includes a display generation component (e.g., 902) (e.g., a display controller, a touch-sensitive display system). The display generation component is configured to provide visual output, such as display via a CRT display, display via an LED display, or display via image projection. In some embodiments, the display generation component is integrated with the computer system. In some embodiments, the display generation component is separate from the computer system.
As described below, method 1000 provides an intuitive way for managing media playback devices. The method reduces the cognitive burden on a user for managing media playback devices, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage media playback devices faster and more efficiently conserves power and increases the time between battery charges.
In method 1000, the computer system (e.g., 900) detects (1002), via the touch-sensitive surface (e.g., 901), a first input (e.g., a touch input) (e.g., 912; 914; 916; 918; 920; 922; 924; 926; 928; 934). Detecting the first input includes detecting first contact having a respective size (e.g., surface area; contiguous surface area; total contacted surface area).
In response (1004) to detecting the first input (e.g., 912; 914; 916; 918; 920; 922; 924; 926; 928; 934), the computer system (e.g., 900) performs steps 1006, 1008, and 1010 of method 1000.
In accordance with a determination that the respective size of the first contact is less than a first threshold size (e.g., a size of contact shown in
In accordance with a determination that the respective size of the first contact is less than the first threshold size (e.g., a size of contact shown in
In accordance with a determination that the respective size of the first contact is greater than the first threshold size (e.g., a size of contact shown in
In some embodiments, initiating the process for performing the first operation without regard for whether the first input is directed to the first portion (e.g., 901-1) or the second portion (e.g., 901-2; 901-3) includes: in accordance with a determination that the first input (e.g., 922; 926) is directed to the first portion (e.g., 901-1), the computer system (e.g., 900) performs the first operation; and in accordance with a determination that the first input (e.g., 920; 924) is directed to the second portion (e.g., 901-2; 901-3), the computer system performs the first operation. In some embodiments, initiating the process for performing the first operation without regard for whether the first input is directed to the first portion or the second portion includes: the computer system detects a second input (e.g., 922; 926) directed to the first portion of the touch-sensitive surface and, in response to the second input, initiates a process for performing the first operation; and the computer system detects a third input (e.g., 920; 924) directed to the second portion of the touch-sensitive surface and, in response to the third input, the computer system initiates a process for performing the first operation (e.g., without initiating a process for performing the second operation).
In some embodiments, in response to detecting the first input (e.g., 912; 914; 916; 918; 920; 922; 924; 926; 928; 934), in accordance with a determination that the respective size of the first contact is greater than the first threshold size (e.g., a size of contact shown in
In some embodiments, in response to detecting the first input (e.g., 914; 918), in accordance with a determination that the respective size of the first contact is less than the first threshold size (e.g., a size of contact shown in
In some embodiments, the first portion (e.g., 901-1) of the touch-sensitive surface includes a central portion (e.g., a center region; a region located at a midpoint of a diameter of the touch-sensitive surface) of the touch-sensitive surface (e.g., 901).
In some embodiments, the second portion (e.g., 901-2; 901-3) of the touch-sensitive surface includes an edge portion (e.g., one or more outer portions; one or more regions positioned at an edge of the touch-sensitive surface) of the touch-sensitive surface (e.g., 901). In some embodiments, the first portion is an hourglass-shaped region and the second portion includes one or more parabolic-shaped regions located adjacent a midpoint of the first portion.
In some embodiments, the computer system (e.g., 900) initiates a process for performing the first operation, including: in accordance with a determination that the computer system is currently causing output of first audio (e.g., playing music) (e.g., see
In some embodiments, the computer system (e.g., 900) is currently causing output of second audio (e.g., at a first volume) (e.g., see
In some embodiments, the touch-sensitive surface (e.g., 901) includes a third portion (e.g., 901-3) (e.g., separate from the first and second portion, physically and/or visually distinguished from the first and second portion) that is associated with a third operation (e.g., a volume increase; a volume decrease) that is different from the first operation and the second operation. In some embodiments, the second operation is a first type of volume adjustment (e.g., a volume increase operation), and the third operation is a second type of volume adjustment (e.g., a volume decrease operation).
In some embodiments, the computer system (e.g., 900) detects, via the touch-sensitive surface (e.g., 901), a second input (e.g., the first input) (e.g., 928; 934), wherein detecting the second input includes detecting second contact (e.g., the first contact of the first input) having a second respective size (e.g., a size of contact shown in
In some embodiments, the computer system (e.g., 900) is in communication with an audio input device (e.g., 904) (e.g., a microphone). In some embodiments, the first set of criteria further includes a second criterion that is met when the computer system is engaged in (e.g., participating in, hosting) a communication session (e.g., a video communication session; a phone call) (e.g., see
In some embodiments, the first set of criteria further includes a third criterion that is met when the computer system (e.g., 900) is causing output of third audio (e.g., playing music) (e.g., see
In some embodiments, the first operation is determined based on a state of the computer system (e.g., 900). In some embodiments, in accordance with a determination that the computer system has a first state in which the computer system is causing output of fourth audio (e.g., see
Note that details of the processes described above with respect to method 1000 (e.g.,
In
In some embodiments, the state of device 900 is indicated by one or more characteristics of light 905 such as, for example, the color, size, and/or brightness of light 905, as discussed in greater detail below.
In some embodiments, the state of device 900 is indicated by the displayed size of light 905. For example, light 905 is a small size (e.g., less than a predetermined size threshold) when device 900 is in a first state, and light 905 is a large size (e.g., greater than the predetermined size threshold) when device 900 is in a second (different) state. Accordingly, portions 901-1, 901-2, and 901-3 have a first set of operations associated with the portions during the first state and a second set of operations associated with the portions during the second state. In some embodiments, device 900 is in the first state, and displays light 905 having a small size, when device 900 is playing music or audio for communication sessions such as a phone call, a video call, or an incoming audio message. In some embodiments, device 900 is in the second state, and displays light 905 having a large size, when device 900 is in a virtual assistant state (discussed above), performing a timer or alarm operation, recording an outgoing audio message, or, in some embodiments, when audio playback is transitioning to (or from) device 900, as discussed above with respect to
In some embodiments, the state of device 900 is indicated by the color of light 905. For example, device 900 displays light having a green color when device 900 is in a communication state, having a multi-color pattern when device 900 is in a virtual assistant state, having a white color (or a color that corresponds to a particular song or album) when device 900 is in a music playback state, having an amber color when device 900 is in a low power state (e.g., device 900 has a low power supply), or having a red color when device 900 needs to be reset. In the embodiments depicted in
In some embodiments, the state of device 900 is indicated by the brightness of light 905 or a temporary change in brightness. For example, device 900 displays light 905 having a dim state when music is paused, and displays light 905 having a brighter state when music is playing. As another example, device 900 temporarily brightens light 905 to indicate an input is received at device 900, and dims light 905 when an input has not been received at device 900 for a predetermined amount of time. In some embodiments, device 900 brightens or dims light 905 in response to volume adjustments (e.g., increase brightness with a volume increase and decrease brightness with a volume decrease). In some embodiments, the brightness of light 905 is represented by the shade of light 905 depicted in the figures. For example, darker shades of light 905 can represent brighter display of light, and lighter shades of light 905 can represent dimmer display of light.
In some embodiments, the operation(s) that is performed at device 900 in response to an input depends on various characteristics of the input such as, for example, a size, location, and/or duration of the input. For example, in some embodiments, a respective portion of touch-sensitive surface 901 can be associated with two operations that can be performed in response to an input at the respective portion, and device 900 performs a first operation when the input has a first set of characteristics and performs a second operation when the input has a second set of characteristics.
In
In
In
In
In
In the embodiments depicted in
In
In
In
In
In some embodiments, the electronic device (e.g., 900) is a computer system (e.g., a speaker; a digital media player) that includes a touch-sensitive display (e.g., 901, 902) having a first portion (e.g., 901-1) and a second portion (e.g., 901-2; 901-3), wherein the touch-sensitive display includes one or more physical features (e.g., 901A; 901B) (e.g., ridges, bumps, markings, textures, etchings, indicia) that distinguishes the second portion from the first portion (e.g., the second portion is different from the first portion). In some embodiments, the second portion is visually and/or texturally different form the first portion. In some embodiments, the one or more physical features are provided (e.g., printed, displayed, etched, engraved, overlaid, molded) on and/or below the touch-sensitive display. In some embodiments, the first portion is associated with a first operation. In some embodiments, the second portion is not associated with the first operation. In some embodiments, the second portion is conditionally associated with the first operation based, for example, on an operation that can be performed in response to an input at the second portion.
As described below, method 1200 provides an intuitive way for managing media playback devices. The method reduces the cognitive burden on a user for managing media playback devices, thereby creating a more efficient human-machine interface. For battery-operated computing devices, enabling a user to manage media playback devices faster and more efficiently conserves power and increases the time between battery charges.
At method 1200, while the first portion (e.g., 901-1) of the touch-sensitive display (e.g., 901) is configured to cause the computer system (e.g., 900) to perform a first operation (e.g., a playback control operation; pause; play; mute; unmute) in response to detecting an input on the first portion, the computer system outputs (1202) (e.g., displays) a visual indicator (e.g., 905) (e.g., a status light) on the touch-sensitive display (e.g., via one or more displays 902). The visual indicator occupies at least a subset of the first portion of the touch-sensitive display. A first visual property (e.g., size, brightness, color, and/or pulse behavior) of the visual indicator indicates an operational state (e.g., active/inactive) of the second portion (e.g., 901-2; 901-3) for (e.g., with respect to) performing a second operation (e.g., volume up; volume down) different from the first operation (e.g., one or more operations that are different from the first operation) (e.g., the status light indicates whether or not the second portion of the touch-sensitive surface is configured or operable to perform the second operation(s)). Outputting a visual indicator on the touch-sensitive display that occupies at least a subset of the first portion of the display, wherein a first visual property of the visual indicator indicates an operational state of the second portion for performing a second operation different from the first operation, provides feedback to a user of the computer system of an operational state of the second portion of the touch-sensitive display. Providing improved feedback reduces the number of inputs at the computer system (e.g., by informing the user of the operational state of the second portion of the touch-sensitive display without requiring the user to provide input to discern the operational state), enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently.
In accordance with a determination that the second portion (e.g., 901-2; 901-3) of the touch-sensitive display (e.g., 901) is operable (e.g., configured) to initiate a process for performing the second operation (e.g., the second portion of the touch-sensitive surface is configured to perform the second operation), the computer system (e.g., 900) outputs (1204) the visual indicator (e.g., 905) having a first variation (e.g., value, shape, pattern, and/or size) of the first visual property (e.g., a first size (e.g., a size that does not include the second portion, or a majority of the second portion, of the touch-sensitive display); light 905 having a size shown in
In accordance with a determination that the second portion (e.g., 901-2; 901-3) of the touch-sensitive display (e.g., 901) is not operable (e.g., configured) to initiate the process for performing the second operation (e.g., the second portion of the touch-sensitive surface is not configured to perform the second operation), the computer system (e.g., 900) outputs (1206) the visual indicator (e.g., 905) having a second variation (e.g., value, shape, pattern, and/or size) of the first visual property different from the first variation (e.g., a second size different from the first size) (e.g., a larger size than the first size) (e.g., a size that includes at least a subset (portion), or a majority, of the second portion of the touch-sensitive display) (e.g., light 905 having a size shown in
In method 1200, the computer system (e.g., 900) detects (1208) an input (e.g., 1112; 1114; 1116; 1118; 1122; 1124; 1126; 1128; 1130; 1132; 1134; 1136; 1138; 1140; 1142) (e.g., a touch input) directed to the touch-sensitive display (e.g., 901).
In response (1210) to detecting the input directed to the touch-sensitive display (e.g., 901), the computer system (e.g., 900) performs the following steps. In accordance with a determination that the input (e.g., 1114; 1116; 1122; 1124; 1142) is directed to the second portion (e.g., 901-2) of the touch-sensitive display (e.g., 901) (e.g., at least a predefined amount (e.g., 10%, 25%, 35%, 45%, 51%, 55%, 60%, 75%, 85%, 95%, 99%, 100%, more than 50%) of the touch contact is located within the second portion) while the visual indicator has the first variation of the first visual property (e.g., a small displayed size) (e.g., light 905 has a size shown in
In some embodiments, in response to detecting the input (e.g., 1112; 1118; 1126; 1140) directed to the touch-sensitive display (e.g., 901) while the visual indicator (e.g., 905) has the first variation of the first visual property (e.g., a small displayed size), and in accordance with a determination that the input is directed to the first portion (e.g., 901-1) of the touch-sensitive display (e.g., at least a predefined amount (e.g., 25%, 35%, 45%, 51%, 55%, 60%, 75%, 85%, 95%, 99%, 100%, more than 50%) of the touch contact is located within the first portion), the computer system (e.g., 900) initiates a process for performing the first operation (e.g., perform a playback control operation; pause; play; mute; unmute). In some embodiments, in response to detecting the input (e.g., 1130; 1136) directed to the touch-sensitive display while the visual indicator has the second variation of the first visual property (e.g., a large displayed size), and in accordance with a determination that the input is directed to the first portion (e.g., 901-1) of the touch-sensitive display (e.g., 901), the computer system (e.g., 900) initiates a process for performing the first operation. In some embodiments, when the input is directed to the first portion of the touch-sensitive display, the first operation is performed without regard for whether the status light has the first or second variation of the first visual property.
In some embodiments, the first visual property is a size of the visual indicator (e.g., 905). In some embodiments, the first variation of the first visual property is a first size (e.g., a size that does not include the second portion of the touch-sensitive display) (e.g., light 905 has the size shown in
In some embodiments, in response to detecting the input (e.g., 1114; 1116; 1122; 1124; 1142) directed to the touch-sensitive display (e.g., 901), and in accordance with a determination that the input is directed to the second portion (e.g., 901-2; 901-3) of the touch-sensitive display while the visual indicator (e.g., 905) has the first size (e.g., a size shown in
In some embodiments, in response to detecting the input directed to the touch-sensitive display, and in accordance with a determination that the input (e.g., 1128; 1132; 1134; 1138) is directed to the second portion (e.g., 901-2; 901-3) of the touch-sensitive display (e.g., 901) while the visual indicator has the second variation of the first visual property (e.g., a displayed size that includes at least a subset of the second portion of the touch-sensitive display) (e.g., light 905 has the size shown in
In some embodiments, performing the first operation includes the computer system (e.g., 900) starting to output (e.g., unmuting, initiating/resuming playback) audio (e.g., as indicated by indicator 1110) if audio is not being output (e.g., audio (e.g., music, podcasts, videoconference audio, phone audio) generated at the computer system) or ceasing to output audio if audio is being output (e.g., muting first audio generated at the computer system, pausing playback of first audio generated at the computer system).
In some embodiments, performing the first operation includes the computer system (e.g., 900) initiating a task (e.g., initiating a request (e.g., for a virtual assistant), setting a timer, setting an alarm) or canceling a task (e.g., canceling a request (e.g., for a virtual assistant), canceling or disabling a timer, canceling or disabling an alarm) (e.g., see
In some embodiments, performing the second operation includes the computer system (e.g., 900) initiating a volume adjustment (e.g., increase volume; decrease volume) (e.g., see
In some embodiments, performing the second operation (e.g., a volume adjustment) includes the computer system (e.g., 900) modifying a second visual property (e.g., size, brightness, color, and/or pulse behavior) of the visual indicator different from the first visual property (e.g., see pulsing of light 905 shown in
In some embodiments, the second visual property is a display state (e.g., brightness, behavior) of the visual indicator (e.g., 905). In some embodiments, modifying the second visual property includes the computer system (e.g., 900) modulating the display state of the visual indicator (e.g., pulsing the visual indicator, blinking the visual indicator) in response to the first input (e.g., to provide feedback that the first input was received) (e.g., see pulsing of light 905 shown in
In some embodiments, the first visual property is color of the visual indicator (e.g., 905). In some embodiments, the computer system (e.g., 900) is in a first state (e.g., the virtual assistant state shown in
In some embodiments, the modified color of the visual indicator (e.g., 905) is a first set of one or more colors (e.g., white) when the third operation is associated with music or an alarm (e.g., an operation for controlling playback and/or handoff of music; an operation for setting, canceling, or silencing an alarm).
In some embodiments, the modified color of the visual indicator (e.g., 905) is a second set of one or more colors (e.g., multicolor (e.g., a multicolor pattern); different from the first set of one or more colors) when the third operation is associated with a virtual assistant (e.g., an operation for initiating/fulfilling a request or command using a virtual assistant).
In some embodiments, the modified color of the visual indicator (e.g., 905) is a third set of one or more colors (e.g., green; different from the first and/or second set of one or more colors) when the third operation is associated with communication audio (e.g., audio for a call; audio for a video communication (e.g., video chat); audio being transmitted to the computer system (e.g., from an external source such as a different computer system)).
In some embodiments, the modified color of the visual indicator (e.g., 905) is a fourth set of one or more colors (e.g., amber, yellow; different from the first, second, and/or third set of one or more colors) when the second state is a low power mode of the computer system (e.g., the power supply is below a predetermined threshold).
In some embodiments, the modified color of the visual indicator (e.g., 905) is a fifth set of one or more colors (e.g., red; different from the first, second, third, and/or fourth set of one or more colors) when the third operation is associated with a reset command (e.g., an operation for initiating a reset of the computer system).
In some embodiments, modifying the color of the visual indicator (e.g., 905) includes animating a color change of the visual indicator based on an audio signal (e.g., an output audio produced at the computer system; an audio signal of an input command received at the computer system). Animating a color change of the visual indicator based on an audio signal provides feedback to a user of the computer system that an operation to be performed at the computer system is associated with the audio signal. Providing improved feedback reduces the number of inputs at the computer system, enhances the operability of the computer system, and makes the user-system interface more efficient (e.g., by helping the user to provide proper inputs and reducing user mistakes when operating/interacting with the computer system) which, additionally, reduces power usage and improves battery life of the computer system by enabling the user to use the system more quickly and efficiently. In some embodiments, the animated color change includes changing colors and, optionally, a pattern and/or behavior of the status light in response to changes in the audio signal. In some embodiments, the animation of the light includes a changing pattern and/or behavior of the status light (e.g., in response to changes in the audio signal) without changing color.
In some embodiments, in accordance with a determination that the computer system (e.g., 900) has not received an input (e.g., user input) for at least a predetermined amount of time (e.g., 30 seconds, 1 minute, 5 minutes), the computer system decreases a brightness of the visual indicator (e.g., 905) (e.g., decreasing the brightness to a non-zero value; see
In some embodiments, while the visual indicator (e.g., 905) has the decreased brightness (e.g., as shown in
In some embodiments, the computer system (e.g., 900) is configured to generate output audio based on a volume setting (e.g., represented using indicator 1115). In some embodiments, in accordance with a determination that the volume setting is greater than zero, the computer system outputs the visual indicator (e.g., 905) (e.g., see
Note that details of the processes described above with respect to method 1200 (e.g.,
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.
Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.
As described above, one aspect of the present technology is the gathering and use of data available from various sources to manage media playback devices. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, twitter IDs, home addresses, data or records relating to a user's health or level of fitness (e.g., vital signs measurements, medication information, exercise information), date of birth, or any other identifying or personal information.
The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to customize media playback. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure. For instance, health and fitness data may be used to provide insights into a user's general wellness, or may be used as positive feedback to individuals using technology to pursue wellness goals.
The present disclosure contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. Such policies should be easily accessible by users, and should be updated as the collection and/or use of data changes. Personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection/sharing should occur after receiving the informed consent of the users. Additionally, such entities should consider taking any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices. In addition, policies and practices should be adapted for the particular types of personal information data being collected and/or accessed and adapted to applicable laws and standards, including jurisdiction-specific considerations. For instance, in the US, collection of or access to certain health data may be governed by federal and/or state laws, such as the Health Insurance Portability and Accountability Act (HIPAA); whereas health data in other countries may be subject to other regulations and policies and should be handled accordingly. Hence different privacy practices should be maintained for different personal data types in each country.
Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of managing media playback devices, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services or anytime thereafter. In addition to providing “opt in” and “opt out” options, the present disclosure contemplates providing notifications relating to the access or use of personal information. For instance, a user may be notified upon downloading an app that their personal information data will be accessed and then reminded again just before personal information data is accessed by the app.
Moreover, it is the intent of the present disclosure that personal information data should be managed and handled in a way to minimize risks of unintentional or unauthorized access or use. Risk can be minimized by limiting the collection of data and deleting data once it is no longer needed. In addition, and when applicable, including in certain health related applications, data de-identification can be used to protect a user's privacy. De-identification may be facilitated, when appropriate, by removing specific identifiers (e.g., date of birth, etc.), controlling the amount or specificity of data stored (e.g., collecting location data a city level rather than at an address level), controlling how data is stored (e.g., aggregating data across users), and/or other methods.
Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, media content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the electronic device, media playback history or patterns, or publicly available information.
This application is a continuation of U.S. Nonprovisional patent application Ser. No. 17/867,317, entitled “METHODS AND INTERFACES FOR MEDIA CONTROL WITH DYNAMIC FEEDBACK,” filed on Jul. 18, 2022, which is a continuation of U.S. Nonprovisional patent application Ser. No. 17/168,069, now U.S. Pat. No. 11,392,291, entitled “METHODS AND INTERFACES FOR MEDIA CONTROL WITH DYNAMIC FEEDBACK,” filed on Feb. 4, 2021, which claims priority to U.S. Provisional Patent Application Ser. No. 63/083,820, entitled “METHODS AND INTERFACES FOR MEDIA CONTROL WITH DYNAMIC FEEDBACK,” filed on Sep. 25, 2020, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5202961 | Mills et al. | Apr 1993 | A |
5305435 | Bronson | Apr 1994 | A |
5347628 | Welch et al. | Sep 1994 | A |
5404316 | Klingler et al. | Apr 1995 | A |
5463725 | Henckel et al. | Oct 1995 | A |
5495566 | Kwatinetz | Feb 1996 | A |
5513342 | Leong et al. | Apr 1996 | A |
5519828 | Rayner | May 1996 | A |
5521841 | Arman et al. | May 1996 | A |
5557724 | Sampat et al. | Sep 1996 | A |
5568603 | Chen et al. | Oct 1996 | A |
5611060 | Belfiore et al. | Mar 1997 | A |
5614940 | Cobbley et al. | Mar 1997 | A |
5682326 | Klingler et al. | Oct 1997 | A |
5684970 | Asuma et al. | Nov 1997 | A |
5692213 | Harrison et al. | Nov 1997 | A |
5726687 | Belfiore et al. | Mar 1998 | A |
5732184 | Chao et al. | Mar 1998 | A |
5745096 | Ludolph et al. | Apr 1998 | A |
5751260 | Nappi et al. | May 1998 | A |
5754174 | Carpenter et al. | May 1998 | A |
5758180 | Duffy et al. | May 1998 | A |
5760767 | Shore et al. | Jun 1998 | A |
5760772 | Austin | Jun 1998 | A |
5778053 | Skarbo et al. | Jul 1998 | A |
5793366 | Mano et al. | Aug 1998 | A |
5841971 | Longginou et al. | Nov 1998 | A |
5864868 | Contois | Jan 1999 | A |
5872566 | Bates et al. | Feb 1999 | A |
5872922 | Hogan et al. | Feb 1999 | A |
5874958 | Ludolph | Feb 1999 | A |
5880725 | Southgate | Mar 1999 | A |
5880733 | Horvitz et al. | Mar 1999 | A |
5892507 | Moorby | Apr 1999 | A |
5936623 | Amro | Aug 1999 | A |
5999173 | Ubillos | Dec 1999 | A |
6011537 | Slotznick | Jan 2000 | A |
6016248 | Anzai et al. | Jan 2000 | A |
6023275 | Horvitz et al. | Feb 2000 | A |
6026389 | Nakajima et al. | Feb 2000 | A |
6031529 | Migos et al. | Feb 2000 | A |
6061062 | Venolia | May 2000 | A |
6072503 | Tani et al. | Jun 2000 | A |
6081256 | Martin et al. | Jun 2000 | A |
6094197 | Buxton et al. | Jul 2000 | A |
6115037 | Sumiyoshi et al. | Sep 2000 | A |
6118450 | Proehl et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6166736 | Hugh | Dec 2000 | A |
6204840 | Petelycky et al. | Mar 2001 | B1 |
6208342 | Mugura et al. | Mar 2001 | B1 |
6236400 | Guerrero | May 2001 | B1 |
6262724 | Crow et al. | Jul 2001 | B1 |
6308187 | Destefano | Oct 2001 | B1 |
6310613 | Tanaka et al. | Oct 2001 | B1 |
6317784 | Mackintosh et al. | Nov 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6332147 | Moran et al. | Dec 2001 | B1 |
6351765 | Pietropaolo et al. | Feb 2002 | B1 |
6362837 | Ginn | Mar 2002 | B1 |
6363395 | Tanaka et al. | Mar 2002 | B1 |
6366296 | Boreczky et al. | Apr 2002 | B1 |
6369835 | Lin | Apr 2002 | B1 |
6393430 | Van et al. | May 2002 | B1 |
6393462 | Mullen-Schultz | May 2002 | B1 |
6446080 | Van Ryzin et al. | Sep 2002 | B1 |
6452609 | Katinsky et al. | Sep 2002 | B1 |
6456305 | Qureshi et al. | Sep 2002 | B1 |
6477117 | Narayanaswami et al. | Nov 2002 | B1 |
6489951 | Wong et al. | Dec 2002 | B1 |
6504934 | Kasai et al. | Jan 2003 | B1 |
6515681 | Knight | Feb 2003 | B1 |
6515988 | Eldridge et al. | Feb 2003 | B1 |
6538665 | Crow et al. | Mar 2003 | B2 |
6544295 | Bodnar et al. | Apr 2003 | B1 |
6556222 | Narayanaswami | Apr 2003 | B1 |
6570557 | Westerman et al. | May 2003 | B1 |
6577330 | Tsuda et al. | Jun 2003 | B1 |
6584479 | Chang et al. | Jun 2003 | B2 |
6587127 | Stojakovic et al. | Jul 2003 | B1 |
6600936 | Kärkkäinen et al. | Jul 2003 | B1 |
6674452 | Kraft et al. | Jan 2004 | B1 |
6677932 | Westerman | Jan 2004 | B1 |
6677965 | Ullmann et al. | Jan 2004 | B1 |
6725427 | Freeman et al. | Apr 2004 | B2 |
6833848 | Wolff et al. | Dec 2004 | B1 |
6834371 | Jensen et al. | Dec 2004 | B1 |
6850256 | Crow et al. | Feb 2005 | B2 |
6922147 | Viksnins et al. | Jul 2005 | B1 |
6975306 | Hinckley et al. | Dec 2005 | B2 |
7081905 | Raghunath | Jul 2006 | B1 |
7091964 | Wong et al. | Aug 2006 | B2 |
7111240 | Crow et al. | Sep 2006 | B2 |
7191411 | Moehrle | Mar 2007 | B2 |
7240297 | Anderson et al. | Jul 2007 | B1 |
7315984 | Crow et al. | Jan 2008 | B2 |
7318196 | Crow et al. | Jan 2008 | B2 |
7370244 | Breitling et al. | May 2008 | B2 |
7415720 | Jung | Aug 2008 | B2 |
7441207 | Filner | Oct 2008 | B2 |
7454192 | Zhu | Nov 2008 | B1 |
7458025 | Crow et al. | Nov 2008 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7492350 | Fabre et al. | Feb 2009 | B2 |
7526728 | Apparao et al. | Apr 2009 | B2 |
7546470 | Schultz | Jun 2009 | B2 |
7571014 | Lambourne et al. | Aug 2009 | B1 |
7581186 | Dowdy et al. | Aug 2009 | B2 |
7593749 | Vallström et al. | Sep 2009 | B2 |
7596761 | Lemay et al. | Sep 2009 | B2 |
7656393 | King et al. | Feb 2010 | B2 |
7710393 | Tsuk et al. | May 2010 | B2 |
7730223 | Bavor et al. | Jun 2010 | B1 |
7750893 | Hashimoto et al. | Jul 2010 | B2 |
7831054 | Ball et al. | Nov 2010 | B2 |
7860936 | Newstadt et al. | Dec 2010 | B1 |
7996792 | Anzures et al. | Aug 2011 | B2 |
8028323 | Weel | Sep 2011 | B2 |
8042157 | Bennett et al. | Oct 2011 | B2 |
8046804 | Kelts | Oct 2011 | B2 |
8060571 | Rao | Nov 2011 | B2 |
8060825 | Chaudhri et al. | Nov 2011 | B2 |
8077157 | Sengupta et al. | Dec 2011 | B2 |
8116807 | Matas | Feb 2012 | B2 |
8146019 | Kim et al. | Mar 2012 | B2 |
8171137 | Parks et al. | May 2012 | B1 |
8196043 | Crow et al. | Jun 2012 | B2 |
8217906 | Sinclair | Jul 2012 | B2 |
8224894 | Parks et al. | Jul 2012 | B1 |
8225191 | Kalman | Jul 2012 | B1 |
8234395 | Millington | Jul 2012 | B2 |
8260879 | Chan | Sep 2012 | B2 |
8264465 | Grant et al. | Sep 2012 | B2 |
8280539 | Jehan et al. | Oct 2012 | B2 |
8290603 | Lambourne | Oct 2012 | B1 |
8305356 | Jang | Nov 2012 | B1 |
8386563 | Parks et al. | Feb 2013 | B2 |
8392259 | Macgillivray et al. | Mar 2013 | B2 |
8392617 | Weber et al. | Mar 2013 | B1 |
8427303 | Brady et al. | Apr 2013 | B1 |
8434133 | Kulkarni et al. | Apr 2013 | B2 |
8458780 | Takkallapally et al. | Jun 2013 | B1 |
8462961 | Bywaters et al. | Jun 2013 | B1 |
8467766 | Rackley et al. | Jun 2013 | B2 |
8478363 | Levien et al. | Jul 2013 | B2 |
8478816 | Parks et al. | Jul 2013 | B2 |
8531427 | Jang | Sep 2013 | B2 |
8564543 | Chaudhri | Oct 2013 | B2 |
8572513 | Chaudhri et al. | Oct 2013 | B2 |
8587528 | Chaudhri | Nov 2013 | B2 |
8589823 | Lemay et al. | Nov 2013 | B2 |
8613070 | Borzycki et al. | Dec 2013 | B1 |
8624836 | Miller et al. | Jan 2014 | B1 |
8682722 | Des Jardins et al. | Mar 2014 | B1 |
8689128 | Chaudhri et al. | Apr 2014 | B2 |
8698762 | Wagner et al. | Apr 2014 | B2 |
8718556 | Lee et al. | May 2014 | B2 |
8736557 | Chaudhri et al. | May 2014 | B2 |
8769624 | Cotterill | Jul 2014 | B2 |
8811951 | Faaborg et al. | Aug 2014 | B1 |
8812601 | Hsieh et al. | Aug 2014 | B2 |
8826415 | Last | Sep 2014 | B2 |
8830181 | Clark et al. | Sep 2014 | B1 |
8860674 | Lee et al. | Oct 2014 | B2 |
8875046 | Jitkoff | Oct 2014 | B2 |
8884874 | Kim et al. | Nov 2014 | B1 |
8886710 | Evans et al. | Nov 2014 | B2 |
8914752 | Spiegel | Dec 2014 | B1 |
8914840 | Reisman | Dec 2014 | B2 |
8943410 | Ubillos | Jan 2015 | B2 |
8984431 | Newman et al. | Mar 2015 | B2 |
9002322 | Cotterill | Apr 2015 | B2 |
9042556 | Kallai et al. | May 2015 | B2 |
9084003 | Sanio et al. | Jul 2015 | B1 |
9095779 | Chan et al. | Aug 2015 | B2 |
9100944 | Sauhta et al. | Aug 2015 | B2 |
9112849 | Werkelin Ahlin et al. | Aug 2015 | B1 |
9134902 | Kang et al. | Sep 2015 | B2 |
9185062 | Yang et al. | Nov 2015 | B1 |
9191988 | Newham | Nov 2015 | B2 |
9195219 | Hong et al. | Nov 2015 | B2 |
9202509 | Kallai et al. | Dec 2015 | B2 |
9244584 | Fino | Jan 2016 | B2 |
9247363 | Triplett et al. | Jan 2016 | B2 |
9251787 | Hart et al. | Feb 2016 | B1 |
9269083 | Jarajapu et al. | Feb 2016 | B1 |
9294476 | Lurey et al. | Mar 2016 | B1 |
9294853 | Dhaundiyal | Mar 2016 | B1 |
9319782 | Crump et al. | Apr 2016 | B1 |
9374607 | Bates et al. | Jun 2016 | B2 |
9395905 | Wherry | Jul 2016 | B2 |
9400489 | Kim et al. | Jul 2016 | B2 |
D765118 | Bachman et al. | Aug 2016 | S |
9431021 | Scalise et al. | Aug 2016 | B1 |
9450812 | Lee et al. | Sep 2016 | B2 |
9477208 | Park et al. | Oct 2016 | B2 |
9489106 | Chaudhri et al. | Nov 2016 | B2 |
D773510 | Foss et al. | Dec 2016 | S |
9519413 | Bates | Dec 2016 | B2 |
9549323 | Lee et al. | Jan 2017 | B2 |
9582178 | Grant et al. | Feb 2017 | B2 |
9588661 | Jauhal et al. | Mar 2017 | B1 |
9628414 | Umapathy et al. | Apr 2017 | B1 |
D789381 | Okumura et al. | Jun 2017 | S |
9680927 | Miller et al. | Jun 2017 | B2 |
9680982 | Fiedler | Jun 2017 | B2 |
9710639 | Saini | Jul 2017 | B1 |
9727749 | Tzeng et al. | Aug 2017 | B2 |
9779613 | Bates | Oct 2017 | B2 |
9794720 | Kadri | Oct 2017 | B1 |
9798443 | Gray | Oct 2017 | B1 |
9820323 | Young et al. | Nov 2017 | B1 |
9846564 | Toksoz et al. | Dec 2017 | B1 |
9846685 | Li | Dec 2017 | B2 |
9847999 | Van Os et al. | Dec 2017 | B2 |
9898250 | Williams et al. | Feb 2018 | B1 |
9922317 | Bak et al. | Mar 2018 | B2 |
9954989 | Zhou | Apr 2018 | B2 |
9967401 | Coffman et al. | May 2018 | B2 |
10055094 | Li et al. | Aug 2018 | B2 |
10089607 | Ziat et al. | Oct 2018 | B2 |
10096015 | Bak et al. | Oct 2018 | B2 |
10104089 | Kim et al. | Oct 2018 | B2 |
10129044 | Kangshang et al. | Nov 2018 | B2 |
10142122 | Hill et al. | Nov 2018 | B1 |
10157040 | Ballinger et al. | Dec 2018 | B2 |
10178234 | Coffman et al. | Jan 2019 | B2 |
10182138 | Motika et al. | Jan 2019 | B2 |
10198563 | Wang et al. | Feb 2019 | B2 |
10200468 | Leban et al. | Feb 2019 | B2 |
10225711 | Parks et al. | Mar 2019 | B2 |
10237141 | Sasaki et al. | Mar 2019 | B2 |
10248779 | Song et al. | Apr 2019 | B2 |
10284980 | Woo et al. | May 2019 | B1 |
10299300 | Young | May 2019 | B1 |
10300394 | Evans et al. | May 2019 | B1 |
10303422 | Woo et al. | May 2019 | B1 |
10310725 | Smith et al. | Jun 2019 | B2 |
10334054 | Van Os et al. | Jun 2019 | B2 |
10339769 | Mixter et al. | Jul 2019 | B2 |
10374804 | Lee et al. | Aug 2019 | B2 |
10417037 | Gruber et al. | Sep 2019 | B2 |
10436977 | Bergman et al. | Oct 2019 | B2 |
10454781 | Sasaki et al. | Oct 2019 | B2 |
10511456 | Smith et al. | Dec 2019 | B2 |
10523625 | Allen et al. | Dec 2019 | B1 |
10524300 | Ueda et al. | Dec 2019 | B2 |
10701067 | Ziraknejad et al. | Jun 2020 | B1 |
10705701 | Pisula et al. | Jul 2020 | B2 |
10713699 | Lien et al. | Jul 2020 | B1 |
10732819 | Wang et al. | Aug 2020 | B2 |
10742645 | Hevizi et al. | Aug 2020 | B2 |
10742648 | Magyar et al. | Aug 2020 | B2 |
10749967 | Van Os et al. | Aug 2020 | B2 |
10779085 | Carrigan | Sep 2020 | B1 |
10783883 | Mixter et al. | Sep 2020 | B2 |
10824299 | Bai | Nov 2020 | B2 |
10833887 | Wu | Nov 2020 | B2 |
10924446 | Paul | Feb 2021 | B1 |
10929099 | Querze et al. | Feb 2021 | B2 |
10963145 | Voss et al. | Mar 2021 | B1 |
11079913 | Kim et al. | Aug 2021 | B1 |
11164580 | Kraker | Nov 2021 | B2 |
11281711 | Sanders et al. | Mar 2022 | B2 |
11283916 | Coffman et al. | Mar 2022 | B2 |
11316709 | Brown et al. | Apr 2022 | B2 |
11343370 | Gordon et al. | May 2022 | B1 |
11343613 | Gordon et al. | May 2022 | B2 |
11431834 | Gordon et al. | Aug 2022 | B1 |
11463576 | Gordon et al. | Oct 2022 | B1 |
11523166 | Tu et al. | Dec 2022 | B1 |
20010030597 | Inoue et al. | Oct 2001 | A1 |
20010031622 | Kivela et al. | Oct 2001 | A1 |
20010039497 | Hubbard | Nov 2001 | A1 |
20010043514 | Kita et al. | Nov 2001 | A1 |
20010049627 | Simpson | Dec 2001 | A1 |
20010050687 | Iida et al. | Dec 2001 | A1 |
20020002039 | Qureshey et al. | Jan 2002 | A1 |
20020015024 | Westerman et al. | Feb 2002 | A1 |
20020026442 | Lipscomb et al. | Feb 2002 | A1 |
20020048224 | Dygert et al. | Apr 2002 | A1 |
20020054158 | Asami | May 2002 | A1 |
20020054164 | Uemura | May 2002 | A1 |
20020057262 | Patrick et al. | May 2002 | A1 |
20020059295 | Ludtke et al. | May 2002 | A1 |
20020068600 | Chihara et al. | Jun 2002 | A1 |
20020080151 | Venolia | Jun 2002 | A1 |
20020115478 | Fujisawa et al. | Aug 2002 | A1 |
20020116276 | Ottley | Aug 2002 | A1 |
20020122066 | Bates et al. | Sep 2002 | A1 |
20020137565 | Blanco | Sep 2002 | A1 |
20020142734 | Wickstead | Oct 2002 | A1 |
20020154173 | Etgen et al. | Oct 2002 | A1 |
20020168938 | Chang | Nov 2002 | A1 |
20020191028 | Senechalle et al. | Dec 2002 | A1 |
20020198909 | Huynh et al. | Dec 2002 | A1 |
20030028382 | Chambers et al. | Feb 2003 | A1 |
20030028639 | Yamamoto et al. | Feb 2003 | A1 |
20030030673 | Ho | Feb 2003 | A1 |
20030052901 | Fukuchi | Mar 2003 | A1 |
20030055977 | Miller | Mar 2003 | A1 |
20030067908 | Mattaway et al. | Apr 2003 | A1 |
20030076298 | Rosenberg | Apr 2003 | A1 |
20030076301 | Tsuk et al. | Apr 2003 | A1 |
20030079057 | Ruskin et al. | Apr 2003 | A1 |
20030081506 | Karhu et al. | May 2003 | A1 |
20030097358 | Mendez et al. | May 2003 | A1 |
20030097413 | Vishik et al. | May 2003 | A1 |
20030112938 | Kanakubo et al. | Jun 2003 | A1 |
20030122787 | Zimmerman et al. | Jul 2003 | A1 |
20030128192 | Van Os | Jul 2003 | A1 |
20030160861 | Barlow et al. | Aug 2003 | A1 |
20030182139 | Harris et al. | Sep 2003 | A1 |
20030188183 | Lee et al. | Oct 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20040019640 | Bartram et al. | Jan 2004 | A1 |
20040027371 | Jaeger | Feb 2004 | A1 |
20040032955 | Hashimoto et al. | Feb 2004 | A1 |
20040046638 | Kawasaki | Mar 2004 | A1 |
20040055446 | Robbin et al. | Mar 2004 | A1 |
20040056837 | Koga et al. | Mar 2004 | A1 |
20040073432 | Stone | Apr 2004 | A1 |
20040100479 | Nakano et al. | May 2004 | A1 |
20040104896 | Suraqui | Jun 2004 | A1 |
20040122683 | Grossman et al. | Jun 2004 | A1 |
20040125088 | Zimmerman et al. | Jul 2004 | A1 |
20040130581 | Howard et al. | Jul 2004 | A1 |
20040139398 | Testa et al. | Jul 2004 | A1 |
20040140956 | Kushler et al. | Jul 2004 | A1 |
20040155907 | Yamaguchi et al. | Aug 2004 | A1 |
20040168118 | Wong et al. | Aug 2004 | A1 |
20040181695 | Walker et al. | Sep 2004 | A1 |
20040189714 | Fox et al. | Sep 2004 | A1 |
20040235520 | Cadiz et al. | Nov 2004 | A1 |
20040237048 | Tojo et al. | Nov 2004 | A1 |
20040242200 | Maeoka et al. | Dec 2004 | A1 |
20040250217 | Tojo et al. | Dec 2004 | A1 |
20040261010 | Matsuishi | Dec 2004 | A1 |
20040264916 | Van et al. | Dec 2004 | A1 |
20040268400 | Barde et al. | Dec 2004 | A1 |
20050012723 | Pallakoff | Jan 2005 | A1 |
20050021418 | Marcus et al. | Jan 2005 | A1 |
20050024341 | Gillespie et al. | Feb 2005 | A1 |
20050052458 | Lambert | Mar 2005 | A1 |
20050071188 | Thuerk | Mar 2005 | A1 |
20050093868 | Hinckley | May 2005 | A1 |
20050096009 | Ackley | May 2005 | A1 |
20050097135 | Epperson et al. | May 2005 | A1 |
20050117752 | Iima et al. | Jun 2005 | A1 |
20050144247 | Christensen et al. | Jun 2005 | A1 |
20050144452 | Lynch et al. | Jun 2005 | A1 |
20050144568 | Gruen et al. | Jun 2005 | A1 |
20050146534 | Fong et al. | Jul 2005 | A1 |
20050160372 | Gruen et al. | Jul 2005 | A1 |
20050162402 | Watanachote | Jul 2005 | A1 |
20050177445 | Church | Aug 2005 | A1 |
20050181774 | Miyata | Aug 2005 | A1 |
20050192924 | Drucker et al. | Sep 2005 | A1 |
20050210412 | Matthews et al. | Sep 2005 | A1 |
20050216839 | Salvucci | Sep 2005 | A1 |
20050220304 | Lenoir et al. | Oct 2005 | A1 |
20050229112 | Clay et al. | Oct 2005 | A1 |
20050233780 | Jani et al. | Oct 2005 | A1 |
20050239512 | Hasegawa et al. | Oct 2005 | A1 |
20050240756 | Mayer | Oct 2005 | A1 |
20050251566 | Weel | Nov 2005 | A1 |
20050275628 | Balakrishnan et al. | Dec 2005 | A1 |
20050278587 | Breitling et al. | Dec 2005 | A1 |
20060001645 | Drucker et al. | Jan 2006 | A1 |
20060002523 | Bettis et al. | Jan 2006 | A1 |
20060019649 | Feinleib et al. | Jan 2006 | A1 |
20060020637 | Kedem | Jan 2006 | A1 |
20060020904 | Aaltonen et al. | Jan 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060026536 | Hotelling et al. | Feb 2006 | A1 |
20060038796 | Hinckley et al. | Feb 2006 | A1 |
20060050054 | Liang et al. | Mar 2006 | A1 |
20060085751 | O'brien et al. | Apr 2006 | A1 |
20060085766 | Dominowska et al. | Apr 2006 | A1 |
20060125799 | Hillis et al. | Jun 2006 | A1 |
20060132456 | Anson | Jun 2006 | A1 |
20060132460 | Kolmykov-zotov et al. | Jun 2006 | A1 |
20060132469 | Lai et al. | Jun 2006 | A1 |
20060146074 | Harrison | Jul 2006 | A1 |
20060148455 | Kim | Jul 2006 | A1 |
20060156239 | Jobs et al. | Jul 2006 | A1 |
20060160090 | Macina et al. | Jul 2006 | A1 |
20060161621 | Rosenberg | Jul 2006 | A1 |
20060161870 | Hotelling et al. | Jul 2006 | A1 |
20060161871 | Hotelling et al. | Jul 2006 | A1 |
20060176278 | Mathews et al. | Aug 2006 | A1 |
20060178110 | Nurminen et al. | Aug 2006 | A1 |
20060185005 | Graves et al. | Aug 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060206709 | Labrou et al. | Sep 2006 | A1 |
20060210092 | Navid | Sep 2006 | A1 |
20060217104 | Cho | Sep 2006 | A1 |
20060224882 | Chin | Oct 2006 | A1 |
20060227106 | Hashimoto et al. | Oct 2006 | A1 |
20060236847 | Withop | Oct 2006 | A1 |
20060246874 | Sullivan | Nov 2006 | A1 |
20060250578 | Pohl et al. | Nov 2006 | A1 |
20060256090 | Huppi | Nov 2006 | A1 |
20060258289 | Dua | Nov 2006 | A1 |
20060268020 | Han | Nov 2006 | A1 |
20060271425 | Goodman et al. | Nov 2006 | A1 |
20060271864 | Satterfield et al. | Nov 2006 | A1 |
20060271867 | Wang et al. | Nov 2006 | A1 |
20060279541 | Kim et al. | Dec 2006 | A1 |
20060281449 | Kun et al. | Dec 2006 | A1 |
20060286971 | Maly et al. | Dec 2006 | A1 |
20060288226 | Kowal | Dec 2006 | A1 |
20070011614 | Crow et al. | Jan 2007 | A1 |
20070013671 | Zadesky et al. | Jan 2007 | A1 |
20070015519 | Casey | Jan 2007 | A1 |
20070027682 | Bennett | Feb 2007 | A1 |
20070033295 | Marriott | Feb 2007 | A1 |
20070048714 | Plastina et al. | Mar 2007 | A1 |
20070053268 | Crandall et al. | Mar 2007 | A1 |
20070070045 | Sung et al. | Mar 2007 | A1 |
20070070066 | Bakhash | Mar 2007 | A1 |
20070073649 | Kikkoji et al. | Mar 2007 | A1 |
20070085841 | Tsuk et al. | Apr 2007 | A1 |
20070097090 | Battles | May 2007 | A1 |
20070097093 | Ohshita et al. | May 2007 | A1 |
20070113294 | Field et al. | May 2007 | A1 |
20070115933 | Muhamed et al. | May 2007 | A1 |
20070124680 | Robbin et al. | May 2007 | A1 |
20070126715 | Funamoto | Jun 2007 | A1 |
20070136679 | Yang | Jun 2007 | A1 |
20070136778 | Birger et al. | Jun 2007 | A1 |
20070143495 | Porat | Jun 2007 | A1 |
20070150842 | Chaudhri et al. | Jun 2007 | A1 |
20070152979 | Jobs et al. | Jul 2007 | A1 |
20070157089 | Van Os et al. | Jul 2007 | A1 |
20070157094 | Lemay et al. | Jul 2007 | A1 |
20070157103 | Arneson et al. | Jul 2007 | A1 |
20070162963 | Penet et al. | Jul 2007 | A1 |
20070168369 | Bruns | Jul 2007 | A1 |
20070168413 | Barletta et al. | Jul 2007 | A1 |
20070180492 | Hassan et al. | Aug 2007 | A1 |
20070186106 | Ting et al. | Aug 2007 | A1 |
20070186235 | Jarman et al. | Aug 2007 | A1 |
20070191008 | Bucher et al. | Aug 2007 | A1 |
20070192744 | Reponen | Aug 2007 | A1 |
20070198111 | Oetzel et al. | Aug 2007 | A1 |
20070226645 | Kongqiao et al. | Sep 2007 | A1 |
20070226778 | Pietruszka | Sep 2007 | A1 |
20070229221 | Saotome | Oct 2007 | A1 |
20070260547 | Little | Nov 2007 | A1 |
20070283011 | Rakowski et al. | Dec 2007 | A1 |
20070294182 | Hammad | Dec 2007 | A1 |
20080010387 | Curtis et al. | Jan 2008 | A1 |
20080011827 | Little et al. | Jan 2008 | A1 |
20080016368 | Adams | Jan 2008 | A1 |
20080016468 | Chambers et al. | Jan 2008 | A1 |
20080016537 | Little et al. | Jan 2008 | A1 |
20080017721 | Zehnacker | Jan 2008 | A1 |
20080027947 | Pritchett et al. | Jan 2008 | A1 |
20080034011 | Cisler et al. | Feb 2008 | A1 |
20080034289 | Doepke et al. | Feb 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080037951 | Cho et al. | Feb 2008 | A1 |
20080040786 | Chang et al. | Feb 2008 | A1 |
20080042866 | Morse et al. | Feb 2008 | A1 |
20080055263 | Lemay et al. | Mar 2008 | A1 |
20080055264 | Anzures et al. | Mar 2008 | A1 |
20080057926 | Forstall et al. | Mar 2008 | A1 |
20080062141 | Chaudhri | Mar 2008 | A1 |
20080065505 | Plastina et al. | Mar 2008 | A1 |
20080066016 | Dowdy et al. | Mar 2008 | A1 |
20080075368 | Kuzmin | Mar 2008 | A1 |
20080081558 | Dunko et al. | Apr 2008 | A1 |
20080082939 | Nash et al. | Apr 2008 | A1 |
20080084400 | Rosenberg | Apr 2008 | A1 |
20080091717 | Garbow et al. | Apr 2008 | A1 |
20080094367 | Van De Ven et al. | Apr 2008 | A1 |
20080100693 | Jobs et al. | May 2008 | A1 |
20080109764 | Linnamaki | May 2008 | A1 |
20080114678 | Bennett et al. | May 2008 | A1 |
20080114980 | Sridhar | May 2008 | A1 |
20080122794 | Koiso et al. | May 2008 | A1 |
20080122796 | Jobs et al. | May 2008 | A1 |
20080126935 | Blomgren | May 2008 | A1 |
20080147735 | Sloo | Jun 2008 | A1 |
20080155413 | Ubillos et al. | Jun 2008 | A1 |
20080155417 | Vallone et al. | Jun 2008 | A1 |
20080155474 | Duhig et al. | Jun 2008 | A1 |
20080158170 | Herz et al. | Jul 2008 | A1 |
20080160974 | Vartiainen et al. | Jul 2008 | A1 |
20080163127 | Newell et al. | Jul 2008 | A1 |
20080165141 | Christie | Jul 2008 | A1 |
20080165152 | Forstall et al. | Jul 2008 | A1 |
20080165153 | Platzer et al. | Jul 2008 | A1 |
20080168185 | Robbin et al. | Jul 2008 | A1 |
20080168384 | Platzer et al. | Jul 2008 | A1 |
20080168395 | Ording et al. | Jul 2008 | A1 |
20080168403 | Westerman et al. | Jul 2008 | A1 |
20080190266 | Kim et al. | Aug 2008 | A1 |
20080201454 | Soffer | Aug 2008 | A1 |
20080208762 | Arthur et al. | Aug 2008 | A1 |
20080209468 | Milosevski | Aug 2008 | A1 |
20080214163 | Onyon et al. | Sep 2008 | A1 |
20080222546 | Mudd et al. | Sep 2008 | A1 |
20080225007 | Nakadaira et al. | Sep 2008 | A1 |
20080225013 | Muylkens et al. | Sep 2008 | A1 |
20080229409 | Miller et al. | Sep 2008 | A1 |
20080250319 | Lee et al. | Oct 2008 | A1 |
20080259829 | Rosenblatt | Oct 2008 | A1 |
20080273712 | Eichfeld et al. | Nov 2008 | A1 |
20080273713 | Hartung et al. | Nov 2008 | A1 |
20080282202 | Sunday | Nov 2008 | A1 |
20080285772 | Haulick et al. | Nov 2008 | A1 |
20080292074 | Boni et al. | Nov 2008 | A1 |
20080305742 | Basir | Dec 2008 | A1 |
20080313257 | Allen et al. | Dec 2008 | A1 |
20080320391 | Lemay et al. | Dec 2008 | A1 |
20090002335 | Chaudhri | Jan 2009 | A1 |
20090002396 | Andrews et al. | Jan 2009 | A1 |
20090006846 | Rosenblatt | Jan 2009 | A1 |
20090006958 | Pohjola et al. | Jan 2009 | A1 |
20090007188 | Omernick | Jan 2009 | A1 |
20090031375 | Sullivan et al. | Jan 2009 | A1 |
20090051649 | Rondel | Feb 2009 | A1 |
20090054044 | Ikemori et al. | Feb 2009 | A1 |
20090055377 | Hedge et al. | Feb 2009 | A1 |
20090058822 | Chaudhri | Mar 2009 | A1 |
20090060170 | Coughlan et al. | Mar 2009 | A1 |
20090061837 | Chaudhri et al. | Mar 2009 | A1 |
20090063851 | Nijdam | Mar 2009 | A1 |
20090066648 | Kerr | Mar 2009 | A1 |
20090075694 | Kim et al. | Mar 2009 | A1 |
20090077491 | Kim | Mar 2009 | A1 |
20090094681 | Sadler et al. | Apr 2009 | A1 |
20090100383 | Sunday et al. | Apr 2009 | A1 |
20090119754 | Schubert | May 2009 | A1 |
20090122149 | Ishii | May 2009 | A1 |
20090125571 | Kiilerich et al. | May 2009 | A1 |
20090128500 | Sinclair | May 2009 | A1 |
20090135678 | Godat | May 2009 | A1 |
20090140960 | Mahowald et al. | Jun 2009 | A1 |
20090140991 | Takasaki et al. | Jun 2009 | A1 |
20090144391 | Jung et al. | Jun 2009 | A1 |
20090144451 | Cabezas et al. | Jun 2009 | A1 |
20090144623 | Jung | Jun 2009 | A1 |
20090153289 | Hope et al. | Jun 2009 | A1 |
20090153466 | Tilley | Jun 2009 | A1 |
20090158390 | Guan | Jun 2009 | A1 |
20090164581 | Bove et al. | Jun 2009 | A1 |
20090165107 | Tojo et al. | Jun 2009 | A1 |
20090174677 | Gehani et al. | Jul 2009 | A1 |
20090174680 | Anzures et al. | Jul 2009 | A1 |
20090174763 | Bengtsson et al. | Jul 2009 | A1 |
20090177966 | Chaudhri | Jul 2009 | A1 |
20090187423 | Kim | Jul 2009 | A1 |
20090187981 | Pan et al. | Jul 2009 | A1 |
20090193514 | Adams et al. | Jul 2009 | A1 |
20090195497 | Fitzgerald et al. | Aug 2009 | A1 |
20090198359 | Chaudhri | Aug 2009 | A1 |
20090199119 | Park et al. | Aug 2009 | A1 |
20090199130 | Tsern et al. | Aug 2009 | A1 |
20090199188 | Fujimaki | Aug 2009 | A1 |
20090204920 | Beverley et al. | Aug 2009 | A1 |
20090204929 | Baurmann et al. | Aug 2009 | A1 |
20090228938 | White et al. | Sep 2009 | A1 |
20090231960 | Hutcheson | Sep 2009 | A1 |
20090241169 | Dhand et al. | Sep 2009 | A1 |
20090244015 | Sengupta et al. | Oct 2009 | A1 |
20090248737 | Shukla et al. | Oct 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090265417 | Svendsen et al. | Oct 2009 | A1 |
20090271744 | Anders | Oct 2009 | A1 |
20090304205 | Hardacker et al. | Dec 2009 | A1 |
20090307633 | Haughay et al. | Dec 2009 | A1 |
20090311993 | Horodezky | Dec 2009 | A1 |
20090322695 | Cho et al. | Dec 2009 | A1 |
20090327449 | Silverman et al. | Dec 2009 | A1 |
20100001967 | Yoo | Jan 2010 | A1 |
20100004031 | Kim | Jan 2010 | A1 |
20100005421 | Yoshioka | Jan 2010 | A1 |
20100017474 | Kandekar et al. | Jan 2010 | A1 |
20100023449 | Skowronek et al. | Jan 2010 | A1 |
20100042654 | Heller et al. | Feb 2010 | A1 |
20100042835 | Lee et al. | Feb 2010 | A1 |
20100050086 | Sherrard et al. | Feb 2010 | A1 |
20100054497 | Bull et al. | Mar 2010 | A1 |
20100058228 | Park | Mar 2010 | A1 |
20100058253 | Son | Mar 2010 | A1 |
20100070490 | Amidon et al. | Mar 2010 | A1 |
20100075656 | Howarter et al. | Mar 2010 | A1 |
20100082481 | Lin et al. | Apr 2010 | A1 |
20100085379 | Hishikawa et al. | Apr 2010 | A1 |
20100088634 | Tsuruta et al. | Apr 2010 | A1 |
20100088639 | Yach et al. | Apr 2010 | A1 |
20100094834 | Svendsen | Apr 2010 | A1 |
20100106647 | Raman | Apr 2010 | A1 |
20100107229 | Najafi et al. | Apr 2010 | A1 |
20100121636 | Burke et al. | May 2010 | A1 |
20100122195 | Hwang | May 2010 | A1 |
20100125785 | Moore et al. | May 2010 | A1 |
20100131978 | Friedlander et al. | May 2010 | A1 |
20100138780 | Marano et al. | Jun 2010 | A1 |
20100146463 | Cho et al. | Jun 2010 | A1 |
20100159995 | Stallings et al. | Jun 2010 | A1 |
20100174644 | Rosano et al. | Jul 2010 | A1 |
20100174993 | Pennington et al. | Jul 2010 | A1 |
20100178873 | Lee et al. | Jul 2010 | A1 |
20100190478 | Brewer et al. | Jul 2010 | A1 |
20100205563 | Haapsaari et al. | Aug 2010 | A1 |
20100223542 | Vuong et al. | Sep 2010 | A1 |
20100229094 | Nakajima et al. | Sep 2010 | A1 |
20100231534 | Chaudhri et al. | Sep 2010 | A1 |
20100231535 | Chaudhri et al. | Sep 2010 | A1 |
20100231536 | Chaudhri et al. | Sep 2010 | A1 |
20100231537 | Pisula et al. | Sep 2010 | A1 |
20100235729 | Kocienda et al. | Sep 2010 | A1 |
20100235746 | Anzures et al. | Sep 2010 | A1 |
20100248823 | Smith | Sep 2010 | A1 |
20100250376 | Nandiraju | Sep 2010 | A1 |
20100251304 | Donoghue et al. | Sep 2010 | A1 |
20100257466 | Wroblewski et al. | Oct 2010 | A1 |
20100257484 | Nakamura et al. | Oct 2010 | A1 |
20100259482 | Ball | Oct 2010 | A1 |
20100269156 | Hohlfeld et al. | Oct 2010 | A1 |
20100272250 | Yap et al. | Oct 2010 | A1 |
20100283743 | Coddington | Nov 2010 | A1 |
20100284389 | Ramsay et al. | Nov 2010 | A1 |
20100293598 | Collart et al. | Nov 2010 | A1 |
20100295803 | Kim et al. | Nov 2010 | A1 |
20100296678 | Kuhn-rahloff et al. | Nov 2010 | A1 |
20100299436 | Khalid et al. | Nov 2010 | A1 |
20100299639 | Ramsay et al. | Nov 2010 | A1 |
20100302172 | Wilairat et al. | Dec 2010 | A1 |
20100304729 | Sabotta et al. | Dec 2010 | A1 |
20100306657 | Derbyshire et al. | Dec 2010 | A1 |
20100318908 | Neuman et al. | Dec 2010 | A1 |
20100318917 | Holladay et al. | Dec 2010 | A1 |
20100318928 | Neuman et al. | Dec 2010 | A1 |
20100318939 | Moon | Dec 2010 | A1 |
20100321201 | Huang et al. | Dec 2010 | A1 |
20100325239 | Khedouri et al. | Dec 2010 | A1 |
20110003587 | Belz et al. | Jan 2011 | A1 |
20110010470 | Hulbert et al. | Jan 2011 | A1 |
20110016089 | Freedman et al. | Jan 2011 | A1 |
20110029750 | Jang et al. | Feb 2011 | A1 |
20110029891 | Kim et al. | Feb 2011 | A1 |
20110035799 | Handler | Feb 2011 | A1 |
20110041102 | Kim | Feb 2011 | A1 |
20110054268 | Fidacaro et al. | Mar 2011 | A1 |
20110059769 | Brunolli | Mar 2011 | A1 |
20110065384 | Cader et al. | Mar 2011 | A1 |
20110071656 | Mckiel, Jr. | Mar 2011 | A1 |
20110081923 | Bednar et al. | Apr 2011 | A1 |
20110082902 | Rottler et al. | Apr 2011 | A1 |
20110087431 | Gupta et al. | Apr 2011 | A1 |
20110088086 | Swink et al. | Apr 2011 | A1 |
20110106671 | Minnis et al. | May 2011 | A1 |
20110126148 | Krishnaraj et al. | May 2011 | A1 |
20110130168 | Vendrow et al. | Jun 2011 | A1 |
20110131537 | Cho et al. | Jun 2011 | A1 |
20110138166 | Peszek et al. | Jun 2011 | A1 |
20110138284 | Wigdor et al. | Jun 2011 | A1 |
20110138295 | Momchilov et al. | Jun 2011 | A1 |
20110142234 | Rogers | Jun 2011 | A1 |
20110149874 | Reif | Jun 2011 | A1 |
20110157046 | Lee et al. | Jun 2011 | A1 |
20110159469 | Hwang et al. | Jun 2011 | A1 |
20110159927 | Choi | Jun 2011 | A1 |
20110163971 | Wagner et al. | Jul 2011 | A1 |
20110164042 | Chaudhri | Jul 2011 | A1 |
20110164269 | Kamishiro | Jul 2011 | A1 |
20110178811 | Sheridan | Jul 2011 | A1 |
20110179386 | Shaffer et al. | Jul 2011 | A1 |
20110183650 | Mckee | Jul 2011 | A1 |
20110187497 | Chin | Aug 2011 | A1 |
20110191695 | Dinka et al. | Aug 2011 | A1 |
20110209099 | Hinckley et al. | Aug 2011 | A1 |
20110214158 | Pasquero et al. | Sep 2011 | A1 |
20110215921 | Ben et al. | Sep 2011 | A1 |
20110225426 | Agarwal et al. | Sep 2011 | A1 |
20110231914 | Hung | Sep 2011 | A1 |
20110242002 | Kaplan et al. | Oct 2011 | A1 |
20110246942 | Misawa | Oct 2011 | A1 |
20110250895 | Wohlert et al. | Oct 2011 | A1 |
20110254683 | Soldan et al. | Oct 2011 | A1 |
20110273526 | Mehin et al. | Nov 2011 | A1 |
20110275358 | Faenger | Nov 2011 | A1 |
20110279852 | Oda et al. | Nov 2011 | A1 |
20110281568 | Le | Nov 2011 | A1 |
20110283334 | Choi | Nov 2011 | A1 |
20110291971 | Masaki et al. | Dec 2011 | A1 |
20110302493 | Runstedler et al. | Dec 2011 | A1 |
20110306393 | Goldman et al. | Dec 2011 | A1 |
20110314398 | Yano et al. | Dec 2011 | A1 |
20110319056 | Toy et al. | Dec 2011 | A1 |
20110320450 | Liu et al. | Dec 2011 | A1 |
20120004920 | Kelly et al. | Jan 2012 | A1 |
20120005708 | Kelts | Jan 2012 | A1 |
20120011437 | James et al. | Jan 2012 | A1 |
20120016678 | Gruber et al. | Jan 2012 | A1 |
20120019610 | Hornyak et al. | Jan 2012 | A1 |
20120024947 | Naelon et al. | Feb 2012 | A1 |
20120033028 | Murphy et al. | Feb 2012 | A1 |
20120036556 | Lebeau et al. | Feb 2012 | A1 |
20120040719 | Lee et al. | Feb 2012 | A1 |
20120044062 | Jersa et al. | Feb 2012 | A1 |
20120050185 | Davydov et al. | Mar 2012 | A1 |
20120051560 | Sanders | Mar 2012 | A1 |
20120054278 | Taleb et al. | Mar 2012 | A1 |
20120059813 | Sejnoha et al. | Mar 2012 | A1 |
20120066632 | Sundermeyer et al. | Mar 2012 | A1 |
20120066731 | Vasquez et al. | Mar 2012 | A1 |
20120079126 | Evans et al. | Mar 2012 | A1 |
20120084697 | Reeves | Apr 2012 | A1 |
20120088477 | Cassidy et al. | Apr 2012 | A1 |
20120089951 | Cassidy | Apr 2012 | A1 |
20120096069 | Chan | Apr 2012 | A1 |
20120096076 | Chan et al. | Apr 2012 | A1 |
20120096386 | Baumann et al. | Apr 2012 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120110455 | Sharma et al. | May 2012 | A1 |
20120115608 | Pfeifer et al. | May 2012 | A1 |
20120129496 | Park et al. | May 2012 | A1 |
20120131459 | Ilama-vaquero et al. | May 2012 | A1 |
20120136998 | Hough et al. | May 2012 | A1 |
20120143694 | Zargahi et al. | Jun 2012 | A1 |
20120178431 | Gold | Jul 2012 | A1 |
20120197419 | Dhruv et al. | Aug 2012 | A1 |
20120210226 | Mccoy et al. | Aug 2012 | A1 |
20120214458 | Levien et al. | Aug 2012 | A1 |
20120215684 | Kidron | Aug 2012 | A1 |
20120218177 | Pang et al. | Aug 2012 | A1 |
20120222092 | Rabii | Aug 2012 | A1 |
20120223890 | Borovsky et al. | Sep 2012 | A1 |
20120223959 | Lengeling et al. | Sep 2012 | A1 |
20120260169 | Schwartz et al. | Oct 2012 | A1 |
20120269361 | Bhow et al. | Oct 2012 | A1 |
20120272145 | Ryan et al. | Oct 2012 | A1 |
20120272230 | Lee | Oct 2012 | A1 |
20120284185 | Mettler et al. | Nov 2012 | A1 |
20120284297 | Aguera-arcas et al. | Nov 2012 | A1 |
20120284673 | Lamb et al. | Nov 2012 | A1 |
20120290657 | Parks et al. | Nov 2012 | A1 |
20120290943 | Toney et al. | Nov 2012 | A1 |
20120294118 | Haulick et al. | Nov 2012 | A1 |
20120297017 | Livshits et al. | Nov 2012 | A1 |
20120304111 | Queru et al. | Nov 2012 | A1 |
20120311444 | Chaudhri | Dec 2012 | A1 |
20120322508 | Forstall et al. | Dec 2012 | A1 |
20120323868 | Robbin et al. | Dec 2012 | A1 |
20120324390 | Tao et al. | Dec 2012 | A1 |
20130002589 | Jang | Jan 2013 | A1 |
20130005487 | Frazzini et al. | Jan 2013 | A1 |
20130007203 | Szu | Jan 2013 | A1 |
20130007617 | Mackenzie et al. | Jan 2013 | A1 |
20130016818 | Cohn | Jan 2013 | A1 |
20130017846 | Schoppe | Jan 2013 | A1 |
20130022221 | Kallai et al. | Jan 2013 | A1 |
20130024932 | Toebes et al. | Jan 2013 | A1 |
20130026293 | Schneider et al. | Jan 2013 | A1 |
20130027289 | Choi et al. | Jan 2013 | A1 |
20130027341 | Mastandrea | Jan 2013 | A1 |
20130031217 | Rajapakse | Jan 2013 | A1 |
20130041790 | Murugesan et al. | Feb 2013 | A1 |
20130046893 | Hauser et al. | Feb 2013 | A1 |
20130047084 | Sanders et al. | Feb 2013 | A1 |
20130047233 | Fisk et al. | Feb 2013 | A1 |
20130051755 | Brown et al. | Feb 2013 | A1 |
20130053107 | Kang et al. | Feb 2013 | A1 |
20130054697 | Cha et al. | Feb 2013 | A1 |
20130055082 | Fino et al. | Feb 2013 | A1 |
20130055150 | Galor | Feb 2013 | A1 |
20130060687 | Bak et al. | Mar 2013 | A1 |
20130061155 | Hon | Mar 2013 | A1 |
20130063364 | Moore | Mar 2013 | A1 |
20130073286 | Bastea-forte et al. | Mar 2013 | A1 |
20130073584 | Kuper et al. | Mar 2013 | A1 |
20130074194 | White et al. | Mar 2013 | A1 |
20130080177 | Chen | Mar 2013 | A1 |
20130080516 | Bologh | Mar 2013 | A1 |
20130080525 | Aoki et al. | Mar 2013 | A1 |
20130080955 | Reimann et al. | Mar 2013 | A1 |
20130082819 | Cotterill | Apr 2013 | A1 |
20130086637 | Cotterill et al. | Apr 2013 | A1 |
20130091205 | Kotler et al. | Apr 2013 | A1 |
20130094666 | Haaff et al. | Apr 2013 | A1 |
20130094770 | Lee et al. | Apr 2013 | A1 |
20130102281 | Kanda et al. | Apr 2013 | A1 |
20130102298 | Goodman et al. | Apr 2013 | A1 |
20130103797 | Park et al. | Apr 2013 | A1 |
20130111407 | Mullen | May 2013 | A1 |
20130113822 | Putrevu et al. | May 2013 | A1 |
20130115932 | Williams et al. | May 2013 | A1 |
20130117693 | Anderson et al. | May 2013 | A1 |
20130120106 | Cauwels et al. | May 2013 | A1 |
20130120254 | Mun et al. | May 2013 | A1 |
20130124207 | Sarin et al. | May 2013 | A1 |
20130132865 | Li | May 2013 | A1 |
20130138272 | Louise-babando et al. | May 2013 | A1 |
20130141378 | Yumiki et al. | Jun 2013 | A1 |
20130141514 | Chao et al. | Jun 2013 | A1 |
20130145303 | Prakash et al. | Jun 2013 | A1 |
20130159858 | Joffray et al. | Jun 2013 | A1 |
20130162411 | Moses et al. | Jun 2013 | A1 |
20130166332 | Hammad | Jun 2013 | A1 |
20130173699 | Parks et al. | Jul 2013 | A1 |
20130173794 | Agerbak et al. | Jul 2013 | A1 |
20130174044 | Hill | Jul 2013 | A1 |
20130189963 | Epp et al. | Jul 2013 | A1 |
20130191220 | Dent et al. | Jul 2013 | A1 |
20130191454 | Oliver et al. | Jul 2013 | A1 |
20130191911 | Dellinger et al. | Jul 2013 | A1 |
20130194476 | Shimosato | Aug 2013 | A1 |
20130205375 | Woxblom et al. | Aug 2013 | A1 |
20130212212 | Addepalli et al. | Aug 2013 | A1 |
20130222270 | Winkler et al. | Aug 2013 | A1 |
20130223821 | Issa et al. | Aug 2013 | A1 |
20130231127 | Kildal et al. | Sep 2013 | A1 |
20130234924 | Janefalkar et al. | Sep 2013 | A1 |
20130239202 | Adams et al. | Sep 2013 | A1 |
20130243924 | Bhandari et al. | Sep 2013 | A1 |
20130244615 | Miller | Sep 2013 | A1 |
20130244633 | Jacobs et al. | Sep 2013 | A1 |
20130246522 | Bilinski et al. | Sep 2013 | A1 |
20130246916 | Reimann et al. | Sep 2013 | A1 |
20130254574 | Zacchio et al. | Sep 2013 | A1 |
20130256403 | Mackinnon Keith | Oct 2013 | A1 |
20130262298 | Morley et al. | Oct 2013 | A1 |
20130262857 | Neuman et al. | Oct 2013 | A1 |
20130268593 | Parekh | Oct 2013 | A1 |
20130275881 | Hahm et al. | Oct 2013 | A1 |
20130282180 | Layton | Oct 2013 | A1 |
20130283161 | Reimann et al. | Oct 2013 | A1 |
20130283199 | Selig et al. | Oct 2013 | A1 |
20130298024 | Rhee et al. | Nov 2013 | A1 |
20130304758 | Gruber et al. | Nov 2013 | A1 |
20130305354 | King et al. | Nov 2013 | A1 |
20130311597 | Arrouye et al. | Nov 2013 | A1 |
20130311986 | Arrouye et al. | Nov 2013 | A1 |
20130311997 | Gruber et al. | Nov 2013 | A1 |
20130314302 | Jeung et al. | Nov 2013 | A1 |
20130318158 | Teng et al. | Nov 2013 | A1 |
20130318249 | Mcdonough et al. | Nov 2013 | A1 |
20130322634 | Bennett et al. | Dec 2013 | A1 |
20130324081 | Gargi et al. | Dec 2013 | A1 |
20130325967 | Parks et al. | Dec 2013 | A1 |
20130329924 | Fleizach et al. | Dec 2013 | A1 |
20130332162 | Keen | Dec 2013 | A1 |
20130332560 | Knight et al. | Dec 2013 | A1 |
20130333006 | Tapling et al. | Dec 2013 | A1 |
20130339343 | Hierons et al. | Dec 2013 | A1 |
20130346068 | Solem et al. | Dec 2013 | A1 |
20130346859 | Bates et al. | Dec 2013 | A1 |
20130347022 | Bates et al. | Dec 2013 | A1 |
20140003597 | Lazaridis et al. | Jan 2014 | A1 |
20140006562 | Handa et al. | Jan 2014 | A1 |
20140026188 | Gubler | Jan 2014 | A1 |
20140032706 | Kuscher et al. | Jan 2014 | A1 |
20140033035 | Crow et al. | Jan 2014 | A1 |
20140037107 | Marino et al. | Feb 2014 | A1 |
20140040742 | Park et al. | Feb 2014 | A1 |
20140043424 | Gava et al. | Feb 2014 | A1 |
20140045463 | Hsieh et al. | Feb 2014 | A1 |
20140046464 | Reimann | Feb 2014 | A1 |
20140047020 | Matus et al. | Feb 2014 | A1 |
20140047382 | Kim et al. | Feb 2014 | A1 |
20140049447 | Choi | Feb 2014 | A1 |
20140058860 | Roh et al. | Feb 2014 | A1 |
20140058941 | Moon et al. | Feb 2014 | A1 |
20140064155 | Evans et al. | Mar 2014 | A1 |
20140068751 | Last | Mar 2014 | A1 |
20140072282 | Cho | Mar 2014 | A1 |
20140073256 | Newham et al. | Mar 2014 | A1 |
20140075130 | Bansal et al. | Mar 2014 | A1 |
20140075311 | Boettcher et al. | Mar 2014 | A1 |
20140080416 | Seo et al. | Mar 2014 | A1 |
20140082136 | Garcia Puga et al. | Mar 2014 | A1 |
20140082715 | Grajek et al. | Mar 2014 | A1 |
20140089196 | Paya et al. | Mar 2014 | A1 |
20140095965 | Li | Apr 2014 | A1 |
20140104178 | Jo | Apr 2014 | A1 |
20140114966 | Bilinski et al. | Apr 2014 | A1 |
20140122730 | Burch et al. | May 2014 | A1 |
20140136481 | Quan et al. | May 2014 | A1 |
20140136986 | Martin et al. | May 2014 | A1 |
20140139422 | Mistry et al. | May 2014 | A1 |
20140139637 | Mistry et al. | May 2014 | A1 |
20140143737 | Mistry et al. | May 2014 | A1 |
20140149884 | Flynn et al. | May 2014 | A1 |
20140155031 | Lee et al. | Jun 2014 | A1 |
20140155123 | Lee et al. | Jun 2014 | A1 |
20140157160 | Cudak et al. | Jun 2014 | A1 |
20140165012 | Shen et al. | Jun 2014 | A1 |
20140168696 | Matsuhara et al. | Jun 2014 | A1 |
20140171064 | Das | Jun 2014 | A1 |
20140171156 | Pattikonda et al. | Jun 2014 | A1 |
20140173447 | Das et al. | Jun 2014 | A1 |
20140176298 | Kumar et al. | Jun 2014 | A1 |
20140181183 | Yamamoto et al. | Jun 2014 | A1 |
20140181202 | Gossain | Jun 2014 | A1 |
20140181654 | Kumar et al. | Jun 2014 | A1 |
20140189589 | Kim et al. | Jul 2014 | A1 |
20140207707 | Na et al. | Jul 2014 | A1 |
20140215413 | Calkins et al. | Jul 2014 | A1 |
20140223490 | Pan et al. | Aug 2014 | A1 |
20140229835 | Ravine | Aug 2014 | A1 |
20140236325 | Sasaki et al. | Aug 2014 | A1 |
20140237361 | Martin et al. | Aug 2014 | A1 |
20140247229 | Cho et al. | Sep 2014 | A1 |
20140258292 | Thramann et al. | Sep 2014 | A1 |
20140267002 | Luna | Sep 2014 | A1 |
20140267911 | Grant et al. | Sep 2014 | A1 |
20140270183 | Luna | Sep 2014 | A1 |
20140282103 | Jerry | Sep 2014 | A1 |
20140282240 | Flynn et al. | Sep 2014 | A1 |
20140283018 | Dadu et al. | Sep 2014 | A1 |
20140298432 | Brown | Oct 2014 | A1 |
20140310348 | Keskitalo et al. | Oct 2014 | A1 |
20140320387 | Eriksson et al. | Oct 2014 | A1 |
20140320425 | Jeong et al. | Oct 2014 | A1 |
20140325447 | Jin et al. | Oct 2014 | A1 |
20140334644 | Selig et al. | Nov 2014 | A1 |
20140335789 | Cohen et al. | Nov 2014 | A1 |
20140337791 | Agnetta et al. | Nov 2014 | A1 |
20140337931 | Cotterill | Nov 2014 | A1 |
20140344904 | Venkataramani et al. | Nov 2014 | A1 |
20140354759 | Cranfill et al. | Dec 2014 | A1 |
20140359140 | Shankarraman | Dec 2014 | A1 |
20140359454 | Lee et al. | Dec 2014 | A1 |
20140359637 | Yan | Dec 2014 | A1 |
20140359709 | Nassar et al. | Dec 2014 | A1 |
20140362293 | Bakar et al. | Dec 2014 | A1 |
20140363024 | Apodaca | Dec 2014 | A1 |
20140364056 | Belk et al. | Dec 2014 | A1 |
20140365904 | Kim et al. | Dec 2014 | A1 |
20140372309 | Bullard et al. | Dec 2014 | A1 |
20140375577 | Yeh et al. | Dec 2014 | A1 |
20140380187 | Gardenfors et al. | Dec 2014 | A1 |
20140380234 | Shim et al. | Dec 2014 | A1 |
20150012435 | Wright et al. | Jan 2015 | A1 |
20150019944 | Kalgi | Jan 2015 | A1 |
20150020081 | Cho et al. | Jan 2015 | A1 |
20150032812 | Dudley | Jan 2015 | A1 |
20150033361 | Choi et al. | Jan 2015 | A1 |
20150039494 | Sinton et al. | Feb 2015 | A1 |
20150040012 | Faaborg et al. | Feb 2015 | A1 |
20150046828 | Desai et al. | Feb 2015 | A1 |
20150049591 | Adams et al. | Feb 2015 | A1 |
20150051913 | Choi | Feb 2015 | A1 |
20150052222 | Farrell et al. | Feb 2015 | A1 |
20150058744 | Dhingra et al. | Feb 2015 | A1 |
20150067803 | Alduaiji | Mar 2015 | A1 |
20150081072 | Kallai et al. | Mar 2015 | A1 |
20150085057 | Ouyang et al. | Mar 2015 | A1 |
20150089359 | Brisebois | Mar 2015 | A1 |
20150095175 | Dua | Apr 2015 | A1 |
20150095804 | Grossman et al. | Apr 2015 | A1 |
20150098309 | Adams et al. | Apr 2015 | A1 |
20150100623 | Gudell et al. | Apr 2015 | A1 |
20150111559 | Leaver et al. | Apr 2015 | A1 |
20150113407 | Hoffert et al. | Apr 2015 | A1 |
20150120545 | Fiore et al. | Apr 2015 | A1 |
20150130737 | Im et al. | May 2015 | A1 |
20150135049 | Murphy | May 2015 | A1 |
20150135282 | Kong et al. | May 2015 | A1 |
20150138101 | Park et al. | May 2015 | A1 |
20150143419 | Bhagwat et al. | May 2015 | A1 |
20150148927 | Georges et al. | May 2015 | A1 |
20150149599 | Caunter et al. | May 2015 | A1 |
20150154589 | Li | Jun 2015 | A1 |
20150154676 | Matousek et al. | Jun 2015 | A1 |
20150160856 | Jang et al. | Jun 2015 | A1 |
20150163188 | Faaborg et al. | Jun 2015 | A1 |
20150177914 | Coyner et al. | Jun 2015 | A1 |
20150179008 | Sung et al. | Jun 2015 | A1 |
20150186892 | Zhang et al. | Jul 2015 | A1 |
20150189426 | Pang | Jul 2015 | A1 |
20150193069 | Di Censo et al. | Jul 2015 | A1 |
20150193130 | Cho et al. | Jul 2015 | A1 |
20150193196 | Lin et al. | Jul 2015 | A1 |
20150193392 | Greenblatt et al. | Jul 2015 | A1 |
20150195133 | Sheets et al. | Jul 2015 | A1 |
20150199967 | Reddy et al. | Jul 2015 | A1 |
20150200715 | Oiwa et al. | Jul 2015 | A1 |
20150205353 | Feng et al. | Jul 2015 | A1 |
20150205511 | Vinna et al. | Jul 2015 | A1 |
20150205971 | Sanio et al. | Jul 2015 | A1 |
20150206529 | Kwon et al. | Jul 2015 | A1 |
20150208158 | Sanders | Jul 2015 | A1 |
20150212681 | Shinozaki et al. | Jul 2015 | A1 |
20150212705 | Sasaki et al. | Jul 2015 | A1 |
20150213542 | Wallaja | Jul 2015 | A1 |
20150215128 | Pal | Jul 2015 | A1 |
20150215382 | Arora et al. | Jul 2015 | A1 |
20150215398 | Murphy et al. | Jul 2015 | A1 |
20150222615 | Allain et al. | Aug 2015 | A1 |
20150222680 | Grover | Aug 2015 | A1 |
20150223005 | Hardman et al. | Aug 2015 | A1 |
20150229650 | Grigg et al. | Aug 2015 | A1 |
20150229750 | Zhou et al. | Aug 2015 | A1 |
20150229782 | Zuidema et al. | Aug 2015 | A1 |
20150242065 | Ko et al. | Aug 2015 | A1 |
20150242073 | Munoz et al. | Aug 2015 | A1 |
20150242597 | Danciu | Aug 2015 | A1 |
20150242611 | Cotterill | Aug 2015 | A1 |
20150242837 | Yarbrough et al. | Aug 2015 | A1 |
20150243163 | Shoemake | Aug 2015 | A1 |
20150248200 | Cho et al. | Sep 2015 | A1 |
20150248268 | Kumar et al. | Sep 2015 | A1 |
20150249540 | Khalil et al. | Sep 2015 | A1 |
20150253960 | Lin et al. | Sep 2015 | A1 |
20150254661 | Lanc | Sep 2015 | A1 |
20150256957 | Kim et al. | Sep 2015 | A1 |
20150261493 | Lemmon et al. | Sep 2015 | A1 |
20150262183 | Gervais et al. | Sep 2015 | A1 |
20150264304 | Chastney et al. | Sep 2015 | A1 |
20150271120 | Langholz | Sep 2015 | A1 |
20150278799 | Palanisamy | Oct 2015 | A1 |
20150286360 | Wachter | Oct 2015 | A1 |
20150286694 | Kaplinger et al. | Oct 2015 | A1 |
20150286813 | Jakobsson | Oct 2015 | A1 |
20150295921 | Cao | Oct 2015 | A1 |
20150302856 | Kim et al. | Oct 2015 | A1 |
20150304330 | Soamboonsrup et al. | Oct 2015 | A1 |
20150309768 | Van Der Heide | Oct 2015 | A1 |
20150312299 | Chen | Oct 2015 | A1 |
20150319006 | Plummer et al. | Nov 2015 | A1 |
20150319046 | Plummer et al. | Nov 2015 | A1 |
20150324552 | Beckhardt | Nov 2015 | A1 |
20150339466 | Gao et al. | Nov 2015 | A1 |
20150347010 | Yang et al. | Dec 2015 | A1 |
20150347738 | Ulrich et al. | Dec 2015 | A1 |
20150348002 | Van et al. | Dec 2015 | A1 |
20150348014 | Van Os et al. | Dec 2015 | A1 |
20150350296 | Yang et al. | Dec 2015 | A1 |
20150350297 | Yang et al. | Dec 2015 | A1 |
20150350448 | Coffman et al. | Dec 2015 | A1 |
20150355816 | Shim | Dec 2015 | A1 |
20150355818 | Corbin | Dec 2015 | A1 |
20150355879 | Beckhardt et al. | Dec 2015 | A1 |
20150356278 | Britt et al. | Dec 2015 | A1 |
20150358043 | Jeong et al. | Dec 2015 | A1 |
20150358304 | Beckhardt et al. | Dec 2015 | A1 |
20150365400 | Cox | Dec 2015 | A1 |
20150370426 | Carrigan et al. | Dec 2015 | A1 |
20150370455 | Van Os et al. | Dec 2015 | A1 |
20150373172 | Boesen | Dec 2015 | A1 |
20150373178 | Felt et al. | Dec 2015 | A1 |
20150378522 | Butts | Dec 2015 | A1 |
20160004393 | Faaborg et al. | Jan 2016 | A1 |
20160004417 | Bates | Jan 2016 | A1 |
20160004499 | Kim et al. | Jan 2016 | A1 |
20160005024 | Harrell | Jan 2016 | A1 |
20160005189 | Gray et al. | Jan 2016 | A1 |
20160006745 | Furuichi et al. | Jan 2016 | A1 |
20160011850 | Sheen et al. | Jan 2016 | A1 |
20160012417 | Mizon | Jan 2016 | A1 |
20160014266 | Bhatt | Jan 2016 | A1 |
20160026429 | Triplett | Jan 2016 | A1 |
20160026779 | Grigg et al. | Jan 2016 | A1 |
20160028869 | Bhatt | Jan 2016 | A1 |
20160029146 | Tembey et al. | Jan 2016 | A1 |
20160034887 | Lee | Feb 2016 | A1 |
20160036996 | Midholt et al. | Feb 2016 | A1 |
20160037345 | Margadoudakis | Feb 2016 | A1 |
20160043962 | Kim et al. | Feb 2016 | A1 |
20160048705 | Yang | Feb 2016 | A1 |
20160050199 | Ganesan | Feb 2016 | A1 |
20160050476 | Patil | Feb 2016 | A1 |
20160054710 | Jo et al. | Feb 2016 | A1 |
20160062487 | Foss et al. | Mar 2016 | A1 |
20160062567 | Yang et al. | Mar 2016 | A1 |
20160062589 | Wan et al. | Mar 2016 | A1 |
20160062606 | Vega et al. | Mar 2016 | A1 |
20160062719 | Romano et al. | Mar 2016 | A1 |
20160065707 | Yang et al. | Mar 2016 | A1 |
20160065708 | Yang et al. | Mar 2016 | A1 |
20160066277 | Yang et al. | Mar 2016 | A1 |
20160070244 | Cipollo et al. | Mar 2016 | A1 |
20160073197 | Hammer et al. | Mar 2016 | A1 |
20160073482 | Fok et al. | Mar 2016 | A1 |
20160077734 | Buxton et al. | Mar 2016 | A1 |
20160086176 | Henrique et al. | Mar 2016 | A1 |
20160088039 | Millington et al. | Mar 2016 | A1 |
20160092072 | So et al. | Mar 2016 | A1 |
20160092665 | Cowan et al. | Mar 2016 | A1 |
20160097651 | Jung et al. | Apr 2016 | A1 |
20160099901 | Allen et al. | Apr 2016 | A1 |
20160127799 | Alsina et al. | May 2016 | A1 |
20160132132 | Li | May 2016 | A1 |
20160132864 | Shah et al. | May 2016 | A1 |
20160134488 | Straub et al. | May 2016 | A1 |
20160134942 | Lo | May 2016 | A1 |
20160139752 | Shim et al. | May 2016 | A1 |
20160142763 | Kim et al. | May 2016 | A1 |
20160150624 | Meerbeek et al. | May 2016 | A1 |
20160155443 | Khan et al. | Jun 2016 | A1 |
20160156687 | Leung | Jun 2016 | A1 |
20160156957 | Yun | Jun 2016 | A1 |
20160156992 | Kuper | Jun 2016 | A1 |
20160162252 | Di Censo et al. | Jun 2016 | A1 |
20160171482 | Muncey et al. | Jun 2016 | A1 |
20160173318 | Ha et al. | Jun 2016 | A1 |
20160173617 | Allinson | Jun 2016 | A1 |
20160183046 | Kwon | Jun 2016 | A1 |
20160189451 | Yoo et al. | Jun 2016 | A1 |
20160196042 | Laute et al. | Jul 2016 | A1 |
20160196106 | Hammer et al. | Jul 2016 | A1 |
20160202866 | Zambetti | Jul 2016 | A1 |
20160209939 | Zambetti et al. | Jul 2016 | A1 |
20160210602 | Siddique et al. | Jul 2016 | A1 |
20160210983 | Amada et al. | Jul 2016 | A1 |
20160224966 | Van Os et al. | Aug 2016 | A1 |
20160231902 | Sirpal et al. | Aug 2016 | A1 |
20160239167 | Reimann et al. | Aug 2016 | A1 |
20160241543 | Jung et al. | Aug 2016 | A1 |
20160241983 | Lambourne et al. | Aug 2016 | A1 |
20160246566 | Fullerton et al. | Aug 2016 | A1 |
20160253145 | Lee et al. | Sep 2016 | A1 |
20160259656 | Sumner et al. | Sep 2016 | A1 |
20160259936 | Mukherjee et al. | Sep 2016 | A1 |
20160267319 | Murillo et al. | Sep 2016 | A1 |
20160267779 | Kuang | Sep 2016 | A1 |
20160277708 | Rintel et al. | Sep 2016 | A1 |
20160277903 | Poosala et al. | Sep 2016 | A1 |
20160291824 | Grossman et al. | Oct 2016 | A1 |
20160291924 | Bierbower et al. | Oct 2016 | A1 |
20160295340 | Baker et al. | Oct 2016 | A1 |
20160299669 | Bates | Oct 2016 | A1 |
20160299736 | Bates et al. | Oct 2016 | A1 |
20160314451 | Martin | Oct 2016 | A1 |
20160320849 | Koo | Nov 2016 | A1 |
20160335041 | Wachter et al. | Nov 2016 | A1 |
20160336531 | Yokoyama | Nov 2016 | A1 |
20160342141 | Koumaiha et al. | Nov 2016 | A1 |
20160342386 | Kallai et al. | Nov 2016 | A1 |
20160345039 | Billmeyer | Nov 2016 | A1 |
20160345172 | Cotterill | Nov 2016 | A1 |
20160350839 | Avidor et al. | Dec 2016 | A1 |
20160351191 | Vilermo et al. | Dec 2016 | A1 |
20160352661 | Yang et al. | Dec 2016 | A1 |
20160357507 | Decker et al. | Dec 2016 | A1 |
20160360344 | Shim et al. | Dec 2016 | A1 |
20160364600 | Shah et al. | Dec 2016 | A1 |
20160366481 | Lim et al. | Dec 2016 | A1 |
20160366531 | Popova | Dec 2016 | A1 |
20160372113 | David et al. | Dec 2016 | A1 |
20160373884 | Peterson et al. | Dec 2016 | A1 |
20160378424 | Kanda et al. | Dec 2016 | A1 |
20160378961 | Park | Dec 2016 | A1 |
20160379205 | Margadoudakis | Dec 2016 | A1 |
20160381476 | Gossain et al. | Dec 2016 | A1 |
20170003931 | Dvortsov et al. | Jan 2017 | A1 |
20170010782 | Chaudhri et al. | Jan 2017 | A1 |
20170010794 | Cho et al. | Jan 2017 | A1 |
20170013562 | Lim et al. | Jan 2017 | A1 |
20170017531 | Choi et al. | Jan 2017 | A1 |
20170019517 | Wilder et al. | Jan 2017 | A1 |
20170025124 | Mixter et al. | Jan 2017 | A1 |
20170026686 | Glazier et al. | Jan 2017 | A1 |
20170031552 | Lin | Feb 2017 | A1 |
20170031648 | So et al. | Feb 2017 | A1 |
20170041727 | Reimann | Feb 2017 | A1 |
20170046025 | Dascola et al. | Feb 2017 | A1 |
20170054731 | Cotterill | Feb 2017 | A1 |
20170068402 | Lochhead et al. | Mar 2017 | A1 |
20170068507 | Kim et al. | Mar 2017 | A1 |
20170070346 | Lombardi et al. | Mar 2017 | A1 |
20170078294 | Medvinsky | Mar 2017 | A1 |
20170083285 | Meyers et al. | Mar 2017 | A1 |
20170083494 | Kim et al. | Mar 2017 | A1 |
20170092085 | Agarwal | Mar 2017 | A1 |
20170092270 | Newendorp et al. | Mar 2017 | A1 |
20170093846 | Lopez Lecube et al. | Mar 2017 | A1 |
20170097621 | Ackmann et al. | Apr 2017 | A1 |
20170099270 | Anson | Apr 2017 | A1 |
20170115940 | Byeon | Apr 2017 | A1 |
20170127145 | Rajapakse | May 2017 | A1 |
20170134553 | Jeon et al. | May 2017 | A1 |
20170134567 | Jeon et al. | May 2017 | A1 |
20170134872 | Silva et al. | May 2017 | A1 |
20170140372 | Wang et al. | May 2017 | A1 |
20170142087 | Maninder et al. | May 2017 | A1 |
20170142584 | Oh et al. | May 2017 | A1 |
20170148010 | Bak et al. | May 2017 | A1 |
20170180843 | Perianu et al. | Jun 2017 | A1 |
20170185373 | Kim et al. | Jun 2017 | A1 |
20170192730 | Yang et al. | Jul 2017 | A1 |
20170193813 | Carroll et al. | Jul 2017 | A1 |
20170195772 | Han et al. | Jul 2017 | A1 |
20170206779 | Lee et al. | Jul 2017 | A1 |
20170212667 | Miyazaki | Jul 2017 | A1 |
20170227935 | Su et al. | Aug 2017 | A1 |
20170230705 | Pardue et al. | Aug 2017 | A1 |
20170235545 | Millington et al. | Aug 2017 | A1 |
20170235926 | Fyke et al. | Aug 2017 | A1 |
20170235935 | Song et al. | Aug 2017 | A1 |
20170242653 | Lang et al. | Aug 2017 | A1 |
20170251314 | Pye et al. | Aug 2017 | A1 |
20170269556 | Zhou | Sep 2017 | A1 |
20170270507 | Wang et al. | Sep 2017 | A1 |
20170285788 | Park et al. | Oct 2017 | A1 |
20170289249 | Knight et al. | Oct 2017 | A1 |
20170322713 | Hwang et al. | Nov 2017 | A1 |
20170339151 | Van Os et al. | Nov 2017 | A1 |
20170357420 | Dye et al. | Dec 2017 | A1 |
20170357421 | Dye et al. | Dec 2017 | A1 |
20170357425 | Smith et al. | Dec 2017 | A1 |
20170357434 | Coffman et al. | Dec 2017 | A1 |
20170357439 | Lemay et al. | Dec 2017 | A1 |
20170357477 | Im et al. | Dec 2017 | A1 |
20170357973 | Van Os et al. | Dec 2017 | A1 |
20170359189 | Smith et al. | Dec 2017 | A1 |
20170359191 | Smith et al. | Dec 2017 | A1 |
20170363436 | Eronen et al. | Dec 2017 | A1 |
20180039916 | Ravindra | Feb 2018 | A1 |
20180040324 | Wilberding | Feb 2018 | A1 |
20180067712 | Behzadi et al. | Mar 2018 | A1 |
20180067904 | Li | Mar 2018 | A1 |
20180069957 | Mushikabe et al. | Mar 2018 | A1 |
20180070187 | Drinkwater et al. | Mar 2018 | A1 |
20180075439 | Bak et al. | Mar 2018 | A1 |
20180096064 | Lennon et al. | Apr 2018 | A1 |
20180101297 | Yang et al. | Apr 2018 | A1 |
20180109629 | Van Os et al. | Apr 2018 | A1 |
20180124128 | Faulkner et al. | May 2018 | A1 |
20180131732 | Aronoff et al. | May 2018 | A1 |
20180139292 | Koren et al. | May 2018 | A1 |
20180190279 | Anderson et al. | Jul 2018 | A1 |
20180199137 | Mate et al. | Jul 2018 | A1 |
20180205797 | Faulkner | Jul 2018 | A1 |
20180217709 | Hotelling | Aug 2018 | A1 |
20180227341 | Rizzi | Aug 2018 | A1 |
20180228003 | O'driscoll et al. | Aug 2018 | A1 |
20180234549 | Coffman et al. | Aug 2018 | A1 |
20180267773 | Kim et al. | Sep 2018 | A1 |
20180286395 | Li et al. | Oct 2018 | A1 |
20180302790 | Cotterill | Oct 2018 | A1 |
20180308480 | Jang et al. | Oct 2018 | A1 |
20180329585 | Carrigan et al. | Nov 2018 | A1 |
20180329586 | Sundstrom et al. | Nov 2018 | A1 |
20180332559 | Gudivada et al. | Nov 2018 | A1 |
20180335903 | Coffman | Nov 2018 | A1 |
20180337924 | Graham et al. | Nov 2018 | A1 |
20180338038 | Ly et al. | Nov 2018 | A1 |
20180341448 | Behzadi et al. | Nov 2018 | A1 |
20180351762 | Iyengar et al. | Dec 2018 | A1 |
20180357631 | Bak et al. | Dec 2018 | A1 |
20180364665 | Clymer et al. | Dec 2018 | A1 |
20180375676 | Bader-natal et al. | Dec 2018 | A1 |
20190012069 | Bates | Jan 2019 | A1 |
20190012073 | Hwang | Jan 2019 | A1 |
20190012966 | Shi | Jan 2019 | A1 |
20190025943 | Jobs et al. | Jan 2019 | A1 |
20190028419 | Sullivan | Jan 2019 | A1 |
20190056854 | Azzolin et al. | Feb 2019 | A1 |
20190056907 | So et al. | Feb 2019 | A1 |
20190058777 | Chen | Feb 2019 | A1 |
20190076084 | Kanegae et al. | Mar 2019 | A1 |
20190102145 | Wilberding et al. | Apr 2019 | A1 |
20190124203 | Coffman et al. | Apr 2019 | A1 |
20190124510 | Cotterill | Apr 2019 | A1 |
20190129661 | Hirota et al. | May 2019 | A1 |
20190138951 | Brownhill et al. | May 2019 | A1 |
20190149972 | Parks et al. | May 2019 | A1 |
20190158645 | Yang et al. | May 2019 | A1 |
20190163329 | Yang et al. | May 2019 | A1 |
20190199963 | Ahn et al. | Jun 2019 | A1 |
20190222775 | Ahn | Jul 2019 | A1 |
20190278900 | Yang et al. | Sep 2019 | A1 |
20190279634 | Tak et al. | Sep 2019 | A1 |
20190289079 | Van Os et al. | Sep 2019 | A1 |
20190294406 | Bierbower et al. | Sep 2019 | A1 |
20190297439 | Maeda | Sep 2019 | A1 |
20190306607 | Clayton et al. | Oct 2019 | A1 |
20190332400 | Spoor et al. | Oct 2019 | A1 |
20190339769 | Cox et al. | Nov 2019 | A1 |
20190342519 | Van Os et al. | Nov 2019 | A1 |
20190354252 | Badr | Nov 2019 | A1 |
20190361575 | Ni et al. | Nov 2019 | A1 |
20190361729 | Gruber et al. | Nov 2019 | A1 |
20200050426 | Jung et al. | Feb 2020 | A1 |
20200050502 | Ghafourifar et al. | Feb 2020 | A1 |
20200104018 | Coffman et al. | Apr 2020 | A1 |
20200120503 | Cotterill | Apr 2020 | A1 |
20200135191 | Nourbakhsh | Apr 2020 | A1 |
20200152186 | Koh et al. | May 2020 | A1 |
20200154583 | Lee et al. | May 2020 | A1 |
20200186378 | Six et al. | Jun 2020 | A1 |
20200192627 | Jang et al. | Jun 2020 | A1 |
20200201491 | Coffman et al. | Jun 2020 | A1 |
20200201495 | Coffman et al. | Jun 2020 | A1 |
20200213437 | Bhatt | Jul 2020 | A1 |
20200213530 | Ahn | Jul 2020 | A1 |
20200218486 | Behzadi et al. | Jul 2020 | A1 |
20200225817 | Coffman et al. | Jul 2020 | A1 |
20200302913 | Marcinkiewicz | Sep 2020 | A1 |
20200335187 | Lefkofsky et al. | Oct 2020 | A1 |
20200348830 | Bates | Nov 2020 | A1 |
20200366742 | Van Os et al. | Nov 2020 | A1 |
20200367816 | Panneer Selvam | Nov 2020 | A1 |
20200379711 | Graham et al. | Dec 2020 | A1 |
20200379712 | Carrigan et al. | Dec 2020 | A1 |
20200379713 | Carrigan et al. | Dec 2020 | A1 |
20200379714 | Graham et al. | Dec 2020 | A1 |
20200379716 | Carrigan et al. | Dec 2020 | A1 |
20200379729 | Graham et al. | Dec 2020 | A1 |
20200379730 | Graham et al. | Dec 2020 | A1 |
20200382332 | Carrigan et al. | Dec 2020 | A1 |
20200383157 | Lee et al. | Dec 2020 | A1 |
20200395012 | Kim et al. | Dec 2020 | A1 |
20200413197 | Carrigan et al. | Dec 2020 | A1 |
20210011588 | Coffman et al. | Jan 2021 | A1 |
20210011613 | Pisula et al. | Jan 2021 | A1 |
20210014610 | Carrigan et al. | Jan 2021 | A1 |
20210043189 | Pyun | Feb 2021 | A1 |
20210064317 | Juenger et al. | Mar 2021 | A1 |
20210065134 | Chhabra et al. | Mar 2021 | A1 |
20210099829 | Soto et al. | Apr 2021 | A1 |
20210158830 | Boehlke | May 2021 | A1 |
20210173431 | Yang et al. | Jun 2021 | A1 |
20210181903 | Carrigan et al. | Jun 2021 | A1 |
20210203765 | Yang et al. | Jul 2021 | A1 |
20210255816 | Behzadi et al. | Aug 2021 | A1 |
20210255819 | Graham et al. | Aug 2021 | A1 |
20210263702 | Carrigan | Aug 2021 | A1 |
20210266274 | Liu et al. | Aug 2021 | A1 |
20210272118 | Van Os et al. | Sep 2021 | A1 |
20210321197 | Annamraju | Oct 2021 | A1 |
20210323406 | So et al. | Oct 2021 | A1 |
20210349680 | Kim et al. | Nov 2021 | A1 |
20210352172 | Kim et al. | Nov 2021 | A1 |
20210392223 | Coffman et al. | Dec 2021 | A1 |
20210407507 | Zhou et al. | Dec 2021 | A1 |
20220004356 | Kim et al. | Jan 2022 | A1 |
20220043626 | Carrigan | Feb 2022 | A1 |
20220058257 | Cotterill | Feb 2022 | A1 |
20220100367 | Carrigan et al. | Mar 2022 | A1 |
20220100841 | Yang et al. | Mar 2022 | A1 |
20220137759 | Yang et al. | May 2022 | A1 |
20220163996 | Yang et al. | May 2022 | A1 |
20220277037 | Sanders et al. | Sep 2022 | A1 |
20220279063 | Coffman et al. | Sep 2022 | A1 |
20220286549 | Coffman et al. | Sep 2022 | A1 |
20220291832 | Bi | Sep 2022 | A1 |
20220303383 | Coffman et al. | Sep 2022 | A1 |
20220326817 | Carrigan et al. | Oct 2022 | A1 |
20220350482 | Carrigan et al. | Nov 2022 | A1 |
20220391166 | Sanders | Dec 2022 | A1 |
20230041125 | Kim et al. | Feb 2023 | A1 |
20230073844 | Coffman et al. | Mar 2023 | A1 |
20230084551 | Coffman et al. | Mar 2023 | A1 |
20230098814 | Carrigan et al. | Mar 2023 | A1 |
20230104819 | Coffman et al. | Apr 2023 | A1 |
20230106600 | Coffman et al. | Apr 2023 | A1 |
20230106761 | Coffman et al. | Apr 2023 | A1 |
20230168797 | Chaudhri et al. | Jun 2023 | A1 |
20230179700 | Bhatt | Jun 2023 | A1 |
20230246857 | Boucheron et al. | Aug 2023 | A1 |
20230266866 | Bates et al. | Aug 2023 | A1 |
20230291824 | Yang et al. | Sep 2023 | A1 |
20230319413 | Manzari et al. | Oct 2023 | A1 |
20230370507 | Chang et al. | Nov 2023 | A1 |
20230376268 | Carrigan et al. | Nov 2023 | A1 |
20230393809 | Carrigan et al. | Dec 2023 | A1 |
20230403509 | Carrigan et al. | Dec 2023 | A1 |
20240053953 | Sanders | Feb 2024 | A1 |
20240080642 | Carrigan et al. | Mar 2024 | A1 |
20240111333 | Yang et al. | Apr 2024 | A1 |
20240126804 | Sanders et al. | Apr 2024 | A1 |
Number | Date | Country |
---|---|---|
060465 | Jun 2008 | AR |
2007100826 | Sep 2007 | AU |
2008100011 | Feb 2008 | AU |
2014100584 | Jul 2014 | AU |
2532145 | Jul 1995 | CA |
2798093 | Nov 2011 | CA |
2876587 | Feb 2014 | CA |
1263425 | Aug 2000 | CN |
1274439 | Nov 2000 | CN |
1341889 | Mar 2002 | CN |
1452739 | Oct 2003 | CN |
1525723 | Sep 2004 | CN |
1558690 | Dec 2004 | CN |
1620677 | May 2005 | CN |
1663174 | Aug 2005 | CN |
1741104 | Mar 2006 | CN |
1797295 | Jul 2006 | CN |
1813240 | Aug 2006 | CN |
1828599 | Sep 2006 | CN |
1846221 | Oct 2006 | CN |
1863281 | Nov 2006 | CN |
1908981 | Feb 2007 | CN |
101002167 | Jul 2007 | CN |
101022395 | Aug 2007 | CN |
101047521 | Oct 2007 | CN |
101107668 | Jan 2008 | CN |
101188506 | May 2008 | CN |
101243426 | Aug 2008 | CN |
101268470 | Sep 2008 | CN |
101299694 | Nov 2008 | CN |
101309311 | Nov 2008 | CN |
101321156 | Dec 2008 | CN |
101340274 | Jan 2009 | CN |
101341718 | Jan 2009 | CN |
101341727 | Jan 2009 | CN |
101350938 | Jan 2009 | CN |
101359291 | Feb 2009 | CN |
101409743 | Apr 2009 | CN |
101485128 | Jul 2009 | CN |
101488138 | Jul 2009 | CN |
100530059 | Aug 2009 | CN |
101501657 | Aug 2009 | CN |
101517563 | Aug 2009 | CN |
101567858 | Oct 2009 | CN |
101610155 | Dec 2009 | CN |
101625620 | Jan 2010 | CN |
101673207 | Mar 2010 | CN |
101673298 | Mar 2010 | CN |
101854278 | Oct 2010 | CN |
101861562 | Oct 2010 | CN |
101873386 | Oct 2010 | CN |
101877748 | Nov 2010 | CN |
101882409 | Nov 2010 | CN |
101931655 | Dec 2010 | CN |
101976171 | Feb 2011 | CN |
102065148 | May 2011 | CN |
102077191 | May 2011 | CN |
102164213 | Aug 2011 | CN |
201928419 | Aug 2011 | CN |
102202192 | Sep 2011 | CN |
102209321 | Oct 2011 | CN |
102262506 | Nov 2011 | CN |
102281294 | Dec 2011 | CN |
102301323 | Dec 2011 | CN |
102396205 | Mar 2012 | CN |
102414755 | Apr 2012 | CN |
102450040 | May 2012 | CN |
102508707 | Jun 2012 | CN |
102695302 | Sep 2012 | CN |
102707994 | Oct 2012 | CN |
102737313 | Oct 2012 | CN |
102740146 | Oct 2012 | CN |
102750066 | Oct 2012 | CN |
102750086 | Oct 2012 | CN |
102754071 | Oct 2012 | CN |
102769705 | Nov 2012 | CN |
102859480 | Jan 2013 | CN |
102866828 | Jan 2013 | CN |
102902453 | Jan 2013 | CN |
102905181 | Jan 2013 | CN |
102968267 | Mar 2013 | CN |
102982401 | Mar 2013 | CN |
103067625 | Apr 2013 | CN |
103069378 | Apr 2013 | CN |
103139370 | Jun 2013 | CN |
103250138 | Aug 2013 | CN |
103260079 | Aug 2013 | CN |
203311163 | Nov 2013 | CN |
103425451 | Dec 2013 | CN |
103458215 | Dec 2013 | CN |
103558916 | Feb 2014 | CN |
103576902 | Feb 2014 | CN |
103582873 | Feb 2014 | CN |
103593154 | Feb 2014 | CN |
103604272 | Feb 2014 | CN |
103765385 | Apr 2014 | CN |
103793075 | May 2014 | CN |
103793138 | May 2014 | CN |
103853328 | Jun 2014 | CN |
103853493 | Jun 2014 | CN |
103870255 | Jun 2014 | CN |
103914238 | Jul 2014 | CN |
104106036 | Oct 2014 | CN |
104166458 | Nov 2014 | CN |
203942537 | Nov 2014 | CN |
104205785 | Dec 2014 | CN |
104331796 | Feb 2015 | CN |
104335234 | Feb 2015 | CN |
104392352 | Mar 2015 | CN |
104574054 | Apr 2015 | CN |
104867004 | Aug 2015 | CN |
104956276 | Sep 2015 | CN |
104994106 | Oct 2015 | CN |
105208511 | Dec 2015 | CN |
105373920 | Mar 2016 | CN |
105374192 | Mar 2016 | CN |
105388998 | Mar 2016 | CN |
105431855 | Mar 2016 | CN |
105474580 | Apr 2016 | CN |
105549947 | May 2016 | CN |
105654286 | Jun 2016 | CN |
105654287 | Jun 2016 | CN |
105657465 | Jun 2016 | CN |
205267230 | Jun 2016 | CN |
105745863 | Jul 2016 | CN |
105794231 | Jul 2016 | CN |
105900376 | Aug 2016 | CN |
105940678 | Sep 2016 | CN |
106030700 | Oct 2016 | CN |
106062810 | Oct 2016 | CN |
106134209 | Nov 2016 | CN |
106170783 | Nov 2016 | CN |
103914238 | Feb 2017 | CN |
106383645 | Feb 2017 | CN |
106416142 | Feb 2017 | CN |
106797415 | May 2017 | CN |
107077288 | Aug 2017 | CN |
107250949 | Oct 2017 | CN |
107533368 | Jan 2018 | CN |
107637073 | Jan 2018 | CN |
107683470 | Feb 2018 | CN |
107819928 | Mar 2018 | CN |
107949879 | Apr 2018 | CN |
104012150 | May 2018 | CN |
108289239 | Jul 2018 | CN |
108292203 | Jul 2018 | CN |
108683798 | Oct 2018 | CN |
108958608 | Dec 2018 | CN |
109117078 | Jan 2019 | CN |
109196825 | Jan 2019 | CN |
109287140 | Jan 2019 | CN |
109302531 | Feb 2019 | CN |
109314795 | Feb 2019 | CN |
109347581 | Feb 2019 | CN |
109348052 | Feb 2019 | CN |
109461462 | Mar 2019 | CN |
109584879 | Apr 2019 | CN |
109688441 | Apr 2019 | CN |
109688442 | Apr 2019 | CN |
108683798 | Apr 2021 | CN |
109584879 | Jul 2021 | CN |
113835583 | Dec 2021 | CN |
108958608 | Jul 2022 | CN |
459174 | Dec 1991 | EP |
0564247 | Oct 1993 | EP |
684543 | Nov 1995 | EP |
0844555 | May 1998 | EP |
0871177 | Oct 1998 | EP |
0880091 | Nov 1998 | EP |
0881563 | Dec 1998 | EP |
1079371 | Feb 2001 | EP |
1133119 | Sep 2001 | EP |
1186987 | Mar 2002 | EP |
1215575 | Jun 2002 | EP |
1357458 | Oct 2003 | EP |
1469374 | Oct 2004 | EP |
1615109 | Jan 2006 | EP |
1705883 | Sep 2006 | EP |
1760584 | Mar 2007 | EP |
1885109 | Feb 2008 | EP |
1942401 | Jul 2008 | EP |
2018032 | Jan 2009 | EP |
2180665 | Apr 2010 | EP |
2194698 | Jun 2010 | EP |
2247087 | Nov 2010 | EP |
2409214 | Jan 2012 | EP |
2420925 | Feb 2012 | EP |
2523109 | Nov 2012 | EP |
2568693 | Mar 2013 | EP |
2600584 | Jun 2013 | EP |
2629291 | Aug 2013 | EP |
2632193 | Aug 2013 | EP |
2674889 | Dec 2013 | EP |
2725473 | Apr 2014 | EP |
2733579 | May 2014 | EP |
2741190 | Jun 2014 | EP |
2750062 | Jul 2014 | EP |
2770673 | Aug 2014 | EP |
2770708 | Aug 2014 | EP |
2891049 | Jul 2015 | EP |
2892240 | Jul 2015 | EP |
2891049 | Mar 2016 | EP |
2993909 | Mar 2016 | EP |
2998822 | Mar 2016 | EP |
3032537 | Jun 2016 | EP |
3038427 | Jun 2016 | EP |
2568693 | Jul 2016 | EP |
3057342 | Aug 2016 | EP |
3073703 | Sep 2016 | EP |
3138300 | Mar 2017 | EP |
3163495 | May 2017 | EP |
3276905 | Jan 2018 | EP |
3379853 | Sep 2018 | EP |
2632193 | Oct 2018 | EP |
3420441 | Jan 2019 | EP |
3445058 | Feb 2019 | EP |
2568693 | Dec 2019 | EP |
3038427 | Dec 2019 | EP |
3633963 | Apr 2020 | EP |
3069679 | Feb 2019 | FR |
2341698 | Mar 2000 | GB |
0412212 | Jul 2004 | GB |
2402105 | Dec 2004 | GB |
2466038 | Jun 2010 | GB |
2505476 | Mar 2014 | GB |
1038MUM2005 | Jun 2007 | IN |
5-266169 | Oct 1993 | JP |
8-147138 | Jun 1996 | JP |
8-166783 | Jun 1996 | JP |
9-97154 | Apr 1997 | JP |
9-258947 | Oct 1997 | JP |
10-198517 | Jul 1998 | JP |
10-232757 | Sep 1998 | JP |
11-272391 | Oct 1999 | JP |
2000-101879 | Apr 2000 | JP |
2000-105772 | Apr 2000 | JP |
2000-122957 | Apr 2000 | JP |
2000-163193 | Jun 2000 | JP |
2000-200092 | Jul 2000 | JP |
2000-231371 | Aug 2000 | JP |
2000-259477 | Sep 2000 | JP |
2000-283772 | Oct 2000 | JP |
2000-284879 | Oct 2000 | JP |
2000-347921 | Dec 2000 | JP |
2001-67099 | Mar 2001 | JP |
2001-202176 | Jul 2001 | JP |
2001-306375 | Nov 2001 | JP |
2001-331758 | Nov 2001 | JP |
2002-58082 | Feb 2002 | JP |
2002-82745 | Mar 2002 | JP |
2002-288125 | Oct 2002 | JP |
2002-288690 | Oct 2002 | JP |
2002-342356 | Nov 2002 | JP |
2002-351768 | Dec 2002 | JP |
2003-30245 | Jan 2003 | JP |
2003-43978 | Feb 2003 | JP |
2003-52019 | Feb 2003 | JP |
2003-62975 | Mar 2003 | JP |
2003-264621 | Sep 2003 | JP |
2003-330586 | Nov 2003 | JP |
2003-330613 | Nov 2003 | JP |
2004-38895 | Feb 2004 | JP |
2004-96397 | Mar 2004 | JP |
2004-104813 | Apr 2004 | JP |
2004-192573 | Jul 2004 | JP |
2004-348601 | Dec 2004 | JP |
2004-356816 | Dec 2004 | JP |
2005-44036 | Feb 2005 | JP |
2005-507112 | Mar 2005 | JP |
2005-190108 | Jul 2005 | JP |
2005-332368 | Dec 2005 | JP |
2006-166248 | Jun 2006 | JP |
2006-185154 | Jul 2006 | JP |
2006-295753 | Oct 2006 | JP |
2007-41976 | Feb 2007 | JP |
2007-304854 | Nov 2007 | JP |
2007-534009 | Nov 2007 | JP |
2008-26439 | Feb 2008 | JP |
2008-99330 | Apr 2008 | JP |
2009-17486 | Jan 2009 | JP |
2009-93206 | Apr 2009 | JP |
2009-239867 | Oct 2009 | JP |
2009-296577 | Dec 2009 | JP |
2009-543166 | Dec 2009 | JP |
2009-543228 | Dec 2009 | JP |
2010-503082 | Jan 2010 | JP |
2010-503922 | Feb 2010 | JP |
2010-109789 | May 2010 | JP |
3162246 | Aug 2010 | JP |
2010-245940 | Oct 2010 | JP |
2010-257118 | Nov 2010 | JP |
2010-271779 | Dec 2010 | JP |
2011-60281 | Mar 2011 | JP |
2011-65590 | Mar 2011 | JP |
2011-118662 | Jun 2011 | JP |
2011-209786 | Oct 2011 | JP |
2011-237857 | Nov 2011 | JP |
2012-168966 | Sep 2012 | JP |
2012-215938 | Nov 2012 | JP |
2013-25357 | Feb 2013 | JP |
2013-506225 | Feb 2013 | JP |
2013-74499 | Apr 2013 | JP |
2013-93699 | May 2013 | JP |
2013-98613 | May 2013 | JP |
2013-105468 | May 2013 | JP |
2013-530433 | Jul 2013 | JP |
2013-530458 | Jul 2013 | JP |
2013-175188 | Sep 2013 | JP |
2013-191065 | Sep 2013 | JP |
2013-200879 | Oct 2013 | JP |
2014-503861 | Feb 2014 | JP |
2014-44724 | Mar 2014 | JP |
2014-71835 | Apr 2014 | JP |
2014-87126 | May 2014 | JP |
2014-512044 | May 2014 | JP |
2014-110638 | Jun 2014 | JP |
2014-131359 | Jul 2014 | JP |
2014-170982 | Sep 2014 | JP |
2015-8001 | Jan 2015 | JP |
2015-14923 | Jan 2015 | JP |
2015-501022 | Jan 2015 | JP |
2015-61318 | Mar 2015 | JP |
2015-520456 | Jul 2015 | JP |
2015-524974 | Aug 2015 | JP |
2015-526776 | Sep 2015 | JP |
2015-533441 | Nov 2015 | JP |
2016-38615 | Mar 2016 | JP |
2016-157292 | Sep 2016 | JP |
6023162 | Nov 2016 | JP |
2017-34563 | Feb 2017 | JP |
2017-41008 | Feb 2017 | JP |
2017-143357 | Aug 2017 | JP |
2018-7158 | Jan 2018 | JP |
2018-147265 | Sep 2018 | JP |
2018-200624 | Dec 2018 | JP |
10-2003-0030384 | Apr 2003 | KR |
10-2005-0072071 | Jul 2005 | KR |
10-2007-0101893 | Oct 2007 | KR |
10-2007-0120125 | Dec 2007 | KR |
10-0805341 | Feb 2008 | KR |
20-2008-0004775 | Oct 2008 | KR |
10-2009-0089472 | Aug 2009 | KR |
10-2009-0125377 | Dec 2009 | KR |
10-2010-0036351 | Apr 2010 | KR |
10-2012-0003323 | Jan 2012 | KR |
10-2012-0088746 | Aug 2012 | KR |
10-2012-0100433 | Sep 2012 | KR |
10-1253392 | Apr 2013 | KR |
10-2013-0063019 | Jun 2013 | KR |
10-2013-0075783 | Jul 2013 | KR |
10-2013-0082190 | Jul 2013 | KR |
10-2013-0108563 | Oct 2013 | KR |
10-2013-0141688 | Dec 2013 | KR |
10-1342208 | Dec 2013 | KR |
10-2014-0016244 | Feb 2014 | KR |
10-2014-0026263 | Mar 2014 | KR |
10-2014-0031283 | Mar 2014 | KR |
10-2014-0043370 | Apr 2014 | KR |
10-2014-0137400 | Dec 2014 | KR |
10-2014-0148289 | Dec 2014 | KR |
10-2015-0031010 | Mar 2015 | KR |
10-2015-0121177 | Oct 2015 | KR |
10-2016-0012008 | Feb 2016 | KR |
10-2016-0045633 | Apr 2016 | KR |
10-2016-0092363 | Aug 2016 | KR |
10-2016-0141847 | Dec 2016 | KR |
10-2017-0008601 | Jan 2017 | KR |
10-2017-0027435 | Mar 2017 | KR |
10-2017-0027999 | Mar 2017 | KR |
10-2017-0082022 | Jul 2017 | KR |
10-2017-0100358 | Sep 2017 | KR |
10-2017-0124954 | Nov 2017 | KR |
10-1820573 | Jan 2018 | KR |
10-2018-0034637 | Apr 2018 | KR |
10-2018-0085931 | Jul 2018 | KR |
10-2019-0002658 | Jan 2019 | KR |
10-2019-0014495 | Feb 2019 | KR |
10-2019-0022883 | Mar 2019 | KR |
10-2019-0057414 | May 2019 | KR |
10-2011177 | Aug 2019 | KR |
20200039030 | Apr 2020 | KR |
336834 | Feb 2016 | MX |
201131471 | Sep 2011 | TW |
201137722 | Nov 2011 | TW |
201316247 | Apr 2013 | TW |
201324310 | Jun 2013 | TW |
201403363 | Jan 2014 | TW |
201409345 | Mar 2014 | TW |
201415345 | Apr 2014 | TW |
201416959 | May 2014 | TW |
9944114 | Sep 1999 | WO |
0201864 | Jan 2002 | WO |
0211022 | Feb 2002 | WO |
03036457 | May 2003 | WO |
03054832 | Jul 2003 | WO |
03062975 | Jul 2003 | WO |
03062976 | Jul 2003 | WO |
2004095414 | Nov 2004 | WO |
2004104813 | Dec 2004 | WO |
2005031608 | Apr 2005 | WO |
2005053225 | Jun 2005 | WO |
2005109829 | Nov 2005 | WO |
2006011139 | Feb 2006 | WO |
2006020304 | Feb 2006 | WO |
2006020305 | Feb 2006 | WO |
2006113834 | Oct 2006 | WO |
2006130234 | Dec 2006 | WO |
2007073422 | Jun 2007 | WO |
2007102110 | Sep 2007 | WO |
2007142703 | Dec 2007 | WO |
2007149731 | Dec 2007 | WO |
2008027924 | Mar 2008 | WO |
2008030976 | Mar 2008 | WO |
2008033853 | Mar 2008 | WO |
2008085742 | Jul 2008 | WO |
2008103853 | Aug 2008 | WO |
2008151229 | Dec 2008 | WO |
2009005563 | Jan 2009 | WO |
2009010827 | Jan 2009 | WO |
2009067670 | May 2009 | WO |
2009086599 | Jul 2009 | WO |
2009097592 | Aug 2009 | WO |
2010087988 | Aug 2010 | WO |
2010107661 | Sep 2010 | WO |
2010120972 | Oct 2010 | WO |
2010128442 | Nov 2010 | WO |
2011027964 | Mar 2011 | WO |
2011041427 | Apr 2011 | WO |
2011084857 | Jul 2011 | WO |
2011126502 | Oct 2011 | WO |
2011149231 | Dec 2011 | WO |
2012004288 | Jan 2012 | WO |
2012006494 | Jan 2012 | WO |
2012028773 | Mar 2012 | WO |
2012050927 | Apr 2012 | WO |
2012051052 | Apr 2012 | WO |
2012079530 | Jun 2012 | WO |
2012104288 | Aug 2012 | WO |
2012126078 | Sep 2012 | WO |
2012154748 | Nov 2012 | WO |
2012166352 | Dec 2012 | WO |
2012170446 | Dec 2012 | WO |
2013000150 | Jan 2013 | WO |
2013026023 | Feb 2013 | WO |
2013048880 | Apr 2013 | WO |
2013049346 | Apr 2013 | WO |
2013097882 | Jul 2013 | WO |
2013097895 | Jul 2013 | WO |
2013097896 | Jul 2013 | WO |
2013111239 | Aug 2013 | WO |
2013132144 | Sep 2013 | WO |
2013135270 | Sep 2013 | WO |
2013137503 | Sep 2013 | WO |
2013153405 | Oct 2013 | WO |
2013169842 | Nov 2013 | WO |
2013169846 | Nov 2013 | WO |
2013169875 | Nov 2013 | WO |
2013173504 | Nov 2013 | WO |
2013173838 | Nov 2013 | WO |
2013176847 | Nov 2013 | WO |
2014021967 | Feb 2014 | WO |
2014030320 | Feb 2014 | WO |
2014032461 | Mar 2014 | WO |
2014057795 | Apr 2014 | WO |
2014078965 | May 2014 | WO |
2014105274 | Jul 2014 | WO |
2014105276 | Jul 2014 | WO |
2014107469 | Jul 2014 | WO |
2014115605 | Jul 2014 | WO |
2014128800 | Aug 2014 | WO |
2014143776 | Sep 2014 | WO |
2014147297 | Sep 2014 | WO |
2014151089 | Sep 2014 | WO |
2013173504 | Dec 2014 | WO |
2014197279 | Dec 2014 | WO |
2015008409 | Jan 2015 | WO |
2015062410 | May 2015 | WO |
2015076930 | May 2015 | WO |
2015102572 | Jul 2015 | WO |
2015114690 | Aug 2015 | WO |
2015124831 | Aug 2015 | WO |
2015134692 | Sep 2015 | WO |
2015185123 | Dec 2015 | WO |
2016033400 | Mar 2016 | WO |
2016036472 | Mar 2016 | WO |
2016036541 | Mar 2016 | WO |
2016040405 | Mar 2016 | WO |
2016057117 | Apr 2016 | WO |
2016200603 | Dec 2016 | WO |
2016204186 | Dec 2016 | WO |
2017027526 | Feb 2017 | WO |
2017058293 | Apr 2017 | WO |
2017058442 | Apr 2017 | WO |
2017112003 | Jun 2017 | WO |
2017147081 | Aug 2017 | WO |
2017218143 | Dec 2017 | WO |
2017218192 | Dec 2017 | WO |
2017218199 | Dec 2017 | WO |
2018048510 | Mar 2018 | WO |
2018084802 | May 2018 | WO |
2018098136 | May 2018 | WO |
2018144339 | Aug 2018 | WO |
2018213401 | Nov 2018 | WO |
2018213415 | Nov 2018 | WO |
2018213844 | Nov 2018 | WO |
2018232333 | Dec 2018 | WO |
2020063762 | Apr 2020 | WO |
2020243691 | Dec 2020 | WO |
2021010993 | Jan 2021 | WO |
Entry |
---|
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/479,974, mailed on Mar. 14, 2024, 2 pages. |
Office Action received for European Patent Application No. 22201007.6, mailed on Mar. 13, 2024, 4 pages. |
Advisory Action received for U.S. Appl. No. 17/181,089, mailed on Dec. 8, 2023, 3 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2023/020569, mailed on Nov. 13, 2023, 23 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-7033655, mailed on Nov. 29, 2023, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2023-7008877, mailed on Nov. 29, 2023, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/476,404, mailed on Oct. 31, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/479,974, mailed on Nov. 1, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/088,309, mailed on Oct. 27, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 18/102,025, mailed on Nov. 15, 2023, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 17/320,900, mailed on Nov. 6, 2023, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 18/102,025, mailed on Nov. 3, 2023, 9 pages. |
Office Action received for Japanese Patent Application No. 2022-149476, mailed on Nov. 2, 2023, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2022-0053111, mailed on Oct. 23, 2023, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/506,197, mailed on Oct. 25, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/699,492, mailed on Oct. 25, 2023, 3 pages. |
Final Office Action received for U.S. Appl. No. 17/181,089, mailed on Oct. 13, 2023, 15 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022218540, mailed on Oct. 16, 2023, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 202111483033.2, mailed on Oct. 7, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Japanese Patent Application No. 2020-184605, mailed on Oct. 10, 2023, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 18/077,891, mailed on Oct. 19, 2023, 18 pages. |
Office Action received for European Patent Application No. 20719301.2, mailed on Oct. 20, 2023, 11 pages. |
Office Action received for European Patent Application No. 22201007.6, mailed on Oct. 9, 2023, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, mailed on Nov. 28, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/067,350, mailed on Sep. 11, 2023, 4 pages. |
Decision to Grant received for European Patent Application No. 19203942.8, mailed on Nov. 16, 2023, 2 pages. |
Extended European Search Report received for European Patent Application No. 23172038.4, mailed on Oct. 11, 2023, 10 pages. |
Extended European Search Report received for European Patent Application No. 23190753.6, mailed on Nov. 22, 2023. 13 pages. |
Invitation to Pay Additional Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2023/020569, mailed on Sep. 21. 2023, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/067,350, mailed on Aug. 3, 2023, 41 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022241590, mailed on Nov. 14, 2023, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 17/699,492, mailed on Nov. 29, 2023, 5 pages. |
Office Action received for Japanese Patent Application No. 2022-129377, mailed on Nov. 10, 2023, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2023-0001668, mailed on Nov. 3, 2023, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 21207736.6, mailed on Nov. 23, 2023, 5 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 21197457.1, mailed on Nov. 23, 2023. 12 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, mailed on Sep. 18, 2023, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/320,900, mailed on Sep. 18, 2023, 5 pages. |
Extended European Search Report received for European patent Application No. 23191379.9, mailed on Sep. 18, 2023, 8 pages. |
Final Office Action received for U.S. Appl. No. 17/476,404, mailed on Sep. 12, 2023, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/506,197, mailed on Sep. 14, 2023, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/088,309, mailed on Sep. 21, 2023, 11 pages. |
Office Action received for European Patent Application No. 20746429.8, mailed on Sep. 20, 2023, 10 pages. |
Advisory Action received for U.S. Appl. No. 17/479,974, mailed on Apr. 25, 2024, 4 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 17/181,089, mailed on Apr. 15, 2024, 11 pages. |
Office Action received for Chinese Patent Application No. 202080039832.8, mailed on Mar. 23, 2024, 22 pages (12 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202110902807.4, mailed on Mar. 28, 2024, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for European Patent Application No. 23158566.2, mailed on Apr. 9, 2024, 7 pages. |
Office Action received for Indian Patent Application No. 202118049678, mailed on Apr. 18, 2024, 8 pages. |
Result of Consultation received for European Patent Application No. 20720310.0, mailed on Apr. 17, 2024, 9 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/506,197, mailed on Feb. 7, 2024, 4 pages. |
Decision to Grant received for European Patent Application No. 21728781.2, mailed on Feb. 8, 2024, 3 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/978,930, mailed on Feb. 12, 2024, 25 pages. |
Office Action received for Chinese Patent Application No. 202211558100.7, mailed on Jan. 8, 2024, 12 pages (6 pages of English Translation and 6 pages of Official Copy). |
Office Action received for European Patent Application No. 22198071.7, mailed on Feb. 13, 2024, 4 pages. |
Final Office Action received for U.S. Appl. No. 18/088,309, mailed on Jan. 9, 2024, 13 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2022/031252, mailed on Dec. 21, 2023, 13 pages. |
Office Action received for Australian Patent Application No. 2022218517, mailed on Dec. 21, 2023, 5 pages. |
Office Action received for Korean Patent Application No. 10-2022-7001521, mailed on Dec. 19, 2023, 7 pages (3 pages of English Translation and 4 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 20720310.0, mailed on Jan. 3, 2024, 12 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/978,930, mailed on Mar. 13, 2024, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/067,350, mailed on Mar. 13, 2024, 4 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2023/032084, mailed on Nov. 27, 2023, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/200,480, mailed on Mar. 6, 2024, 17 pages. |
Office Action received for Chinese Patent Application No. 202010728844.3, mailed on Jan. 27, 2024, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Office Action received for European Patent Application No. 22188377.0, mailed on Mar. 7, 2024, 7 pages. |
Office Action received for Japanese Patent Application No. 2023-022576, mailed on Feb. 26, 2024, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Corrected Notice of Allowance received for U.S. Appl. No. 17/666,971, mailed on Jan. 16, 2024, 2 pages. |
Final Office Action received for U.S. Appl. No. 17/479,974, mailed on Jan. 19, 2024, 16 pages. |
Office Action received for Australian Patent Application No. 2023204396, mailed on Jan. 8, 2024, 5 pages. |
Office Action received for Chinese Patent Application No. 202110902807.4, mailed on Dec. 15, 2023, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Corrected Notice of Allowance received for U.S. Appl. No. 17/019,845, mailed on Aug. 7, 2023, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/848,845, mailed on Aug. 9, 2023, 4 pages. |
Extended European Search Report received for European Patent Application No. 23168537.1, mailed on Jul. 25, 2023, 13 pages. |
Intention to Grant received for European Patent Application No. 19203942.8, mailed on Aug. 1, 2023, 8 pages. |
Intention to Grant received for European Patent Application No. 21728781.2, mailed on Jul. 28, 2023, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/181,089, mailed on Aug. 4, 2023, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 17/666,971, mailed on Aug. 16, 2023, 8 pages. |
Office Action received for Australian Patent Application No. 2022218517, mailed on Jul. 24, 2023, 6 pages. |
Office Action received for Australian Patent Application No. 2022218540, mailed on Aug. 3, 2023, 5 pages. |
Office Action received for Australian Patent Application No. 2022241590, mailed on Aug. 15, 2023, 6 pages. |
Office Action received for European Patent Application No. 20720310.0, mailed on Jul. 25, 2023, 11 pages. |
Office Action received for Korean Patent Application No. 10-2022-7033655, mailed on Jul. 27, 2023, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Summons to Attend Oral Proceedings received for European Patent Application No. 18733381.0, mailed on Jul. 25, 2023, 7 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/666,971, mailed on Sep. 29, 2023, 2 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2023/017280, mailed on Jun. 26, 2023, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/479,974, mailed on Oct. 10, 2023, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/102,025, mailed on Oct. 10, 2023, 12 pages. |
Office Action received for Chinese Patent Application No. 201811379281.0, mailed on Aug. 17, 2023, 16 pages (5 pages of English Translation and 11 pages of Official Copy). |
Decision to Refuse received for Japanese Patent Application No. 2022-116534, mailed on Jan. 29, 2024, 5 pages (2 pages of English Translation and 3 pages of Official Copy). |
Extended European Search Report received for European Patent Application No. 23203414.0, mailed on Jan. 26, 2024, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/506,197, mailed on Jan. 29, 2024, 8 pages. |
Office Action received for Australian Patent Application No. 2023201057, mailed on Jan. 25, 2024, 6 pages. |
Office Action received for Indian Patent Application No. 202117048581, mailed on Feb. 1, 2024, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/848,845, mailed on Aug. 28, 2023, 3 pages. |
Decision to Grant received for European Patent Application No. 18728002.9, mailed on Aug. 31, 2023, 4 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022235591, mailed on Aug. 18, 2023, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 17/320,900, mailed on Aug. 29, 2023, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 17/867,317, mailed on Aug. 30, 2023, 6 pages. |
Office Action received for Chinese Patent Application No. 202110902807.4, mailed on Jul. 4, 2023, 15 pages (6 pages of English Translation and 9 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2022-116534, mailed on Aug. 28, 2023, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Final Office Action received for U.S. Appl. No. 18/067,350, mailed on Dec. 13, 2023, 44 pages. |
Intention to Grant received for European Patent Application No. 15714698.6, mailed on Dec. 8, 2023, 9 pages. |
Intention to Grant received for European Patent Application No. 21728781.2, mailed on Dec. 12, 2023, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/666,971, mailed on Dec. 15, 2023, 8 pages. |
Advisory Action received for U.S. Appl. No. 17/479,974, mailed on May 6, 2024, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/941,961, mailed on May 6, 2024, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/978,930, mailed on Apr. 26, 2024, 4 pages. |
Notice of Acceptance received for Australian Patent Application No. 2023204396, mailed on Apr. 15, 2024, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-129377, mailed on Apr. 26, 2024, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Office Action received for Australian Patent Application No. 2022218517, mailed on Apr. 24, 2024, 4 pages. |
Office Action received for Japanese Patent Application No. 2022-149476, mailed on Apr. 22, 2024, 8 pages (4 pages of English Translation and 4 pages of Official Copy). |
“Customize Notifications and Content on Your Galaxy Phone's Lock Screen”, Online Available at: https://www.samsung.com/us/support/answer/ANS00062636, Oct. 4, 2017, 5 pages. |
“Digital Video Editor,” IBM Technical Disclosure Bulletin, vol. 35, No. 2, ip.com Journal, IP.COM Inc, West Henrietta XP013097273, Jul. 1, 1992, 6 pages. |
“Firefox Sync—Take Your Bookmarks, Tabs and Personal Information with You”, Available online at https://web.archive.org/web/20120601020556/http://support.mozilla.org/en-US/kb/firefox-sync-take-your-bookmarks-and-tabs-with-you?redirectlocale=en-US&redirectslug=what-firefox-sync, Jun. 1, 2012, 3 pages. |
“Free Virtual Classic Analogue Mono Synth, Samsara Cycle Audio Releases DEISK-O”, Jan. 2, 2011, 3 pages. |
“G Pad, LG's latest UIs that shine even more on the G-Pad”, Online available at: http://bungq.com/1014, Nov. 19, 2013, 49 pages (30 pages of English Translation and 19 pages of Official Copy). |
“How-To: iTunes in the Cloud”, Available at: <http://y2kemo.com/2011/06/how-to-itunes-in-the-cloud/>, XP55040711, Jun. 9, 2011, 4 pages. |
“Kinect Gesture Commands—Kinect Voice Commands”, Xbox Wire, Available Online at: <https://hwcdn.libsyn.com/p/4/4/c/44c89c7f273167b4/Xbox_One_Kinect_Voice_Gesture.pdf?c_id=6458139&cs_id=6458139&expiration=1555411736&hwt=fe78eb09654ea677c9fbf836ad2ed82b >, 2013, 2 pages. |
“LG G Pad 8.3 Tablet Q Remote User”, Available at: <https://mushroomprincess.tistory.com/1320>, Dec. 26, 2013, 37 pages. |
“On-Line Definition for “Playback””, American Heritage Dictionary of the English Language, 4th Edition, 2000, 1 page. |
“Pairing Your Apple Watch with Your AppleTV”, Available online at: https://www.youtube.com/watch?v=C4t8YFSJ-UY, Apr. 27, 2015, 3 pages. |
“PartyShare—turn your Xperia into a jukebox”, Available at: https://forum.xda-developers.com/crossdevice-dev/sony/app-partyshare-xperia-jukebox-t2877807, Sep. 15, 2014, 5 pages. |
“Q Pair, When I connected to LG G Pad 8.3 Q pair G Flex.—G Pad 8.3 review, Posting of a blog”, Online Available at: <http://www.leaderyou.co.kr/2595>, Dec. 7, 2013, 28 pages. |
“QPair”, Online available at: http://mongri.net/entry/G-Pad-83-Qpair, Retrieved on Mar. 6, 2017, Dec. 20, 2013, 22 pages. |
“Quick Time Movie Player Ver. 2.1.2.59”, Current Time Indicator Dragging Operation, Ver. 2.1.2.59, 1996, 1 page. |
“RealOne Player Version 2.0 Screen Dumps”, 2002, 4 pages. |
“Review: Samsung Radiant R3 Wireless Speakers”, Available Online at: <https://www.youtube.com/watch?v=ZBICVE1WdKE>, Jan. 19, 2016, 3 pages. |
“Smart Home App—What is the Widget”, Online Available at: https://support.vivint.com/s/article/Vivint-Smart-Home-App-What-is-the-Widget, Jan. 26, 2019, 4 pages. |
“The Single Keyboard Piano”, Available at: <http://moocowmusic.com/PianistPro/Manual/ManualSingleKeyboardPiano.html>, Sep. 26, 2010, 4 pages. |
“Windows Media Player for Windows XP version 8.0”, 2001, 2 pages. |
13 questions and answers about using Apple Pay online, Online available at: http://www.it528.com/apple/1356.html, Feb. 18, 2016, 5 pages. |
Advisory Action received for U.S. Appl. No. 10/308,315, mailed on Jul. 10, 2006, 3 pages. |
Advisory Action received for U.S. Appl. No. 12/395,537, mailed on Apr. 26, 2012, 4 pages. |
Advisory Action received for U.S. Appl. No. 12/566,673, mailed on Jun. 12, 2013, 3 pages. |
Advisory Action received for U.S. Appl. No. 13/038,217, mailed on Dec. 8, 2014, 3 pages. |
Advisory Action received for U.S. Appl. No. 13/587,850, mailed on May 15, 2015, 2 pages. |
Advisory Action received for U.S. Appl. No. 14/863,099, mailed on Sep. 8, 2016, 3 pages. |
Advisory Action received for U.S. Appl. No. 15/730,610, mailed on Oct. 24, 2019, 5 pages. |
Advisory Action received for U.S. Appl. No. 16/422,736, mailed on Mar. 12, 2021, 3 pages. |
Advisory Action received for U.S. Appl. No. 16/583,989, mailed on Sep. 22, 2020, 5 pages. |
Advisory Action received for U.S. Appl. No. 17/181,089, mailed on Dec. 20, 2022, 4 pages. |
Advisory Action received for U.S. Appl. No. 17/747,804, mailed on Jun. 23, 2023, 6 pages. |
Advisory Action received for U.S. Appl. No. 15/250,152, mailed on Mar. 25, 2019, 5 pages. |
Akhgari Ehsan, “Don't Leave a Trace: Private Browsing in Firefox”, available online at “http://ehsanakhgari.org/blog/2008-11-04/dont-leave-trace-private-browsing-firefox”, Nov. 4, 2008, 71 pages. |
Akshay, “Control your SmartThings compatible devices on the Gear S2 and S3 with the Smarter Things app”, Online available at: https://iotgadgets.com/2017/09/control-smartthings-compatible-devices-gear-s2-s3-smarter-things-app/, Sep. 7, 2017, 4 pages. |
Alba Davey, “Samsung Shape: for $400, Your Music Can Follow You Around the House”, Online available at: https://www.popularmechanics.com/technology/audio/a9536/samsung-shape-for-400- your-music-can-follow-you-aroundnd-15997831/, Oct. 3, 2013, 5 pages. |
Androidcentral, “How do respond to group messages from notification bar?”, Available online at: https://forums.androidcentral.com/ask-question/952030-how-do-i-respond-group-messages-notification-bar.html, Mar. 25, 2019, 3 pages. |
Appeal Brief received for U.S. Appl. No. 11/522,167 mailed on Nov. 23, 2010, 65 pages. |
Apple, “Iphone User's Guide”, iPhone first generation, Available at: <http://pocketpccentral.net/iphone/products/1 g_iphone.htm>, Jun. 29, 2007, 124 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 14/641,304, mailed on Dec. 2, 2019, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 14/641,304, mailed on Jul. 28, 2020, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 15/433,320, mailed on Feb. 11, 2020, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/583,989, mailed on Aug. 3, 2020, 6 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/583,989, mailed on Mar. 25, 2020, 4 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/583,994, mailed on Apr. 3, 2020, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/584,490, mailed on Jul. 28, 2020, 4 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/702,968, mailed on Jul. 1, 2020, 5 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 16/917,659, mailed on Jan. 28, 2022, 2 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 17/176,908, mailed on Jun. 14, 2022, 6 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 17/666,971, mailed on Jun. 9, 2023, 2 pages. |
Applicant Initiated Interview Summary received for U.S. Appl. No. 17/824,510, mailed on Jun. 16, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/433,320, mailed on Nov. 25, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/730,610, mailed on Aug. 25, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 15/910,263, mailed on Nov. 18, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/263,280, mailed on Apr. 26, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/263,280, mailed on Nov. 25, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/422,736, mailed on Feb. 24, 2021, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/422,736, mailed on Sep. 28, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,981, mailed on Mar. 9, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,981, mailed on Sep. 14, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,994, mailed on May 28, 2021, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/583,994, mailed on Nov. 24, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/584,490, mailed on Jan. 31, 2020, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/584,743, mailed on May 1, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/586,002, mailed on Apr. 28, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/670,949, mailed on Apr. 6, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/679,967, mailed on Feb. 10, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/679,967, mailed on Jun. 1, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/679,967, mailed on Oct. 25, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/702,968, mailed on Sep. 28, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/723,583, mailed on Dec. 28, 2020, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/803,849, mailed on Aug. 21, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/803,849, mailed on Dec. 21, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/803,849, mailed on Feb. 28, 2022, 9 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/803,849, mailed on Oct. 12, 2021, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/807,604, mailed on Dec. 21, 2020, 7 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/807,604, mailed on Jul. 24, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/836,571, mailed on Jul. 7, 2021, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/922,675, mailed on Dec. 16, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/922,675, mailed on Nov. 2, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/922,675, mailed on Nov. 15, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/922,675, mailed on Sep. 3, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/026,818, mailed on Dec. 15, 2020, 7 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/026,818, mailed on Mar. 8, 2021, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,833, mailed on Dec. 21, 2020, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/031,833, mailed on May 24, 2021, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/168,069, mailed on Nov. 17, 2021, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, mailed on Apr. 7, 2023, 5 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, mailed on May 16, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, mailed on Nov. 22, 2022, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/181,089, mailed on Oct. 7, 2022, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/223,794, mailed on Sep. 7, 2021, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/306,354, mailed on Jun. 28, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/314,948, mailed on Oct. 21, 2022, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/320,900, mailed on Apr. 17, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/461,103, mailed on Jan. 26, 2022, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/476,404, mailed on Dec. 20, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/476,404, mailed on Jul. 27, 2022, 6 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/476,404, mailed on Jun. 2, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/476,404, mailed on Mar. 18, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/479,974, mailed on Apr. 4, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/479,974, mailed on Jul. 21, 2023, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/509,356, mailed on Feb. 3, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/747,804, mailed on Mar. 17, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/747,804, mailed on May 31, 2023, 4 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/752,582, mailed on Apr. 17, 2023, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/867,317, mailed on May 30, 2023, 4 pages. |
Beard Chris, “Mozilla Labs Introducing Weave”, available online at <https://blog.mozilla.org/labs/2007/12/introducing-weave/>, Dec. 21, 2007, 57 pages. |
Bell Killian, “Twitter Notifications, iCloud Tabs & Location-Based Reminders Appear in Latest OS X 10.8 Beta”, available online at “http://www.cultofmac.com/154522/twitter-notifications-icloud-tabs-location-based-reminders-appear-in-latest-os-x-10-8-beta/”, Mar. 19, 2012, 10 pages. |
Benjamin Jeff, “iOS 10: How to use the new Home app to control HomeKit devices [Video]”, Available online at: https://9to5mac.com/2016/09/23/ios-10-how-to-use-new-home-app-control-homekit-devices-video, Sep. 23, 2016, 36 pages. |
Bennett Stephen, “ES2: Logic's Most Sophisticated Virtual Analogue Synth”, Logic Notes & Techniques, Jun. 2007, 6 pages. |
Board Decision received for Chinese Patent Application No. 201510288981.9, mailed on May 6, 2021, 31 pages. |
Board Decision received for Chinese Patent Application No. 201580043701.6, mailed on Aug. 19, 2021, 2 pages. |
Board Decision received for Chinese Patent Application No. 201580046339.8, mailed on Jun. 22, 2021, 12 pages. |
Board Decision received for Chinese Patent Application No. 201810338826.7, mailed on May 30, 2022, 20 pages. |
Board Decision received for Chinese Patent Application No. 201811367893.8, mailed on Aug. 25, 2022, 2 pages. |
Board Opinion received for Chinese Patent Application No. 201510288981.9, mailed on Jan. 4, 2021, 21 pages. |
Board Opinion received for Chinese Patent Application No. 201580046339.8, mailed on Mar. 19, 2021, 11 pages. |
Board Opinion received for Chinese Patent Application No. 201810338826.7, mailed on Jan. 19, 2022, 18 pages. |
Board Opinion received for Chinese Patent Application No. 201910164962.3, mailed on Sep. 16, 2021, 16 pages. |
Bove Tony, “iPod & iTunes For Dummies”, Wiley Publishing, Inc, 6th Edition, 2008, pp. 143-182. |
Boxer David, “Change the permissions of the Google Drive file or folder or Share the file or folder”, Blake School Website, Online Available at: https://support.blakeschool.org/hc/en-us/articles/231790648-Change-the-permissions-of-the-Google-Drive-file-or-folder-or-Share-the-file-or-folder, Oct. 31, 2016, 2 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 17799904.2, mailed on Sep. 13, 2022, 1 page. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 17813737.8, mailed on Sep. 19, 2022, 1 page. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 18197583.0, mailed on Feb. 18, 2021, 2 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 18728002.9, mailed on Dec. 7, 2022, 1 page. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 18728002.9, mailed on Nov. 28, 2022, 7 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 19150528.8, mailed on Sep. 5, 2022, 2 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 19169980.0, mailed on Jun. 17, 2021, 2 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 20158824.1, mailed on May 30, 2022, 1 page. |
Brumberg et al, “The Unlock Project: A Python-based framework for practical brain-computer interface communication “app” development”, Conf Proc IEEE Eng Med Biol Soc. 2012, doi: 10.1109/EMBC.2012.6346473, Institute of Electrical and Electronics Engineers, 2012, 11 pages. |
Butler Travis, “Portable MP3: The Nomad Jukebox”, Available at: <http://tidbits.com/article/6261>, Jan. 8, 2001, 4 pages. |
Call Me, “Samsung R3 speaker gives you a delicious 360 degree sound experience—with WiFi and Bluetooth | Call me”, 0:24 / 3:22, Available Online at: <https://www.youtube.com/watch?v=4Uv_sOhrlro>, Sep. 22, 2016, 3 pages. |
Certificate of Examination received for Australian Patent Application No. 2017100553, mailed on Jan. 17, 2018, 2 pages. |
Certificate of Examination received for Australian Patent Application No. 2018101014, mailed on Mar. 20, 2019, 2 pages. |
Chan Christine, “Handoff Your Browser to Your iPhone or iPad! Plus a Chance to Win a Copy!”, Apr. 12, 2011, 2 pages. |
Cipriani Jason, ““How to use Spotify's Offline mode on iPhone””, XP055533907, Available online at: https://www.cnet.com/how-to/how-to-use-spotifys-offline-mode-on-iphone/, Aug. 1, 2011, 5 pages. |
Cohn Emily, “Sonos Just Fixed the Most Annoying Thing About Its iPhone App”, online available at https://www.businessinsider.com/sonos-mobile-app-works-on-lock-screen-2016-6, Jun. 27, 2016, 2 pages. |
COMPUTERADV,“Sonos App Navigation & Menu on iPhone”, Available online at: https://www.youtube.com/watch?v=Jhz9XvWQ204, Aug. 4, 2015, 1 page. |
Corrected Notice of Allowance received for U.S. Appl. No. 13/587,850, mailed on Apr. 1, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 13/587,850, mailed on Mar. 23, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/641,298, mailed on Dec. 9, 2021, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/719,217, mailed on Apr. 22, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/719,217, mailed on Mar. 20, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/830,629, mailed on Feb. 13, 2019, 3 pages |
Corrected Notice of Allowance received for U.S. Appl. No. 15/269,801, mailed on Oct. 3, 2017, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/730,610, mailed on Nov. 27, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/845,794, mailed on Feb. 25, 2019, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/910,263, mailed on Feb. 10, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/910,263, mailed on Mar. 17, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/910,263, mailed on Mar. 18, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 15/952,736, mailed on Nov. 19, 2018, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/229,959, mailed on Mar. 3, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/263,280, mailed on Aug. 5, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/422,736, mailed on Jul. 9, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/434,865, mailed on Apr. 28, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/434,865, mailed on Jun. 4, 2020, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/583,981, mailed on Apr. 6, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/583,981, mailed on May 17, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/583,994, mailed on Jul. 6, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/584,743, mailed on Dec. 30, 2020, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/670,949, mailed on Sep. 8, 2021, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/702,968, mailed on Jun. 8, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/702,968, mailed on Jun. 16, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/702,968, mailed on Jun. 28, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/702,968, mailed on May 26, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/702,968, mailed on May 28, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/803,849, mailed on Jul. 7, 2022, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/803,849, mailed on Jun. 8, 2022, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/807,604, mailed on Jul. 26, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/807,604, mailed on Jun. 28, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/807,604, mailed on May 28, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/807,604, mailed on Oct. 4, 2021, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/807,604, mailed on Oct. 14, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/807,604, mailed on Oct. 22, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/836,571, mailed on Dec. 6, 2021, 5 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/836,571, mailed on Mar. 25, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/836,571, mailed on Nov. 4, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/836,571, mailed on Nov. 18, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/836,571, mailed on Oct. 12, 2021, 4 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/921,551, mailed on Feb. 9, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/921,551, mailed on Jan. 26, 2022, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Apr. 14, 2023, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Jan. 9, 2023, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Jan. 20, 2023, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Mar. 4, 2022, 6 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 16/987,003, mailed on Sep. 1, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/027,373, mailed on Jul. 12, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/027,373, mailed on Oct. 26, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/031,833, mailed on Aug. 2, 2021, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/168,069, mailed on Feb. 9, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/461,103, mailed on Apr. 14, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/461,103, mailed on Aug. 3, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/461,103, mailed on May 10, 2022, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/509,356, mailed on Jun. 13, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/509,356, mailed on May 24, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/752,582, mailed on Jul. 17, 2023, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 18/077,905, mailed on Apr. 10, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 18/077,905, mailed on Apr. 19, 2023, 2 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 18/077,905, mailed on Apr. 26, 2023, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 18/077,905, mailed on May 4, 2023, 2 pages. |
Crutnacker,“Amazon Echo Tips and Tricks: Playing Music Demonstration”, Available Online at: https://www.youtube.com/watch?v=W_bqq2ynUll, Nov. 4, 2015, 1 page. |
Decision on Appeal received for U.S. Appl. No. 12/566,673, mailed on Dec. 18, 2019, 10 pages. |
Decision on Appeal received for U.S. Appl. No. 13/587,850, mailed on Aug. 28, 2019, 21 pages. |
Decision on Appeal received for U.S. Appl. No. 13/587,850, mailed on Oct. 21, 2019, 3 pages. |
Decision on Appeal received for U.S. Appl. No. 14/641,298, mailed on Nov. 1, 2021, 9 pages. |
Decision on Appeal received for U.S. Appl. No. 14/774,664, mailed on Sep. 12, 2019, 8 pages. |
Decision on Appeal received for U.S. Appl. No. 14/863,099, mailed on Aug. 22, 2019, 9 pages. |
Decision on Appeal received for U.S. Appl. No. 15/128,952, mailed on Dec. 28, 2020, 23 pages. |
Decision on Opposition received for Australian Patent Application No. 2018271366, mailed on Mar. 3, 2023, 3 pages. |
Decision to Grant received for Danish Patent Application No. PA201670628, mailed on Nov. 20, 2017, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201770392, mailed on Oct. 24, 2018, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201770401, mailed on Oct. 24, 2018, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201770403, mailed on Oct. 24, 2018, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201770404, mailed on Nov. 11, 2019, 3 pages. |
Decision to Grant received for Danish Patent Application No. PA201770406, mailed on May 15, 2020, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA201770782, mailed on Oct. 25, 2019, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA202070560, mailed on Oct. 21, 2021, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA202170320, mailed on Nov. 10, 2022, 2 pages. |
Decision to Grant received for Danish Patent Application No. PA202270464, mailed on May 9, 2023, 1 page. |
Decision to Grant received for European Patent Application No. 10712824.1, mailed on May 17, 2018, 3 pages. |
Decision to Grant received for European Patent Application No. 12181537.7, mailed on Mar. 3, 2016, 2 pages. |
Decision to Grant received for European Patent Application No. 12773460.6, mailed on Jun. 27, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 13171047.7, mailed on Jun. 27, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 15711969.4, mailed on Sep. 26, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 15713062.6, mailed on Apr. 11, 2019, 2 pages. |
Decision to Grant received for European Patent Application No. 15719347.5, mailed on Jun. 24, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 15724160.5, mailed on Jun. 14, 2018, 2 pages. |
Decision to Grant received for European Patent Application No. 16710590.7, mailed on Oct. 28, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 18197583.0, mailed on Feb. 3, 2022, 3 pages. |
Decision to Grant received for European Patent Application No. 18197589.7, mailed on Jun. 10, 2021, 2 pages. |
Decision to Grant received for European Patent Application No. 19207753.5, mailed on Jun. 2, 2022, 3 pages. |
Decision to Grant received for European Patent Application No. 20158824.1, mailed on Dec. 15, 2022, 3 pages. |
Decision to Grant received for German Patent Application No. 102015208532.5, mailed on Sep. 22, 2020, 10 pages. |
Decision to Grant received for Japanese Patent Application No. 2014-017726, mailed on Dec. 7, 2015, 6 pages. |
Decision to Grant received for Japanese Patent Application No. 2017-075031, mailed on Jul. 1, 2019, 3 pages. |
Decision to Grant received for Japanese Patent Application No. 2019-124728, mailed on Apr. 2, 2021, 4 pages. |
Decision to Refuse received for European Patent Application No. 07842262.3, mailed on Dec. 21, 2018, 8 pages. |
Decision to Refuse received for European Patent Application No. 10177096.4, mailed on Feb. 13, 2019, 4 pages. |
Decision to Refuse received for European Patent Application No. 12753631.6, mailed on Feb. 20, 2019, 20 pages. |
Decision to Refuse received for European Patent Application No. 12770400.5, mailed on Nov. 8, 2018, 12 pages. |
Decision to Refuse received for European Patent Application No. 17799904.2, mailed on Sep. 19, 2022, 4 pages. |
Decision to Refuse received for European Patent Application No. 17813737.8, mailed on Sep. 30, 2022, 5 pages. |
Decision to Refuse received for European Patent Application No. 18208881.5, mailed on Dec. 23, 2022, 12 pages. |
Decision to Refuse received for European Patent Application No. 19150528.8, mailed on Sep. 9, 2022, 4 pages. |
Decision to Refuse received for European Patent Application No. 19169980.0, mailed on Jul. 15, 2021, 4 pages. |
Detroitborg,““Apple Music: Walkthrough””, YouTube Video, online available at: “https://www.youtube.com/watch?v=NLgjodiAtbQ”, Jun. 30, 2015, 1 page. |
Dharmasena Anusha, “iMessage-send as text message Option”, YouTube, Available online at: https://www.youtube.com/watch?v=hXG-MdlW6FA>, Feb. 18, 2013, 1 page. |
Dybwad Barb, “Google Chrome Gets Bookmark Syncing”, available online at “http://mashable.com/2009/11/02/chrome-bookmark-sync/”, Nov. 3, 2009, 6 pages. |
Enright Andrew C., “Dissatisfaction Sows Innovation”, Available at <http://web.archive.org/web/20051225123312/http://thetreehouseandthecave.blogspot.com/2004/12/dissatisfaction-sows-innovation.html>, retrieved on Feb. 19, 2008, Dec. 29, 2004, 6 pages. |
Enright Andrew C., “Meet Cover Flow”, Available online at: <http://web.archive.org/web/20060111073239/thetreehouseandthecave.blogspot.com/2005/08/meet-coverflow.html>, retrieved on Feb. 19, 2008, Aug. 13, 2005, 2 pages. |
Enright Andrew C., “Visual Browsing on an iBook Ds”, Available online at <http://web.archive.org/web/20060111175609/thetreehouseandthecave.blogspot.com/2004/12/visual-browsing-on-i book-ds.html>, Dec. 29, 2004, 2 pages. |
Evaluation Report for Utility Model Patent received for Chinese Patent Application No. 201620051290.7, completed on Sep. 19, 2016, 11 pages. |
Examiner-Initiated Interview Summary received for U.S. Appl. No. 17/027,373, mailed on Mar. 31, 2022, 4 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 11/522,167 mailed on Feb. 15, 2011, 13 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 12/566,673, mailed on Nov. 17, 2017, 10 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/641,298, mailed on Mar. 22, 2021, 19 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/774,664, mailed on May 31, 2018, 28 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 14/863,099, mailed on Jul. 28, 2017, 31 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 15/128,952, mailed on Jan. 8, 2020, 9 pages. |
Examiner's Initiated Interview Summary received for U.S. Appl. No. 14/641,298, mailed on Mar. 10, 2020, 4 pages. |
Examiner's Pre-Review Report received for Japanese Patent Application No. 2018-080122, mailed on Feb. 25, 2020, 6 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 12181537.7, mailed on Mar. 27, 2014, 7 pages. |
Extended European Search Report (includes Partial European Search Report and European Search Opinion) received for European Patent Application No. 13184872.3, mailed on Dec. 5, 2013, 9 pages. |
Extended European Search Report for European Application No. 10177099.8, mailed on Oct. 18, 2010, 7 pages. |
Extended European Search Report for European Application No. 17813737.8, mailed on Nov. 22, 2019, 9 pages. |
Extended European Search Report received for European Patent Application No. 10177096.4, mailed on Oct. 18, 2010, 9 pages. |
Extended European Search Report received for European Patent Application No. 13171047.7, mailed on Oct. 29, 2014, 8 pages. |
Extended European Search Report received for European Patent Application No. 17799904.2, mailed on Jul. 30, 2018, 7 pages. |
Extended European Search Report received for European Patent Application No. 18178147.7, mailed on Oct. 4, 2018, 8 pages. |
Extended European Search Report received for European Patent Application No. 18197583.0, mailed on Jun. 4, 2019, 20 pages. |
Extended European Search Report received for European Patent Application No. 18197589.7, mailed on Jan. 7, 2019, 9 pages. |
Extended European Search Report received for European Patent Application No. 18208881.5, mailed on Jan. 8, 2019, 7 pages. |
Extended European Search Report received for European Patent Application No. 19150528.8, mailed on May 15, 2019, 9 pages. |
Extended European Search Report received for European Patent Application No. 19169980.0, mailed on Jul. 2, 2019, 8 pages. |
Extended European Search Report received for European Patent Application No. 19186538.5, mailed on Oct. 9, 2019, 10 pages. |
Extended European Search Report received for European Patent Application No. 19203942.8, mailed on Apr. 1, 2020, 10 pages. |
Extended European Search Report received for European Patent Application No. 19207753.5, mailed on Dec. 18, 2019, 9 pages. |
Extended European Search Report received for European Patent Application No. 20158824.1, mailed on Aug. 10, 2020, 13 pages. |
Extended European Search Report received for European Patent Application No. 21160991.2, mailed on Jul. 16, 2021, 14 pages. |
Extended European Search Report received for European Patent Application No. 21166718.3, mailed on Jul. 6, 2021, 11 pages. |
Extended European Search Report received for European Patent Application No. 21197457.1, mailed on Nov. 15, 2021, 8 pages. |
Extended European Search Report received for European Patent Application No. 21207736.6, mailed on Feb. 22, 2022, 11 pages. |
Extended European Search Report received for European Patent Application No. 22188377.0, mailed on Oct. 27, 2022, 8 pages. |
Extended European Search Report received for European Patent Application No. 22195584.2, mailed on Jan. 5, 2023, 13 pages. |
Extended European Search Report received for European Patent Application No. 22198071.7, mailed on Dec. 5, 2022, 8 pages. |
Extended European Search Report received for European Patent Application No. 22201007.6, mailed on Jan. 12, 2023, 7 pages. |
Extended European Search Report received for European Patent Application No. 23157906.1, mailed on Apr. 6, 2023, 10 pages. |
Farmboyreef, “Apple watch controlling your tv”, Available online at: https://www.youtube.com/watch?v=xaJPG0Wm3Tg, Jun. 23, 2015, 3 pages. |
Feng Lipeng, “Bound for computer lovers”, Dec. 31, 2009, 2 pages. |
Final Office Action received for U.S. Appl. No. 09/293,507, mailed on Apr. 24, 2002, 12 pages. |
Final Office Action received for U.S. Appl. No. 09/293,507, mailed on Feb. 14, 2001, 10 pages. |
Final Office Action received for U.S. Appl. No. 10/308,315, mailed on Apr. 6, 2005, 10 pages. |
Final Office Action received for U.S. Appl. No. 10/308,315, mailed on Mar. 9, 2006, 10 pages. |
Final Office Action received for U.S. Appl. No. 10/308,315, mailed on Mar. 23, 2007, 12 pages. |
Final Office Action received for U.S. Appl. No. 11/459,591, mailed on Jan. 13, 2009, 11 pages. |
Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Aug. 5, 2009, 9 pages. |
Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Jul. 23, 2010, 11 pages. |
Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Jun. 3, 2013, 18 pages. |
Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Oct. 15, 2008, 10 pages. |
Final Office Action received for U.S. Appl. No. 11/767,409, mailed on Jul. 17, 2012, 24 pages. |
Final Office Action received for U.S. Appl. No. 11/767,409, mailed on Mar. 16, 2011, 15 pages, 16 pages. |
Final Office Action received for U.S. Appl. No. 11/960,674, mailed on May 12, 2011, 10 pages. |
Final Office Action received for U.S. Appl. No. 11/983,059, mailed on Jun. 6, 2011, 11 pages. |
Final Office Action received for U.S. Appl. No. 12/215,651, mailed on Jul. 6, 2012, 27 pages. |
Final Office Action received for U.S. Appl. No. 12/395,537, mailed on Feb. 3, 2012, 15 pages. |
Final Office Action received for U.S. Appl. No. 12/395,537, mailed on Jun. 29, 2015, 17 pages. |
Final Office Action received for U.S. Appl. No. 12/395,537, mailed on Nov. 14, 2013, 22 pages. |
Final Office Action received for U.S. Appl. No. 12/395,541, mailed on Dec. 28, 2011, 16 pages. |
Final Office Action received for U.S. Appl. No. 12/566,669, mailed on Nov. 23, 2012, 29 pages. |
Final Office Action received for U.S. Appl. No. 12/566,671, mailed on Dec. 20, 2012, 20 pages. |
Final Office Action received for U.S. Appl. No. 12/566,673, mailed on Aug. 12, 2016, 28 pages. |
Final Office Action received for U.S. Appl. No. 12/566,673, mailed on Jan. 17, 2013, 22 pages. |
Final Office Action received for U.S. Appl. No. 12/566,673, mailed on Mar. 25, 2014, 19 pages. |
Final Office Action received for U.S. Appl. No. 13/038,217, mailed on May 6, 2014, 11 pages. |
Final Office Action received for U.S. Appl. No. 13/248,882, mailed on Dec. 4, 2013, 22 pages. |
Final Office Action received for U.S. Appl. No. 13/333,890, mailed on Feb. 13, 2014, 19 pages. |
Final Office Action received for U.S. Appl. No. 13/333,890, mailed on Oct. 2, 2015, 21 pages. |
Final Office Action received for U.S. Appl. No. 13/333,900, mailed on Dec. 19, 2014, 15 pages. |
Final Office Action received for U.S. Appl. No. 13/333,900, mailed on Nov. 7, 2013, 14 pages. |
Final Office Action received for U.S. Appl. No. 13/489,245, mailed on Mar. 28, 2014, 23 pages. |
Final Office Action received for U.S. Appl. No. 13/489,245, mailed on Oct. 16, 2019, 25 pages. |
Final Office Action received for U.S. Appl. No. 13/489,245, mailed on Sep. 27, 2018, 25 pages. |
Final Office Action received for U.S. Appl. No. 13/492,057, mailed on Apr. 8, 2016, 29 pages. |
Final Office Action received for U.S. Appl. No. 13/492,057, mailed on Mar. 30, 2015, 18 pages. |
Final Office Action received for U.S. Appl. No. 13/587,850, mailed on May 3, 2016, 31 pages. |
Final Office Action received for U.S. Appl. No. 13/587,850, mailed on Nov. 28, 2014, 22 pages. |
Final Office Action received for U.S. Appl. No. 14/045,544, mailed on May 6, 2016, 26 pages. |
Final Office Action received for U.S. Appl. No. 14/285,378, mailed on Jul. 23, 2015, 19 pages. |
Final Office Action received for U.S. Appl. No. 14/503,327, mailed on May 18, 2017, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/641,289, mailed on Jul. 1, 2016, 32 pages. |
Final Office Action received for U.S. Appl. No. 14/641,298, mailed on Jun. 26, 2020, 50 pages. |
Final Office Action received for U.S. Appl. No. 14/641,298, mailed on May 16, 2019, 50 pages. |
Final Office Action received for U.S. Appl. No. 14/641,298, mailed on Oct. 4, 2017, 30 pages. |
Final Office Action received for U.S. Appl. No. 14/641,304, mailed on Jul. 24, 2018, 19 pages. |
Final Office Action received for U.S. Appl. No. 14/641,304, mailed on Oct. 15, 2019, 21 pages. |
Final Office Action received for U.S. Appl. No. 14/719,217, mailed on Feb. 23, 2017, 37 pages. |
Final Office Action received for U.S. Appl. No. 14/774,664, mailed on Aug. 25, 2017, 23 pages. |
Final Office Action received for U.S. Appl. No. 14/830,629, mailed on Apr. 16, 2018, 27 pages. |
Final Office Action received for U.S. Appl. No. 14/841,455, mailed on Nov. 6, 2018, 14 pages. |
Final Office Action received for U.S. Appl. No. 14/863,099, mailed on Apr. 21, 2016, 20 pages. |
Final Office Action received for U.S. Appl. No. 15/128,952, mailed on Jul. 18, 2018, 19 pages. |
Final Office Action received for U.S. Appl. No. 15/433,320, mailed on Dec. 31, 2019, 30 pages. |
Final Office Action received for U.S. Appl. No. 15/730,610, mailed on Aug. 6, 2019, 28 pages. |
Final Office Action received for U.S. Appl. No. 15/910,263, mailed on Aug. 28, 2019, 32 pages. |
Final Office Action received for U.S. Appl. No. 16/263,280, mailed on Mar. 4, 2021, 13 pages. |
Final Office Action received for U.S. Appl. No. 16/422,736, mailed on Jan. 11, 2021, 39 pages. |
Final Office Action received for U.S. Appl. No. 16/583,981, mailed on Apr. 16, 2020, 19 pages. |
Final Office Action received for U.S. Appl. No. 16/583,989, mailed on Jul. 10, 2020, 23 pages. |
Final Office Action received for U.S. Appl. No. 16/583,994, mailed on Jul. 23, 2020, 16 pages. |
Final Office Action received for U.S. Appl. No. 16/584,490, mailed on May 1, 2020, 48 pages. |
Final Office Action received for U.S. Appl. No. 16/679,967, mailed on Nov. 10, 2021, 14 pages. |
Final Office Action received for U.S. Appl. No. 16/702,968, mailed on Jul. 27, 2020, 21 pages. |
Final Office Action received for U.S. Appl. No. 16/723,583, mailed on Feb. 5, 2021, 15 pages. |
Final Office Action received for U.S. Appl. No. 16/803,849, mailed on Nov. 2, 2021, 37 pages. |
Final Office Action received for U.S. Appl. No. 16/803,849, mailed on Sep. 24, 2020, 29 pages. |
Final Office Action received for U.S. Appl. No. 16/807,604, mailed on Aug. 19, 2020, 35 pages. |
Final Office Action received for U.S. Appl. No. 16/922,675, mailed on Dec. 3, 2020, 21 pages. |
Final Office Action received for U.S. Appl. No. 16/922,675, mailed on Nov. 30, 2020, 12 pages. |
Final Office Action received for U.S. Appl. No. 17/026,818, mailed on Jan. 29, 2021, 21 pages. |
Final Office Action received for U.S. Appl. No. 17/031,833, mailed on Jan. 26, 2021, 17 pages. |
Final Office Action received for U.S. Appl. No. 17/181,089, mailed on Apr. 19, 2023, 13 pages. |
Final Office Action received for U.S. Appl. No. 17/181,089, mailed on Oct. 21, 2022, 15 pages. |
Final Office Action received for U.S. Appl. No. 17/314,948, mailed on Mar. 7, 2023, 31 pages. |
Final Office Action received for U.S. Appl. No. 17/476,404, mailed on May 5, 2022, 30 pages. |
Final Office Action received for U.S. Appl. No. 17/479,974, mailed on Jun. 28, 2023, 32 pages. |
Final Office Action received for U.S. Appl. No. 17/666,971, mailed on May 12, 2023, 29 pages. |
Final Office Action received for U.S. Appl. No. 17/747,804, mailed on Apr. 28, 2023, 17 pages. |
Final Office Action received for U.S. Appl. No. 15/250,152, mailed on Aug. 23, 2017, 24 pages. |
Final Office Action received for U.S. Appl. No. 15/250,152, mailed on Nov. 16, 2018, 30 pages. |
Final Office Action received in U.S. Appl. No. 12/547,401, mailed on Jun. 28, 2010, 19 pages. |
Fingas Jon, “Sonos Puts Speaker Controls on Your iPhone's Lock Screen”, Online available at: https://www.engadget.com/2016-06-21-sonos-ios-lock-screen-controls.html, Jun. 21, 2016, 3 pages. |
Finkelstein Ellen, “Temporarily Override Object Snap Settings”, AutoCAD Tips Blog, Apr. 9, 2007, 4 pages. |
Frakes Dan, “How to Get Started with Airplay”, Availble at: https://www.macworld.com/article/2039770/how-to-get-started-with-airplay.html, Macworld, May 27, 2013, 8 pages. |
Gil Lory, “How to control Apple TV with your Apple Watch”, Available online at: https://www.imore.com/how-control-your-apple-tv-remote-app%ADapple-watch], Jun. 6, 2016, 24 pages. |
Google Labs, “Google Browser Sync”, Available online at: “https://web.archive.org/web/20120518050142/http://www.google.com/tools/firefox/brows ersync/faq.html”, May 18, 2012, 5 pages. |
Google, “Google Home Help, Listen to music”, Datasheet [online], Available Online at: <https://web.archive.org/web/20170326051235/https:/support.google.com/googlehome/answer/7030379?hl=en&ref_topic=7030084>, Mar. 26, 2017, 3 pages. |
Gookin Dan, “Lock Screen Settings on Your Android Phone”, Online Available at: https://www.dummies.com/consumer-electronics/smartphones/droid/lock-screen-settings-on-your-android-phone/, Sep. 23, 2015, 6 pages. |
Han Hailing, “Research on Testing Method on Computer Interlocking Software”, “Electronic World” vol. 2012 No. 17, Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Sep. 2012, 2 pages. |
Hein Buster, “iOS 5 Allows Users to Delete Music Directly From iPhone/iPad”, Online Available at: https://www.cultofmac.com/99990/ios-5-allows-users-to-delete-music-directly-from-iphoneipad/, Jun. 9, 2011, 7 pages. |
Hobbyistsoftwareltd, “Vlc Remote”, Online available at: https://watchaware.com/watch-apps/297244048, 2016, 7 pages. |
Hoffberger Chase, “Spotify's Collaborative Playlists Let Friends Listen Together”, Evolver.fm, Available online at: http://www.evolver.fm/2011/08/22/spotify-collaborative-playlists/, Aug. 22, 2011, 4 pages. |
Howcast, “How to Create and Edit Playlists on iPhone”, Youtube, Available online at: https://www.youtube.com/watch?v=YPOnKUvcso4, Mar. 13, 2014, 3 pages. |
Hughes Neil, “Apple Explores Merging Cloud Content with Locally Stored Media Library”, Available at: <http://appleinsider.com/articles/11/02/10/apple_explores_merging_cloud_content_with_locally_stored_media_library.html>, XP55040717, Feb. 10, 2011, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201670628, mailed on Aug. 28, 2017, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201770392, mailed on Aug. 31, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201770392, mailed on Jul. 2, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201770401, mailed on Jun. 14, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201770401, mailed on Sep. 17, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201770403, mailed on May 7, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201770403, mailed on Oct. 3, 2018, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA201770404, mailed on Sep. 23, 2019, 3 pages. |
Intention to Grant received for Danish Patent Application No. PA201770406, mailed on Feb. 6, 2020, 3 pages. |
Intention to Grant received for Danish Patent Application No. PA201770408, mailed on Nov. 30, 2018, 3 pages. |
Intention to Grant received for Danish Patent Application No. PA201770782, mailed on Aug. 8, 2019, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA202070560, mailed on Apr. 26, 2021, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA202070617, mailed on Nov. 15, 2021, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA202170320, mailed on Jul. 27, 2022, 2 pages. |
Intention to Grant received for Danish Patent Application No. PA202270464, mailed on Feb. 20, 2023, 2 pages. |
Intention to Grant received for European Patent Application No. 10712824.1, mailed on Jan. 5, 2018, 9 pages. |
Intention to Grant Received for European Patent Application No. 12181537.7, mailed on Sep. 22, 2015, 7 pages. |
Intention to Grant received for European Patent Application No. 12773460.6, mailed on Feb. 4, 2019, 8 pages. |
Intention to Grant received for European Patent Application No. 12773460.6, mailed on Jun. 17, 2019, 4 pages. |
Intention to Grant received for European Patent Application No. 13171047.7, mailed on Jan. 23, 2019, 8 pages. |
Intention to Grant received for European Patent Application No. 13184872.3, mailed on Feb. 11, 2019, 7 pages. |
Intention to Grant received for European Patent Application No. 15711969.4, mailed on May 29, 2019, 11 pages. |
Intention to Grant received for European Patent Application No. 15713062.6, mailed on Mar. 25, 2019, 7 pages. |
Intention to Grant received for European Patent Application No. 15713062.6, mailed on Oct. 8, 2018, 8 pages. |
Intention to Grant received for European Patent Application No. 15719347.5, mailed on Dec. 8, 2020, 7 pages. |
Intention to Grant received for European Patent Application No. 15719347.5, mailed on Jun. 8, 2021, 7 pages. |
Intention to Grant received for European Patent Application No. 15719347.5, mailed on May 11, 2021, 8 pages. |
Intention to Grant received for European Patent Application No. 15724160.5, mailed on Mar. 7, 2018, 8 pages. |
Intention to Grant received for European Patent Application No. 16710590.7, mailed on Jun. 14, 2021, 8 pages. |
Intention to Grant received for European Patent Application No. 18197583.0, mailed on Jan. 17, 2022, 9 pages. |
Intention to Grant received for European Patent Application No. 18197583.0, mailed on Jul. 23, 2021, 9 pages. |
Intention to Grant received for European Patent Application No. 18197589.7, mailed on Jan. 21, 2021, 8 pages. |
Intention to Grant received for European Patent Application No. 18728002.9, mailed on Apr. 12, 2023, 9 pages. |
Intention to Grant received for European Patent Application No. 19207753.5, mailed on Jan. 28, 2022, 8 pages. |
Intention to Grant received for European Patent Application No. 19207753.5, mailed on Sep. 3, 2021, 8 pages. |
Intention to Grant received for European Patent Application No. 20158824.1, mailed on Aug. 11, 2022, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US00/010441, mailed on Feb. 14, 2001, 3 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2006/062714, issued on Jul. 8, 2008, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2007/078180, issued on Mar. 17, 2009, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2007/088914, issued on Jul. 7, 2009, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2010/027088, mailed on Sep. 29, 2011, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/025314, mailed on Sep. 12, 2013, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/051432, mailed on Feb. 27, 2014, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/057319, mailed on Apr. 10, 2014, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2012/057656, mailed on Apr. 10, 2014, 6 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2013/044710, mailed on Dec. 18, 2014, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2014/027882, mailed on Sep. 24, 2015, 8 pages. |
International Preliminary Report on Patentability Received for PCT Patent Application No. PCT/US2015/019306, mailed on Dec. 15, 2016, 10 pages. |
International Preliminary Report on Patentability Received for PCT Patent Application No. PCT/US2015/019309, mailed on Dec. 15, 2016, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/019317, mailed on Dec. 15, 2016, 18 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/025188, mailed on Mar. 2, 2017, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/030199, mailed on Dec. 15, 2016, 7 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/045965, mailed on Dec. 27, 2016, 10 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/021012, mailed on Sep. 21, 2017, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/031086, mailed on Dec. 27, 2018, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2017/032240, mailed on Nov. 29, 2018, 29 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/032158, mailed on Nov. 21, 2019, 12 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/032904, mailed on Nov. 28, 2019, 14 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/024390, mailed on Dec. 9, 2021, 20 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/026044, mailed on Dec. 9, 2021, 18 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/035446, mailed on Dec. 9, 2021, 14 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2020/035488, mailed on Dec. 9, 2021, 16 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2021/031760, mailed on Nov. 24, 2022, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2021/048358, mailed on Apr. 6, 2023, 15 pages. |
International Search Report and Written Opinion received for PCT Application No. PCT/US2015/019309, mailed on Jun. 25, 2015, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US00/10441, mailed on Jul. 11, 2000, 2 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US17/31086, mailed on Sep. 8, 2017, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/078180, mailed on Mar. 3, 2008, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2007/088914, mailed on Jun. 23, 2008, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2010/027088, mailed on Jun. 18, 2010, 8 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/025314, mailed on May 14, 2012, 10 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/051432, mailed on Oct. 29, 2012, 12 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/057319, mailed on Feb. 25, 2013, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2012/057656, mailed on Feb. 25, 2013, 7 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/032498, mailed on Feb. 10, 2014, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2013/044710, mailed on Aug. 15, 2013, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2014/027882, mailed on Oct. 10, 2014, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019306, mailed on Jun. 17, 2015, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/019317, mailed on Aug. 25, 2015, 24 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/025188, mailed on Jun. 23, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/030199, mailed on Aug. 14, 2015, 11 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/045965, mailed on Feb. 1, 2016, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/021012, mailed on Jun. 2, 2016, 15 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2017/032240, mailed on Sep. 21, 2017, 33 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/032158, mailed on Nov. 2, 2018, 19 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2018/032904, mailed on Oct. 1, 2018, 21 pages. |
International Search Report and written Opinion received for PCT Patent Application No. PCT/US2020/024390, mailed on Aug. 17, 2020, 22 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/024390, mailed on Oct. 23, 2020, 26 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/026044, mailed on Sep. 9, 2020, 26 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/035446, mailed on Nov. 10, 2020, 20 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2020/035488, mailed on Nov. 17, 2020, 21 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/031760, mailed on Sep. 16, 2021, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2021/048358, mailed on Feb. 24, 2022, 21 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/031252, mailed on Oct. 7, 2022, 18 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2022/043733, mailed on Jan. 3, 2023, 12 pages. |
Invitation to Pay Addition Fees and Partial International Search Report received for PCT Patent Application No. PCT/US2018/032904, mailed on Jul. 31, 2018, 18 pages. |
Invitation to Pay Additional Fee received for PCT Patent Application No. PCT/US17/31086, mailed on Jul. 14, 2017, 2 pages. |
Invitation to Pay Additional Fee received for PCT Patent Application No. PCT/US17/32240, mailed on Jul. 12, 2017, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2014/027882, mailed on Aug. 5, 2014, 2 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/019317, mailed on May 22, 2015, 7 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2018/032158, mailed on Sep. 10, 2018, 16 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/024390, mailed on Jun. 26, 2020, 15 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/026044, mailed on Jun. 25, 2020, 12 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/035446, mailed on Sep. 11, 2020, 12 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2020/035488, mailed on Sep. 23, 2020, 15 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2021/048358, mailed on Dec. 23, 2021, 14 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 15714698.6, mailed on Dec. 16, 2022, 4 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 18728002.9, mailed on Sep. 2, 2020, 8 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 18733381.0, mailed on Jun. 30, 2021, 4 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 20719301.2, mailed on Dec. 17, 2020, 5 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 20760624.5, mailed on Jan. 2, 2023, 3 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 21728781.2, mailed on Dec. 2, 2022, 3 pages. |
Itjungles, “iPhone 6: How to Pair with Another Bluetooth Device”, Available Online at: https://www.youtube.com/watch?v=9setanYtHAk, Aug. 5, 2015, 3 pages. |
Jarvie, “Alexa plays me music”, Available online at: https://www.youtube.com/watch?v=bR2ZC8Sy8YQ, Feb. 23, 2015, 1 page. |
Kanter David, “Start Download Automatically Sync Your (New) Music, Apps, and iBooks Across Your iDevices with iCloud”, Available online at: https://appadvice.com/appnn/2011/06/automatically-sync-music-apps-ibooks-idevices-icloud, Jun. 8, 2011, 6 pages. |
Kazmucha Allyson, “Sonos Controller App for iPhone and iPad Review”, online available at https://www.imore.com/sonos-controller-app-iphone-and-ipad-review, Mar. 1, 2018, 4 pages. |
Kim et al., “An Energy Efficient Transmission Scheme for Real-Time Data in Wireless Sensor Networks”, Sensors, vol. 15, in Sensors 2015, May 20, 2015, 25 pages. |
Kimura Ryoji, “Keynote presentation practice guide for iPad & iPhone”, K.K. Rutles, first edition, Feb. 29, 2012, 4 pages. |
Klein Matt, “How to Add, Remove, and Rearrange Apps on the Apple Watch's Dock”, Available online at: https://www.howtogeek.com/279796/how-to-add-remove-and-rearrange-apps-on-the-apple-watch%E2%80%99s-dock/, Nov. 18, 2016, 10 pages. |
Locklear Mallory, “Samsung to bring SmartThings control to its Gear smartwatches”, Online available at: https://www.engadget.com/2018-01-08-samsung-smartthings-app-gear-smartwatches.html, Jan. 8, 2018, 12 pages. |
Low Cherlynn, “So you bought a smartwatch. Now what?”, Online available at: https://www.engadget.com/2018-02-06-how-to-set-up-your-smartwatch.html, Feb. 6, 2018, 19 pages. |
Mac Fan,“Chapter 4: The True Character of Apple's Genuine Cloud—Your Personal Data Always Exist in There, Regardless of Your Location”, Mainichi Communications Inc, vol. 19, No. 8, Aug. 1, 2011, 8 pages. |
Mackie Simon, “Emulate Safari's Reader Mode in Other Browsers with Readability”, available online at “https://gigaom.com/2010/06/21/emulate-safaris-reader-mode-in-other-browsers-with-readability/”, Jun. 21, 2010, 5 pages. |
McElhearn Kirk, “iTunes 10.3 Offers Automatic Downloads and Access to Purchases”, Available at: <http://web.archive.org/web/20110613084837/http://www.tidbits.com/article/12235>, Jun. 8, 2011, 5 pages. |
Minutes of Oral Hearing received for German Patent Application No. 102015208532.5, mailed on Dec. 13, 2019, 21 pages. |
Minutes of Oral Proceedings received for European Patent Application No. 18208881.5, mailed on Dec. 22, 2022, 4 pages. |
Minutes of Oral Proceedings received for European Patent Application No. 18728002.9, mailed on Dec. 22, 2022, 7 pages. |
Minutes of the Oral Proceedings received for European Application No. 12770400.5, mailed on Nov. 6, 2018, 7 pages. |
Minutes of the Oral Proceedings received for European Application No. 15711969.4, mailed on May 16, 2019, 7 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 00923491.5, mailed on May 11, 2011, 69 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 12753631.6, mailed on Feb. 20, 2019, 3 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 18197583.0, mailed on Mar. 9, 2021, 6 pages. |
Miser Brad, “Sams Teach Yourself iTunes® 10 in 10 Minutes”, SAMS Publishing, Dec. 30, 2010, pp. 65 and 67-69. |
Mitroff Sarah, “8 things you should know about Apple Music for Android”, CNET website, downloaded from https://www.cnet.com/tech/services-and-software/apple-music-for-android-what-to-know/, Nov. 11, 2015, 4 pages. |
Mozilla Services, “Firefox Sync Terms of Service (for versions prior to Firefox 29)”, available online at <https://services.mozilla.com/tos/>, Aug. 19, 2010, 4 pages. |
NBC News, “NBC News—YouTube Democratic Debate (full)”, Online available at: https://www.youtube.com/watch?v=ti2Nokoq1J4, Jan. 17, 2016, 1 page. |
Nikolov Anton, “Design principle: Consistency”, Available online at: https://uxdesign.cc/design-principle-consistency-6b0cf7e7339f, Apr. 8, 2017, 9 pages. |
Non-Final Action received for U.S. Appl. No. 15/952,736, mailed on Jun. 1, 2018, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/395,537, mailed on Dec. 14, 2015, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/492,057, mailed on Dec. 17, 2015, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/503,327, mailed on Sep. 12, 2016, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/679,967, mailed on Sep. 2, 2021, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 09/293,507, mailed on Aug. 1, 2001, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 09/293,507, mailed on Jun. 22, 2000, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 09/293,508, mailed on Jun. 30, 2000, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 10/308,315, mailed on Aug. 8, 2005, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 10/374,013, mailed on Feb. 1, 2007, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/459,591, mailed on Jul. 29, 2008, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/521,740, mailed on Dec. 27, 2007, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Dec. 6, 2012, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Feb. 5, 2009, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Jan. 20, 2010, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/522,167, mailed on May 2, 2007, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/522,167, mailed on Oct. 19, 2007, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/767,409, mailed on Aug. 29, 2011, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/767,409, mailed on Feb. 9, 2012, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/767,409, mailed on Nov. 23, 2010, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/960,674, mailed on Oct. 27, 2010, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 11/983,059, mailed on Dec. 30, 2010, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/215,651, mailed on Aug. 15, 2013, Aug. 15, 2013, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/215,651, mailed on Feb. 2, 2012, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/395,537, mailed on Aug. 15, 2011, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/395,537, mailed on Jan. 5, 2015, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/395,537, mailed on Jul. 8, 2013, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/395,541, mailed on Jul. 26, 2011, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/395,541, mailed on Mar. 14, 2013, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,669, mailed on Apr. 17, 2014, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,669, mailed on Jun. 19, 2012, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,671, mailed on May 23, 2012, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,672, mailed on Nov. 8, 2012, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,673, mailed on Jun. 7, 2012, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,673, mailed on Mar. 26, 2015, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,673, mailed on Sep. 13, 2013, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/038,217, mailed on Sep. 13, 2013, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/248,872, mailed on May 19, 2014, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/248,882, mailed on Jul. 10, 2013, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/333,890, mailed on Aug. 30, 2013, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/333,890, mailed on Jun. 5, 2015, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/333,890, mailed on May 1, 2013, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/333,900, mailed on Mar. 19, 2013, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/333,900, mailed on May 23, 2014, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/489,245, mailed on Apr. 8, 2019, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/489,245, mailed on Dec. 27, 2017, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/489,245, mailed on Nov. 20, 2013, 25 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/492,057, mailed on Jul. 8, 2014, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/587,850, mailed on Apr. 7, 2014, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 13/587,850, mailed on Oct. 8, 2015, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/045,544, mailed on Oct. 6, 2015, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/285,378, mailed on Dec. 21, 2015, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/285,378, mailed on Jan. 21, 2015, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,289, mailed on Jul. 16, 2015, 31 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,289, mailed on Mar. 11, 2016, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,298, mailed on Mar. 6, 2017, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,298, mailed on Nov. 29, 2019, 47 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,298, mailed on Sep. 19, 2018, 41 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,304, mailed on Feb. 27, 2019, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,304, mailed on Mar. 4, 2020, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/641,304, mailed on Sep. 11, 2017, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/642,366, mailed on Aug. 24, 2015, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/719,217, mailed on Jul. 26, 2018, 40 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/719,217, mailed on Jul. 28, 2016, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/774,664, mailed on Mar. 7, 2017, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/830,629, mailed on Dec. 1, 2016, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/830,629, mailed on Jun. 15, 2017, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,455, mailed on Apr. 25, 2018, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/863,099, mailed on Dec. 2, 2015, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/128,952, mailed on Apr. 1, 2019, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/128,952, mailed on Dec. 29, 2017, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/134,638, mailed on Sep. 20, 2016, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/269,801, mailed on Dec. 30, 2016, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/274,963, mailed on Mar. 13, 2018, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/433,320, mailed on Jul. 31, 2020, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/620,666, mailed on Mar. 28, 2018, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/730,610, mailed on Apr. 15, 2020, 36 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/730,610, mailed on Feb. 1, 2019, 22 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/845,794, mailed on Oct. 15, 2018, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/910,263, mailed on Jun. 15, 2020, 38 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/910,263, mailed on Mar. 4, 2019, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/229,959, mailed on Oct. 31, 2019, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/263,280, mailed on Jul. 27, 2020, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/422,736, mailed on Jun. 23, 2020, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/434,865, mailed on Jan. 16, 2020, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,981, mailed on Dec. 6, 2019, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,989, mailed on Jan. 24, 2020, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,994, mailed on Dec. 23, 2020, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/583,994, mailed on Dec. 30, 2019, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/584,490, mailed on Dec. 10, 2019, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/584,743, mailed on Feb. 6, 2020, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/586,002, mailed on Feb. 20, 2020, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/670,949, mailed on Dec. 9, 2020, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/679,967, mailed on Apr. 19, 2022, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/702,968, mailed on Apr. 8, 2020, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/723,583, mailed on Aug. 13, 2020, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/803,849, mailed on Jul. 13, 2020, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/803,849, mailed on May 14, 2021, 34 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/807,604, mailed on Jun. 2, 2020, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/836,571, mailed on Mar. 25, 2021, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/917,659, mailed on Jan. 14, 2022, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/921,551, mailed on Sep. 8, 2021, 7 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/922,675, mailed on Aug. 13, 2020, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/922,675, mailed on Jun. 8, 2022, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/922,675, mailed on May 4, 2021, 23 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/987,003, mailed on May 10, 2021, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/026,818, mailed on Nov. 25, 2020, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/027,373, mailed on Feb. 2, 2022, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/031,833, mailed on Dec. 7, 2020, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/168,069, mailed on Jul. 21, 2021, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/176,908, mailed on Feb. 24, 2022, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/181,089, mailed on Feb. 17, 2023, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/181,089, mailed on May 13, 2022, 12 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/223,794, mailed on Jun. 16, 2021, 32 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/306,354, mailed on Jun. 2, 2023, 21 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/314,948, mailed on Aug. 1, 2022, 33 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/320,900, mailed on Dec. 22, 2022, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/461,103, mailed on Nov. 22, 2021, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/476,404, mailed on Feb. 8, 2022, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/476,404, mailed on Mar. 30, 2023, 29 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/476,404, mailed on Sep. 14, 2022, 31 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/479,974, mailed on Feb. 22, 2023, 30 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/509,356, mailed on Dec. 22, 2022, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/666,971, mailed on Dec. 8, 2022, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/699,492, mailed on Jul. 27, 2023, 8 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/747,804, mailed on Mar. 1, 2023, 14 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/752,582, mailed on Mar. 6, 2023, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/824,510, mailed on May 22, 2023, 15 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/835,110, mailed on Apr. 3, 2023, 28 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/867,317, mailed on Feb. 28, 2023, 18 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/077,971, mailed on Apr. 3, 2023, 24 pages. |
Non-Final Office Action received for U.S. Appl. No. 10/308,315, mailed on Jul. 28, 2004, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,455, mailed on Apr. 11, 2019, 13 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/250,152, mailed on Apr. 6, 2018, 31 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/250,152, mailed on Mar. 2, 2017, 26 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/433,320, mailed on May 2, 2019, 27 pages. |
Non-Final Office Action received for U.S. Appl. No. 15/945,610, mailed on Sep. 20, 2018, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 12/566,673, mailed on Dec. 16, 2015, 23 pages. |
Non-Final Office Action received in U.S. Appl. No. 12/547,401, mailed on Feb. 11, 2013, 13 pages. |
Non-Final Office Action received in U.S. Appl. No. 12/547,401, mailed on Jan. 8, 2010, 12 pages. |
Noriega Josh, “How to Store and Listen to Music Directly from Your Android Wear Smartwatch”, Guiding Tech, Available online at: https://www.guidingtech.com/55254/listen-music-android-wear-smartwatch, Jan. 15, 2016, 16 pages. |
Notice of Acceptance received for Australian Patent Application No. 2015201884, mailed on Oct. 4, 2016, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2015267671, mailed on Apr. 4, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016201454, mailed on Mar. 1, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2016230001, mailed on May 25, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017266867, mailed on Mar. 6, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2017284013, mailed on Aug. 26, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018202751, mailed on Sep. 4, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018220115, mailed on Jun. 29, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018223051, mailed on Oct. 30, 2018, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018229544, mailed on May 4, 2020, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018236872, mailed on Jul. 9, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2018271366, mailed on Mar. 31, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019203473, mailed on Nov. 7, 2019, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2019268111, mailed on Feb. 18, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020207785, mailed on May 4, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020239711, mailed on Dec. 16, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020257092, mailed on Aug. 27, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020273355, mailed on Jan. 17, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020282362, mailed on Jan. 4, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2020285524, mailed on Dec. 17, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021201243, mailed on Feb. 23, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021201403, mailed on Oct. 22, 2021, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021203669, mailed on May 25, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021204454, mailed on Feb. 25, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2021261941, mailed on Mar. 15, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022200515, mailed on Dec. 21, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022200901, mailed on Mar. 9, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022201369, mailed on Mar. 17, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022201532, mailed on May 22, 2023, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022202458, mailed on May 6, 2022, 3 pages. |
Notice of Acceptance received for Australian Patent Application No. 2022204555, mailed on May 11, 2023, 3 pages. |
Notice of Allowance and Search Report received for Taiwanese Patent Application No. 104128687, mailed on Jun. 7, 2016, 4 pages. |
Notice of Allowance received for Brazilian Patent Application No. BR112014003009-0, mailed on Jun. 15, 2021, 3 pages. |
Notice of Allowance Received for Canadian Patent Application No. 2,661,200, mailed on Aug. 20, 2014, 1 page. |
Notice of Allowance received for Canadian Patent Application No. 2,882,403, mailed on Oct. 31, 2018, 1 page |
Notice of Allowance received for Chinese Patent Application No. 201210308569.5, mailed on May 31, 2016, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 201280040169.9, mailed on Sep. 4, 2018, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201280047459.6, mailed on Jan. 31, 2018, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201410449822.8, mailed on Mar. 5, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201580028491.3, mailed on Mar. 29, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201580028505.1, mailed on Sep. 19, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201580043701.6, mailed on Jan. 26, 2022, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201620051290.7, mailed on Jun. 22, 2016, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201680011682.3, mailed on Aug. 5, 2020, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201780002398.4, mailed on Jun. 17, 2019, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201780033899.9, mailed on Feb. 8, 2022, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201810338038.8, mailed on Jun. 30, 2020, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201810338040.5, mailed on Mar. 30, 2022, 6 pages. |
Notice of Allowance received for Chinese Patent Application No. 201810339290.0, mailed on Mar. 9, 2022, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201811367893.8, mailed on Sep. 2, 2022, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201811460172.1, mailed on Jan. 11, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201811539260.0, mailed on Mar. 15, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201880001436.9, mailed on May 8, 2020, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201910475434.X, mailed on Mar. 10, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 201911099970.0, mailed on Jun. 25, 2023, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 201911288715.0, mailed on Jul. 12, 2023, 5 pages. |
Notice of Allowance received for Chinese Patent Application No. 202010125114.4, mailed on Nov. 24, 2021, 2 pages. |
Notice of Allowance received for Chinese Patent Application No. 202011450203.2, mailed on Sep. 30, 2022, 4 pages. |
Notice of Allowance received for Chinese Patent Application No. 202080039642.6, mailed on Apr. 17, 2023, 6 pages. |
Notice of Allowance received for Chinese Patent Application No. 202111612841.4, mailed on Jan. 5, 2023, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201520364847.8, mailed on Nov. 5, 2015, 9 pages. |
Notice of Allowance received for Danish Patent Application No. PA201770408, mailed on Feb. 8, 2019, 2 pages. |
Notice of Allowance received for Japanese Patent Application No. 2012-500842, mailed on Jun. 20, 2014, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2014-148065, mailed on Jan. 12, 2016, 6 pages. |
Notice of Allowance received for Japanese Patent Application No. 2014-526255, mailed on Jan. 7, 2016, 6 pages. |
Notice of Allowance received for Japanese Patent Application No. 2015-095183, mailed on Apr. 21, 2017, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-001259, mailed on Jul. 27, 2018, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-017400, mailed on Dec. 16, 2016, 3 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-022175, mailed on Jan. 12, 2018, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2016-569669, mailed on Mar. 19, 2018, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-101107, mailed on Jun. 3, 2019, 5 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-507413, mailed on Jul. 22, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2017-543762, mailed on Mar. 30, 2020, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-080122, mailed on May 7, 2021, 28 pages. |
Notice of Allowance received for Japanese Patent Application No. 2018-560107, mailed on Dec. 6, 2019, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2019-116580, mailed on Oct. 2, 2020, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2019-238894, mailed on Oct. 5, 2020, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-159840, mailed on Jul. 8, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-183773, mailed on Dec. 23, 2021, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2020-558885, mailed on Jul. 26, 2021, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2021-026630, mailed on Jan. 7, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2021-074395, mailed on Jun. 27, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2021-563716, mailed on Mar. 14, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2021-571464, mailed on May 30, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-007217, mailed on Apr. 10, 2023, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-014389, mailed on Jan. 27, 2023, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-079682, mailed on Jul. 15, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-102840, mailed on Aug. 19, 2022, 4 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-125792, mailed on Jan. 27, 2023, 4 pages. |
Notice of allowance received for Korean Patent Application No. 10-2013-7028489, issued on Jan. 25, 2016, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2014-7006538, mailed on May 19, 2016, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2015-0072162, mailed on Dec. 27, 2017, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 1020167025395, issued on Oct. 26, 2016, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2016-7032902, mailed on Sep. 7, 2018, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2016-7035555, mailed on Sep. 23, 2019, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2017-7012145, mailed on Oct. 30, 2019, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2017-7022905, mailed on Jul. 31, 2019, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2017-7035057, mailed on May 31, 2018, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2018-0035949, mailed on Nov. 28, 2019, pages. |
Notice of Allowance received for Korean Patent Application No. 10-2018-7033301, mailed on Feb. 20, 2019, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2018-7035747, mailed on Dec. 9, 2020, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2019-7014494, mailed on Mar. 19, 2020, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-0024632, mailed on Jul. 26, 2021, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-0123805, mailed on Jun. 19, 2022, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7002929, mailed on Nov. 26, 2020, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7017803, mailed on Nov. 5, 2020, 6 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2020-7031319, mailed on Apr. 6, 2021, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-0143923, mailed on Jan. 27, 2022, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7005691, mailed on Mar. 29, 2021, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7020549, mailed on Jul. 13, 2021, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7021047, mailed on Dec. 6, 2021, 3 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7032984, mailed on Jun. 29, 2022, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7035472, mailed on Nov. 23, 2021, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2021-7039234, mailed on Dec. 20, 2021, 4 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-0091730, mailed on Oct. 4, 2022, 5 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-7006175, mailed on Jan. 12, 2023, 7 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2022-7008567, mailed on Jul. 4, 2022, 9 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2014-7008348, mailed on Feb. 21, 2019, 5 pages. |
Notice of Allowance received for Mexican Patent Application No. MX/a/2014/001761, mailed on Sep. 11, 2015, 3 pages. |
Notice of Allowance received for Mexican Patent Application No. MX/a/2016/001209, mailed on Mar. 26, 2018, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 102120412, mailed on Oct. 28, 2015, 5 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104108223, mailed on Jan. 10, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104114953, mailed on Oct. 17, 2017, 3 pages. |
Notice of Allowance Received for Taiwanese Patent Application No. 104117041, mailed on Feb. 24, 2017, 3 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 106144804, mailed on Jun. 27, 2018, 6 pages. |
Notice of Allowance received for Taiwanese Patent Application No. 104117042, mailed on Nov. 17, 2017, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/702,968, mailed on Apr. 21, 2021, 20 pages. |
Notice of Allowance received for U.S. Appl. No. 09/293,507, mailed on Jul. 25, 2002, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 09/293,508, mailed on Feb. 13, 2001, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 10/308,315, mailed on Aug. 27, 2007, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 10/374,013, mailed on Aug. 27, 2007, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 10/374,445, mailed on May 5, 2006, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 10/374,831, mailed on Sep. 10, 2004, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 11/459,591, mailed on May 21, 2009, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 11/521,740, mailed on Jul. 24, 2008, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 11/767,409, mailed on Jun. 12, 2013, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 11/960,674, mailed on Sep. 2, 2011, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 11/983,059, mailed on Feb. 10, 2012, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/215,651, mailed on Feb. 6, 2014, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 12/395,537 mailed on Jun. 29, 2016, 14 pages. |
Notice of Allowance received for U.S. Appl. No. 12/395,541, mailed on Aug. 22, 2013, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/395,541, mailed on Sep. 12, 2013, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 12/547,401, mailed on Jul. 22, 2013, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/566,669, mailed on Nov. 6, 2014, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 12/566,671, mailed on Apr. 12, 2013, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 12/566,671, mailed on Dec. 18, 2013, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 12/566,672, mailed on Jun. 24, 2013, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 12/566,672, mailed on Mar. 1, 2013, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 12/566,673, mailed on Feb. 26, 2020, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/248,872, mailed on Dec. 4, 2014, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/248,882, mailed on Mar. 13, 2014, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 13/333,900, mailed on Apr. 13, 2015, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 13/333,900, mailed on Dec. 1, 2015, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 13/333,900, mailed on Sep. 15, 2015, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 13/492,057, mailed on Jan. 3, 2017, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 13/492,057, mailed on May 18, 2017, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 13/587,850, mailed on Feb. 27, 2020, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 13/587,850, mailed on Nov. 8, 2019, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 14/285,378, mailed May 19, 2016, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 14/503,327, mailed on Mar. 22, 2018, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/503,327, mailed on Nov. 30, 2017, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/641,289, mailed on Aug. 24, 2017, 6 Pages. |
Notice of Allowance received for U.S. Appl. No. 14/641,289, mailed on Dec. 12, 2017, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/641,298, mailed on Nov. 29, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/641,304, mailed on Sep. 9, 2020, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 14/642,366, mailed on Jan. 14, 2016, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 14/719,217, mailed on Feb. 13, 2019, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 14/830,629, mailed on Oct. 17, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 15/134,638, mailed on Apr. 10, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/134,638, mailed on Jul. 27, 2018, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/250,152, mailed on May 1, 2019, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 15/269,801, mailed on May 3, 2017, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 15/269,801, mailed on Sep. 7, 2017, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 15/274,963, mailed on Jul. 6, 2018, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 15/433,320, mailed on Apr. 1, 2021, 19 pages. |
Notice of Allowance received for U.S. Appl. No. 15/730,610, mailed on Oct. 21, 2020, 29 pages. |
Notice of Allowance received for U.S. Appl. No. 15/845,794, mailed on Feb. 14, 2019, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 15/910,263, mailed on Feb. 18, 2021, 3 pages. |
Notice of Allowance received for U.S. Appl. No. 15/910,263, mailed on Jan. 22, 2021, 33 pages. |
Notice of Allowance received for U.S. Appl. No. 15/945,610, mailed on May 20, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 15/952,736, mailed on Sep. 11, 2018, 16 pages. |
Notice of Allowance received for U.S. Appl. No. 16/131,767, mailed on Sep. 6, 2019, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/229,959, mailed on Dec. 4, 2019, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 16/263,280, mailed on Jun. 8, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/263,280, mailed on Sep. 17, 2021, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/422,736, mailed on Apr. 20, 2021, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 16/422,736, mailed on Jun. 15, 2021, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/434,865, mailed on Apr. 7, 2020, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,981, mailed on Mar. 26, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,989, mailed on Apr. 1, 2021, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,989, mailed on Dec. 24, 2020, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/583,994, mailed on Jun. 24, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,490, mailed on Aug. 27, 2020, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,490, mailed on Mar. 26, 2021, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,743, mailed on Aug. 7, 2020, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/584,743, mailed on Nov. 16, 2020, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/586,002, mailed on Jun. 9, 2020, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/670,949, mailed on May 27, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/670,949, mailed on Sep. 14, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/679,967, mailed on Jun. 15, 2022, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/679,967, mailed on Nov. 2, 2022, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/803,849, mailed on May 17, 2022, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 16/807,604, mailed on Apr. 30, 2021, 25 pages. |
Notice of Allowance received for U.S. Appl. No. 16/836,571, mailed on Feb. 14, 2022, 31 pages. |
Notice of Allowance received for U.S. Appl. No. 16/836,571, mailed on Sep. 8, 2021, 25 pages. |
Notice of Allowance received for U.S. Appl. No. 16/888,775, mailed on Feb. 21, 2023, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/888,775, mailed on Jan. 12, 2022, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/888,775, mailed on Jul. 26, 2021, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 16/888,775, mailed on Jun. 3, 2021, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/888,775, mailed on Oct. 19, 2022, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 16/917,659, mailed on Dec. 1, 2022, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/917,659, mailed on Jul. 8, 2022, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 16/921,551, mailed on Jan. 13, 2022, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Dec. 8, 2022, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Feb. 10, 2022, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Jan. 21, 2021, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Jul. 19, 2023, 13 pages. |
Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Mar. 22, 2023, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/922,675, mailed on Sep. 27, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 16/987,003, mailed on Aug. 18, 2021, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/019,845, mailed on Jun. 5, 2023, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/026,818, mailed on May 13, 2021, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/027,373, mailed on Aug. 2, 2022, 2 pages. |
Notice of Allowance received for U.S. Appl. No. 17/027,373, mailed on Jun. 3, 2022, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 17/027,373, mailed on Oct. 3, 2022, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,833, mailed on Jun. 25, 2021, 15 pages. |
Notice of Allowance received for U.S. Appl. No. 17/031,833, mailed on Sep. 20, 2021, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 17/168,069, mailed on Jan. 19, 2022, 12 pages. |
Notice of Allowance received for U.S. Appl. No. 17/168,069, mailed on Mar. 22, 2022, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 17/306,354, mailed on Jul. 24, 2023, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/461,103, mailed on Jun. 20, 2022, 6 pages. |
Notice of Allowance received for U.S. Appl. No. 17/461,103, mailed on Mar. 17, 2022, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 17/509,356, mailed on Apr. 7, 2023, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 17/519,025, mailed on Jun. 22, 2023, 7 pages. |
Notice of Allowance received for U.S. Appl. No. 17/519,025, mailed on Mar. 2, 2023, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 17/752,582, mailed on Jun. 13, 2023, 18 pages. |
Notice of Allowance received for U.S. Appl. No. 17/824,510, mailed on Jul. 19, 2023, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/848,845, mailed on May 24, 2023, 26 pages. |
Notice of Allowance received for U.S. Appl. No. 17/867,317, mailed on Jul. 6, 2023, 11 pages. |
Notice of Allowance received for U.S. Appl. No. 18/077,905, mailed on Mar. 24, 2023, 18 pages. |
Notice of Allowance received for U.S. Appl. No. 14/841,455, mailed on Oct. 22, 2019, 10 pages. |
Notice of Grant received for Chinese Patent Application No. 200780033722.5, mailed on Jun. 19, 2014, 4 pages. |
Notice of Hearing received for Indian Patent Application No. 717/CHENP/2014, mailed on May 5, 2021, 3 pages. |
Notice of Non-Compliant Amendment received for U.S. Appl. No. 11/522,167 mailed on May 14, 2008, 4 pages. |
Ochs Susie, “Getting Started with Apple Music: 12 Things to Do First”, Macworld website, downloaded from https://www.macworld.com/article/225812/getting-started-with- apple-music-12-things-to-do-first.html, Jun. 30, 2015, 12 pages. |
Office Action received for Australian Patent Application No. 2015201884, mailed on Oct. 12, 2015, 4 pages. |
Office Action received for Australian Patent Application No. 2012296381, issued on Jan. 21, 2016, 5 pages. |
Office Action received for Australian Patent Application No. 2012296381, issued on Mar. 4, 2016, 4 pages. |
Office Action received for Australian Patent Application No. 2012296381, mailed on Mar. 6, 2015, 4 pages. |
Office Action received for Australian Patent Application No. 2015100490, issued on Jun. 9, 2015, 6 pages. |
Office Action received for Australian Patent Application No. 2015100490, mailed on Dec. 15, 2016, 2 pages. |
Office Action received for Australian Patent Application No. 2015267671, mailed on Apr. 5, 2017, 2 pages. |
Office Action received for Australian Patent Application No. 2015302298, mailed on Apr. 4, 2018, 3 pages. |
Office Action received for Australian Patent Application No. 2015302298, mailed on Jul. 20, 2018, 3 pages. |
Office Action received for Australian Patent Application No. 2015302298, mailed on Sep. 14, 2017, 3 pages. |
Office Action received for Australian Patent Application No. 2015302298, mailed on Sep. 4, 2018, 5 pages. |
Office Action received for Australian Patent Application No. 2016201454, mailed on Mar. 29, 2017, 3 pages. |
Office Action received for Australian Patent Application No. 2016230001, mailed on Feb. 7, 2018, 3 pages. |
Office Action received for Australian Patent Application No. 2016266010, mailed on Aug. 23, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2016266010, mailed on May 4, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2016266010, mailed on Nov. 28, 2018, 5 pages. |
Office Action received for Australian Patent Application No. 2016266010, mailed on Nov. 30, 2017, 5 pages. |
Office Action received for Australian Patent Application No. 2017100553, mailed on Aug. 4, 2017, 5 pages. |
Office Action received for Australian Patent Application No. 2017101563, mailed on Jan. 22, 2018, 2 pages. |
Office Action received for Australian Patent Application No. 2017101563, mailed on Jun. 26, 2018, 3 pages. |
Office Action received for Australian Patent Application No. 2017266867, mailed on Dec. 6, 2018, 3 pages. |
Office Action received for Australian Patent Application No. 2017284013, mailed on Mar. 19, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2018101014, mailed on Jan. 18, 2019, 5 pages. |
Office Action received for Australian Patent Application No. 2018101014, mailed on Sep. 19, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2018202751, mailed on Apr. 2, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2018203624, mailed on Feb. 5, 2020, 4 pages. |
Office Action received for Australian Patent Application No. 2018203624, mailed on Mar. 11, 2020, 5 pages. |
Office Action received for Australian Patent Application No. 2018203624, mailed on Mar. 15, 2019, 6 pages. |
Office Action received for Australian Patent Application No. 2018203624, mailed on Oct. 30, 2019, 5 pages. |
Office Action received for Australian Patent Application No. 2018220115, mailed on Apr. 21, 2020, 3 pages. |
Office Action received for Australian Patent Application No. 2018220115, mailed on Oct. 4, 2019, 3 pages. |
Office Action received for Australian Patent Application No. 2018229544, mailed on Nov. 15, 2019, 4 pages. |
Office Action received for Australian Patent Application No. 2018236870, mailed on Jul. 29, 2019, 7 pages. |
Office Action received for Australian Patent Application No. 2018236870, mailed on Nov. 21, 2018, 10 pages. |
Office Action received for Australian Patent Application No. 2018236870, mailed on Oct. 31, 2019, 8 pages. |
Office Action received for Australian Patent Application No. 2018236872, mailed on Nov. 23, 2018, 4 pages. |
Office Action received for Australian Patent Application No. 2018271366, mailed on Feb. 25, 2020, 5 pages. |
Office Action received for Australian Patent Application No. 2018271366, mailed on Jan. 19, 2021, 5 pages. |
Office Action received for Australian Patent Application No. 2018271366, mailed on May 17, 2021, 5 pages. |
Office Action received for Australian Patent Application No. 2018271366, mailed on Oct. 26, 2020, 5 pages. |
Office Action received for Australian Patent Application No. 2019203473, mailed on Oct. 25, 2019, 2 pages. |
Office Action received for Australian Patent Application No. 2019268111, mailed on Oct. 27, 2020, 7 pages. |
Office Action received for Australian Patent Application No. 2020207785, mailed on Dec. 14, 2021, 5 pages. |
Office Action received for Australian Patent Application No. 2020207785, mailed on Jul. 13, 2021, 3 pages. |
Office Action received for Australian Patent Application No. 2020239711, mailed on Sep. 13, 2021, 5 pages. |
Office Action received for Australian Patent Application No. 2020257092, mailed on Mar. 3, 2021, 7 pages. |
Office Action received for Australian Patent Application No. 2020257092, mailed on Nov. 30, 2020, 6 pages. |
Office Action received for Australian Patent Application No. 2020273355, mailed on Jul. 6, 2021, 3 pages. |
Office Action received for Australian Patent Application No. 2020273355, mailed on Nov. 23, 2021, 6 pages. |
Office Action received for Australian Patent Application No. 2020282362, mailed on Nov. 25, 2021, 3 pages. |
Office Action received for Australian Patent Application No. 2021201243, mailed on Dec. 12, 2022, 3 pages. |
Office Action received for Australian Patent Application No. 2021201243, mailed on Feb. 17, 2022, 4 pages. |
Office Action received for Australian Patent Application No. 2021201243, mailed on Jun. 1, 2022, 5 pages. |
Office Action received for Australian Patent Application No. 2021201403, mailed on Mar. 16, 2021, 3 pages. |
Office Action received for Australian Patent Application No. 2021203669, mailed on Apr. 5, 2022, 3 pages. |
Office Action received for Australian Patent Application No. 2021204454, mailed on Aug. 9, 2021, 7 pages. |
Office Action received for Australian Patent Application No. 2021261941, mailed on Nov. 3, 2022, 3 pages. |
Office Action received for Australian Patent Application No. 2022200515, mailed on Nov. 2, 2022, 2 pages. |
Office Action received for Australian Patent Application No. 2022200901, mailed on Dec. 19, 2022, 4 pages. |
Office Action received for Australian Patent Application No. 2022201532, mailed on Dec. 19, 2022, 5 pages. |
Office Action received for Australian Patent Application No. 2022204555, mailed on Feb. 17, 2023, 5 pages. |
Office Action received for Australian Patent Application No. 2022218517, mailed on Apr. 27, 2023, 7 pages. |
Office Action received for Australian Patent Application No. 2022235591, mailed on Jun. 6, 2023, 3 pages. |
Office Action received for Australian Patent Application No. 2022235591, mailed on Jun. 28, 2023, 3 pages. |
Office Action received for Australian Patent Application No. 2022241590, mailed on Jun. 7, 2023, 7 pages. |
Office Action received for Australian Patent Application No. 2022241590, mailed on Mar. 17, 2023, 5 pages. |
Office Action received for Australian Patent Application No. 2022241590, mailed on Nov. 18, 2022, 8 pages. |
Office Action received for Brazilian Patent Application No. BR112014003009-0, mailed on Oct. 29, 2019, 6 pages. |
Office Action received for Canadian Patent Application No. 2,661,200, mailed on Jan. 3, 2013, 5 pages. |
Office Action received for Canadian Patent Application No. 2,661,200, mailed on Jun. 9, 2010, 3 pages. |
Office Action Received for Canadian Patent Application No. 2,661,200, mailed on Nov. 1, 2011, 4 pages. |
Office Action received for Canadian Patent Application No. 2,661,200, mailed on Nov. 14, 2013, 2 pages. |
Office Action received for Canadian Patent Application No. 2,882,403, mailed on Apr. 2, 2015, 5 pages. |
Office Action received for Canadian Patent Application No. 2,882,403, mailed on Sep. 15, 2017, 5 pages. |
Office Action received for Chinese Patent Application No. 201210308569.5, mailed on Feb. 5, 2016, 3 pages. |
Office Action received for Chinese Patent Application No. 201210308569.5, mailed on Nov. 19, 2014, 24 pages. |
Office Action received for Chinese Patent Application No. 201210308569.5, mailed on Sep. 1, 2015, 39 pages. |
Office Action received for Chinese Patent Application No. 201280040169.9, mailed on Jun. 1, 2016, 10 pages. |
Office Action received for Chinese Patent Application No. 201280040169.9, mailed on Mar. 31, 2017, 13 pages. |
Office Action received for Chinese Patent Application No. 201280040169.9, mailed on May 14, 2018, 6 pages. |
Office Action received for Chinese Patent Application No. 201280040169.9, mailed on Sep. 20, 2017, 14 pages. |
Office Action received for Chinese Patent Application No. 201410449822.8, mailed on Dec. 2, 2016, 9 pages. |
Office Action received for Chinese Patent Application No. 201410449822.8, mailed on May 4, 2018, 12 pages. |
Office Action received for Chinese Patent Application No. 201410449822.8, mailed on Nov. 20, 2018, 11 pages. |
Office Action received for Chinese Patent Application No. 201410449822.8, mailed on Sep. 30, 2017, 20 pages. |
Office Action received for Chinese Patent Application No. 201510288981.9, mailed on Jul. 1, 2019, 16 pages. |
Office Action received for Chinese Patent Application No. 201510288981.9, mailed on Jul. 3, 2018, 19 pages. |
Office Action received for Chinese Patent Application No. 201510288981.9, mailed on Mar. 6, 2019, 20 pages. |
Office Action received for Chinese Patent Application No. 201580028491.3, mailed on Oct. 8, 2018, 9 pages. |
Office Action received for Chinese Patent Application No. 201580028505.1, mailed on Jan. 16, 2019, 15 pages. |
Office Action received for Chinese Patent Application No. 201580028505.1, mailed on Jun. 20, 2019, 7 pages. |
Office Action received for Chinese Patent Application No. 201580043701.6, mailed on Dec. 24, 2018, 20 pages. |
Office Action received for Chinese Patent Application No. 201580043701.6, mailed on May 8, 2021, 10 pages. |
Office Action received for Chinese Patent Application No. 201580043701.6, mailed on Nov. 4, 2019, 20 pages. |
Office Action received for Chinese Patent Application No. 201580043701.6, mailed on Oct. 12, 2020, 22 pages. |
Office Action received for Chinese Patent Application No. 201580043701.6, mailed on Sep. 10, 2021, 10 pages. |
Office Action received for Chinese Patent Application No. 201580046339.8, mailed on Feb. 26, 2019, 18 pages. |
Office Action received for Chinese Patent Application No. 201580046339.8, mailed on Jun. 3, 2020, 19 pages. |
Office Action received for Chinese Patent Application No. 201580046339.8, mailed on Oct. 19, 2020, 12 pages. |
Office Action received for Chinese Patent Application No. 201580046339.8, mailed on Oct. 31, 2019, 9 pages. |
Office Action received for Chinese Patent Application No. 201680011682.3, mailed on Dec. 2, 2019, 14 pages. |
Office Action received for Chinese Patent Application No. 201711292804.3, mailed on Aug. 5, 2020, 26 pages. |
Office Action received for Chinese Patent Application No. 201711292804.3, mailed on Feb. 23, 2021, 17 pages. |
Office Action received for Chinese Patent Application No. 201711292804.3, mailed on Sep. 10, 2021, 19 pages. |
Office Action received for Chinese Patent Application No. 201780002398.4, mailed on Feb. 27, 2019, 6 pages. |
Office Action received for Chinese Patent Application No. 201780002398.4, mailed on Sep. 12, 2018, 17 pages. |
Office Action received for Chinese Patent Application No. 201780033899.9, mailed on Sep. 3, 2021, 12 pages. |
Office Action received for Chinese Patent Application No. 201810338038.8, mailed on Jan. 21, 2020, 26 pages. |
Office Action received for Chinese Patent Application No. 201810338038.8, mailed on May 14, 2019, 26 pages. |
Office Action received for Chinese Patent Application No. 201810338040.5, mailed on Jun. 3, 2021, 25 pages. |
Office Action received for Chinese Patent Application No. 201810338040.5, mailed on Oct. 25, 2021, 22 pages. |
Office Action received for Chinese Patent Application No. 201810338826.7, mailed on Apr. 3, 2019, 21 pages. |
Office Action received for Chinese Patent Application No. 201810338826.7, mailed on Jan. 16, 2020, 16 pages. |
Office Action received for Chinese Patent Application No. 201810338826.7, mailed on Oct. 21, 2019, 19 pages. |
Office Action received for Chinese Patent Application No. 201810339290.0, mailed on Jun. 4, 2021, 20 pages. |
Office Action received for Chinese Patent Application No. 201810339290.0, mailed on Oct. 18, 2021, 20 pages. |
Office Action received for Chinese Patent Application No. 201811367893.8, mailed on Apr. 27, 2022, 11 pages. |
Office Action received for Chinese Patent Application No. 201811367893.8, mailed on Feb. 15, 2022, 14 pages. |
Office Action received for Chinese Patent Application No. 201811367893.8, mailed on Jun. 21, 2021, 18 pages. |
Office Action received for Chinese Patent Application No. 201811367893.8, mailed on Nov. 29, 2021, 6 pages. |
Office Action received for Chinese Patent Application No. 201811377642.8, mailed on Jun. 10, 2023, 13 pages. |
Office Action received for Chinese Patent Application No. 201811377642.8, mailed on Oct. 27, 2022, 20 pages. |
Office Action received for Chinese Patent Application No. 201811379281.0, mailed on May 16, 2023, 16 pages. |
Office Action received for Chinese Patent Application No. 201811379281.0, mailed on Oct. 27, 2022, 21 pages. |
Office Action received for Chinese Patent Application No. 201811460172.1, mailed on Jan. 21, 2020, 17 pages. |
Office Action received for Chinese Patent Application No. 201811460172.1, mailed on Oct. 14, 2020, 7 pages. |
Office Action received for Chinese Patent Application No. 201811539259.8, mailed on Apr. 3, 2020, 10 pages. |
Office Action received for Chinese Patent Application No. 201811539259.8, mailed on Mar. 13, 2023, 16 pages. |
Office Action received for Chinese Patent Application No. 201811539259.8, mailed on May 24, 2023, 25 pages. |
Office Action received for Chinese Patent Application No. 201811539259.8, mailed on Sep. 3, 2020, 10 pages. |
Office Action received for Chinese Patent Application No. 201811539259.8, mailed on Sep. 18, 2019, 12 pages. |
Office Action received for Chinese Patent Application No. 201811539260.0, mailed on Jun. 3, 2020, 8 pages. |
Office Action received for Chinese Patent Application No. 201811539260.0, mailed on Nov. 4, 2020, 9 pages. |
Office Action received for Chinese Patent Application No. 201811539260.0, mailed on Oct. 8, 2019, 14 pages. |
Office Action received for Chinese Patent Application No. 201880001436.9, mailed on Apr. 28, 2019, 19 pages. |
Office Action received for Chinese Patent Application No. 201880001436.9, mailed on Nov. 6, 2019, 24 pages. |
Office Action received for Chinese Patent Application No. 201910164962.3, mailed on Apr. 8, 2020, 25 pages. |
Office Action received for Chinese Patent Application No. 201910164962.3, mailed on Jan. 12, 2021, 14 pages. |
Office Action received for Chinese Patent Application No. 201910164962.3, mailed on Sep. 18, 2020, 19 pages. |
Office Action received for Chinese Patent Application No. 201910475434.X, mailed on Dec. 4, 2019, 14 pages. |
Office Action received for Chinese Patent Application No. 201910475434.X, mailed on Jun. 3, 2020, 9 pages. |
Office Action received for Chinese Patent Application No. 201910475434.X, mailed on Oct. 30, 2020, 9 pages. |
Office Action received for Chinese Patent Application No. 201911099970.0, mailed on Feb. 23, 2023, 15 pages. |
Office Action received for Chinese Patent Application No. 201911128105.4, mailed on Apr. 8, 2021, 10 pages. |
Office Action received for Chinese Patent Application No. 201911128105.4, mailed on Jan. 4, 2021, 14 pages. |
Office Action received for Chinese Patent Application No. 201911128105.4, mailed on Jul. 3, 2020, 18 pages. |
Office Action received for Chinese Patent Application No. 201911288715.0, mailed on Jan. 20, 2023, 23 pages. |
Office Action received for Chinese Patent Application No. 202010125114.4, mailed on Aug. 21, 2020, 16 pages. |
Office Action received for Chinese Patent Application No. 202010125114.4, mailed on Jun. 7, 2021, 7 pages. |
Office Action received for Chinese Patent Application No. 202010125114.4, mailed on Mar. 1, 2021, 15 pages. |
Office Action received for Chinese Patent Application No. 202011450203.2, mailed on Apr. 20, 2022, 9 pages. |
Office Action received for Chinese Patent Application No. 202011450203.2, mailed on Sep. 1, 2021, 12 pages. |
Office Action received for Chinese Patent Application No. 202080039642.6, mailed on Sep. 5, 2022, 12 pages. |
Office Action received for Chinese Patent Application No. 202110235995.X, mailed on Mar. 22, 2022, 17 pages. |
Office Action received for Chinese Patent Application No. 202110235995.X, mailed on Sep. 30, 2022, 13 pages. |
Office Action received for Chinese Patent Application No. 202111612841.4, mailed on Jul. 22, 2022, 13 pages. |
Office Action received for Chinese Patent Application No. 202111652452.4, mailed on Aug. 29, 2022, 23 pages. |
Office Action received for Chinese Patent Application No. 202111652452.4, mailed on Feb. 11, 2023, 28 pages. |
Office Action received for Chinese Patent Application No. 202111652452.4, mailed on May 19, 2023, 15 pages. |
Office Action received for Danish Patent Application No. PA201570256, mailed on Jul. 7, 2015, 2 pages. |
Office Action received for Danish Patent Application No. PA201570256, mailed on Mar. 17, 2016, 5 pages. |
Office Action received for Danish Patent Application No. PA201570256, mailed on May 23, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201570256, mailed on Oct. 10, 2016, 3 pages. |
Office Action received for Danish Patent Application No. PA201670622, mailed on Aug. 17, 2018, 4 pages. |
Office Action received for Danish Patent Application No. PA201670622, mailed on May 30, 2017, 4 pages. |
Office Action received for Danish Patent Application No. PA201670622, mailed on Nov. 1, 2017, 5 pages. |
Office Action received for Danish Patent Application No. PA201670622, mailed on Oct. 31, 2016, 11 pages. |
Office Action received for Danish Patent Application No. PA201670628, mailed on Jun. 6, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201670628, mailed on Oct. 26, 2016, 7 pages. |
Office Action received for Danish Patent Application No. PA201770392, mailed on Apr. 17, 2018, 2 pages. |
Office Action received for Danish Patent Application No. PA201770392, mailed on Dec. 8, 2017, 4 pages. |
Office Action received for Danish Patent Application No. PA201770392, mailed on Jun. 20, 2017, 11 pages. |
Office Action received for Danish Patent Application No. PA201770401, mailed on Jan. 31, 2018, 3 pages. |
Office Action received for Danish Patent Application No. PA201770401, mailed on May 17, 2018, 3 pages. |
Office Action received for Danish Patent Application No. PA201770402, mailed on Apr. 16, 2018, 5 pages. |
Office Action received for Danish Patent Application No. PA201770402, mailed on Dec. 18, 2017, 6 pages. |
Office Action received for Danish Patent Application No. PA201770402, mailed on Jun. 19, 2017, 11 pages. |
Office Action received for Danish Patent Application No. PA201770403, mailed on Dec. 12, 2017, 3 pages. |
Office Action received for Danish Patent Application No. PA201770403, mailed on Jun. 16, 2017, 8 pages. |
Office Action received for Danish Patent Application No. PA201770404, mailed on Aug. 8, 2018, 4 pages. |
Office Action received for Danish Patent Application No. PA201770404, mailed on Dec. 1, 2017, 5 pages. |
Office Action received for Danish Patent Application No. PA201770404, mailed on Feb. 21, 2019, 2 pages. |
Office Action received for Danish Patent Application No. PA201770404, mailed on May 1, 2019, 2 pages. |
Office Action received for Danish Patent Application No. PA201770406, mailed on Feb. 27, 2018, 7 pages. |
Office Action received for Danish Patent Application No. PA201770406, mailed on Jan. 25, 2019, 8 pages. |
Office Action received for Danish Patent Application No. PA201770406, mailed on Jun. 22, 2017, 11 pages. |
Office Action received for Danish Patent Application No. PA201770406, mailed on Mar. 26, 2019, 3 pages. |
Office Action received for Danish Patent Application No. PA201770406, mailed on Nov. 11, 2019, 4 pages. |
Office Action received for Danish Patent Application No. PA201770408, mailed on Dec. 21, 2017, 6 pages. |
Office Action received for Danish Patent Application No. PA201770408, mailed on Jun. 20, 2017, 9 pages. |
Office Action received for Danish Patent Application No. PA201770408, mailed on May 3, 2018, 7 pages. |
Office Action received for Danish Patent Application No. PA201770410, mailed on Apr. 9, 2018, 5 pages. |
Office Action received for Danish Patent Application No. PA201770410, mailed on Jun. 23, 2017, 9 pages. |
Office Action received for Danish Patent Application No. PA201770410, mailed on Nov. 22, 2018, 5 pages. |
Office Action received for Danish Patent Application No. PA201770782, mailed on Jan. 26, 2018, 8 pages. |
Office Action received for Danish Patent Application No. PA201770782, mailed on Nov. 22, 2018, 3 pages. |
Office Action received for Danish Patent Application No. PA201870060, mailed on Jan. 15, 2019, 4 pages. |
Office Action received for Danish Patent Application No. PA201870060, mailed on Jul. 25, 2019, 2 pages. |
Office Action received for Danish Patent Application No. PA201870419, mailed on Feb. 27, 2020, 8 pages. |
Office Action received for Danish Patent Application No. PA201870419, mailed on Sep. 30, 2019, 4 pages. |
Office Action received for Danish Patent Application No. PA201870598, mailed on May 1, 2019, 3 pages. |
Office Action received for Danish Patent Application No. PA201870598, mailed on Nov. 8, 2019, 4 pages. |
Office Action received for Danish Patent Application No. PA201970533, mailed on Apr. 20, 2021, 2 pages. |
Office Action received for Danish Patent Application No. PA201970533, mailed on Jul. 17, 2020, 6 pages. |
Office Action received for Danish Patent Application No. PA202070560, mailed on Dec. 11, 2020, 7 pages. |
Office Action received for Danish Patent Application No. PA202070560, mailed on Mar. 10, 2021, 7 pages. |
Office Action received for Danish Patent Application No. PA202070617, mailed on Sep. 24, 2021, 4 pages. |
Office Action received for Danish Patent Application No. PA202170320, mailed on May 3, 2022, 3 pages. |
Office Action received for Danish Patent Application No. PA202270464, mailed on Dec. 20, 2022, 3 pages. |
Office Action received for Danish Patent Application No. PA202270464, mailed on Oct. 25, 2022, 9 pages. |
Office Action received for European Patent Application No. 00923491.5, mailed on Jan. 11, 2010, 6 pages. |
Office Action received for European Patent Application No. 00923491.5, mailed on Mar. 12, 2007, 9 pages. |
Office Action received for European Patent Application No. 00923491.5, mailed on Sep. 11, 2007, 5 pages. |
Office Action received for European Patent Application No. 07842262.3, mailed on Feb. 16, 2017, 6 pages. |
Office Action received for European Patent Application No. 07842262.3, mailed on Sep. 8, 2011, 5 pages, 5 pages. |
Office Action received for European Patent Application No. 10177096.4, mailed on Feb. 20, 2012, 6 pages. |
Office Action received for European Patent Application No. 10177096.4, mailed on Jul. 26, 2017, 8 pages. |
Office Action received for European Patent Application No. 10177096.4, mailed on Jun. 7, 2018, 14 pages. |
Office Action received for European Patent Application No. 10177096.4, mailed on Mar. 21, 2013, 9 pages. |
Office Action received for European Patent Application No. 10177099.8, mailed on Feb. 20, 2012, 5 pages. |
Office Action received for European Patent Application No. 10712824.1, mailed on Jun. 23, 2014, 7 pages. |
Office Action received for European Patent Application No. 12753631.6, mailed on Jul. 10, 2017, 6 pages. |
Office Action received for European Patent Application No. 12770400.5, mailed on Mar. 10, 2015, 5 pages. |
Office Action received for European Patent Application No. 12773460.6, mailed on Feb. 19, 2018, 6 pages. |
Office Action received for European Patent Application No. 13171047.7, mailed on May 24, 2017, 7 pages. |
Office Action received for European Patent Application No. 13184872.3, mailed on May 18, 2018, 8 pages. |
Office Action received for European Patent Application No. 15711969.4, mailed on Nov. 17, 2017, 9 pages. |
Office Action received for European Patent Application No. 15713062.6, mailed on Dec. 6, 2017, 7 pages. |
Office Action received for European Patent Application No. 15714698.6, mailed on Apr. 18, 2023, 14 pages. |
Office Action received for European Patent Application No. 15714698.6, mailed on Oct. 13, 2021, 2 pages. |
Office Action received for European Patent Application No. 15719347.5, mailed on Apr. 9, 2020, 4 pages. |
Office Action received for European Patent Application No. 15719347.5, mailed on Jun. 17, 2019, 4 pages. |
Office Action received for European Patent Application No. 16710590.7, mailed on Mar. 15, 2019, 10 pages. |
Office Action received for European Patent Application No. 17799904.2, mailed on Oct. 21, 2020, 6 pages. |
Office Action received for European Patent Application No. 17813737.8, mailed on Apr. 16, 2021, 7 pages. |
Office Action received for European Patent Application No. 18178147.7, mailed on Mar. 20, 2020, 4 pages. |
Office Action received for European Patent Application No. 18197583.0, mailed on Feb. 28, 2020, 8 pages. |
Office Action received for European Patent Application No. 18197589.7, mailed on Oct. 1, 2019, 5 pages. |
Office Action received for European Patent Application No. 18208881.5, mailed on Jun. 11, 2019, 5 pages. |
Office Action received for European Patent Application No. 18208881.5, mailed on May 7, 2021, 6 pages. |
Office Action received for European Patent Application No. 18728002.9, mailed on Dec. 14, 2020, 15 pages. |
Office Action received for European Patent Application No. 18733381.0, mailed on Oct. 29, 2021, 9 pages. |
Office Action received for European Patent Application No. 19150528.8, mailed on Jul. 1, 2020, 6 pages. |
Office Action received for European Patent Application No. 19169980.0, mailed on Mar. 4, 2020, 6 pages. |
Office Action received for European Patent Application No. 19186538.5, mailed on Oct. 12, 2020, 7 pages. |
Office Action received for European Patent Application No. 19186538.5, mailed on Oct. 22, 2021, 7 pages. |
Office Action received for European Patent Application No. 19203942.8, mailed on Oct. 29, 2021, 6 pages. |
Office Action received for European Patent Application No. 19207753.5, mailed on May 10, 2021, 4 pages. |
Office Action received for European Patent Application No. 19207753.5, mailed on Nov. 12, 2020, 5 pages. |
Office Action received for European Patent Application No. 20158824.1, mailed on Jun. 13, 2022, 5 pages. |
Office Action received for European Patent Application No. 20158824.1, mailed on May 18, 2021, 10 pages. |
Office Action received for European Patent Application No. 20719301.2, mailed on Feb. 21, 2022, 9 pages. |
Office Action received for European Patent Application No. 20719301.2, mailed on Jan. 24, 2023, 9 pages. |
Office Action received for European Patent Application No. 20719301.2, mailed on Jan. 28, 2021, 15 pages. |
Office Action received for European Patent Application No. 20720310.0, mailed on Apr. 11, 2023, 8 pages. |
Office Action received for European Patent Application No. 20720310.0, mailed on Oct. 4, 2022, 9 pages. |
Office Action received for European Patent Application No. 20760624.5, mailed on Mar. 7, 2023, 13 pages. |
Office Action received for European Patent Application No. 21160991.2, mailed on Mar. 24, 2022, 11 pages. |
Office Action received for European Patent Application No. 21166718.3, mailed on Feb. 20, 2023, 7 pages. |
Office Action received for European Patent Application No. 21197457.1, mailed on May 30, 2023, 8 pages. |
Office Action received for European Patent Application No. 21197457.1, mailed on Sep. 2, 2022, 8 pages. |
Office Action received for European Patent Application No. 21728781.2, mailed on Mar. 1, 2023, 13 pages. |
Office Action received for European Patent Application No. 10712824.1, mailed on Mar. 1, 2016, 11 pages. |
Office Action received for German Patent Application No. 102015208532.5, mailed on Apr. 1, 2019, 20 pages. |
Office Action received for German Patent Application No. 102015208532.5, mailed on Apr. 21, 2020, 3 pages. |
Office Action received for German Patent Application No. 102015208532.5, mailed on Aug. 21, 2019, 15 pages. |
Office Action received for Hong Kong Patent Application No. 151051633, mailed on Jun. 5, 2015, 11 pages. |
Office Action received for Indian Patent Application No. 202014041529, mailed on Dec. 6, 2021, 6 pages. |
Office Action received for Indian Patent Application No. 202215025360, mailed on Mar. 29, 2023, 6 pages. |
Office Action received for Indian Patent Application No. 202215025361, mailed on Mar. 29, 2023, 6 pages. |
Office Action received for Indian Patent Application No. 202215025363, mailed on Mar. 29, 2023, 6 pages. |
Office Action received for Indian Patent Application No. 202215025364, mailed on Mar. 29, 2023, 6 pages. |
Office Action received for Indian Patent Application No. 717/CHENP/2014, mailed on Feb. 7, 2019, 5 pages. |
Office Action Received for Japanese Patent Application No. 2012500842, mailed on Jan. 31, 2014, 5 pages. |
Office Action received for Japanese Patent Application No. 2014-148065, mailed on Sep. 7, 2015, 5 pages. |
Office Action received for Japanese Patent Application No. 2014-17726, mailed on Feb. 9, 2015, 4 pages. |
Office Action received for Japanese Patent Application No. 2014-526255, mailed on Jun. 12, 2015, 5 pages. |
Office Action received for Japanese Patent Application No. 2015-095183, mailed on Jun. 3, 2016, 13 pages. |
Office Action received for Japanese Patent Application No. 2016-001259, mailed on Feb. 23, 2018, 11 pages. |
Office Action received for Japanese Patent Application No. 2016-001259, mailed on Jan. 6, 2017, 6 pages. |
Office Action received for Japanese Patent Application No. 2016-001259, mailed on Nov. 13, 2017, 10 pages. |
Office Action received for Japanese Patent Application No. 2016-022175, mailed on Apr. 10, 2017, 11 pages. |
Office Action received for Japanese Patent Application No. 2017-075031, mailed on Jul. 30, 2018, 16 pages. |
Office Action received for Japanese Patent Application No. 2017-101107, mailed on Sep. 7, 2018, 14 pages. |
Office Action received for Japanese Patent Application No. 2017-507413, mailed on Feb. 22, 2019, 11 pages. |
Office Action received for Japanese Patent Application No. 2017-507413, mailed on May 25, 2018, 14 pages. |
Office Action received for Japanese Patent Application No. 2017-543762, mailed on Apr. 8, 2019, 5 pages. |
Office Action received for Japanese Patent Application No. 2017-543762, mailed on Jul. 9, 2018, 8 pages. |
Office Action received for Japanese Patent Application No. 2018-080122, mailed on Aug. 9, 2019, 5 pages. |
Office Action received for Japanese Patent Application No. 2018-080122, mailed on Jan. 28, 2019, 11 pages. |
Office Action received for Japanese Patent Application No. 2018-080122, mailed on Nov. 27, 2020, 16 pages. |
Office Action received for Japanese Patent Application No. 2018-119170, mailed on May 10, 2019, 8 pages. |
Office Action received for Japanese Patent Application No. 2018-560107, mailed on Jun. 14, 2019, 26 pages. |
Office Action received for Japanese Patent Application No. 2019-124728, mailed on Dec. 14, 2020, 4 pages. |
Office Action received for Japanese Patent Application No. 2019-124728, mailed on Sep. 18, 2020, 6 pages. |
Office Action received for Japanese Patent Application No. 2019-238894, mailed on Mar. 6, 2020, 7 pages. |
Office Action received for Japanese Patent Application No. 2020-159840, mailed on Dec. 10, 2021, 13 pages. |
Office Action received for Japanese Patent Application No. 2020-159840, mailed on Mar. 28, 2022, 6 pages. |
Office Action received for Japanese Patent Application No. 2020-184605, mailed on Dec. 12, 2022, 9 pages. |
Office Action received for Japanese Patent Application No. 2020-184605, mailed on Feb. 14, 2022, 24 pages. |
Office Action received for Japanese Patent Application No. 2020-184605, mailed on Jul. 3, 2023, 6 pages. |
Office Action received for Japanese Patent Application No. 2021-026630, mailed on Aug. 20, 2021, 7 pages. |
Office Action received for Korean Patent Application No. 10-2013-7028487, mailed on Feb. 18, 2016, 8 pages. |
Office Action received for Korean Patent Application No. 10-2013-7028487, mailed on Jun. 5, 2015, 9 pages. |
Office Action received for Korean Patent Application No. 10-2013-7028487, mailed on Jun. 13, 2016, 6 pages. |
Office Action received for Korean Patent Application No. 10-2013-7028489, mailed on Jun. 4, 2015, 4 pages. |
Office Action received for Korean Patent Application No. 10-2014-7006538, mailed on Jul. 31, 2015, 8 pages. |
Office Action received for Korean Patent Application No. 10-2014-7008348, mailed on Jan. 22, 2019, 16 pages. |
Office Action received for Korean Patent Application No. 10-2015-0072162, mailed on Apr. 20, 2016, 11 pages. |
Office Action received for Korean Patent Application No. 10-2015-0072162, mailed on Feb. 27, 2017, 12 pages. |
Office Action received for Korean Patent Application No. 10-2016-7022902, mailed on Sep. 4, 2017, 3 pages. |
Office Action received for Korean Patent Application No. 10-2016-7035555, mailed on Dec. 26, 2017, 5 pages. |
Office Action received for Korean Patent Application No. 10-2016-7035555, mailed on Jul. 18, 2019, 9 pages. |
Office Action received for Korean Patent Application No. 10-2016-7035555, mailed on Sep. 18, 2018, 9 pages. |
Office Action received for Korean Patent Application No. 10-2017-7012145, mailed on Jul. 18, 2019, 5 pages. |
Office Action received for Korean Patent Application No. 10-2017-7012145, mailed on Sep. 13, 2018, 6 pages. |
Office Action received for Korean Patent Application No. 10-2017-7022905, mailed on Oct. 22, 2018, 9 pages. |
Office Action received for Korean Patent Application No. 10-2017-7035057, mailed on Mar. 21, 2018, 10 pages. |
Office Action received for Korean Patent Application No. 10-2018-0035949, mailed on Apr. 24, 2019, 9 pages. |
Office Action received for Korean Patent Application No. 10-2018-0035949, mailed on Dec. 24, 2018, 7 pages. |
Office Action received for Korean Patent Application No. 10-2018-0035949, mailed on Jun. 20, 2018, 9 pages. |
Office Action received for Korean Patent Application No. 10-2018-7033301, mailed on Dec. 14, 2018, 6 pages. |
Office Action received for Korean Patent Application No. 10-2018-7035747, mailed on Apr. 9, 2020, 11 pages. |
Office Action received for Korean Patent Application No. 10-2018-7035747, mailed on Oct. 14, 2020, 6 pages. |
Office Action received for Korean Patent Application No. 10-2019-7014494, mailed on Jun. 14, 2019, 11 pages. |
Office Action received for Korean Patent Application No. 10-2020-0024632, mailed on Dec. 29, 2020, 11 pages. |
Office Action received for Korean Patent Application No. 10-2020-0024632, mailed on May 18, 2020, 11 pages. |
Office Action received for Korean Patent Application No. 10-2020-7002929, mailed on Mar. 22, 2020, 5 pages. |
Office Action received for Korean Patent Application No. 10-2020-7031319, mailed on Dec. 8, 2020, 14 pages. |
Office Action received for Korean Patent Application No. 10-2021-7021047, mailed on Aug. 13, 2021, 5 pages. |
Office Action received for Korean Patent Application No. 10-2021-7032984, mailed on Feb. 22, 2022, 8 pages. |
Office Action received for Korean Patent Application No. 10-2022-0053111, mailed on Dec. 12, 2022, 9 pages. |
Office Action received for Korean Patent Application No. 10-2022-0053111, mailed on Jun. 29, 2023, 7 pages. |
Office Action received for Korean Patent Application No. 10-2022-7001521, mailed on Dec. 26, 2022, 13 pages. |
Office Action received for Korean Patent Application No. 10-2022-7001521, mailed on Jun. 21, 2023, 10 pages. |
Office Action received for Korean Patent Application No. 10-2022-7006175, mailed on May 27, 2022, 7 pages. |
Office Action received for Korean Patent Application No. 10-2022-7008567, mailed on Mar. 28, 2022, 5 pages. |
Office Action received for Mexican Patent Application No. MX/a/2016/001209, mailed on Apr. 20, 2017, 5 pages. |
Office Action received for Mexican Patent Application No. MX/a/2016/001209, mailed on Aug. 25, 2016, 4 pages. |
Office Action received for Mexican Patent Application No. MX/a/2016/001209, mailed on Sep. 13, 2017, 5 pages. |
Office Action received for Taiwanese Patent Application No. 102120412, mailed on Feb. 25, 2015, 15 pages. |
Office Action received for Taiwanese Patent Application No. 104108223, mailed on Apr. 25, 2016, 10 pages. |
Office Action received for Taiwanese Patent Application No. 104114953, issued on Feb. 18, 2017, 9 pages. |
Office Action received for Taiwanese Patent Application No. 104114953, mailed on Jun. 8, 2016, 11 pages. |
Office Action Received for Taiwanese Patent Application No. 104117041, mailed on Aug. 22, 2016, 6 pages. |
Office Action received for Taiwanese Patent Application No. 104117042, mailed on Apr. 20, 2017, 18 pages. |
Ojeda-Zapata Julio, “Five Apps That Play Podcasts Directly from Your Apple Watch”, Available online at: https://tidbits.com/2018/04/09/five-apps-that-play-podcasts-directly-from-your-apple-watch/, Apr. 9, 2018, 12 pages. |
Partial European Search Report received for European Patent Application No. 20158824.1, mailed on May 8, 2020, 14 pages. |
Partial European Search Report received for European Patent Application No. 18197583.0, mailed on Jan. 14, 2019, 18 pages. |
Petternitter, “User Restricted Collaborative Playlists—The Spotify Community”, Downloaded from: https://community.spotify.com/t5/Archived-Ideas/User-restricted-collaborative-playlists/idi-p/70721, May 28, 2012, 4 pages. |
Philips Support Website, “How to switch to preferred audio language in Philips TV from a broadcast with multiple languages audio stream?”, Available Online at: https://www.usa.philips.com/c-f/XC000010105/how-to-switch-to-preferred-audio-language-in-philips-tv-from-a-broadcast-with-multiple-languages-audio-stream, Dec. 29, 2016, 5 pages. |
Plaisant et al., “Touchscreen Toggle Switches: Push or slide? Design Issues and Usability Study”, Technical Report CAR-TR-521, CS-TR-2557, Nov. 1990, pp. 1-10. |
Planet Quark, “See Everything Your Mac Printed”, XP055533938, retrieved from the Internet: URL: https://www.planetquark.com/2011/05/19/see-everything-your-mac-printed/#.XjkfQsgzZGM, May 19, 2011, 7 pages. |
Pu Fang, “Research on Location-aware Service in Pervasive Computing”, Issue No. 7, Information Technology Series, China Doctoral Dissertations, Jul. 15, 2008, 140 pages. |
Punchkick Interactive, “Punchkick hands-on review: Fitbit Surge”, URL: https://www.youtube.com/watch?v=K2G7aebUYcA, Mar. 25, 2015, 3 pages. |
Qiye Wang, “Design and Implementation of SAN Device Access Control in Unified Storage Platform”, Master's Theses, Huazhong University of Science & Technology, Wuhan, Jun. 2008, 63 pages. |
Record of Oral Hearing received for U.S. Appl. No. 14/641,298, mailed on Oct. 8, 2021, 17 pages. |
Restriction Requirement received for U.S. Appl. No. 10/374,013, mailed on Oct. 6, 2006, 4 pages. |
Restriction Requirement received for U.S. Appl. No. 11/767,409, mailed on Sep. 21, 2010, 8 pages. |
Restriction Requirement received for U.S. Appl. No. 12/215,651, mailed on Sep. 28, 2011, 11 pages. |
Restriction Requirement received for U.S. Appl. No. 12/395,537, mailed on May 9, 2011, 6 pages. |
Restriction Requirement received for U.S. Appl. No. 12/395,541, mailed on May 27, 2011, 6 pages. |
Result of Consultation received for European Patent Application No. 16710590.7, mailed on Dec. 7, 2020, 4 pages. |
Result of Consultation received for European Patent Application No. 18197583.0, mailed on Feb. 24, 2021, 3 pages. |
Result of Consultation received for European Patent Application No. 18197589.7, mailed on Dec. 1, 2020, 9 pages. |
Result of Consultation received for European Patent Application No. 18197589.7, mailed on Dec. 17, 2020, 6 pages. |
Result of Consultation received for European Patent Application No. 18208881.5, mailed on Dec. 6, 2022, 10 pages. |
Result of Consultation received for European Patent Application No. 20158824.1, mailed on May 17, 2022, 7 pages. |
Rev. Some Culture, “It's super easy for middle-aged and elderly people to learn compute”, Jul. 31, 2013, 2 pages. |
Richards, “TN Audio Mixer and Master vol. Control with Automatic Configuration”, Technical Disclosure Bulletin, vol. 37, No. 01, Jan. 1, 1994, pp. 485-486. |
Ricker Thomas, “iTunes (in the Cloud) 10.3 beta available for download, we go hands-on”, retrieved from the internet: https://www.engadget.com/2011/06/07/itunes-in-the-cloud-10-3-beta-available-for-download-we-go-ha/, 2011, 12 pages. |
Rossignol Joe, “iOS 10 Concept Simplifies Lock Screen With Collapsed Notifications”, Available online at: https://www.macrumors.com/2016/06/16/ios-10-collapsed-notifications-concept/, Jun. 16, 2016, 10 pages. |
Samsung, “Control an individual smart device on your watch”, Online Available at: https://www.samsung.com/us/support/troubleshooting/TSG01003208/, Nov. 9, 2018, 1 page. |
Samsung, “Problems with SmartThings on your Samsung Smartwatch”, Online Available at: https://www.samsung.com/us/support/troubleshooting/TSG01003169/#smartthings-error-on-samsung-smartwatch, Nov. 9, 2018, 10 pages. |
Samsung, “Samsung—User manual—Galaxy Watch”, Online available at: https://content.abt.com/documents/90234/SM-R810NZDAXAR-use.pdf, Aug. 24, 2018, 102 pages. |
Samsung, “Samsung R3 Wireless 360° Smart Speaker (Black)”, User Manual ver. 1.0 (English), User manual [online], Available Online at: <https://www.samsung.com/uk/support/model/WAM3500/XU/>, Dec. 16, 2016, 3 pages. |
Sandrahoutz, “How Do I Delete a Playlist from a Synced Ipod but Not Remove it From the Library in itunes”, Apple Communities Website, Available online at: https://discussions.apple.com/thread/7503609, Mar. 23, 2016, 2 pages. |
Sawyer Brian, “Get with the CoverFlow”, Available online at <https://briansawyer.net/2005/12/08/get-with-the-coverflow/>, Dec. 9, 2005, pp. 1-2. |
Search Report and Opinion received for Danish Patent Application No. PA201770401, mailed on Jun. 19, 2017, 6 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870060 mailed on Apr. 30, 2018, 7 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870419, mailed on Aug. 27, 2018, 7 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870419, mailed on Sep. 10, 2018, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201870598, mailed on Dec. 5, 2018, 8 pages. |
Search Report and Opinion received for Danish Patent Application No. PA201970533, mailed on Oct. 25, 2019, 9 pages. |
Search Report and Opinion received for Danish Patent Application No. PA202070617, mailed on Dec. 23, 2020, 8 pages. |
Search Report and Opinion received for Danish Patent Application No. PA202170320, mailed on Oct. 6, 2021, 9 pages. |
Search Report received for Danish Patent Application No. PA201770404, mailed on Jun. 20, 2017, 8 pages. |
Search Report received for Danish Patent Application No. PA201770409, mailed on Jun. 20, 2017, 9 pages. |
Search Report received for European Patent Application No. 00923491.5, Mailed on Jun. 2, 2006, 6 pages. |
Search Report received for European Patent Application No. 00923491.5, mailed on Mar. 6, 2006, 4 pages. |
Search Report received For Netherlands Patent Application No. 2014737, mailed on Oct. 29, 2015, 9 pages. |
Seifert Dan, “Google Home review: Home is where the smart is”, The Verge, Available Online at: <https://www.theverge.com/2016/11/3/13504658/google-home-review-speaker-assistant-amazon-echo-competitor>, Nov. 3, 2016, 11 pages. |
Seifi Joe, “Pianist Pro Review”, Available at <http://www.appsafari.com/productivity/11529/pianist-pro/>, Apr. 24, 2010, 9 pages. |
Senicar et al, “User-Centred Design and Development of an Intelligent Light Switch for Sensor Systems”, Technical Gazette, vol. 26, No. 2, available online at: https://hrcak.srce.hr/file/320403, 2019, pp. 339-345. |
Shankland Stephen, “Chrome OS Gets ‘OK Google’ Voice Search Control”, available online at <http://www.cnet.com/news/chrome-os-gets-ok-google-voice-search-control/>, May 21, 2014, 4 pages. |
Sharepoint at Rackspace, “Sharepoint 2013: How to Edit a List or Library Using Quick Edit”, Available online at: https://www.youtube.com/watch?v=foZXcFC1k80, Oct. 10, 2014, 1 page. |
Singh Ajit, “Mytunz: Free Iphone Media Player App With Sleep Timer, Gesture Control”, Available online at: https://www.ilovefreesoftware.com/01/iphone/mytunz-free-iphone-media-player-app.html, Jul. 1, 2014, 6 pages. |
Smarttricks, “Top 3 Music Player for Android”, Available online at: <https://www.youtube.com/watch?v=He7RTn4CL34>, Feb. 22, 2017, 4 pages. |
Smith Eddie, “The expert's guide to Instapaper”, available online at “http://www.macworld.com/article/1166898/the_experts_guide_to_instapaper.html”, May 23, 2012, 8 pages. |
Sonos, “Sonos Controller App for iPad Product Guide”, Available online at:—https://www.sonos.com/documents/productguides/en/iPadGuide_EN.pdf, Nov. 2014, 47 pages. |
Stroud Forrest, “Screen Lock Meaning & Definition”, Online Available at: https://www.webopedia.com/definitions/screen-lock, Jan. 30, 2014, 3 pages. |
Summon to Attend Oral Proceeding received for European Patent Application No. 10177099.8 mailed on Mar. 20, 2013, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application 20158824.1, mailed on Dec. 7, 2021, 6 pages. |
Summons to attend oral proceedings received for European Patent Application No. 00923491.5, mailed on Jan. 27, 2011, 10 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 07842262.3, mailed on Jun. 25, 2018, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 12753631.6, mailed on Jul. 6, 2018, 5 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 12753631.6, mailed on May 8, 2018, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 12770400.5, mailed on Mar. 19, 2018, 10 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 13171047.7, mailed on Jul. 9, 2018, 12 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15711969.4, mailed on Oct. 22, 2018, 12 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 17799904.2, mailed on Dec. 20, 2021, 8 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 17813737.8, mailed on Jan. 4, 2022, 12 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 18178147.7, mailed on Jun. 28, 2021, 8 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 18197583.0, mailed on Aug. 14, 2020, 12 pages. |
Summons to attend Oral proceedings received for European Patent Application No. 18197589.7, mailed on Apr. 9, 2020, 7 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 18208881.5, mailed on Jun. 29, 2022, 9 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 18728002.9, mailed on Jun. 3, 2022, 15 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 19150528.8, mailed on Mar. 15, 2022, 7 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 19169980.0, mailed on Dec. 3, 2020, 8 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 21160991.2, mailed on Oct. 19, 2022, 10 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 10177096.4, mailed on Sep. 21, 2018, 12 pages. |
Summons to Oral Proceedings received for German Patent Application No. 112007002143.8 mailed on Nov. 28, 2018, 13 pages. |
SupertuneTV, “Ipod Nano 6G—Sync Selected Playlist iTunes”, Youtube, Available online at: https://www.youtube.com/watch?v=xU 3rYRabt_I, Sep. 10, 2012, 3 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/584,490, mailed on Apr. 13, 2021, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/584,743, mailed on Nov. 25, 2020, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/888,775, mailed on Mar. 1, 2023, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 16/917,659, mailed on Dec. 21, 2022, 3 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/168,069, mailed on Apr. 20, 2022, 2 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 17/168,069, mailed on Feb. 2, 2022, 2 pages. |
Tedeschi Bob, “Stoking a Music Fan's Fancy with Apps That Rock”, available at <http://www.nytimes.com/2010/05/20/technology/personaltech/20smart.html>, May 19, 2010, 3 pages. |
Vanhemert Kyle, “Why Siri Could Be the Killer App for Smartwatches”, XP002798416, Retrieved from the Internet: URL: https://www.wired.com/2013/12/what-can-a-smartwatch-really-do/, Dec. 19, 2013, 14 pages. |
Whitehouse Ben, “Coverflow: Better Digital Music Navigation”, Whitehouse&Company, Online Available at: http://wandco.com/2005/08/coverflow-better-digital-music-navigation/>, Aug. 15, 2005, pp. 1-3. |
Whitney Lance, “How to Listen to Music on Your Apple Watch”, Available Online at: https://medium.com/pcmag-access/how-to-listen-to-music-on-your-apple-watch-f48a6c20dd52#:˜: text=On%20your%20iPhone%2C%20go%20to,.%E2%80%9D%20Tap%20on%20Add%20Music, Mar. 2, 2018, 13 pages. |
Whitwam Ryan, “How to Sync and Play Music on Your Android Wear Watch”, Available online at: https://www .greenbot.com/article/2997520/how-to-sync-and-play-music-on-your-android-wear-watch.html, Nov. 2, 2015, 4 pages. |
Wikipedia, “QR code”, Available online at: https://en.wikipedia.org/w/index.php?title=OR_code&oldid=452939488, Sep. 28, 2011, pp. 1-9. |
Woolsey Amanda, “Apple Watch Tips—How to Add and Play Music”, Available online at: <https://www.youtube.com/watch?v=EOQEuqMaoi8>, Apr. 26, 2015, 3 pages. |
WZ Science Alliance, “Very simple geriatrics computer and Internet bestselling upgrade”, Sep. 30, 2013, 3 pages. |
Yamaguchi Yuu, “Useful Freeware and Shareware Information”, Pick Up ONLINEWARE, 23th, MdN, vol. 146, MdN Corporation, Jun. 6, 2006, 4 pages. |
Decision to Grant received for European Patent Application No. 15714698.6, mailed on Apr. 5, 2024, 2 pages,. |
Final Office Action received for U.S. Appl. No. 17/978,930, mailed on Apr. 5, 2024, 28 pages. |
Intention to Grant received for European Patent Application No. 21166718.3, mailed on Mar. 25, 2024, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2022/043733, mailed on Apr. 4, 2024, 9 pages. |
Invitation to Pay Search Fees received for European Patent Application No. 21789897.2, mailed on Mar. 14, 2024, 3 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/941,961, mailed on Apr. 10, 2024, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/970,417, mailed on Apr. 10, 2024, 16 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/088,309, mailed on Apr. 9, 2024, 14 pages. |
Notice of Allowance received for Chinese Patent Application No. 202211558100.7, mailed on Mar. 29, 2024, 3 pages (2 pages of English Translation and 1 page of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2022-7001521, mailed on Mar. 22, 2024, 7 pages (2 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201911128105.4, mailed on Mar. 16, 2024, 7 pages (4 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201911128105.4, mailed on Mar. 19, 2024, 16 pages (8 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202010728711.6, mailed on Feb. 1, 2024, 30 pages (18 pages of English Translation and 12 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202311321231.8, mailed on Mar. 10, 2024, 15 pages (9 pages of English Translation and 6 pages of Official Copy). |
Office Action received for Japanese Patent Application No. 2023-028786, mailed on Mar. 22, 2024, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Korean Patent Application No. 10-2022-7032414, mailed on Mar. 26, 2024, 11 pages (5 pages of English Translation and 6 pages of Official Copy). |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 16/259,954, mailed on Mar. 23, 2020, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/013,778. mailed on Feb. 28, 2022, 2 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/088,309, mailed on Feb. 28, 2024, 2 pages. |
Board Decision received for Chinese Patent Application No. 201580046788.2, mailed on Jun. 6, 2022, 17 pages (1 page of English Translation and 16 pages of Official Copy). |
Board Opinion received for Chinese Patent Application No. 201580046788.2, mailed on Dec. 29, 2021, 10 pages (4 pages of English Translation and 6 pages of Official Copy). |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 15760008.1, mailed on Sep. 13, 2021, 8 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 14/841,614, mailed on Jan. 8, 2019, 3 pages. |
Corrected Notice of Allowance received for U.S. Appl. No. 17/013,778, mailed on Mar. 7, 2023, 5 pages. |
Decision to Grant received for European Patent Application No. 15760008.1, mailed on Aug. 11, 2022, 2 pages. |
Examiner's Answer to Appeal Brief received for U.S. Appl. No. 17/013,778, mailed on Dec. 20, 2022, 9 pages. |
Extended European Search Report received for European Patent Application No. 22169639.6, mailed on Jul. 19, 2022, 14 pages. |
Extended European Search Report received for European Patent Application No. 23158566.2, mailed on Jun. 14, 2023, 10 pages. |
Final Office Action received for U.S. Appl. No. 14/841,614, mailed on May 10, 2018, 13 pages. |
Final Office Action received for U.S. Appl. No. 14/841,623, mailed on Sep. 5, 2017, 16 pages. |
Final Office Action received for U.S. Appl. No. 17/013,778, mailed on Apr. 1, 2022, 11 pages. |
Intention to Grant received for European Patent Application No. 15760008.1, mailed on Apr. 6, 2022, 11 pages. |
Intention to Grant received for European Patent Application No. 15760008.1, mailed on Oct. 5, 2021, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2015/046787, mailed on Mar. 16, 2017., 19 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2015/046787, mailed on Apr. 1, 2016, 26 pages. |
Invitation to Pay Additional Fees received for PCT Patent Application No. PCT/US2015/046787, mailed on Dec. 15, 2015, 8 pages. |
Iphone, “User Guide for IOS 7.1 Software”, Mar. 2014, 162 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 15760008.1. mailed on Sep. 21, 2021, 6 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/013,778, mailed on Aug. 20, 2021, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,608, mailed on Apr. 12, 2017., 9 Pages. |
Non-Final Office Action received for U.S. Appl. No. 14/841,614, mailed on Jul. 27, 2017, 13 pages |
Non-Final Office Action received for U.S. Appl. No. 14/841,623, mailed on Feb. 2, 2017, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 16/259,954, mailed on Feb. 5, 2020, 10 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/013,778, mailed on Dec. 9, 2021, 11 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/200,480, mailed on Feb. 29, 2024, 16 pages. |
Notice of Allowance received for Korean Patent Application No. 10-2023-7008877, mailed on Feb. 20, 2024, 7 pages (2 pages of English Translation and 5 pages of Official Copy). |
Notice of Allowance received for Taiwanese Patent Application No. 104128519, mailed on Nov. 20, 2017, 5 pages (2 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 14/841,608, mailed on Nov. 14, 2017, 5 pages. |
Notice of Allowance received for U.S. Appl. No. 14/841,614, mailed on Oct. 24, 2018, 10 pages. |
Notice of Allowance received for U.S. Appl. No. 14/841,623, mailed on Feb. 23, 2018, 8 pages. |
Notice of Allowance received for U.S. Appl. No. 16/259,954, mailed on May 7, 2020, 9 pages. |
Notice of Allowance received for U.S. Appl. No. 17/013,778, mailed on Feb. 23, 2023, 8 pages. |
Office Action received for Australian Patent Application No. 2023203357, mailed on Feb. 14, 2024, 3 pages. |
Office Action received for Chinese Patent Application No. 201580046788.2, mailed on Apr. 15, 2019, 13 pages (6 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201580046788.2, mailed on Feb. 25, 2020, 14 pages (7 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201580046788.2, mailed on Mar. 25, 2021, 9 pages (4 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201580046788.2, mailed on Sep. 22, 2020, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 201880031407.7, mailed on Jan. 12, 2024, 15 pages (7 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202011083486.1, malled on Jan. 16, 2024, 21 pages (7 pages of English Translation and 14 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211081603.X, mailed on Jan. 10, 2024, 10 pages (5 pages of English Translation and 5 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211081603.X, mailed on Oct. 20, 2023, 15 pages (7 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211096369.8, mailed on Sep. 29, 2023, 13 pages (6 pages of English Translation and 7 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211110081.1, mailed on Jan. 8, 2024, 14 pages (6 pages of English Translation and 8 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211110081.1, mailed on Oct. 13, 2023, 16 pages (7 pages of English Translation and 9 pages of Official Copy). |
Office Action received for European Patent Application No. 15760008.1, mailed on Jul. 16, 2019, 9 pages. |
Office Action received for Taiwanese Patent Application No. 104128519, mailed on Mar. 29, 2017, 16 pages (7 pages of English Translation and 9 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 15760008.1, mailed on Sep. 9, 2021, 7 pages. |
Samsung, “SM-G900F User Manual”, English (EU). Rev.1.0, Mar. 2014, 249 pages. |
Sony, “Sony Smartwatch 3 SWR50”, User Guide, Jul. 2014, 31 pages. |
Summons to Attend Oral Proceedings received for European Patent Application No. 15760008.1, mailed on Feb. 5, 2021, 11 pages. |
Supplemental Notice of Allowance received for U.S. Appl. No. 14/841,608, mailed on Jan. 25, 2018, 2 pages. |
“A Small Revolution in Touch Screens—Evaluation and Testing of LGKF600”, China Academic Journal Electronic Publishing House, Feb. 1, 2008, pp. 60-62. |
weifeng.com, “Install and use Apple Pay on your Apple Watch”, Available online at: https://www.mpaypass.com.cn/news/201504/28093555.html, Apr. 28, 2015, 3 pages. |
Xiaokai, “Apple senior executive”, Apple Watch mobile payment is convenient and fast, Available online at: https://it.hebei.com.cn/system/2015/03/09/015101153.shtml, Mar. 9, 2015, 2 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 21197457.1, mailed on May 23, 2024, 5 pages. |
Non-Final Office Action received for U.S. Appl. No. 17/747,804, mailed on Jun. 4, 2024, 20 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/067,350, mailed on May 28, 2024, 43 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/200,480, mailed on May 20, 2024, 19 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/395,167, mailed on May 21, 2024, 11 pages. |
Notice of Acceptance received for Australian Patent Application No. 2023203357, mailed on May 16, 2024, 3 pages. |
Notice of Allowance received for Chinese Patent Application No. 201911128105.4, mailed on May 24, 2024, 2 pages (1 page of English Translation and 1 page of Official Copy). |
Office Action received for Chinese Patent Application No. 202211081603.X, mailed on Apr. 29, 2024, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202211110081.1, mailed on Apr. 28, 2024, 6 pages (3 pages of English Translation and 3 pages of Official Copy). |
Office Action received for European Patent Application No. 21207736.6, mailed on May 31, 2024, 4 pages. |
Office Action received for European Patent Application No. 21789897.2, mailed on May 23, 2024, 12 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 17/970,417. mailed on Jun. 26, 2024, 2 pages. |
Brief Communication Regarding Oral Proceedings received for European Patent Application No. 21197457.1, mailed on Jun. 19, 2024, 1 page. |
Office Action received for Australian Patent Application No. 2023201057, mailed on Jun. 19, 2024, 5 pages. |
Office Action received for Chinese Patent Application No. 202011083486.1, mailed on May 22, 2024, 15 pages (5 pages of English Translation and 10 pages of Official Copy). |
Office Action received for Chinese Patent Application No. 202210384721.1, mailed on May 23, 2024, 26 pages (14 pages of English Translation and 12 pages of Official Copy). |
weifeng.com, “Install and use Apple Pay on your Apple Watch”, Available online at: https://www.mpaypass.com.cn/news/201504/28093555.html, Apr. 28, 2015, 3 pages (Official Copy Only). (See Communication under Rule 37 CFR § 1.98(a) (3)}. |
Xiaokai, “Apple senior executive”, Apple Watch mobile payment is convenient and fast, Available online at: https://it.hebei.com.cn/system/2015/03/09/015101153.shtml, Mar. 9, 2015, 2 pages (Official Copy Only). {See Communication under Rule 37 CFR § 1.98(a) (3)}. |
A Small Revolution in Touch Screens—Evaluation and Testing of LGKF600, China Academic Journal Electronic Publishing House., Feb. 1, 2008, pp. 60-62 (Official Copy Only). {See Communication under Rule 37 CFR § 1.98(a) (3)}. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/088,309, mailed on Jun. 7, 2024, 2 pages. |
Extended European Search Report received for European Patent Application No. 24164409.5, mailed on Jun. 14, 2024, 5 pages. |
Final Office Action received for U.S. Appl. No. 18/200,480, mailed on Jun. 17, 2024, 19 pages. |
Intention to Grant received for European Patent Application No. 20720310.0, mailed on Jun. 13, 2024, 13 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 20720310.0, mailed on Jun. 7, 2024, 7 pages. |
Notice of Allowance received for Chinese Patent Application No. 202110902807.4, mailed on May 21, 2024, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2023-0001668, mailed on May 22, 2024, 6 pages (2 pages of English Translation and 4 pages of Official Copy). |
Result of Consultation received for European Patent Application No. 20720310.0, mailed on Jun. 4, 2024, 3 pages. |
Applicant-Initiated Interview Summary received for U.S. Appl. No. 18/395,167, mailed on Jun. 28, 2024, 4 pages. |
Create Confirmation Dialog Box—Matlab Ulconfirm, Online available at: https://www.mathworks.com/help/matlab/ref/uiconfirm.html, 2017, 19 pages. |
Final Office Action received for U.S. Appl. No. 17/941,961, mailed on Jul. 5, 2024, 21 pages. |
Intention to Grant received for European Patent Application No. 20719301.2, mailed on Jul. 2. 2024, 9 pages. |
Minutes of the Oral Proceedings received for European Patent Application No. 21197457.1, mailed on Jul. 3, 2024, 9 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/228,597, mailed on Jul. 8. 2024, 17 pages. |
Non-Final Office Action received for U.S. Appl. No. 18/234,613, mailed on Jul. 1, 2024, 19 pages. |
Notice of Allowance received for Japanese Patent Application No. 2022-116534, mailed on Jun. 24, 2024, 4 pages (1 page of English Translation and 3 pages of Official Copy). |
Notice of Allowance received for Korean Patent Application No. 10-2022-0053111, mailed on Jun. 25, 2024, 7 pages (2 pages of English Translation and 5 pages of Official Copy). |
Notice of Allowance received for U.S. Appl. No. 18/235,291, mailed on Jul. 3, 2024, 18 pages. |
Office Action received for Chinese Patent Application No. 202311305998.1, mailed on May 29, 2024, 13 pages (7 pages of English Translation and 6 pages of Official Copy). |
Office Action received for European Patent Application No. 23190753.6, mailed on Jun. 25, 2024, 10 pages. |
Window confirm( ), Online available at: https://www.w3schools.com/jsref/met_win_confirm.asp, 2014, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20230409191 A1 | Dec 2023 | US |
Number | Date | Country | |
---|---|---|---|
63083820 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17867317 | Jul 2022 | US |
Child | 18229989 | US | |
Parent | 17168069 | Feb 2021 | US |
Child | 17867317 | US |