Methods and materials for identifying malignant skin lesions

Information

  • Patent Grant
  • 11840735
  • Patent Number
    11,840,735
  • Date Filed
    Monday, July 22, 2019
    5 years ago
  • Date Issued
    Tuesday, December 12, 2023
    a year ago
Abstract
This document provides methods and materials for identifying malignant skin lesions (e.g., malignant pigmented skin lesions). For example, methods and materials for using quantitative PCR results and correction protocols to reduce the impact of basal keratinocyte contamination on the analysis of test sample results to identify malignant skin lesions are provided.
Description
STATEMENT ACCORDING TO 37 C.F.R. § 1.821(c) or (e)—REQUEST TO TRANSFER COMPUTER-READABLE FORM OF SEQUENCE LISTING FROM PARENT APPLICATION

Pursuant to 37 C.F.R. § 1.821(c) or (e), the transmittal documents of this application include a Request to Transfer Computer-Readable Form of the Sequence Listing from the parent application, the contents of the Sequence Listing are incorporated herein by this reference.


TECHNICAL FIELD

This document relates to methods and materials for identifying malignant skin lesions (e.g., malignant pigmented skin lesions). For example, this document relates to methods and materials for using quantitative PCR results and correction protocols to reduce the impact of basal keratinocyte contamination on the analysis of test sample results to identify malignant skin lesions.


BACKGROUND

Malignant skin lesions are typically identified by obtaining a skin biopsy and morphologically assessing the biopsy's melanocytes under a microscope. Such a procedure can be difficult to standardize and can lead to overcalling of melanomas.


Once a diagnosis of melanoma is made by morphological assessment, the risk of metastasis is typically determined by the invasion depth of malignant cells into the skin (i.e., the Breslow depth). The Breslow depth can dictate further work-up such as a need for an invasive sentinel lymph node (SLN) procedure. Such procedures, however, can lead to inaccurate determinations of the true malignant potential of a pigmented lesion.


BRIEF SUMMARY

Provided are methods and materials for identifying malignant skin lesions (e.g., malignant pigmented skin lesions). For example, this document provides methods and materials for using quantitative PCR results and correction protocols to reduce the impact of basal keratinocyte contamination on the analysis of test sample results to identify malignant skin lesions.


As described herein, quantitative PCR can be performed using a routine skin biopsy sample (e.g., a paraffin-embedded tissue biopsy) to obtain expression data (e.g., gene copy numbers) for one or more marker genes. Correction protocols can be used to reduce the impact of basal keratinocyte contamination on the analysis of the expression data from the test sample. For example, the contribution of gene expression from basal keratinocytes present within the test skin sample can be determined and removed from the overall gene expression values to determine the final gene expression value for a particular gene as expressed from cells other than basal keratinocytes (e.g., melanocytes). An assessment of the final gene expression values, which include minimal, if any, contribution from basal keratinocytes, for a collection of marker genes can be used to determine the benign or malignant biological behavior of the tested skin lesion.


In general, one aspect hereof features a method for identifying a malignant skin lesion. The method comprises, or consists essentially of, (a) determining, within a test sample, the expression level of a marker gene selected from the group consisting of PLAT, SPP1, TNC, ITGB3, COL4A1, CD44, CSK, THBS1, CTGF, VCAN, FARP1, GDF15, ITGB1, PTK2, PLOD3, ITGA3, IL8, and CXCL1 to obtain a measured expression level of the marker gene for the test sample, (b) determining, within the test sample, the expression level of a keratinocyte marker gene to obtain a measured expression level of the keratinocyte marker gene for the test sample, (c) removing, from the measured expression level of the marker gene for the test sample, a level of expression attributable to keratinocytes present in the test sample using the measured expression level of the keratinocyte marker gene for the test sample and a keratinocyte correction factor to obtain a corrected value of marker gene expression for the test sample, and (d) identifying the test sample as containing a malignant skin lesion based, at least in part, on the corrected value of marker gene expression for the test sample. The keratinocyte marker gene can be K14. The marker gene can be SPP1. The step (c) can comprise (i) multiplying the measured expression level of the keratinocyte marker gene for the test sample by the keratinocyte correction factor to obtain a correction value and (ii) subtracting the correction value from the measured expression level of the marker gene for the test sample to obtain the corrected value of marker gene expression for the test sample.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flow chart of an exemplary process for determining the gene expression value, which includes minimal, if any, contribution from basal keratinocytes, for a marker gene by cells within a tested sample (e.g., a tested skin biopsy sample).



FIG. 2 is a flow chart of an exemplary process for determining a keratinocyte correction factor for a marker gene of interest.



FIG. 3 is a flow chart of an exemplary process for removing copy number contamination from basal keratinocytes from a copy number value for a marker gene to determine the gene expression value, which includes minimal, if any, contribution from basal keratinocytes, for that marker gene by cells within a tested sample (e.g., a tested skin biopsy sample).



FIG. 4 is a diagram of an example of a generic computer device and a generic mobile computer device that can be used as described herein.



FIG. 5 is a flow chart of an exemplary process for using FN1 and SPP1 expression levels to determine the benign or malignant nature of a skin lesion.



FIG. 6 is a flow chart of an exemplary process for using FN1 and ITGB3 expression levels to determine the benign or malignant nature of a skin lesion.



FIG. 7 is a network diagram.





DETAILED DESCRIPTION

This document provides methods and materials for identifying malignant skin lesions (e.g., malignant pigmented skin lesions). For example, this document provides methods and materials for using quantitative PCR results and correction protocols to reduce the impact of basal keratinocyte contamination on the analysis of test sample results to identify malignant skin lesions.



FIG. 1 shows an exemplary process 100 for determining a gene expression value, which includes minimal, if any, contribution from basal keratinocytes, for a marker gene by cells within a tested sample (e.g., a tested skin biopsy sample). The process begins at box 102, where quantitative PCR using a collection of primer sets and a test sample is used to obtain a Ct value for the target of each primer set. Each gene of interest can be assessed using a single primer set or multiple different primer sets (e.g., two, three, four, five, six, seven, or more different primer sets). In some cases, quantitative PCR is performed using each primer set and control nucleic acid of the target of each primer set (e.g., linearized cDNA fragments) to obtain a standard curve for each primer set as set forth in box 104. In some cases, quantitative PCR is performed using each primer set and a known sample as an internal control (e.g., a stock biological sample) to obtain an internal control value for each primer set as set forth in box 106. This internal control can be used to set values for each primer set across different assays. In some cases, the quantitative PCR performed according to boxes 102, 104, and 106 can be performed in parallel. For example, the quantitative PCR performed according to boxes 102, 104, and 106 can be performed in a single 96 well format.


At box 108, the quality of the obtained standard curves can be confirmed. In some cases, a gene of interest included in the assay format can be a melanocyte marker (e.g., levels of MLANA and/or MITF expression) to confirm the presence of melanocytes in the test sample. Other examples of melanocyte markers that can be used as described herein include, without limitation, TYR, TYRP1, DCT, PMEL, OCA2, MLPH, and MC1R.


At box 110, the raw copy number of each target present in the test sample is determined using the Ct values and the standard curve for each target. In some cases, the averaged, corrected copy number for each gene is calculated using the raw copy number of each target of a particular gene and the internal control value for each primer set (box 112). This averaged, corrected copy number value for each gene can be normalized to a set number of one or more housekeeping genes as set forth in box 114. For example, each averaged, corrected copy number value for each gene can be normalized to 100,000 copies of the combination of ACTB, RPL8, RPLP0, and B2M. Other examples of housekeeping genes that can be used as described herein include, without limitation, RRN18S, GAPD, PGK1, PPIA, RPL13A, YWHAZ, SDHA, TFRC, ALAS1, GUSB, HMBS, HPRT1, TBP, and TUPP. Once normalized, the copy number values for each gene can be referred to as the averaged, corrected, normalized copy number for that gene as present in the test sample.


At box 116, the averaged, corrected, normalized copy number for each gene can be adjusted to remove the copy number contamination from basal keratinocytes present in the test sample. In general, copy number contamination from basal keratinocytes can be removed by (a) determining a keratinocyte correction factor for the gene of interest using one or more keratinocyte markers (e.g., keratin 14 (K14)) and one or more normal skin samples (e.g., FFPE-embedded normal skin samples), (b) determining the averaged, corrected, normalized copy number value for the one or more keratinocyte markers of the test sample and multiplying that value by the keratinocyte correction factor to obtain a correction value for the gene of interest, and (c) subtracting that correction value from the averaged, corrected, normalized copy number value of the gene of interest to obtain the final copy number for the gene of interest. Examples of keratinocyte markers that can be used as described herein include, without limitation, KRT5, KRT1, KRT10, KRT17, ITGB4, ITGA6, PLEC, DST, and COL17A1.


With reference to FIG. 2, process 200 can be used to obtain a keratinocyte correction factor for a gene of interest. At box 202, the averaged, corrected, normalized copy number for one or more genes of interest (e.g., Gene X) and one or more basal keratinocyte marker genes (e.g., K14) are determined using one or more normal skin samples and procedures similar to those described in FIG. 1. As box 204, the keratinocyte correction factor for each gene of interest (e.g., Gene X) is determined by dividing the averaged, corrected, normalized copy number for each gene of interest present in a normal skin sample by the averaged, corrected, normalized copy number of a basal keratinocyte marker gene present in a normal skin sample. Examples of keratinocyte correction factors for particular genes of interest are set forth in Table E under column “AVG per copy K14.”


With reference to FIG. 3, once a keratinocyte correction factor in determined for a particular gene of interest (e.g., Gene X), then the averaged, corrected, normalized copy number for the basal keratinocyte marker gene present in the test sample can be multiplied by the keratinocyte correction factor for the gene of interest (e.g., Gene X) to obtain a correction value for the gene of interest (e.g., Gene X). See, e.g., box 302. At box 304, the correction value for the gene of interest (e.g., Gene X) is subtracted from the averaged, corrected, normalized copy number for the gene of interest (e.g., Gene X) present in the test sample to obtain a final copy number value of the gene of interest (e.g., Gene X) present in the test sample.



FIG. 4 is a diagram of an example of a generic computer device 1400 and a generic mobile computer device 1450, which may be used with the techniques described herein. Computing device 1400 is intended to represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and other appropriate computers. Computing device 1450 is intended to represent various forms of mobile devices, such as personal digital assistants, cellular telephones, smart phones, and other similar computing devices. The components shown here, their connections and relationships, and their functions, are meant to be exemplary only, and are not meant to limit implementations of the inventions described and/or claimed in this document.


Computing device 1400 includes a processor 1402, memory 1404, a storage device 1406, a high-speed interface 1408 connecting to memory 1404 and high-speed expansion ports 1410, and a low speed interface 1415 connecting to low speed bus 1414 and storage device 1406. Each of the components 1402, 1404, 1406, 1408, 1410, and 1415, are interconnected using various busses, and may be mounted on a common motherboard or in other manners as appropriate. The processor 1402 can process instructions for execution within the computing device 1400, including instructions stored in the memory 1404 or on the storage device 1406 to display graphical information for a GUI on an external input/output device, such as display 1416 coupled to high speed interface 1408. In other implementations, multiple processors and/or multiple buses may be used, as appropriate, along with multiple memories and types of memory. Also, multiple computing devices 1400 may be connected, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-processor system).


The memory 1404 stores information within the computing device 1400. In one implementation, the memory 1404 is a volatile memory unit or units. In another implementation, the memory 1404 is a non-volatile memory unit or units. The memory 1404 may also be another form of computer-readable medium, such as a magnetic or optical disk.


The storage device 1406 is capable of providing mass storage for the computing device 1400. In one implementation, the storage device 1406 may be or contain a computer-readable medium, such as a floppy disk device, a hard disk device, an optical disk device, or a tape device, a flash memory or other similar solid state memory device, or an array of devices, including devices in a storage area network or other configurations. A computer program product can be tangibly embodied in an information carrier. The computer program product may also contain instructions that, when executed, perform one or more methods, such as those described herein. The information carrier is a computer- or machine-readable medium, such as the memory 1404, the storage device 1406, memory on processor 1402, or a propagated signal.


The high speed controller 1408 manages bandwidth-intensive operations for the computing device 1400, while the low speed controller 1415 manages lower bandwidth-intensive operations. Such allocation of functions is exemplary only. In one implementation, the high-speed controller 1408 is coupled to memory 1404, display 1416 (e.g., through a graphics processor or accelerator), and to high-speed expansion ports 1410, which may accept various expansion cards (not shown). In the implementation, low-speed controller 1415 is coupled to storage device 1406 and low-speed expansion port 1414. The low-speed expansion port, which may include various communication ports (e.g., USB, Bluetooth, Ethernet, or wireless Ethernet) may be coupled to one or more input/output devices, such as a keyboard, a pointing device, a scanner, an optical reader, a fluorescent signal detector, or a networking device such as a switch or router, e.g., through a network adapter.


The computing device 1400 may be implemented in a number of different forms, as shown in FIG. 4. For example, it may be implemented as a standard server 1420, or multiple times in a group of such servers. It may also be implemented as part of a rack server system 1424. In addition, it may be implemented in a personal computer such as a laptop computer 1422. In some cases, components from computing device 1400 may be combined with other components in a mobile device (not shown), such as device 1450. Each of such devices may contain one or more of computing device 1400, 1450, and an entire system may be made up of multiple computing devices 1400, 1450 communicating with each other.


Computing device 1450 includes a processor 1452, memory 1464, an input/output device such as a display 1454, a communication interface 1466, and a transceiver 1468, among other components (e.g., a scanner, an optical reader, a fluorescent signal detector). The device 1450 may also be provided with a storage device, such as a microdrive or other device, to provide additional storage. Each of the components 1450, 1452, 1464, 1454, 1466, and 1468, are interconnected using various buses, and several of the components may be mounted on a common motherboard or in other manners as appropriate.


The processor 1452 can execute instructions within the computing device 1450, including instructions stored in the memory 1464. The processor may be implemented as a chipset of chips that include separate and multiple analog and digital processors. The processor may provide, for example, for coordination of the other components of the device 1450, such as control of user interfaces, applications run by device 1450, and wireless communication by device 1450.


Processor 1452 may communicate with a user through control interface 1458 and display interface 1456 coupled to a display 1454. The display 1454 may be, for example, a TFT LCD (Thin-Film-Transistor Liquid Crystal Display) or an OLED (Organic Light Emitting Diode) display, or other appropriate display technology. The display interface 1456 may comprise appropriate circuitry for driving the display 1454 to present graphical and other information to a user. The control interface 1458 may receive commands from a user and convert them for submission to the processor 1452. In addition, an external interface 1462 may be provide in communication with processor 1452, so as to enable near area communication of device 1450 with other devices. External interface 1462 may provide, for example, for wired communication in some implementations, or for wireless communication in other implementations, and multiple interfaces may also be used.


The memory 1464 stores information within the computing device 1450. The memory 1464 can be implemented as one or more of a computer-readable medium or media, a volatile memory unit or units, or a non-volatile memory unit or units. Expansion memory 1474 may also be provided and connected to device 1450 through expansion interface 1472, which may include, for example, a SIMM (Single In Line Memory Module) card interface. Such expansion memory 1474 may provide extra storage space for device 1450, or may also store applications or other information for device 1450. For example, expansion memory 1474 may include instructions to carry out or supplement the processes described herein, and may include secure information also. Thus, for example, expansion memory 1474 may be provide as a security module for device 1450, and may be programmed with instructions that permit secure use of device 1450. In addition, secure applications may be provided via the SIMM cards, along with additional information, such as placing identifying information on the SIMM card in a non-hackable manner.


The memory may include, for example, flash memory and/or NVRAM memory, as discussed below. In one implementation, a computer program product is tangibly embodied in an information carrier. The computer program product contains instructions that, when executed, perform one or more methods, such as those described herein. The information carrier is a computer- or machine-readable medium, such as the memory 1464, expansion memory 1474, memory on processor 1452, or a propagated signal that may be received, for example, over transceiver 1468 or external interface 1462.


Device 1450 may communicate wirelessly through communication interface 1466, which may include digital signal processing circuitry where necessary. Communication interface 1466 may provide for communications under various modes or protocols, such as GSM voice calls, SMS, EMS, or MMS messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000, or GPRS, among others. Such communication may occur, for example, through radio-frequency transceiver 1468. In addition, short-range communication may occur, such as using a Bluetooth, WiFi, or other such transceiver (not shown). In addition, GPS (Global Positioning System) receiver module 1470 may provide additional navigation- and location-related wireless data to device 1450, which may be used as appropriate by applications running on device 1450.


Device 1450 may also communicate audibly using audio codec 1460, which may receive spoken information from a user and convert it to usable digital information. Audio codec 1460 may likewise generate audible sound for a user, such as through a speaker, e.g., in a handset of device 1450. Such sound may include sound from voice telephone calls, may include recorded sound (e.g., voice messages, music files, etc.) and may also include sound generated by applications operating on device 1450.


The computing device 1450 may be implemented in a number of different forms, as shown in FIG. 4. For example, it may be implemented as a cellular telephone 1480. It may also be implemented as part of a smartphone 1482, personal digital assistant, or other similar mobile device.


Various implementations of the systems and techniques described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.


These computer programs (also known as programs, software, software applications or code) include machine instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the terms “machine-readable medium” and “computer-readable medium” refer to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor.


To provide for interaction with a user, the systems and techniques described herein can be implemented on a computer having a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user and a keyboard and a pointing device (e.g., a mouse or a trackball) by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form, including acoustic, speech, or tactile input.


The systems and techniques described herein can be implemented in a computing system that includes a back end component (e.g., as a data server), or that includes a middleware component (e.g., an application server), or that includes a front end component (e.g., a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the systems and techniques described herein), or any combination of such back end, middleware, or front end components. The components of the system can be interconnected by any form or medium of digital data communication (e.g., a communication network).


Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), and the Internet.


The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.


The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.


EXAMPLES
Example 1—Marker Genes that Discriminate Between Benign and Malignant Tissue

Marker genes were ordered by their ability to differentiate benign from malignant tissue (Table A). This was based on the analysis of 73 benign and 53 malignant tissues, and the hypothesis that changes in expression of fibronectin-associated gene networks are indicative of malignant cell behavior. Values of the test statistic were for the Wilcoxon rank sum test. The values of the test statistic for a Winsorized two-sample test (trimmed outliers were replaced with actual values) and for the chi-square test for the zero vs. >zero versions of each variable were included. The top 5 discriminatory genes based on each statistical test were highlighted in bold.











TABLE A









Test statistic value











Wilcoxon rank
Winsorized two-



gene
sum test
sample t-test
Chi- square test













FN1

−10.2312


−8.04081


106.714



SPP1

−9.0279

−4.9374

86.774



COL4A1

−8.8807

−7.27171

83.711



TNC

−8.7511


−8.31049


75.549



ITGA3

−8.6008

−5.86334

79.788



LOXL3
−8.1978
−6.75327
75.144


AGRN
−8.1243

−7.91238

62.611


VCAN
−8.0812
−6.24088
67.388


PLOD3
−8.0384
−6.89248
62.691


ITGB1
−8.0021

−7.38143

59.973


PTK2
−7.5279

−7.19889

54.446


CTGF
−7.4997
−5.581
57.79


PLOD1
−7.332
−7.36126
44.87


LAMC1
−7.2425
−6.1057
54.233


THBS1
−7.2425
−5.60331
54.233


LOXL2
−7.2241
−6.33208
55.909


IL6
−7.1777
−6.41883
56.966


LOXL1
−7.1279
−6.34431
52.878


IL8
−7.1194
−5.76042
57.296


CYR61
−6.741
−6.97388
43.866


ITGAV
−6.5947
−6.27571
47.021


YAP
−6.4848
−6.36431
42.417


BGN
−6.3419
−6.01066
25.387


LAMB1
−6.3293
−5.68826
37.061


ITGB3
−6.3142
−5.13158
40.835


CXCL1
−6.1077
−5.66564
40.137


THBS2
−6.0427
−5.02003
37.413


COL18A1
−6.0379
−4.9125
41.339


SPARC
−6.0272
−6.39324
38.098


TP53
−6.0182
−6.18554
34.945


PLOD2
−5.9082
−3.50272
47.576


CCL2
−5.8844
−5.38758
30.69


FBLN2
−5.5848
−4.59826
31.913


LAMA1
−5.4876
−4.2817
31.071


THBS4
−5.3971
−3.88786
35.27


COL1A1
−5.325
−4.37617
34.693


ITGA5
−4.9847
−3.56695
25.243


TAZ
−4.036
−3.26011
18.313


POSTN
−3.8054
−2.78378
19.813


LOX
−3.728
−2.8677
17.157


CSRC
−3.7078
−3.71759
13.983


LAMA3
−3.5805
−2.99652
13.391


CDKN1A
−3.5766
−3.20447
17.228


CDKN2A
−3.5491
−2.90903
15.938


ITGA2
−3.4083
−2.72495
11.766


LAMC2
−3.4083
−2.53784
11.766


PCOLCE2
−3.3469
−3.53676
14.449


LOXL4
−3.2079
−2.76128
10.943


PCOLCE
−2.2172
−1.13805
7.993


LAMB3
−1.2822
0.89459
7.028


CSF2
2.175
1.93095
4.522









Example 2—Marker Panel Revision after Statistical Analysis

The candidate gene list from Example 1 was modified to include other FN1 network genes as well as four housekeeping genes (ACTB, RPLP0, RPL8, and B2M), two keratinocyte markers (K10 and K14) to assess keratinocyte contamination, and four melanocyte markers (MITF, TYR, MLANA and PMEL) to assess melanocyte content in the skin sections. Genes from Example 1 with low discriminatory value and a more distant neighborhood to FN1 were excluded from the test setup (LAMC1, LOXL2, CYR61, YAP, BGN, LAMB1, THBS2, COL18A1, SPARC, TP53, PLOD2, CCL2, FBLN2, LAMA1, THBS4, COL1A1, TAZ, POSTN, LOX, CSRC, LAMA3, CDKN1A, CDKN2A, LAMC2, PCOLCE2, LOXL4, PCOLCE, LAMB3, and CSF2). Instead, the discriminatory ability of other FN1 network genes was determined (PLAT, CSK, GDF15, FARP1, ARPC1B, NES, NTRK3, SNX17, L1CAM, and CD44). The following results were based on the analysis of 26 benign nevi and 52 primary cutaneous melanomas with documented subsequent metastasis or skin lesions of melanoma metastasis (Table B). The top 5 genes were highlighted.










TABLE B








Test Statistic value











Wilcoxon
Winsorized



gene
rank sum test
two-sample t-test
Chi-square test













COL4A1

−5.85975


−5.42545


46.3273



FN1

−5.50862

−3.63639

35.1951



PLAT

−4.82670

−3.13568

25.7234



IL8

−4.61443


−4.41668


28.6000



SPP1
−4.60153
−3.08137

23.0816



PLOD3
−4.37001

−3.91553

18.8036


TNC
−4.26431
−3.14128
19.5000


CXCL1
−4.24452

−3.76681

20.6471


CSK
−4.15178
−2.96444
18.3962


GDF15
−4.01364
−2.99752
13.7083


ITGB3
−3.92608
−2.80068
16.3091


CCL2
−3.61870
−3.45423
17.5176


VCAN
−3.46906
−2.26781
12.5593


ITGB1
−3.40897
−3.63399
5.0221


PLOD1
−3.40380
−3.20309
9.2625


CTGF
−3.11725
−2.20507
10.0645


THBS1
−3.11721
−2.01257
10.0645


ITGA3
−3.04915
−2.65398
7.5341


FARP1
−2.99724
−2.28024
9.2857


AGRN
−2.92104
−3.30679
1.8838


IL6
−2.85960
−3.05600
10.6257


LOXL3
−2.84999
−2.70498
5.1096


LOXL1
−2.69957
−2.11477
8.1250


ARPC1B
−2.57571
−2.82320
All but 1 value > 0


NES
−2.45264
−2.70056
2.4375


PTK2
−2.22328
−2.26180
4.4057


ITGA2
−2.08353
−1.50078
4.4571


ITGA5
−1.93478
−1.39663
3.8451


ITGAV
−1.29341
−0.81964
3.5615









NTRK3
−1.22485
75 of the 78 values are = 0










MITF
0.58305
0.73916
0.4274


SNX17
0.74754
0.90733
0.0785


L1CAM
1.61125
0.27151
2.1081


MLANA
2.96258
2.92548
All values > 0


CD44

5.23089


7.17590

All but 1 value > 0









Based on the results of Example 1 and above, FN1 was identified as a component of the melanoma phenotype that is at the core of a gene network that discriminates between benign and malignant melanocytic skin lesions (FIG. 7). The modeling was based on the STRING 9.0 database (string-db.org).


The list of all 71 genes tested is provided in Table 1.









TABLE 1







List of genes used to discriminate benign skin tissue lesions from


malignant skin tissue lesions.









Gene Name
GenBank ® Accession No.
GenBank ® GI No.












FN1
NM_212482
47132556



NM_002026
47132558



NM_212474
47132548



NM_212476
47132552



NM_212478
47132554



NM_054034
47132546


SPP1
NM_001040058
91206461



NM_001040060
91598938



NM_000582
38146097


COL4A1
NM_001845
148536824


TNC
NM_002160
340745336


ITGA3
NM_005501
171846264



NM_002204
171846266


LOXL3
NM_032603
22095373


AGRN
NM_198576
344179122


VCAN
NM_004385
255918074



NM_001164098
255918078



NM_001164097
255918076


PLOD3
NM_001084
62739167


ITGB1
NM_002211
182519230



NM_133376
182507162



NM_033668
182507160


PTK2
NM_001199649
313851043



NM_005607
313851042



NM_153831
313851041


CTGF
NM_001901
98986335


PLOD1
NM_000302
324710986


LAMC1
NM_002293
145309325


THBS1
NM_003246
40317625


LOXL2
NM_002318
67782347


IL6
NM_000600
224831235


LOXL1
NM_005576
67782345


IL8
NM_000584
324073503


CYR61
NM_001554
197313774


ITGAV
NM_001144999
223468594



NM_001145000
223468596



NM_002210
223468593


YAP
NM_001130145
303523503



NM_001195045
303523626



NM_006106
303523510



NM_001195044
303523609


BGN
NM_001711
268607602


LAMB1
NM_002291
167614503


ITGB3
NM_000212
47078291


CXCL1
NM_001511
373432598


THBS2
NM_003247
40317627


COL18A1
NM_030582
110611234



NM_130445
110611232


SPARC
NM_003118
365777426


TP53
NM_000546
371502114



NM_001126112
371502115



NM_001126114
371502117



NM_001126113
371502116


PLOD2
NM_182943
62739164



NM_000935
62739165


CCL2
NM_002982
56119169


FBLN2
NM_001998
51873054



NM_001004019
51873052



NM_001165035
259013546


LAMA1
NM_005559
329112585


THBS4
NM_003248
291167798


COL1A1
NM_000088
110349771


ITGA5
NM_002205
56237028


TAZ
NM_000116
195232764



NM_181311
195232766



NM_181312
195232765



NM_181313
195232767


POSTN
NM_001135934
209862910



NM_006475
209862906



NM_001135935
209863010


LOX
NM_001178102
296010939



NM_002317
296010938


CSRC
NM_005417
38202215



NM_198291
38202216


LAMA3
NM_198129
38045909



NM_001127717
189217424


CDKN1A
NM_000389
310832422



NM_001220777
334085239



NM_078467
310832423



NM_001220778
334085241


CDKN2A
NM_000077
300863097



NM_058195
300863095



NM_001195132
304376271


ITGA2
NM_002203
116295257


LAMC2
NM_005562
157419137



NM_018891
157419139


PCOLCE2
NM_013363
296317252


LOXL4
NM_032211
67782348


PCOLCE
NM_002593
157653328


LAMB3
NM_000228
62868214



NM_001017402
62868216



NM_001127641
189083718


CSF2
NM_000758
371502128


ACTB
NM_001101
168480144


RPLP0
NM_053275
49087137



NM_001002
49087144


RPL8
NM_000973
72377361



NM_033301
15431305


B2M
NM_004048
37704380


K10
NM_000421
195972865


K14
NM_000526
197313720


MITF
NM_198158
296841082



NM_198177
296841080



NM_006722
296841079



NM_198159
296841078



NM_000248
296841081



NM_001184967
296841084



NM_198178
296923803


TYR
NM_000372
113722118


MLANA
NM_005511
5031912


PMEL
NM_001200054
318037594



NM_001200053
318037592



NM_006928
318068057


NES
NM_006617
38176299


L1CAM
NM_024003
221316758



NM_001143963
221316759



NM_000425
221316755


GDF15
NM_004864
153792494


ARPC1B
NM_005720
325197176


FARP1
NM_005766
48928036



NM_001001715
159032536


NTRK3
NM_001007156
340745351



NM_001012338
340745349



NM_001243101
340745352



NM_002530
340745350


CSK
NM_001127190
187475372



NM_004383
187475371


CD44
NM_001001391
48255940



NM_001001392
48255942



NM_001202556
321400139



NM_001001389
48255936



NM_000610
48255934



NM_001001390
48255938



NM_001202555
321400137



NM_001202557
321400141


SNX17
NM_014748
388596703


PLAT
NM_000930
132626665



NM_033011
132626641









Gene expression of target genes was assessed by SYBR/EVA-Green based RT-PCR. All tested genes were accompanied by a standard curve for quantification of absolute copy number per a defined number of housekeeping genes. mRNA extraction from paraffin-embedded biospecimen was performed using an extraction protocol (Qiagen RNA FFPE extraction kit) and an extraction robot (Qiacube from Qiagen). mRNA was transcribed into cDNA using a commercially available kit (iScript kit from BioRad), and Fluidigm technology was used for PCR cycling.


The primer design was performed using web-based open access software. The primers were HPLC purified to minimize background and were optimized for formalin-fixed, paraffin-embedded (FFPE) tissue (i.e., highly degraded tissue). The primers were designed to detect a maximum number of gene transcripts and were designed to be cDNA specific (i.e., not affected by genomic DNA contamination of the total, tissue-derived cDNA). The housekeeping genes, keratin genes, melanocyte-specific genes, and selected high interest genes were detected using four separate and individually designed primer pairs. The primer pairs are set forth in Table 2.









TABLE 2







Primer sets for indicated genes.









Gene Name
Forward primer
Reverse primer





ACTB
5′-GCCAACCGCGAGAAGATG-3′;
5′-GGCTGGGGTGTTGAAGGT-3′;



SEQ ID NO: 1
SEQ ID NO: 2



5′-CGCGAGAAGATGACCCAGAT-3′;
5′-GGGGTGTTGAAGGTCTCAAA-3′;



SEQ ID NO: 3
SEQ ID NO: 4



5′-TGACCCAGATCATGTTTGAGA-3′;
5′-GTACATGGCTGGGGTGTTG-3′;



SEQ ID NO: 5
SEQ ID NO: 6



5′-CTGAACCCCAAGGCCAAC-3′;
5′-TGATCTGGGTCATCTTCTCG-3′;



SEQ ID NO: 7
SEQ ID NO: 8





RPLP0
5′-AACTCTGCATTCTCGCTTCC-3′;
5′-GCAGACAGACACTGGCAACA-3′;



SEQ ID NO: 9
SEQ ID NO: 10



5′-GCACCATTGAAATCCTGAGTG-3′;
5′-GCTCCCACTTTGTCTCCAGT-3′;



SEQ ID NO: 11
SEQ ID NO: 12



5′-TCACAGAGGAAACTCTGCATTC-3′;
5′-GGACACCCTCCAGGAAGC-3′;



SEQ ID NO: 13
SEQ ID NO: 14



5′-ATCTCCAGGGGCACCATT-3′;
5′-AGCTGCACATCACTCAGGATT-3′;



SEQ ID NO: 15
SEQ ID NO: 16





RPL8
5′-ACTGCTGGCCACGAGTACG-3′;
5′-ATGCTCCACAGGATTCATGG-3′;



SEQ ID NO: 17
SEQ ID NO: 18



5′-ACAGAGCTGTGGTTGGTGTG-3′;
5′-TTGTCAATTCGGCCACCT-3′;



SEQ ID NO: 19
SEQ ID NO: 20



5′-TATCTCCTCAGCCAACAGAGC-3′;
5′-AGCCACCACACCAACCAC-3′;



SEQ ID NO: 21
SEQ ID NO: 22



5′-GTGTGGCCATGAATCCTGT-3′;
5′-CCACCTCCAAAAGGATGCTC-3′;



SEQ ID NO: 23
SEQ ID NO: 24





B2M
5′-TCTCTCTTTCTGGCCTGGAG-3′;
5′-GAATCTTTGGAGTACGCTGGA-3′;



SEQ ID NO: 25
SEQ ID NO: 26



5′-TGGAGGCTATCCAGCGTACT-3′;
5′-CGTGAGTAAACCTGAATCTTTGG-3′;



SEQ ID NO: 27
SEQ ID NO: 28



5′-CCAGCGTACTCCAAAGATTCA-3′;
5′-TCTCTGCTGGATGACGTGAG-3′;



SEQ ID NO: 29
SEQ ID NO: 30



5′-GGCTATCCAGCGTACTCCAA-3′;
5′-GCTGGATGACGTGAGTAAACC-3′;



SEQ ID NO: 31
SEQ ID NO: 32





KRT14
5′-ACCATTGAGGACCTGAGGAA-3′;
5′-GTCCACTGTGGCTGTGAGAA-3′;



SEQ ID NO: 33
SEQ ID NO: 34



5′-CATTGAGGACCTGAGGAACA-3′;
5′-AATCTGCAGAAGGACATTGG-3′;



SEQ ID NO: 35
SEQ ID NO: 36



5′-GATGACTTCCGCACCAAGTA-3′;
5′-CGCAGGTTCAACTCTGTCTC-3′;



SEQ ID NO: 37
SEQ ID NO: 38



5′-TCCGCACCAAGTATGAGACA-3′;
5′-ACTCATGCGCAGGTTCAACT-3′;



SEQ ID NO: 39
SEQ ID NO: 40





KRT10
5′-GAGCCTCGTGACTACAGCAA-3′;
5′-GCAGGATGTTGGCATTATCAGT-3′;



SEQ ID NO: 41
SEQ ID NO: 42



5′-AAAACCATCGATGACCTTAAAAA-3′;
5′-GATCTGAAGCAGGATGTTGG-3′;



SEQ ID NO: 43
SEQ ID NO: 44





MITF
5′-TTCCCAAGTCAAATGATCCAG-3′;
5′-AAGATGGTTCCCTTGTTCCA-3′;



SEQ ID NO: 45
SEQ ID NO: 46



5′-CGGCATTTGTTGCTCAGAAT-3′;
5′-GAGCCTGCATTTCAAGTTCC-3′;



SEQ ID NO: 47
SEQ ID NO: 48





TYR
5′-TTCCTTCTTCACCATGCATTT-3′;
5′-GGAGCCACTGCTCAAAAATA-3′;



SEQ ID NO: 49
SEQ ID NO: 50



5′-TCCAAAGATCTGGGCTATGA-3′;
5′-TTGAAAAGAGTCTGGGTCTGAA-3′;



SEQ ID NO: 51
SEQ ID NO: 52





MLANA
5′-GAGAAAAACTGTGAACCTGTGG-3′;
5′-ATAAGCAGGTGGAGCATTGG-3′;



SEQ ID NO: 53
SEQ ID NO: 54



5′-GAAGACGAAATGGATACAGAGC-3′;
5′-GTGCCAACATGAAGACTTTTATC-3′;



SEQ ID NO: 55
SEQ ID NO: 56





PMEL
5′-GTGGTCAGCACCCAGCTTAT-3′;
5′-CCAAGGCCTGCTTCTTGAC-3′;



SEQ ID NO: 57
SEQ ID NO: 58



5′-GCTGTGGTCCTTGCATCTCT-3′;
5′-GCTTCATAAGTCTGCGCCTA-3′;



SEQ ID NO: 59
SEQ ID NO: 60





FN1
5′-CTCCTGCACATGCTTTGGA-3′;
5′-AGGTCTGCGGCAGTTGTC-3′;



SEQ ID NO: 61
SEQ ID NO: 62



5′-AGGCTTTGGAAGTGGTCATT-3′;
5′-CCATTGTCATGGCACCATCT-3′;



SEQ ID NO: 63
SEQ ID NO: 64



5′-GAAGTGGTCATTTCAGATGTGATT-3′;
5′-CCATTGTCATGGCACCATCT-3′;



SEQ ID NO: 65
SEQ ID NO: 66



5′-TGGTCATTTCAGATGTGATTCAT-3′;
5′-CATTGTCATGGCACCATCTA-3′;



SEQ ID NO: 67
SEQ ID NO: 68





SPP1
5′-GTTTCGCAGACCTGACATCC-3′;
5′-TCCTCGTCTGTAGCATCAGG-3′;



SEQ ID NO: 69
SEQ ID NO: 70



5′-CCTGACATCCAGTACCCTGA-3′;
5′-TGAGGTGATGTCCTCGTCTG-3′;



SEQ ID NO: 71
SEQ ID NO: 72



5′-GAATCTCCTAGCCCCACAGA-3′;
5′-GGTTTCTTCAGAGGACACAGC-3′;



SEQ ID NO: 73
SEQ ID NO: 74



5′-CCCATCTCAGAAGCAGAATCTC-3′;
5′-ACAGCATTCTGTGGGGCTA-3′;



SEQ ID NO: 75
SEQ ID NO: 76





COL4A1
5′-GGAAAACCAGGACCCAGAG-3′;
5′-CTTTTTCCCCTTTGTCACCA-3′;



SEQ ID NO: 77
SEQ ID NO: 78



5′-AGAAAGGTGAACCCGGAAAA-3′;
5′-GGTTTGCCTCTGGGTCCT-3′;



SEQ ID NO: 79
SEQ ID NO: 80



5′-GAGAAAAGGGCCAAAAAGGT-3′;
5′-CATCCCCTGAAATCCAGGTT-3′;



SEQ ID NO: 81
SEQ ID NO: 82



5′-AAAGGGCCAAAAAGGTGAAC-3′;
5′-CCTGGCATCCCCTGAAAT-3′;



SEQ ID NO: 83
SEQ ID NO: 84





TNC
5′-GTGTCAACCTGATGGGGAGA-3′;
5′-GTTAACGCCCTGACTGTGGT-3′;



SEQ ID NO: 85
SEQ ID NO: 86



5′-GGTACAGTGGGACAGCAGGT-3′;
5′-GATCTGCCATTGTGGTAGGC-3′;



SEQ ID NO: 87
SEQ ID NO: 88



5′-AACCACAGTCAGGGCGTTA-3′;
5′-GTTCGTGGCCCTTCCAGT-3′;



SEQ ID NO: 89
SEQ ID NO: 90



5′-AAGCTGAAGGTGGAGGGGTA-3′;
5′-GAGTCACCTGCTGTCCCACT-3′;



SEQ ID NO: 91
SEQ ID NO: 92





ITGA3
5′-TATTCCTCCGAACCAGCATC-3′;
5′-CACCAGCTCCGAGTCAATGT-3′;



SEQ ID NO: 93
SEQ ID NO: 94



5′-CCACCATCAACATGGAGAAC-3′;
5′-AGTCAATGTCCACAGAGAACCA-3′;



SEQ ID NO: 95
SEQ ID NO: 96





LOXL3
5′-CAACTGCCACATTGGTGATG-3′;
5′-AAACCTCCTGTTGGCCTCTT-3′;



SEQ ID NO: 97
SEQ ID NO: 98



5′-TGACATCACGGATGTGAAGC-3′;
5′-GGGTTGATGACAACCTGGAG-3′;



SEQ ID NO: 99
SEQ ID NO: 100





AGRN
5′-TGTGACCGAGAGCGAGAAG-3′;
5′-CAGGCTCAGTTCAAAGTGGTT-3′;



SEQ ID NO: 101
SEQ ID NO: 102



5′-CGGACCTTTGTCGAGTACCT-3′;
5′-GTTGCTCTGCAGTGCCTTCT-3′;



SEQ ID NO: 103
SEQ ID NO: 104





VCAN
5′-GACTTCCGTTGGACTGATGG-3′;
5′-TGGTTGGGTCTCCAATTCTC-3′;



SEQ ID NO: 105
SEQ ID NO: 106



5′-ACGTGCAAGAAAGGAACAGT-3′;
5′-TCCAAAGGTCTTGGCATTTT-3′;



SEQ ID NO: 107
SEQ ID NO: 108





PLOD3
5′-GCAGAGATGGAGCACTACGG-3′;
5′-CAGCCTTGAATCCTCATGC-3′;



SEQ ID NO: 109
SEQ ID NO: 110



5′-GGAAGGAATCGTGGAGCAG-3′;
5′-CAGCAGTGGGAACCAGTACA-3′;



SEQ ID NO: 111
SEQ ID NO: 112





ITGB1
5′-CTGATGAATGAAATGAGGAGGA-3′;
5′-CACAAATGAGCCAAATCCAA-3′;



SEQ ID NO: 113
SEQ ID NO: 114



5′-CAGTTTGCTGTGTGTTTGCTC-3′;
5′-CATGATTTGGCATTTGCTTTT-3′;



SEQ ID NO: 115
SEQ ID NO: 116





PTK2
5′-GCCCCACCAGAGGAGTATGT-3′;
5′-AAGCCGACTTCCTTCACCA-3′;



SEQ ID NO: 117
SEQ ID NO: 118



5′-GAGACCATTCCCCTCCTACC-3′;
5′-GCTTCTGTGCCATCTCAATCT-3′;



SEQ ID NO: 119
SEQ ID NO: 120





CTGF
5′-CGAAGCTGACCTGGAAGAGA-3′;
5′-TGGGAGTACGGATGCACTTT-3′;



SEQ ID NO: 121
SEQ ID NO: 122



5′-GTGTGCACCGCCAAAGAT-3′;
5′-CGTACCACCGAAGATGCAG-3′;



SEQ ID NO: 123
SEQ ID NO: 124





PLOD1
5′-CTACCCCGGCTACTACACCA-3′;
5′-GACAAAGGCCAGGTCAAACT-3′;



SEQ ID NO: 125
SEQ ID NO: 126



5′-AGTCGGGGTGGATTACGAG-3′;
5′-ACAGTTGTAGCGCAGGAACC-3′;



SEQ ID NO: 127
SEQ ID NO: 128





LAMC1
5′-ATGATGATGGCAGGGATGG-3′;
5′-GCATTGATCTCGGCTTCTTG-3′;



SEQ ID NO: 129
SEQ ID NO: 130





THBS1
5′-CTGTGGCACACAGGAAACAC-3′;
5′-ACGAGGGTCATGCCACAG-3′;



SEQ ID NO: 131
SEQ ID NO: 132



5′-GCCAAAGACGGGTTTCATTA-3′;
5′-GCCATGATTTTCTTCCCTTC-3′;



SEQ ID NO: 133
SEQ ID NO: 134





LOXL2
5′-CTCCTCCTACGGCAAGGGA-3′;
5′-TGGAGATTGTCTAACCAGATGGG-3′;



SEQ ID NO: 135
SEQ ID NO: 136



5′-CTCCTACGGCAAGGGAGAAG-3′;
5′-TTGCCAGTACAGTGGAGATTG-3′;



SEQ ID NO: 137
SEQ ID NO: 138





IL6
5′-CCAGAGCTGTCAGATGAGT-3′;
5′-TGCATCTAGATTCTTTGCCTTTT-3′;



SEQ ID NO: 139
SEQ ID NO: 140





LOXL1
5′-AGGGCACAGCAGACTTCCT-3′;
5′-TCGTCCATGCTGTGGTAATG-3′;



SEQ ID NO: 141
SEQ ID NO: 142



5′-GCATGCACCTCTCATACCC-3′;
5′-CGCATTGTAGGTGTCATAGCA-3′;



SEQ ID NO: 143
SEQ ID NO: 144





IL8
5′-CTTGGCAGCCTTCCTGATT-3′;
5′-GCAAAACTGCACCTTCACAC-3′;



SEQ ID NO: 145
SEQ ID NO: 146





CYR61
5′-CGCTCTGAAGGGGATCTG-3′;
5′-ACAGGGTCTGCCCTCTGACT-3′;



SEQ ID NO: 147
SEQ ID NO: 148



5′-GAGCTCAGTCAGAGGGCAGA-3′;
5′-AACTTTCCCCGTTTTGGTAGA-3′;



SEQ ID NO: 149
SEQ ID NO: 150





ITGAV
5′-GACCTTGGAAACCCAATGAA-3′;
5′-TCCATCTCTGACTGCTGGTG-3′;



SEQ ID NO: 147
SEQ ID NO: 148



5′-GGTGGTATGTGACCTTGGAAA-3′;
5′-GCACACTGAAACGAAGACCA-3′;



SEQ ID NO: 149
SEQ ID NO: 150





YAP
5′-TGAACAGTGTGGATGAGATGG-3′;
5′-GCAGGGTGCTTTGGTTGATA-3′;



SEQ ID NO: 151
SEQ ID NO: 152





BGN
5′-AAGGGTCTCCAGCACCTCTAC-3′;
5′-AAGGCCTTCTCATGGATCTT-3′;



SEQ ID NO: 153
SEQ ID NO: 154



5′-GAGCTCCGCAAGGATGACT-3′;
5′-AGGACGAGGGCGTAGAGGT-3′;



SEQ ID NO: 155
SEQ ID NO: 156





LAMB1
5′-CATTCAAGGAACCCAGAACC-3′;
5′-GCGTTGAACAAGGTTTCCTC-3′;



SEQ ID NO: 157
SEQ ID NO: 158





ITBG3
5′-AAGAGCCAGAGTGTCCCAAG-3′;
5′-ACTGAGAGCAGGACCACCA-3′;



SEQ ID NO: 159
SEQ ID NO: 160



5′-CTTCTCCTGTGTCCGCTACAA-3′;
5′-CATGGCCTGAGCACATCTC-3′;



SEQ ID NO: 161
SEQ ID NO: 162



5′-TGCCTGCACCTTTAAGAAAGA-3′;
5′-CCGGTCAAACTTCTTACACTCC-3′;



SEQ ID NO: 163
SEQ ID NO: 164



5′-AAGGGGGAGATGTGCTCAG-3′;
5′-CAGTCCCCACAGCTGCAC-3′;



SEQ ID NO: 165
SEQ ID NO: 166





CXCL1
5′-AAACCGAAGTCATAGCCACAC-3′;
5′-AAGCTTTCCGCCCATTCTT-3′;



SEQ ID NO: 167
SEQ ID NO: 168





THBS2
5′-AGGCCCAAGACTGGCTACAT-3′;
5′-CTGCCATGACCTGTTTTCCT-3′;



SEQ ID NO: 169
SEQ ID NO: 170



5′-GGCAGGTGCGAACCTTATG-3′;
5′-CCTTCCAGCCAATGTTCCT-3′;



SEQ ID NO: 171
SEQ ID NO: 172





COL18A1
5′-GATCGCTGAGCTGAAGGTG-3′;
5′-CGGATGCCCCATCTGAGT-3′;



SEQ ID NO: 173
SEQ ID NO: 174





SPARC
5′-CCCATTGGCGAGTTTGAGAAG-3′;
5′-AGGAAGAGTCGAAGGTCTTGTT-3′;



SEQ ID NO: 175
SEQ ID NO: 176



5′-GGAAGAAACTGTGGCAGAGG-3′;
5′-GGACAGGATTAGCTCCCACA-3′;



SEQ ID NO: 177
SEQ ID NO: 178





TP53
5′-ACAACGTTCTGTCCCCCTTG-3′;
5′-GGGGACAGCATCAAATCATC-3′;



SEQ ID NO: 179
SEQ ID NO: 180





PLOD2
5′-TGGATGCAGATGTTGTTTTGA-3′;
5′-CACAGCTTTCCATGACGAGTT-3′;



SEQ ID NO: 181
SEQ ID NO: 182



5′-TTGATTGAACAAAACAGAAAGATCA-3′;
5′-TGACGAGTTACAAGAGGAGCAA-3′;



SEQ ID NO: 183
SEQ ID NO: 184





CCL2
5′-CTGCTCATAGCAGCCACCTT-3′;
5′-AGGTGACTGGGGCATTGATT-3′;



SEQ ID NO: 185
SEQ ID NO: 186





FBLN2
5′-ACGTGGAGGAGGACACAGAC-3′;
5′-GGAGCCTTCAGGGCTACTTC-3′;



SEQ ID NO: 187
SEQ ID NO: 188





LAMA1
5′-AGCACTGCCAAAGTGGATG-3′;
5′-TTGTTGACATGGAACAAGACC-3′;



SEQ ID NO: 189
SEQ ID NO: 190





THBS4
5′-GTGGGCTACATCAGGGTACG-3′;
5′-CAGAGTCAGCCACCAACTCA-3′;



SEQ ID NO: 191
SEQ ID NO: 192



5′-CATCATCTGGTCCAACCTCA-3′;
5′-GTCCTCAGGGATGGTGTCAT-3′;



SEQ ID NO: 193
SEQ ID NO: 194





COL1A1
5′-TGACCTCAAGATGTGCCACT-3′;
5′-TGGTTGGGGTCAATCCAGTA-3′;



SEQ ID NO: 195
SEQ ID NO: 196



5′-GATGGATTCCAGTTCGAGTATG-3′;
5′-ATCAGGCGCAGGAAGGTC-3′;



SEQ ID NO: 197
SEQ ID NO: 198





ITGA5
5′-CCCAAAAAGAGCGTCAGGT-3′;
5′-TTGTTGACATGGAACAAGACC-3′;



SEQ ID NO: 199
SEQ ID NO: 200





TAZ
5′-CTTCCTAACAGTCCGCCCTA-3′;
5′-CCCGATCAGCACAGTGATTT-3′;



SEQ ID NO: 201
SEQ ID NO: 202





POSTN
5′-CTGCTTCAGGGAGACACACC-3′;
5′-TGGCTTGCAACTTCCTCAC-3′;



SEQ ID NO: 203
SEQ ID NO: 204



5′-AGGAAGTTGCAAGCCAACAA-3′;
5′-CGACCTTCCCTTAATCGTCTT-3′;



SEQ ID NO: 205
SEQ ID NO: 206





LOX
5′-GCGGAGGAAAACTGTCTGG-3′;
5′-AAATCTGAGCAGCACCCTGT-3′;



SEQ ID NO: 207
SEQ ID NO: 208



5′-ATATTCCTGGGAATGGCACA-3′;
5′-CCATACTGTGGTAATGTTGATGA-3′;



SEQ ID NO: 209
SEQ ID NO: 210





CSRC
5′-TGTCAACAACACAGAGGGAGA-3′;
5′-CACGTAGTTGCTGGGGATGT-3′;



SEQ ID NO: 211
SEQ ID NO: 212



5′-TGGCAAGATCACCAGACGG-3′;
5′-GGCACCTTTCGTGGTCTCAC-3′;



SEQ ID NO: 213
SEQ ID NO: 214





LAMA3
5′-CATGTCGTCTTGGCTCACTC-3′;
5′-AAATTCTGGCCCCAACAATAC-3′;



SEQ ID NO: 215
SEQ ID NO: 216





CDKN1A
5′-CATGTCGTCTTGGCTCACTC-3′;
5′-AAATTCTGGCCCCAACAATAC-3′;



SEQ ID NO: 217
SEQ ID NO: 218





CDKN2A
5′-AGGAGCCAGCGTCTAGGG-3′;
5′-CTGCCCATCATCATGACCT-3′;



SEQ ID NO: 219
SEQ ID NO: 220



5′-AACGCACCGAATAGTTACGG-3′;
5′-CATCATCATGACCTGGATCG-3′;



SEQ ID NO: 221
SEQ ID NO: 222





ITGA2
5′-CACTGTTACGATTCCCCTGA-3′;
5′-CGGCTTTCTCATCAGGTTTC-3′;



SEQ ID NO: 223
SEQ ID NO: 224





LAMC2
5′-ATTAGACGGCCTCCTGCATC-3′;
5′-AGACCAGCCCCTCTTCATCT-3′;



SEQ ID NO: 225
SEQ ID NO: 226





PCOLCE2
5′-TACTTGGAAAATCACAGTTCCCG-3′;
5′-TGAATCGGAAATTGAGAACGACT-3′;



SEQ ID NO: 225
SEQ ID NO: 226





LOXL4
5′-GGCCCCGGGAATTATATCT-3′;
5′-CCACTTCATAGTGGGGGTTC-3′;



SEQ ID NO: 227
SEQ ID NO: 228



5′-CTGCACAACTGCCACACAG-3′;
5′-GTTCTGCATTGGCTGGGTAT-3′;



SEQ ID NO: 229
SEQ ID NO: 230





PCOLCE
5′-CGTGGCAAGTGAGGGGTTC-3′;
5′-CGAAGACTCGGAATGAGAGGG-3′;



SEQ ID NO: 231
SEQ ID NO: 232



5′-GAGGCTTCCTGCTCTGGT-3′;
5′-CGCAAAATTGGTGCTCAGT-3′;



SEQ ID NO: 233
SEQ ID NO: 234





LAMB3
5′-GTCCGGGACTTCCTAACAGA-3′;
5′-GCTGACCTCCTGGATAGTGTG-3′;



SEQ ID NO: 235
SEQ ID NO: 236





PMEL
5′-GTGGTCAGCACCCAGCTTAT-3′;
5′-CCAAGGCCTGCTTCTTGAC-3′;



SEQ ID NO: 237
SEQ ID NO: 238



5′-GCTGTGGTCCTTGCATCTCT-3′;
5′-GCTTCATAAGTCTGCGCCTA-3′;



SEQ ID NO: 239
SEQ ID NO: 240





NES
5′-CTTCCCTCAGCTTTCAGGAC-3′;
5′-TCTGGGGTCCTAGGGAATTG-3′;



SEQ ID NO: 241
SEQ ID NO: 242



5′-ACCTCAAGATGTCCCTCAGC-3′;
5′-CAGGAGGGTCCTGTACGTG-3′;



SEQ ID NO: 243
SEQ ID NO: 244





L1CAM
5′-GAGACCTTCGGCGAGTCACAG-3′;
5′-AAAGGCCTTCTCCTCGTTGT-3′;



SEQ ID NO: 245
SEQ ID NO: 246



5′-GGCGGCAAATACTCAGTGAA-3′;
5′-CCTGGGTGTCCTCCTTATCC-3′;



SEQ ID NO: 247
SEQ ID NO: 248





GDF15
5′-CGGATACTCACGCCAGAAGT-3′;
5′-AGAGATACGCAGGTGCAGGT-3′;



SEQ ID NO: 249
SEQ ID NO: 250



5′-AAGATTCGAACACCGACCTC-3′;
5′-GCACTTCTGGCGTGAGTATC-3′;



SEQ ID NO: 251
SEQ ID NO: 252





ARPC1B
5′-CACGCCTGGAACAAGGAC-3′;
5′-ATGCACCTCATGGTTGTTGG-3′;



SEQ ID NO: 253
SEQ ID NO: 254



5′-CAGGTGACAGGCATCGACT-3′;
5′-CGCAGGTCACAATACGGTTA-3′;



SEQ ID NO: 255
SEQ ID NO: 256





FARP1
5′-TGAGGCCCTGAGAGAGAAGA-3′;
5′-ATTCCGAAACTCCACACGTC-3′;



SEQ ID NO: 257
SEQ ID NO: 258



5′-TCAAGGAAATTGAGCAACGA-3′;
5′-TCTGATTTGGGCATTTGAGC-3′;



SEQ ID NO: 259
SEQ ID NO: 260





NTRK3
5′-TATGGTCGACGGTCCAAAT-3′;
5′-TCCTCACCACTGATGACAGC-3′;



SEQ ID NO: 261
SEQ ID NO: 262



5′-CACTGTGACCCACAAACCAG-3′;
5′-GCAAGTCCAACTGCTATGGA-3′;



SEQ ID NO: 263
SEQ ID NO: 264





CSK
5′-TGAGGCCCTGAGAGAGAAGA-3′;
5′-ATTCCGAAACTCCACACGTC-3′;



SEQ ID NO: 265
SEQ ID NO: 266



5′-TCTACTCCTTTGGGCGAGTG-3′;
5′-CGTCCTTCAGGGGAATTCTT-3′;



SEQ ID NO: 267
SEQ ID NO: 268





CD44
5′-TAAGGACACCCCAAATTCCA-3′;
5′-GCCAAGATGATCAGCCATTC-3′;



SEQ ID NO: 269
SEQ ID NO: 270



5′-GCAGTCAACAGTCGAAGAAGG-3′;
5′-AGCTTTTTCTTCTGCCCACA-3′;



SEQ ID NO: 271
SEQ ID NO: 272





SNX17
5′-AGCCAGCAAGCAGTGAAGTC-3′;
5′-TCAGGTGACTCAAGCAGTGG-3′;



SEQ ID NO: 273
SEQ ID NO: 274



5′-CCGGGAGTCTATGGTCAAAC-3′;
5′-CACGGCACTCAGCTTACTTG-3′;



SEQ ID NO: 275
SEQ ID NO: 276





PLAT
5′-TGGAGCAGTCTTCGTTTCG-3′;
5′-CTGGCTCCTCTTCTGAATCG-3′;



SEQ ID NO: 277
SEQ ID NO: 278



5′-GCCCGATTCAGAAGAGGAG-3′;
5′-TCATCTCTGCAGATCACTTGG-3′;



SEQ ID NO: 279
SEQ ID NO: 280









The following was performed to generate a standard curve for the target of each primer pair. The standard was generated with a defined number of amplicons per volume for each primer pair. In particular, a standard (S7) was designed to contain about 5 million copies of amplicon-containing cDNA in a bacterial expression vector backbone (pJET1.2 obtained from Fermentas) per one microliter volume for each primer pair. From this, six 1:10 dilutions were generated such that seven standards S1 to S7 were obtained ranging from 5 to 5 million copies of amplicon. To obtain fragments of cDNA, total RNA was extracted from the human HaCaT, A431, and A375 cell lines, and the RNA was reverse transcribed into cDNA. Cell line-derived cDNA was used as a template to amplify fragments of cDNA that contained the desired amplicons for the real time-PCR primer pairs. A list of primers used to generate the desired cDNA fragments is listed in Table 3.









TABLE 3







Primer sets for generating cDNA fragments of the indicated genes.









Gene Name
Forward primer
Reverse primer





FN1
5′-CCAGCAGAGGCATAAGGTTC-3′;
5′-AGTAGTGCCTTCGGGACTGG-3′;



SEQ ID NO: 281
SEQ ID NO: 282





SPP1
5′-AGGCTGATTCTGGAAGTTCTGAGG-3′;
5′-AATCTGGACTGCTTGTGGCTG-3′;



SEQ ID NO: 283
SEQ ID NO: 284





COL4A1
5′-GTTGGGCCTCCAGGATTTA-3′;
5′-GCCTGGTAGTCCTGGGAAAC-3′;



SEQ ID NO: 285
SEQ ID NO: 286





TNC
5′-TGGATGGATTGTGTTCCTGA-3′;
5′-GCCTGCCTTCAAGATTTCTG-3′;



SEQ ID NO: 287
SEQ ID NO: 288





ITGA3
5′-CTGAGACTGTGCTGACCTGTG-3′;
5′-CTCTTCATCTCCGCCTTCTG-3′;



SEQ ID NO: 289
SEQ ID NO: 290





LOXL3
5′-GAGACCGCCTACATCGAAGA-3′;
5′-GGTAGCGTTCAAACCTCCTG-3′;



SEQ ID NO: 291
SEQ ID NO: 292





AGRN
5′-ACACCGTCCTCAACCTGAAG-3′;
5′-AATGGCCAGTGCCACATAGT-3′;



SEQ ID NO: 293
SEQ ID NO: 294





VCAN
5′-GGTGCACTTTGTGAGCAAGA-3′;
5′-TTGGTATGCAGATGGGTTCA-3′;



SEQ ID NO: 295
SEQ ID NO: 296





PLOD3
5′-AGCTGTGGTCCAACTTCTGG-3′;
5′-GTGTGGTAACCGGGAAACAG-3′;



SEQ ID NO: 297
SEQ ID NO: 298





ITGB1
5′-TTCAGTTTGCTGTGTGTTTGC-3′;
5′-CCACCTTCTGGAGAATCCAA-3′;



SEQ ID NO: 299
SEQ ID NO: 300





PTK2
5′-GGCAGTATTGACAGGGAGGA-3′;
5′-TACTCTTGCTGGAGGCTGGT-3′;



SEQ ID NO: 301
SEQ ID NO: 302





CTGF
5′-GCCTATTCTGTCACTTCGGCTC-3′;
5′-GCAGGCACAGGTCTTGATGAAC-3′;



SEQ ID NO: 303
SEQ ID NO: 304





PLOD1
5′-GACCTCTGGGAGGTGTTCAG-3′;
5′-TTAGGGATCGACGAAGGAGA-3′;



SEQ ID NO: 305
SEQ ID NO: 306





LAMC1
5′-ATTCCTGCCATCAACCAGAC-3′;
5′-CCTGCTTCTTGGCTTCATTC-3′;



SEQ ID NO: 307
SEQ ID NO: 308





THBS1
5′-CAAAGGGACATCCCAAAATG-3′;
5′-GAGTCAGCCATGATTTTCTTCC-3′;



SEQ ID NO: 309
SEQ ID NO: 310





LOXL2
5′-TACCCCGAGTACTTCCAGCA-3′;
5′-GATCTGCTTCCAGGTCTTGC-3′;



SEQ ID NO: 311
SEQ ID NO: 312





IL6
5′-CACACAGACAGCCACTCACC-3′;
5′-CAGGGGTGGTTATTGCATCT-3′;



SEQ ID NO: 313
SEQ ID NO: 314





LOXL1
5′-CAGACCCCAACTATGTGCAA-3′;
5′-CGCATTGTAGGTGTCATAGCA-3′;



SEQ ID NO: 315
SEQ ID NO: 316





IL8
5′-CTCTCTTGGCAGCCTTCCT-3′;
5′-TGAATTCTCAGCCCTCTTCAA-3′;



SEQ ID NO: 317
SEQ ID NO: 318





CYR61
5′-TCGCCTTAGTCGTCACCCTT-3′;
5′-TGTTTCTCGTCAACTCCACCTCG-3′;



SEQ ID NO: 319
SEQ ID NO: 320





ITGAV
5′-CTGATTTCATCGGGGTTGTC-3′;
5′-TGCCTTGCTGAATGAACTTG-3′;



SEQ ID NO: 321
SEQ ID NO: 322





YAP
5′-CCAGTGAAACAGCCACCAC-3′;
5′-CTCCTTCCAGTGTTCCAAGG-3′;



SEQ ID NO: 323
SEQ ID NO: 324





BGN
5′-GGACTCTGTCACACCCACCT-3′;
5′-CAGGGTCTCAGGGAGGTCTT-3′;



SEQ ID NO: 325
SEQ ID NO: 326





LAMB1
5′-TGCCAGAGCTGAGATGTTGTT-3′;
5′-TGTAGCATTTCGGCTTTCCT-3′;



SEQ ID NO: 327
SEQ ID NO: 328





ITGB3
5′-GGCAAGTACTGCGAGTGTGA-3′;
5′-ATTCTTTTCGGTCGTGGATG-3′;



SEQ ID NO: 329
SEQ ID NO: 330





CXCL1
5′-CACTGCTGCTCCTGCTCCT-3′;
5′-TGTTCAGCATCTTTTCGATGA-3′;



SEQ ID NO: 331
SEQ ID NO: 332





THBS2
5′-TGACAATGACAACATCCCAGA-3′;
5′-TGAGTCTGCCATGACCTGTT-3′;



SEQ ID NO: 333
SEQ ID NO: 334





COL18A1
5′-CCCTGCTCTACACAGAACCAG-3′;
5′-ACACCTGGCTCCCCTTTCT-3′;



SEQ ID NO: 335
SEQ ID NO: 336





SPARC
5′-GCCTGGATCTTCTTTCTCCTTTGC-3′;
5′-CATCCAGGGCGATGTACTTGTC-3′;



SEQ ID NO: 337
SEQ ID NO: 338





TP53
5′-CCCCCTCTGAGTCAGGAAAC-3′;
5′-TCATGTGCTGTGACTGCTTG-3′;



SEQ ID NO: 339
SEQ ID NO: 340





PLOD2
5′-TGGACCCACCAAGATTCTCCTG-3′;
5′-GACCACAGCTTTCCATGACGAG-3′;



SEQ ID NO: 341
SEQ ID NO: 342





CCL2
5′-TCTGTGCCTGCTGCTCATAG-3′;
5′-GAGTTTGGGTTTGCTTGTCC-3′;



SEQ ID NO: 343
SEQ ID NO: 344





FBLN2
5′-CGAGAAGTGCCCAGGAAG-3′;
5′-AGTGAGAAGCCAGGAAAGCA-3′;



SEQ ID NO: 345
SEQ ID NO: 346





LAMA1
5′-TGGAAATATCACCCACAGCA-3′;
5′-AGGCATTTTTGCTTCACACC-3′;



SEQ ID NO: 347
SEQ ID NO: 348





THBS4
5′-GCTCCAGCTTCTACGTGGTC-3′;
5′-TTAATTATCGAAGCGGTCGAA-3′;



SEQ ID NO: 349
SEQ ID NO: 350





COL1A1
5′-AGCCAGCAGATCGAGAACAT-3′;
5′-CCTTCTTGAGGTTGCCAGTC-3′;



SEQ ID NO: 351
SEQ ID NO: 352





ITGA5
5′-CACCAATCACCCCATTAACC-3′;
5′-GCTTGAGCTGAGCTTTTTCC-3′;



SEQ ID NO: 353
SEQ ID NO: 354





TAZ
5′-CCAGGTGCTGGAAAAAGAAG-3′;
5′-GAGCTGCTCTGCCTGAGTCT-3′;



SEQ ID NO: 355
SEQ ID NO: 356





POSTN
5′-GCAGACACACCTGTTGGAAA-3′;
5′-GAACGACCTTCCCTTAATCG-3′;



SEQ ID NO: 357
SEQ ID NO: 358





LOX
5′-CCTACTACATCCAGGCGTCCAC-3′;
5′-ATGCAAATCGCCTGTGGTAGC-3′;



SEQ ID NO: 359
SEQ ID NO: 360





CSRC
5′-CTGTTCGGAGGCTTCAACTC-3′;
5′-AGGGATCTCCCAGGCATC-3′;



SEQ ID NO: 361
SEQ ID NO: 362





LAMA3
5′-TACCTGGGATCACCTCCATC-3′;
5′-ACAGGGATCCTCAGTGTCGT-3′;



SEQ ID NO: 363
SEQ ID NO: 364





CDKN1A
5′-CGGGATGAGTTGGGAGGAG-3′;
5′-TTAGGGCTTCCTCTTGGAGA-3′;



SEQ ID NO: 365
SEQ ID NO: 366





CDKN2A-004
5′-ATGGTGCGCAGGTTCTTG-3′;
5′-ACCAGCGTGTCCAGGAAG-3′;


2A-201
SEQ ID NO: 367
SEQ ID NO: 368





CDKN2A-001
5′-GAGCAGCATGGAGCCTTC-3′;
5′-GCATGGTTACTGCCTCTGGT-3′;


2A-202
SEQ ID NO: 369
SEQ ID NO: 370





ITGA2
5′-CAAACAGACAAGGCTGGTGA-3′;
5′-TCAATCTCATCTGGATTTTTGG-3′;



SEQ ID NO: 371
SEQ ID NO: 372





LAMC2
5′-CTGCAGGTGGACAACAGAAA-3′;
5′-CATCAGCCAGAATCCCATCT-3′;



SEQ ID NO: 373
SEQ ID NO: 374





PCOLCE2
5′-GTCCCCAGAGAGACCTGTTT-3′;
5′-AGACACAATTGGCGCAGGT-3′;



SEQ ID NO: 375
SEQ ID NO: 376





LOXL4
5′-AAGACTGGACGCGATAGCTG-3′;
5′-GGTTGTTCCTGAGACGCTGT-3′;



SEQ ID NO: 377
SEQ ID NO: 378





PCOLCE
5′-TACACCAGACCCGTGTTCCT-3′;
5′-TCCAGGTCAAACTTCTCGAAGG-3′;



SEQ ID NO: 379
SEQ ID NO: 380





LAMB3
5′-CTTCAATGCCCAGCTCCA-3′;
5′-TTCCCAACCACATCTTCCAC-3′;



SEQ ID NO: 381
SEQ ID NO: 382





CSF2
5′-CTGCTGCTCTTGGGCACT-3′;
5′-CAGCAGTCAAAGGGGATGAC-3′;



SEQ ID NO: 383
SEQ ID NO: 384





ACTB
5′-AGGATTCCTATGTGGGCGACG-3′;
5′-TCAGGCAGCTCGTAGCTCTTC-3′;



SEQ ID NO: 385
SEQ ID NO: 386





RPLP0
5′-GGAATGTGGGCTTTGTGTTCACC-3′;
5′-AGGCCAGGACTCGTTTGTACC-3′;



SEQ ID NO: 387
SEQ ID NO: 388





RLP8
5′-ACATCAAGGGCATCGTCAAGG-3′;
5′-TCTCTTTCTCCTGCACAGTCTTGG-3′;



SEQ ID NO: 389
SEQ ID NO: 390





B2M
5′-TGCTCGCGCTACTCTCTCTTTC-3′;
5′-TCACATGGTTCACACGGCAG-3′;



SEQ ID NO: 391
SEQ ID NO: 392





K10
5′-TGGCCTTCTCTCTGGAAATG-3′;
5′-TCATTTCCTCCTCGTGGTTC-3′;



SEQ ID NO: 393
SEQ ID NO: 394





K14
5′-AGGTGACCATGCAGAACCTC-3′;
5′-CCTCGTGGTTCTTCTTCAGG-3′;



SEQ ID NO: 395
SEQ ID NO: 396





MITF
5′-GAAATCTTGGGCTTGATGGA-3′;
5′-CCGAGGTTGTTGTTGAAGGT-3′;



SEQ ID NO: 397
SEQ ID NO: 398





TYR
5′-CCATGGATAAAGCTGCCAAT-3′;
5′-GACACAGCAAGCTCACAAGC-3′;



SEQ ID NO: 399
SEQ ID NO: 400





MLANA
5′-CACTCTTACACCACGGCTGA-3′;
5′-CATAAGCAGGTGGAGCATTG-3′;



SEQ ID NO: 401
SEQ ID NO: 402





PMEL
5′-TTGTCCAGGGTATTGAAAGTGC-3′;
5′-GACAAGAGCAGAAGATGCGGG-3′;



SEQ ID NO: 403
SEQ ID NO: 404





NES
5′-GCGTTGGAACAGAGGTTGGAG-3′;
5′-CAGGTGTCTCAAGGGTAGCAGG-3′;



SEQ ID NO: 405
SEQ ID NO: 406





L1CAM
5′-CTTCCCTTTCGCCACAGTATG-3′;
5′-CCTCCTTCTCCTTCTTGCCACT-3′;



SEQ ID NO: 407
SEQ ID NO: 408





GDF15
5′-AATGGCTCTCAGATGCTCCTGG-3′;
5′-GATTCTGCCAGCAGTTGGTCC-3′;



SEQ ID NO: 409
SEQ ID NO: 410





ARPC1B
5′-ACCACAGCTTCCTGGTGGAG-3′;
5′-GAGCGGATGGGCTTCTTGATG-3′;



SEQ ID NO: 411
SEQ ID NO: 412





FARP1
5′-AACGTGACCTTGTCTCCCAAC-3′;
5′-GCATGACATCGCCGATTCTT-3′;



SEQ ID NO: 413
SEQ ID NO: 414





NTRK3
5′-TTCAACAAGCCCACCCACTAC-3′;
5′-GTTCTCAATGACAGGGATGCG-3′;



SEQ ID NO: 415
SEQ ID NO: 416





CSK
5′-CATGGAATACCTGGAGGGCAAC-3′;
5′-CAGGTGCCAGCAGTTCTTCAT-3′;



SEQ ID NO: 417
SEQ ID NO: 418





CD44
5′-TCTCAGAGCTTCTCTACATCAC-3′;
5′-CTGACGACTCCTTGTTCACCA-3′;



SEQ ID NO: 419
SEQ ID NO: 420





SNX17
5′-TCACCTCCTCTGTACCATTGC-3′;
5′-CTCATCTCCAATGCCCTCGA-3′;



SEQ ID NO: 421
SEQ ID NO: 422





PLAT
5′-TGCAATGAAGAGAGGGCTCTG-3′;
5′-CGTGGCCCTGGTATCTATTTCA-3′;



SEQ ID NO: 432
SEQ ID NO: 424









The PCR reactions were performed using a high-fidelity polymerase (product name: “Phusion,” obtained from New England Biolabs). PCR amplification products were checked for correct size and subsequently gel purified using the Qiagen Gel Extraction kit. Purified PCR fragments were subcloned into the bacterial expression vector pJET1.2 using a commercially available kit (Fermentas). The subcloned fragments were subsequently checked by restriction digest and DNA sequencing. Bacterial clones harboring the pJET1.2 expression vector with the correct PCR insert (containing the desired amplicon for real time PCR primer pairs) were frozen and stored at −80° C. This was done to regenerate the same real time PCR standards over time.


Bacteria harboring the pJET1.2 expression vector with PCR inserts were cultured to generate sufficient amounts of vector. A small aliquot of the total retrieved expression vector with insert was linearized using the PvuI-HF restriction enzyme (from New England Biolabs). The digest was then purified using the Qiagen PCR purification kit. Linearized cDNA was diluted to a concentration of 20 ng/μL. One μL of each of a total of 71 linearized cDNA fragments (each at a 20 ng/μL concentration) were mixed and brought to a final volume of 1 mL to obtain standard S7.


Standard S7 was then diluted six times at a 1:10 ratio to obtained standards S1 to S6. Dilution was performed using ultrapure water obtained from Promega (Cat. No. P1193).


The following was performed to generate cDNA from FFPE samples. FFPE blocks were cut at 20 μm sections using a standard Leica microtome. For large pieces of tissue, 2×20 μm full sections were used for RNA retrieval. For smaller tissues, up to 5×20 μm sections were combined for RNA retrieval. RNA extraction was performed using the Qiagen RNA FFPE retrieval kit and a Qiagen QiaCube extraction robot. 0.5 to 1 μg of RNA with a 260/280 ratio of greater than 1.8 were transcribed into cDNA using the BioRad iScript cDNA Synthesis kit. All biospecimens were annotated with clinical data from Mayo Clinic databases. H&E stained sections were obtained for each block analyzed and digitalized using a high-resolution slide scanner.


Fluidigm RT-PCR was performed using a 96×96 format for high throughput analysis (i.e., 96 cDNAs were analyzed for 96 markers; 9216 data points). The primer pairs and cDNAs were prepared in a 96 well format. Standard curves were calculated for each primer pair. Copy numbers per 100,000 housekeeping genes were calculated for each primer pair and averaged per gene. This was initially done for cDNAs derived from FFPE-embedded skin. To correct for epidermal cell-derived cross-contamination, background signal per one copy of K14 (a basal keratinocyte marker) was calculated from FFPE-embedded normal skin samples for each primer pair and averaged. Experimental samples were then normalized first to 100,000 housekeeping genes and then background-corrected for epidermal cross-contamination based on K14 copy number. In particular, the keratinocyte correction factor used for each gene is set forth in Table E under the column titled “AVG per copy K14.”


The study design (Example 1) involved a comparison of the expression profile of “true” benign pigmented skin lesions (nevi, n=73) with “true” malignant melanomas of the skin. The latter comprised i) primary skin melanomas that were documented to metastasize, either to regional lymph nodes, to other areas of skin (in-transit), or to other organs; and ii) in-transit or comparison of nevi to in-transit melanoma metastases (n=54).


Tables C and D summarize the comparisons of the gene expressions between the 73 benign and 54 metastatic. Table A compares the ranked values using the Wilcoxon rank sum test, and Table E compares the dichotomized values (zero vs. >0) using the chi-square test.


A recursive partitioning approach was used to identify cut-points for the genes that would discriminate between these two groups. After partitioning the data at a cut-point of 45 for FN1, no further additional splits in the data based on the other genes were identified by this method.


Using a cutoff of 45 for FN1, the sensitivity was 92.6%, and the specificity was 98.6%. These results are provided in Tables 4 and 5 along with the next possible cutoff for FN1 at 124.













TABLE 4






Frequency






Percent






Row Pct






Col Pct
Malignant
Benign
Total




















FN1 < 45
4
72
76




3.15
56.69
59.84




5.26
94.74





7.41
98.63




FN1 ≥ 45
50
1
51




39.37
0.79
40.16




98.04
1.96





92.59
1.37




Total
54
73
127




42.52
57.48
100.00




















TABLE 5






Frequency






Percent






Row Pct






Col Pct
Malignant
Benign
Total




















FN1 < 124
8
73
81




6.30
57.48
63.78




9.88
90.12





14.81
100.00




FN1 ≥ 124
46
0
46




36.22
0.00
36.22




100.00
0.00





85.19
0.00




Total
54
73
127




42.52
57.48
100.00









The ability to further discriminate between the groups was assessed by considering SPP1 or ITGB3 in addition to FN1.


Benign Vs. Malignant—Option 1 Using FN1 and SPP1 (FIG. 5)


The results are set forth in Table 6.












TABLE 6






RULE for FIG. 5
Malignant
Benign



















FN1 < 45 and SPP1 = 0
2
72



FN1 ≥ 45
52
1



or





(FN1 < 45 and SPP1 > 0)





Total
54
73










Benign Vs. Malignant—Option 2 Using FN1 and ITGB3 (FIG. 6)


The results are set forth in Table 7.












TABLE 7






RULE for FIG. 6
Malignant
Benign



















FN1 < 45 and ITGB3 = 0
3
72



FN1 ≥ 45
51
1



or





(FN1 < 45 and ITGB3 > 0)





Total
54
73









If all three genes are included, the rule was as follows:

    • FN1<45 and SPP1=0 and ITGB3=0 denotes a negative test
      • vs.
    • all other combinations denotes a positive test.


This rule resulted in a specificity of 72/73 (98.6%), and a sensitivity of 53/54 (98.2%) (Table 8). Compared to a rule using FN1 alone, the specificity stayed the same but the sensitivity increased from 92.6% to 98.2% using this new rule.














TABLE 8





FN1
SPP1
ITGB3
malignant
Frequency





















<45
Zero
Zero
No
72



<45
Zero
Zero
Yes
1
False Neg







ID MM150







(case added from







the Breslow file)


≥45
Zero
Zero
No
1
False Pos







ID N29


≥45
Zero
Zero
Yes
9



≥45
Zero
>0
Yes
1



≥45
>0
Zero
Yes
18



≥45
>0
>0
Yes
22



<45
Zero
>0
Yes
1



<45
>0
Zero
Yes
2









The rule was evaluated using 25 additional malignant patients who did not have mets (from the “Breslow” file). For 19 of these 25 patients, the rule was “negative” (Table 9).













TABLE 9






FN1
SPP1
ITGB3
Frequency




















<45
Zero
Zero
19



<45
>0
Zero
1



≥45
Zero
Zero
2



≥45
>0
Zero
3



<45


1









The rule also was evaluated using 33 thin melanomas (Table 10). For 25 of these 33 patients, the rule was “negative.”













TABLE 10






FN1
SPP1
ITGB3
Frequency




















<45
Zero
Zero
25



<45
Zero
>0
1



≥45
Zero
Zero
5



≥45
>0
Zero
2
















TABLE C







Comparison of gene expression between benign and malignant











Benign (N = 73)
Malignant (N = 54)
p value













CXCL1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
4.8 (18.4)
20.0 (26.1)



Median
  0.0
  10.3



Q1, Q3
0.0, 0.0
 0.3, 31.1



Range
(0.0-141.7)
(0.0-120.4)



CSF2_AVG_NORM


0.0482


N
73
54



Mean (SD)
10.5 (44.1)
4.3 (8.4)



Median
  2.5
  1.0



Q1, Q3
0.6, 7.0
0.0, 4.0



Range
(0.0-375.0)
 (0.0-41.0)



CCL2_AVG_NORM


<0.0001


N
73
54



Mean (SD)
37.0 (99.4)
244.2 (360.9)



Median
  0.0
 112.8



Q1, Q3
0.0, 9.1
 7.2, 342.2



Range
(0.0-572.0)
 (0.0-1777.1)



IL8_AVG_NORM


<0.0001


N
73
54



Mean (SD)
125.5 (671.3)
 53.2 (160.8)



Median
  0.0
  13.0



Q1, Q3
0.0, 0.0
 2.1, 52.5



Range
 (0.0-5058.7)
 (0.0-1171.7)



IL6_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 9.9 (69.1)
21.6 (35.0)



Median
  0.0
  8.8



Q1, Q3
0.0, 0.0
 0.3, 25.2



Range
(0.0-589.1)
(0.0-152.3)



ITGA5_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.0 (0.0)
 9.8 (26.8)



Median
  0.0
  0.0



Q1, Q3
0.0, 0.0
0.0, 7.0



Range
(0.0-0.0) 
(0.0-168.0)



ITGA3_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 3.2 (27.5)
168.2 (313.4)



Median
  0.0
  50.2



Q1, Q3
0.0, 0.0
 2.0, 160.5



Range
(0.0-235.4)
 (0.0-1506.0)



ITGA2_AVG_NORM


0.0007


N
73
54



Mean (SD)
0.0 (0.0)
 2.6 (10.0)



Median
  0.0
  0.0



Q1, Q3
0.0, 0.0
0.0, 0.0



Range
(0.0-0.0) 
(0.0-69.7) 



ITGAV_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 3.3 (23.9)
22.0 (32.9)



Median
  0.0
  8.0



Q1, Q3
0.0, 0.0
 0.0, 31.0



Range
(0.0-199.9)
(0.0-176.8)



ITGB3_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.0 (0.0)
43.6 (90.3)



Median
  0.0
  0.0



Q1, Q3
0.0, 0.0
 0.0, 52.5



Range
(0.0-0.0) 
(0.0-495.3)



ITGB1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
29.9 (95.1)
616.2 (742.2)



Median
  0.0
 400.2



Q1, Q3
0.0, 0.0
 84.7, 869.0



Range
(0.0-487.9)
 (0.0-3877.9)



FN1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 2.9 (15.6)
1570.9 (1949.8)



Median
  0.0
 898.4



Q1, Q3
0.0, 0.0
 299.5, 2186.1



Range
(0.0-123.2)
 (0.0-11073.5)



THBS1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.0 (0.0)
 85.1 (136.1)



Median
  0.0
  16.8



Q1, Q3
0.0, 0.0
 0.0, 153.8



Range
(0.0-0.0) 
(0.0-786.2)



THBS2_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 25.9 (113.4)
280.0 (513.5)



Median
  0.0
  44.1



Q1, Q3
0.0, 0.0
 0.0, 340.1



Range
(0.0-729.2)
 (0.0-3030.5)



THBS4_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 38.5 (151.2)
228.2 (663.7)



Median
  0.0
  22.5



Q1, Q3
0.0, 0.0
 0.0, 97.9



Range
 (0.0-1130.3)
 (0.0-3977.7)



VCAN_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 3.0 (21.7)
202.4 (262.8)



Median
  0.0
 103.4



Q1, Q3
0.0, 0.0
 0.0, 283.5



Range
(0.0-181.3)
 (0.0-1113.2)



BGAN_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 69.3 (121.0)
422.4 (573.1)



Median
  0.0
 248.5



Q1, Q3
 0.0, 97.9
113.5, 462.9



Range
(0.0-496.3)
 (0.0-3348.1)



SPP1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.0 (0.0)
1490.2 (3397.4)



Median
  0.0
 338.1



Q1, Q3
0.0, 0.0
  4.9, 1577.7



Range
(0.0-0.0) 
 (0.0-22427.0)



TNC_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 66.4 (240.1)
800.1 (808.7)



Median
  0.0
 495.8



Q1, Q3
0.0, 0.0
 174.5, 1322.9



Range
 (0.0-1393.3)
 (0.0-3162.2)



SPARC_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 843.7 (2222.8)
3208.4 (3182.6)



Median
  0.0
2895.8 



Q1, Q3
0.0, 0.0
 407.2, 5216.3



Range
 (0.0-11175.6)
 (0.0-13631.9)



AGRN_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 4.7 (18.1)
51.2 (53.8)



Median
  0.0
  42.1



Q1, Q3
0.0, 0.0
10.7, 69.7



Range
(0.0-121.7)
(0.0-242.0)



CTGF_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.4 (3.6)
 90.9 (231.6)



Median
  0.0
  22.1



Q1, Q3
0.0, 0.0
 0.0, 125.9



Range
(0.0-30.6) 
 (0.0-1631.4)



CYR61_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 4.8 (13.0)
27.2 (39.2)



Median
  0.0
  18.7



Q1, Q3
0.0, 0.0
 4.9, 32.2



Range
(0.0-70.4) 
(0.0-267.2)



LAMA3_AVG_NORM


0.0004


N
73
54



Mean (SD)
1.1 (9.0)
1.2 (2.9)



Median
  0.0
  0.0



Q1, Q3
0.0, 0.0
0.0, 0.0



Range
(0.0-76.8) 
(0.0-11.3) 



LAMC1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.0 (0.0)
 70.6 (159.4)



Median
  0.0
  28.4



Q1, Q3
0.0, 0.0
 0.0, 99.3



Range
(0.0-0.0) 
 (0.0-1136.2)



LAMB1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 9.2 (38.4)
221.1 (354.3)



Median
  0.0
  73.1



Q1, Q3
0.0, 0.0
 0.0, 339.8



Range
(0.0-248.8)
 (0.0-1877.6)



LAMA1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 5.7 (14.5)
 65.4 (149.0)



Median
 <0.0
  10.6



Q1, Q3
0.0, 0.0
 0.0, 49.0



Range
(0.0-76.5) 
(0.0-754.3)



LAMC2_AVG_NORM


0.0003


N
73
54



Mean (SD)
0.0 (0.0)
 4.0 (15.3)



Median
  0.0
  0.0



Q1, Q3
0.0, 0.0
0.0, 0.0



Range
(0.0-0.0) 
(0.0-91.1) 



LAMB3_AVG_NORM


0.1473


N
73
54



Mean (SD)
33.5 (60.3)
32.2 (54.5)



Median
  0.0
  12.1



Q1, Q3
 0.0, 44.6
 0.0, 37.0



Range
(0.0-323.9)
(0.0-246.0)



COL1A1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
1534.4 (4365.3)
4191.6 (5865.9)



Median
  0.0
1704.4 



Q1, Q3
0.0, 0.0
  0.0, 6850.9



Range
 (0.0-22510.2)
 (0.0-31867.0)



COL4A1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.0 (0.0)
211.8 (344.1)



Median
  0.0
 118.4



Q1, Q3
0.0, 0.0
 2.3, 261.2



Range
(0.0-0.0) 
 (0.0-1774.4)



COL18A1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 94.2 (783.4)
22.8 (38.8)



Median
  0.0
  4.1



Q1, Q3
0.0, 0.0
 0.0, 34.4



Range
 (0.0-6695.7)
(0.0-208.8)



LOX_AVG_NORM


0.0003


N
73
54



Mean (SD)
 37.7 (132.8)
 65.0 (113.9)



Median
  0.0
  3.5



Q1, Q3
0.0, 0.0
 0.0, 58.0



Range
(0.0-991.2)
(0.0-443.3)



LOXL1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
0.8 (7.1)
39.6 (60.3)



Median
  0.0
  18.5



Q1, Q3
0.0, 0.0
 0.0, 65.0



Range
(0.0-60.4) 
(0.0-349.0)



LOXL2_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 43.3 (356.8)
 68.5 (129.9)



Median
  0.0
  22.1



Q1, Q3
0.0, 0.0
 0.0, 89.1



Range
 (0.0-3048.4)
(0.0-821.4)



LOXL3_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 2.2 (12.3)
28.4 (71.1)



Median
  0.0
  9.2



Q1, Q3
0.0, 0.0
 2.5, 29.4



Range
(0.0-89.7) 
(0.0-507.5)



LOXL4_AVG_NORM


0.0010


N
73
54



Mean (SD)
33.8 (91.0)
129.1 (300.4)



Median
  0.0
  9.1



Q1, Q3
 0.0, 10.2
 0.0, 67.0



Range
(0.0-529.2)
 (0.0-1230.0)



PLOD1_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 33.7 (116.5)
420.3 (532.2)



Median
  0.0
 242.3



Q1, Q3
0.0, 0.0
 90.2, 659.3



Range
(0.0-878.2)
 (0.0-3336.8)



PLOD2_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 44.5 (151.7)
 314.8 (1284.4)



Median
  0.0
  53.7



Q1, Q3
0.0, 0.0
 2.3, 103.3



Range
 (0.0-1124.0)
 (0.0-9110.5)



PLOD3_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 2.7 (11.9)
68.0 (81.2)



Median
  0.0
  38.3



Q1, Q3
0.0, 0.0
 4.2, 101.9



Range
(0.0-87.4) 
(0.0-330.2)



PCOLCE2_AVG_NORM


0.0010


N
73
54



Mean (SD)
 7.7 (25.8)
 6.4 (14.9)



Median
  0.0
  0.0



Q1, Q3
0.0, 0.0
0.0, 3.1



Range
(0.0-104.8)
(0.0-68.4) 



PCOLCE_AVG_NORM


0.0232


N
73
54



Mean (SD)
 92.1 (159.7)
170.4 (339.4)



Median
  0.0
  40.9



Q1, Q3
 0.0, 122.2
 0.0, 175.1



Range
(0.0-699.2)
 (0.0-1945.2)



PTK2_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 2.8 (14.4)
76.6 (81.8)



Median
  0.0
  70.0



Q1, Q3
0.0, 0.0
 0.0, 127.7



Range
(0.0-116.5)
(0.0-323.3)



CSRC_AVG_NORM


0.0001


N
73
54



Mean (SD)
19.0 (40.9)
45.1 (65.9)



Median
  0.3
  19.6



Q1, Q3
 0.0, 24.8
 4.2, 46.6



Range
(0.0-266.6)
(0.0-290.2)



CDKN1A_AVG_NORM


0.0005


N
73
54



Mean (SD)
 78.5 (150.9)
181.0 (271.7)



Median
  0.0
  84.2



Q1, Q3
 0.0, 118.9
 0.0, 253.3



Range
(0.0-788.2)
 (0.0-1083.2)



CDKN2A_AVG_NORM


0.0002


N
73
54



Mean (SD)
 6.1 (19.6)
 9.7 (25.8)



Median
  0.0
  1.0



Q1, Q3
0.0, 0.0
0.0, 6.9



Range
(0.0-113.2)
(0.0-175.1)



TP53_AVG_NORM


<0.0001


N
73
54



Mean (SD)
40.6 (98.6)
231.2 (289.8)



Median
  0.0
 166.9



Q1, Q3
0.0, 0.0
 0.0, 359.9



Range
(0.0-410.8)
 (0.0-1722.4)



YAP_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 7.8 (36.6)
112.4 (161.4)



Median
  0.0
  63.1



Q1, Q3
0.0, 0.0
 0.0, 173.5



Range
(0.0-246.3)
(0.0-769.0)



TAZ_AVG_NORM


<0.0001


N
73
54



Mean (SD)
12.2 (27.9)
32.8 (44.3)



Median
  0.0
  15.0



Q1, Q3
0.0, 0.7
 0.0, 49.0



Range
(0.0-122.7)
(0.0-186.4)



MITF_AVG_NORM


<0.0001


N
73
54



Mean (SD)
251.0 (399.5)
569.8 (494.8)



Median
  45.5
 467.3



Q1, Q3
 0.0, 331.5
184.9, 777.8



Range
 (0.0-2143.3)
 (0.0-2200.0)



MLANA_AVG_NORM


0.1823


N
73
54



Mean (SD)
3596.0 (3671.3)
4865.4 (4966.1)



Median
2446.8 
2803.5 



Q1, Q3
 950.9, 5019.4
1210.7, 6773.0



Range
 (14.0-17180.3)
 (62.8-19672.1)



TYR_AVG_NORM


0.0040


N
73
54



Mean (SD)
349.7 (301.8)
839.8 (996.3)



Median
 254.3
 515.1



Q1, Q3
119.5, 527.5
 161.0, 1244.9



Range
 (0.0-1169.8)
 (2.0-5500.0)



POSTN_AVG_NORM


0.0001


N
73
54



Mean (SD)
1138.7 (2155.7)
1933.9 (2318.1)



Median
 191.6
 1252.0



Q1, Q3
  0.0, 1449.9
 397.4, 2457.4



Range
 (0.0-11078.1)
 (0.0-11193.2)



FBLN2_AVG_NORM


<0.0001


N
73
54



Mean (SD)
 2.1 (17.3)
26.5 (42.2)



Median
  0.0
  0.0



Q1, Q3
0.0, 0.0
 0.0, 48.8



Range
(0.0-148.2)
(0.0-150.9)
















TABLE D







Comparison of gene expression between benign and malignant











Benign
Malignant




(N = 73)
(N = 54)
p value















CXCL1_AVG_NORM01




<0.0001


Zero
58
(79.5%)
12
(22.2%)



>0
15
(20.5%)
42
(77.8%)



CSF2_AVG_NORM01




0.0398


Zero
15
(20.5%)
20
(37.0%)



>0
58
(79.5%)
34
(63.0%)



CCL2_AVG_NORM01




<0.0001


Zero
53
(72.6%)
12
(22.2%)



>0
20
(27.4%)
42
(77.8%)



IL8_AVG_NORM01




<0.0001


Zero
63
(86.3%)
10
(18.5%)



>0
10
(13.7%)
44
(81.5%)



IL6_AVG_NORM01




<0.0001


Zero
65
(89.0%)
13
(24.1%)



>0
8
(11.0%)
41
(75.9%)



ITGA5_AVG_NORM01




<0.0001


Zero
73
(100.0%)
38
(70.4%)



>0
0
(0.0%)
16
(29.6%)



ITGA3_AVG_NORM01




<0.0001


Zero
72
(98.6%)
13
(24.1%)



>0
1
(1.4%)
41
(75.9%)



ITGA2_AVG_NORM01




0.0007


Zero
73
(100.0%)
46
(85.2%)



>0
0
(0.0%)
8
(14.8%)



ITGAV_AVG_NORM01




<0.0001


Zero
71
(97.3%)
24
(44.4%)



>0
2
(2.7%)
30
(55.6%)



ITGB3_AVG_NORM01




<0.0001


Zero
73
(100.0%)
30
(55.6%)



>0
0
(0.0%)
24
(44.4%)



ITGB1_AVG_NORM01




<0.0001


Zero
64
(87.7%)
11
(20.4%)



>0
9
(12.3%)
43
(79.6%)



FN1_AVG_NORM01




<0.0001


Zero
69
(94.5%)
2
(3.7%)



>0
4
(5.5%)
52
(96.3%)



THBS1_AVG_NORM01




<0.0001


Zero
73
(100.0%)
24
(44.4%)



>0
0
(0.0%)
30
(55.6%)



THBS2_AVG_NORM01




<0.0001


Zero
67
(91.8%)
23
(42.6%)



>0
6
(8.2%)
31
(57.4%)



THBS4_AVG_NORM01




<0.0001


Zero
58
(79.5%)
15
(27.8%)



>0
15
(20.5%)
39
(72.2%)



VCAN_AVG_NORM01




<0.0001


Zero
71
(97.3%)
16
(29.6%)



>0
2
(2.7%)
38
(70.4%)



BGAN_AVG_NORM01




<0.0001


Zero
42
(57.5%)
7
(13.0%)



>0
31
(42.5%)
47
(87.0%)



SPP1_AVG_NORM01




<0.0001


Zero
73
(100.0%)
12
(22.2%)



>0
0
(0.0%)
42
(77.8%)



TNC_AVG_NORM01




<0.0001


Zero
60
(82.2%)
3
(5.6%)



>0
13
(17.8%)
51
(94.4%)



SPARC_AVG_NORM01




<0.0001


Zero
57
(78.1%)
13
(24.1%)



>0
16
(21.9%)
41
(75.9%)



AGRN_AVG_NORM01




<0.0001


Zero
59
(80.8%)
5
(9.3%)



>0
14
(19.2%)
49
(90.7%)



CTGF_AVG_NORM01




<0.0001


Zero
72
(98.6%)
21
(38.9%)



>0
1
(1.4%)
33
(61.1%)



CYR61_AVG_NORM01




<0.0001


Zero
56
(76.7%)
9
(16.7%)



>0
17
(23.3%)
45
(83.3%)



LAMA3_AVG_NORM01




0.0003


Zero
72
(98.6%)
43
(79.6%)



>0
1
(1.4%)
11
(20.4%)



LAMC1_AVG_NORM01




<0.0001


Zero
73
(100.0%)
24
(44.4%)



>0
0
(0.0%)
30
(55.6%)



LAMB1_AVG_NORM01




<0.0001


Zero
66
(90.4%)
22
(40.7%)



>0
7
(9.6%)
32
(59.3%)



LAMA1_AVG_NORM01




<0.0001


Zero
57
(78.1%)
16
(29.6%)



>0
16
(21.9%)
38
(70.4%)



LAMC2_AVG_NORM01




0.0003


Zero
73
(100.0%)
45
(83.3%)



>0
0
(0.0%)
9
(16.7%)



LAMB3_AVG_NORM01




0.0061


Zero
45
(61.6%)
20
(37.0%)



>0
28
(38.4%)
34
(63.0%)



COL1A1_AVG_NORM01




<0.0001


Zero
60
(82.2%)
17
(31.5%)



>0
13
(17.8%)
37
(68.5%)



COL4A1_AVG_NORM01




<0.0001


Zero
73
(100.0%)
13
(24.1%)



>0
0
(0.0%)
41
(75.9%)



COL18A1_AVG_NORM01




<0.0001


Zero
64
(87.7%)
18
(33.3%)



>0
9
(12.3%)
36
(66.7%)



LOX_AVG_NORM01




<0.0001


Zero
60
(82.2%)
26
(48.1%)



>0
13
(17.8%)
28
(51.9%)



LOXL1_AVG_NORM01




<0.0001


Zero
72
(98.6%)
23
(42.6%)



>0
1
(1.4%)
31
(57.4%)



LOXL2_AVG_NORM01




<0.0001


Zero
70
(95.9%)
19
(35.2%)



>0
3
(4.1%)
35
(64.8%)



LOXL3_AVG_NORM01




<0.0001


Zero
69
(94.5%)
10
(18.5%)



>0
4
(5.5%)
44
(81.5%)



LOXL4_AVG_NORM01




0.0006


Zero
53
(72.6%)
23
(42.6%)



>0
20
(27.4%)
31
(57.4%)



PLOD1_AVG_NORM01




<0.0001


Zero
59
(80.8%)
12
(22.2%)



>0
14
(19.2%)
42
(77.8%)



PLOD2_AVG_NORM01




<0.0001


Zero
59
(80.8%)
10
(18.5%)



>0
14
(19.2%)
44
(81.5%)



PLOD3_AVG_NORM01




<0.0001


Zero
66
(90.4%)
11
(20.4%)



>0
7
(9.6%)
43
(79.6%)



PCOLCE2_AVG_NORM01




0.0002


Zero
66
(90.4%)
34
(63.0%)



>0
7
(9.6%)
20
(37.0%)



PCOLCE_AVG_NORM01




0.0036


Zero
42
(57.5%)
17
(31.5%)



>0
31
(42.5%)
37
(68.5%)



PTK2_AVG_NORM01




<0.0001


Zero
67
(91.8%)
16
(29.6%)



>0
6
(8.2%)
38
(70.4%)



CSRC_AVG_NORM01




0.0001


Zero
36
(49.3%)
9
(16.7%)



>0
37
(50.7%)
45
(83.3%)



CDKN1A_AVG_NORM01




0.0001


Zero
48
(65.8%)
16
(29.6%)



>0
25
(34.2%)
38
(70.4%)



CDKN2A_AVG_NORM01




<0.0001


Zero
57
(78.1%)
23
(42.6%)



>0
16
(21.9%)
31
(57.4%)



TP53_AVG_NORM01




<0.0001


Zero
59
(80.8%)
16
(29.6%)



>0
14
(19.2%)
38
(70.4%)



YAP_AVG_NORM01




<0.0001


Zero
68
(93.2%)
22
(40.7%)



>0
5
(6.8%)
32
(59.3%)



TAZ_AVG_NORM01




<0.0001


Zero
54
(74.0%)
19
(35.2%)



>0
19
(26.0%)
35
(64.8%)



MITF_AVG_NORM01




<0.0001


Zero
26
(35.6%)
2
(3.7%)



>0
47
(64.4%)
52
(96.3%)



MLANA_AVG_NORM01







>0
73
(100.0%)
54
(100.0%)



TYR_AVG_NORM01




0.2202


Zero
2
(2.7%)
0
(0.0%)



>0
71
(97.3%)
54
(100.0%)



POSTN_AVG_NORM01




<0.0001


Zero
32
(43.8%)
4
(7.4%)



>0
41
(56.2%)
50
(92.6%)



FBLN2_AVG_NORM01




<0.0001


Zero
71
(97.3%)
31
(57.4%)



>0
2
(2.7%)
23
(42.6%)
























TABLE E







MM79_CN
MM80_CN
MM81_CN
MM82_CN
AVG





AVG
AVG
AVG
AVG
per



per copy
per copy
per copy
per copy
copy



K14
K14
K14
K14
K14
STDEV
% STDEV























KRT14_AVG_NORM
1
1
1
1
1
0.000



KRT10_AVG_NORM
2.209
2.229
2.92
3.015
2.593
0.434
17%


MITF_AVG_NORM
0.021
0.018
0.016
0.015
0.018
0.003
15%


MLANA_AVG_NORM
0.021
0.018
0.016
0.015
0.018
0.003
15%


TYR_AVG_NORM
0.004
0.002
0.002
0.001
0.002
0.001
56%


PMEL_AVG_NORM
0.025
0.027
0.03
0.018
0.025
0.005
20%


FN1_AVG_NORM
0.077
0.065
0.035
0.042
0.055
0.020
36%


SPARC_AVG_NORM
1.294
1.143
0.568
1.707
1.178
0.471
40%


AGRN_AVG_NORM
0.004
0.006
0.003
0.002
0.004
0.002
46%


THBS1_AVG_NORM
0.064
0.015
0.018
0.005
0.026
0.026
103%


THBS2_AVG_NORM
0.366
0.061
0.104
0.057
0.147
0.148
100%


THBS4_AVG_NORM
0.018
0.006
0.005
0.001
0.008
0.007
98%


VCAN_AVG_NORM
0.095
0.034
0.04
0.027
0.049
0.031
64%


BGAN_AVG_NORM
0.015
0.027
0.014
0.015
0.018
0.006
35%


COL1A1_AVG_NORM
1.695
3.44
0.689
6.695
3.130
2.635
84%


COL4A1_AVG_NORM
0.069
0.026
0.03
0.016
0.035
0.023
66%


COL4A2_AVG_NORM
0.115
0.042
0.041
0.004
0.051
0.046
92%


COL18A1_AVG_NORM
0.015
0.009
0.005
0.002
0.008
0.006
73%


CTGF_AVG_NORM
0.012
0.008
0.016
0.004
0.010
0.005
52%


LOX_AVG_NORM
0.029
0.021
0.028
0.021
0.025
0.004
18%


LOXL1_AVG_NORM
0.015
0.009
0.016
0.015
0.014
0.003
23%


LOXL2_AVG_NORM
0.016
0.011
0.008
0.006
0.010
0.004
42%


LOXL3_AVG_NORM
0.003
0.002
0.002
0.001
0.002
0.001
41%


LOXL4_AVG_NORM
0.02
0.004
0.003
0.001
0.007
0.009
125%


PLOD2_AVG_NORM
0.018
0.014
0.007
0.001
0.010
0.008
75%


PLOD1_AVG_NORM
0.069
0.053
0.026
0.017
0.041
0.024
58%


SPP1_AVG_NORM
0.092
0.002
0.007
0
0.025
0.045
177%


TNC_AVG_NORM
0.025
0.02
0.027
0.013
0.021
0.006
29%


PCOLCE2_AVG_NORM
0.011
0.001
0.006
0
0.005
0.005
113%


PCOLCE_AVG_NORM
0.028
0.049
0.032
0.04
0.037
0.009
25%


PLOD3_AVG_NORM
0.03
0.006
0.007
0.002
0.011
0.013
113%


ITGB3_AVG_NORM
0.03
0.006
0.007
0.002
0.011
0.013
113%


ITGB1_AVG_NORM
0.164
0.054
0.074
0.038
0.083
0.056
68%


FBLN2_AVG_NORM
0.049
0.022
0.02
0.016
0.027
0.015
56%


CYR61_AVG_NORM
0.006
0.002
0.003
0
0.003
0.003
91%


ITGA5_AVG_NORM
0.011
0.005
0.007
0.003
0.007
0.003
53%


ITGA3_AVG_NORM
0.016
0.008
0.006
0.008
0.010
0.004
47%


ITGA2_AVG_NORM
0.08
0.034
0.019
0.084
0.054
0.033
60%


ITGAV_AVG_NORM
0.013
0.005
0.003
0.003
0.006
0.005
79%


CSRC_AVG_NORM
0.006
0.003
0.005
0.001
0.004
0.002
59%


PTK2_AVG_NORM
0.035
0.02
0.011
0.009
0.019
0.012
63%


POSTN_AVG_NORM
0.077
0.092
0.117
0.193
0.120
0.052
43%


YAP_AVG_NORM
0.079
0.029
0.033
0.031
0.043
0.024
56%


CXCL1_AVG_NORM
0.002
0
0
0
0.001
0.001
200%


CSF2_AVG_NORM
0.002
0
0
0
0.001
0.001
200%


CCL2_AVG_NORM
0.039
0.018
0.013
0.008
0.020
0.014
70%


IL8_AVG_NORM
0.003
0
0.001
0
0.001
0.001
141%


IL6_AVG_NORM
0.001
0
0
0
0.000
0.001
200%


LAMA3_AVG_NORM
0.038
0.012
0.021
0.011
0.021
0.013
61%


TP53_AVG_NORM
0.08
0.04
0.039
0.052
0.053
0.019
36%


CDKN1A_AVG_NORM
0.057
0.029
0.037
0.014
0.034
0.018
52%


CDKN2A_AVG_NORM
0.003
0.001
0.001
0
0.001
0.001
101%


TAZ_AVG_NORM
0.026
0.008
0.008
0.003
0.011
0.010
90%


LAMC1_AVG_NORM
0.062
0.013
0.016
0.008
0.025
0.025
101%


LAMB1_AVG_NORM
0.046
0.019
0.026
0.008
0.025
0.016
65%


LAMA1_AVG_NORM
0.007
0
0.001
0
0.002
0.003
168%


LAMC2_AVG_NORM
0.034
0.009
0.012
0.016
0.018
0.011
63%


LAMB3_AVG_NORM
0.042
0.016
0.026
0.017
0.025
0.012
48%


PLAT_AVG_NORM
0.032
0.02
0.034
0.04
0.032
0.001
27%


CSK_AVG_NORM
0.027
0.034
0.021
0.041
0.031
0.001
28%


GDF15_AVG_NORM
0.029
0.019
0.033
0.019
0.025
0.001
28%


FARP1_AVG_NORM
0.019
0.029
0.022
0.031
0.025
0.001
22%


ARPC1B_AVG_NORM
0.015
0.03
0.042
0.018
0.026
0.012
47%


NES_AVG_NORM
0.114
0.125
0.112
0.084
0.109
0.017
16%


NTRK3_AVG_NORM
0.021
0.025
0.022
0.033
0.025
0.001
25%


SNX17_AVG_NORM
0.112
0.099
0.089
0.123
0.106
0.015
14%


L1CAM_AVG_NORM
0.017
0.04
0.01
0.024
0.023
0.013
56%


CD44_AVG_NORM
0.112
0.089
0.09
0.123
0.104
0.017
16%









The results provided herein demonstrate the development of a method for determining absolute levels (copy numbers) of genes of interest (e.g., FN-associated genes) from paraffin-embedded tissue by generating a highly defined internal standard that can be regenerated indefinitely. This standardization approach can allow for the comparison of results from independent experiments and thus, allows for extensive validation. The RT-PCR not only produced strong signals from highly degraded RNA due to FFPE embedding, but also was amendable to high-throughput analysis and was highly cost effective. While the methods provided herein were validated for melanoma, these methods are likely applicable to other human cancers. The results provided herein also demonstrate the discrimination between benign and malignant pigmented lesions based on multiple markers.


Other Embodiments

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. A set of kit components within a kit for identifying a malignant skin lesion in a subject when used together with a set of reagents comprising: (a) primer pairs for determining, within a test sample taken from the subject, the expression level of marker genes PLAT, ITGB3, and IL8 to obtain a measured expression level of the marker genes for the test sample, and(b) a primer pair for determining, within the test sample, the expression level of marker gene GDF15, to obtain a measured expression level of the marker gene GDF15 for the test sample,wherein the set of kit components comprises:a control nucleic acid for each of the primer pairs,wherein each control nucleic acid comprises a target nucleic acid for one of the primer pairs configured to obtain a standard curve for the primer pair, andwherein each of the control nucleic acids is complementary DNA (cDNA) specific for cDNA and not specific for genomic DNA.
  • 2. A set of kit components within a kit comprising: (i) a first composition comprising a control nucleic acid for a primer pair for determining, within a test sample, the expression level of marker gene GDF15, said control nucleic acid comprising a target nucleic acid for the primer pair configured to obtain a standard curve for the primer pair;(ii) a second composition comprising a control nucleic acid for a primer pair for determining, within the test sample, the expression level of marker gene PLAT, said control nucleic acid comprising a target nucleic acid for the primer pair configured to obtain a standard curve for the primer pair;(iii) a third composition comprising a control nucleic acid for a primer pair for determining, within the test sample, the expression level of marker gene ITGB3, said control nucleic acid comprising a target nucleic acid for the primer pair configured to obtain a standard curve for the primer pair; and(iv) a fourth composition comprising a control nucleic acid for a primer pair for determining, within the test sample, the expression level of marker gene IL8, said control nucleic acid comprising a target nucleic acid for the primer pair configured to obtain a standard curve for the primer pair,wherein each of the control nucleic acids is complementary DNA (cDNA) specific for cDNA and not specific for genomic DNA.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of co-pending U.S. patent application Ser. No. 14/442,673, filed May 13, 2015, now abandoned, which is a National Stage application under 35 U.S.C. § 371 of International Patent Application PCT/US2013/053982, having an International filing date of Aug. 7, 2013, designating the United States of America and published in English as International Patent Publication WO 2014/077915 A1 on May 22, 2014, which claims the benefit under Article 8 of the Patent Cooperation Treaty to U.S. Provisional Patent Application Ser. No. 61/726,217, filed Nov. 14, 2012, the disclosure of each of which is hereby incorporated herein in its entirety by this reference.

US Referenced Citations (17)
Number Name Date Kind
7695913 Cowens Apr 2010 B2
20040010045 Yi Jan 2004 A1
20040110221 Twine Jun 2004 A1
20060235001 Elliott et al. Oct 2006 A1
20070154889 Wang Jul 2007 A1
20080274908 Chang Nov 2008 A1
20090125247 Baker et al. May 2009 A1
20100028876 Gordon et al. Feb 2010 A1
20110123997 Kashani-Sabet et al. May 2011 A1
20110159496 Kashani-Sabet et al. Jun 2011 A1
20120071343 Ma et al. Mar 2012 A1
20120128667 Chow et al. May 2012 A1
20140045915 Skog et al. Feb 2014 A1
20150290289 Sampath Oct 2015 A1
20160115555 Ma et al. Apr 2016 A1
20160222457 Meves et al. Aug 2016 A1
20170275700 Meves et al. Sep 2017 A1
Foreign Referenced Citations (3)
Number Date Country
2014077915 May 2014 WO
2016025717 Feb 2016 WO
2017196944 Nov 2017 WO
Non-Patent Literature Citations (44)
Entry
NEB catalog (1998/1999), pp. 121, 284. (Year: 1998).
(Annex 1) American Cancer Society“Treatment of Melanoma Skin Cancer, by Stage” 4 pages, accessed Nov. 19, 2020, https://www.cancer.org/cancer/melanoma-skin-cancer/treating/by-stage.html.
(American Joint Committee on Cancer) AJCC Cancer Staging Manual. Technical Manual [online]. 2002 [Retrieved on Jul. 28, 2017]. Retrieved from the Internet: <URL: https://cancerstaging.org/references-tools/deskreferences/Documents/AJCC6thEdCancerStagingManualPart2.pdf>; p. 209, Summary of Changes.
(Meves, A et al.) Tumor Cell Adhesion as a Risk Factor for Sentinel Lymph Node Metastasis in Primary Cutaneous Melanoma. Journal of Clinical Oncology. Aug. 10, 2015, vol. 33, No. 23; pp. 2509-2515; abstract; p. 2510, 1st column, 3rd paragraph; p. 2511, 2nd column, 4th paragraph; p. 2513, 2nd column, 2nd paragraph; Table 3.
Anders and Huber, “Differential expression analysis for sequence count data,” Genome Biol., 11(10):R106, Epub Oct. 27, 2010.
Balch et al., “Final version of 2009 AJCC melanoma staging and classification,” J Clin Oncol., 27(36):6199-6206, Epub Nov. 16, 2009.
Balch et al., “Sentinel node biopsy and standard of care for melanoma,” J Am Acad Dermatol., 60(5):872-875, May 2009.
Benjamin et al., “p53 and the Pathogenesis of Skin Cancer”, Toxicol Appl Pharmacol., Nov. 1, 2007; vol. 224 No. 3, pp. 241-248 (available in PMC Nov. 1, 2008, pp. 1-13), especially abstract, p. 2, 3rd para, p. 3, 2nd para, p. 4, last para, p. 7, last para-p. 8, 1st para.
Bernard et al., “Use of a new bioassay to study pentamidine pharmacokinetics,” J Infect Dis., 152(4):750-754, Oct. 1985.
Breslow, “Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma,” Ann Surg., 172(5):902-908, Nov. 1970.
Bullard et al., “Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments,” BMC Bioinformatics 11:94, Feb. 18, 2010.
Carlson et al., “Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery,” Curr Protoc Pharmacol., Chapter 14:Unit 14.16, Mar. 2011.
Chan et al., “Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK),” J Biol Chem., 285(15):11418-11426, Epub Feb. 11, 2010.
ClinicalTrials.gov Identifier: NCT00729807, “Pentamidine in Treating Patients With Relapsed or Refractory Melanoma,” ClinicalTrials.gov [online] 2008 [retrieved on Mar. 26, 2015]. Retrieved from the Internet: <URL: https://www.clinicaltrials.gov/ct2/show/NCT00729807?term=NCT00729807&rank=1>, 4 pages.
Conway et al., “Gene expression profiling of paraffin-embedded primary melanoma using the DASL assay identifies increased osteopontin expression as predictive of reduced relapse-free survival,” Clin Cancer Res., 15(22):6939-6946, Epub Nov. 3, 2009.
Coppe et al., “Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor sunnressor,” PLoS Biol., 6(12):2853-2868, Dec. 2, 2008.
Hartman et al., “The Evolution of S100B Inhibitors for the Treatment of Malignant Melanoma”, Future medicinal chemistry, Jan. 2013, vol. 5, No. 1, pp. 97-109. (available in PMC. Web pp. 1-25), especially abstract, p. 5, 2nd para, p. 7, last para-p. 8, 1st par.
Infante JR et al., “Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors,” J Clin Oncol., 30(13):1527-1533, Epub Mar. 26, 2012.
International Search Report and Written Opinion for PCT/US2013/053982, dated Dec. 5, 2013, 5 pages.
Kashani-Sabet et al., “A multi-marker assay to distinguish malignant melanomas from benign nevi,” Proc Natl Acad Sci U S A., 106(15):6268-6272, Epub Mar. 30, 2009.
King et al. Gene Expression Profile Analysis by DNA Microarrays. JAMA 2001, vol. 286, No. 18, pp. 2280-2288 (Year: 2001).
Lee et al., “The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action,” Cancer Res., 67(23):11359-11367, Dec. 1, 2007.
Meves et al., “Beta1 integrin cytoplasmic tyrosines promote skin tumorigenesis independent of their phosphorylation,” Proc Natl Acad Sci U S A., 108(37):15213-15218, Epub Aug. 29, 2011.
Mitra et al., “Melanoma sentinel node biopsy and prediction models for relapse and overall survival,” Br J Cancer., 103(8):1229-1236, Epub Sep. 21, 2010.
Pathak et al., “Pentamidine is an inhibitor of PRL phosphatases with anticancer activity,” Mol Cancer Ther., 1(14):1255-1264, Dec. 2002.
Ruczinski et al., “Logic regression,” Journal of Computational and Graphical Statistics, 12(3):475-511, 2003.
Sanovic et al., “Time-resolved gene expression profiling of human squamous cell carcinoma cells during the apoptosis process induced by photodynamic treatment with hypericin,” Int. J. Oncol., 35(4):921-39, Oct. 2009.
Seo et al., “The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway,” Biomaterials., 32(36):9568-9575, Epub Sep. 16, 2011.
Siiskonen et al., “Chronic UVR causes increased immunostaining of CD44 and accumulation of hyaluronan in mouse epidermis,” J Histochem Cytochem., 59(10):908-917, Epub Aug. 10, 2011.
Simon et al., “Expression of CD44 isoforms in human skin cancer,” Eur J Cancer., 32A(8):1394-1400, Jul. 1996.
Smith et al., “The effect of pentamidine on melanoma ex vivo,” Anticancer Drugs, 21(2):181-185, Feb. 2010.
Sun and Zhang, “Pentamidine binds to tRNA through non-specific hydrophobic interactions and inhibits aminoacylation and translation,” Nucleic Acids Res., 36(5):1654-1664, Mar. 2008.
Sun Yang et al. Overabundance of Putative Cancer Stem Cells in Human Skin Keratinocyte Cells Malignantly Transformed by Arsenic. Toxicol Sci, Jan. 2012, 125(1), pp. 20-29. Published online Oct. 19, 2011. doi: 10.1093/toxsci/kfr282, pp. 1-11.
Talantov et al., “Novel genes associated with malignant melanoma but not benign melanocytic lesions,” Clin Cancer Res., 11(20):7234-7242, Oct. 15, 2005.
Waalkes et al., “Pentamidine: clinical pharmacologic correlations in man and mice,” Clin Pharmacol Ther., 11(4):505-512, Jul.-Aug. 1970.
Warters et al., “Differential gene expression in primary human skin keratinocytes and fibroblasts in response to ionizing radiation,” Radiat Res., 172(1):82-95, Jul. 2009.
Whelan et al., “A method for the absolute quantification of cDNA using real-time PCR,” J. Immunol. Methods, 278(1-2):261-9, Jul. 2003.
Yoo et al., “A Comparison of Logistic Regression, Logic Regression, Classification Tree, and Random Forests to Identify Effective Gene-Gene and Gene-Environmental Interactions” International journal of applied science and technology, Aug. 2012, vol. 2, No. 7, pp. 268-284, especially abstract, p. 274, last para, p. 275, 3rd para, last para.
Yuan et al. “The web-based multiplex PCR primer design software Ultiplex and the associated experimental workflow: up to 100-plex multiplicity” BMC Genomics (last accessed Jan. 2021) 22:835 https://doi.org/10.1186/s12864-021-08149-1.
Sominidi-Damodara et al. . “Stromal gene expression predicts sentinel lymph node metastasis of primary cutaneous melanoma (P)” Poster presented at 15th European Association of Dermato-Oncology (EADO) Congress; Apr. 24-27, 2019.
Timar et al. “Gene signature of the metastatic potential of cutaneous melanoma: too much for too little?”, Clinical & Experimental Metastasis, Official Journal of Themetastasis Research Society, Kluwer Academic Publishers, DO.vol. 27, No. 6, Feb. 24, 2010 (Feb. 24, 2010), p. 371-387, XP019815757.
Riker et al. “The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis” BMC Medical Genomics, Apr. 28, 2008, vol. 1, Article No. 13, DOI: 10.1186/1755-8794-1-13.
Singh et al. “CXCL8 and its cognate receptors in melanoma progression and metastasis” Future Oncology, Jan. 2010, vol. 6, No. 1, pp. 111-116, DOI: 10.2217/fon.09.128.
Singh et al. “Expression of interleukin-8 in primary and metastatic malignant melanoma of the skin” Melanoma Research, Aug. 1999, vol. 9, No. 4, pp. 383-387, DOI: 10.1097/00008390-199908000-00007.
Related Publications (1)
Number Date Country
20190338372 A1 Nov 2019 US
Provisional Applications (1)
Number Date Country
61726217 Nov 2012 US
Continuations (1)
Number Date Country
Parent 14442673 US
Child 16518783 US