The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Aug. 16, 2024, is named BSC-40034-CON_SL.xml and is 110,835 bytes in size.
The invention described herein relates to the use of G-quadruplex containing microarrays to provide a large-scale assessment of ligand binding selectivity and affinity for G-quadruplexes and binding selectivity and/or affinity for individual G-quadruplexes.
Both the sequence and the structure of the genome govern gene expression. Transcription factors (TFs) bind to specific double-stranded DNA (dsDNA) sequences and modulate gene expression. Sequence-specific binding of TFs to dsDNA has been observed and described for thousands of proteins.1 However, estimates suggest that 13% of the genome has the capacity to form non-B-DNA structures.2 Several proteins can bind non-B-DNA such as unfolded single stranded DNAs (ssDNA)3 and folded structures such as G4s.4 Understanding the factors that govern both sequence and structure-dependent binding of DNA is critical to understanding fundamental biological regulatory mechanisms. To date, it has been challenging to develop techniques capable of a high-throughput examination of the sequence specificity of non-B-DNA-binding proteins.
ssDNA containing guanine-rich stretches (G-tracts) spontaneously undergoes Hoogsteen base pairing, resulting in the formation of four-stranded structures known as G-quadruplexes (G4s).5,6 Physiological concentrations of potassium stabilize G4s in vitro.6 G4-forming DNA sequences are enriched in promoter regions of oncogenes7 and can be conserved across species.8 G4 formation has been implicated in the transcriptional regulation of oncogenes such as c-MYC9 and BCL210 and are potential therapeutic targets for small molecules.11 Dozens of proteins4 and many small molecules12 that bind G4s have been identified. Prominent examples of small molecules include pyridostatin,13 5, 10, 15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4),14 and DC-34.15 G4-binding molecules can silence the expression of G4-associated oncogenes.15 Examples of G4-binding proteins include helicases,16 nucleolin,17 IGF2, 18 and CNBP.19 Despite strong evidence for G4 formation in vivo,20,21 progress in understanding the G4 function has been constrained by the difficulty of examining DNA-binding specificity of molecules that bind G4s.
Most TFs bind short dsDNA sequences (6-10 nucleotides)22 allowing for the comprehensive analysis of potential binding sites. | Universal protein-binding microarrays (PBMs)23,24 have been used as a high-throughput method to determine the dsDNA-binding specificity to all possible 8-mers.1 In contrast, the simplest G4 structure is 15 nucleotides long (i.e., GGGNGGGNNGGGNGGG (SEQ ID NO: 5)), not counting the nucleotides entering and exiting the structure (the flanking G4 tails). The types of DNA sequences known to form G4s is also expanding: several noncanonical G4s have been described including those with longer loops and/or insertions in G-tracts (bulges).25 There are limits to the number of sequences that can be placed on a microarray, and thus, determining DNA binding specificity of such a large sequence space is challenging. This technology can be used to examine nearly all potential mammalian G4s, but this does not include all possible potential G4-forming sequences.
One report previously used microarrays to study about 1,900 G4-forming oligonucleotides and probed binding with a fluorescently labeled small molecule.26 Microarray-based platforms for measuring G4-binding specificity have several potential advantages over sequencing-based methods. The first is that they do not require a PCR amplification step. PCR amplification is difficult for stable G4 templates, as DNA polymerase can be biochemically inhibited by G4 DNA.2,27,28 A second advantage is sensitivity. Protein-binding microarrays can detect distinct DNA sequence preferences between molecules even with low (<2-fold) relative differences in binding affinities. 29 Finally, the methods are not dependent on enrichment/pulldown efficiency: they can show that a molecule does not bind to all G4s present, whereas sequencing-based methods only detect what is efficiently pulled down.
Described herein are three Agilent DNA microarray designs that together contain a total of 24,154 unique sequences used to examine the binding specificity of proteins, antibodies, and small molecules to G4s and variants. Using Cy5-conjugated pyridostatin (Cy5-PDS) and a fluorescently labeled antibody BG4 (Cy5-BG4), it is shown that G4s can form on these microarrays, and ligand binding strength can be visualized using fluorescence imaging, validating the platform as a high-throughput method to profile G4-binding specificity. These arrays may be used to identify distinct G4-binding preferences of a panel of GST-tagged proteins (CNBP, IGF2, nucleolin, and five helicases). Finally, competition experiments between Cy5-PDS and the small molecule DC-34 reveal the G4-binding specificity of DC-34, highlighting the ability of the platform to examine DNA binding specificity of unlabeled compounds.
Three Agilent DNA microarrays (TABLE 1) were designed, each with four identical sectors that contain ca. 177,440 ssDNA 60-mers to examine G4-binding specificity. Arrays were designed with 9-73 replicates of each unique sequence to ensure statistical significance (TABLE 1). Each microarray contains different sets of G4 variants designed to examine several sequence parameters that affect G4 formation and binding specificity such as loop length (Design 1), loop sequence (Design 2), tail sequence (Design 2), and single nucleotide variants of six known G4s (Design 3). All microarrays include a set of 19 sequences from human telomeres and oncogene promoters known to form G4s with various topologies as positive controls (TABLE 2). Designs 2 and 3 have a set of 295 additional G4-forming sequences from the literature.30 For the loop length variants, the length of the tails and loops of four different MYC G4 sequences (MYC Pu27, MYC Pu18ntd, MYC Pu22, and MYC Pu22 NMR mutant) was increased up to five times their length. Loop and tail sequences were varied using A, T, G, and C polynucleotide stretches and a subset of combinations. For the loop sequence variants, 4,096 sequences of the form NGGGNGGGNNGGGNGGGN (SEQ ID NO: 2) and 64 variants of the form GGGNGGGNGGGNGGG (SEQ ID NO: 1) were generated. For the tail variants, 256 versions of the major MYC G4 with all possible dinucleotide tails (NNGGGTGGGGAGGGTGGGNN (SEQ ID NO: 3)) were generated. All single nucleotide variations at all positions of eight previously characterized G4 sequences (MYC Pu22, PDGFRβ, BCL2, and human telomeric G4) were generated (TABLE 1). Negative controls include 19 oncogene G4s in which all G tracts are replaced with either A, T, or C, reverse complements of G4 sequences, as well as a set of 86 published non-G4 sequences30 (TABLE 1). Design 3 is the most comprehensive of the three designs, which contains sequences found in Designs 1 and 2 as well as additional G4 sequences. This design was used for most of the experiments and analyses described herein.
The binding specificities of several molecules were evaluated. Microarrays were preincubated with 100 mM potassium chloride to induce G4 formation. Binding of each molecule is measured by detection of fluorescence intensity at each of the microarray features. BG4 and pyridostatin were conjugated with Cy5. Cellular proteins were expressed as chimeric proteins containing GST, and binding for these proteins was detected using an anti-GST antibody conjugated with Cy5 (Materials and Methods). G4 Structures Fold on DNA Microarrays. To evaluate the utility of DNA microarrays to examine G4-binding specificity, a Cy5-labeled pyridostatin (Cy5-PDS), a small molecule known to bind broadly to G4 structures, was synthesized.13 A Cy5 conjugated version of BG4 (Cy5-BG4), an antibody developed to bind G4s, was also obtained.31
The G4-binding specificity of eight GST-tagged human cellular proteins: two nucleolin (NCL) constructs (an N-terminal deletion of amino acid residues 1-271 and the RNA-recognition motifs (RRMs) only, i.e., residues 272-647), CNBP, IGF2, and full-length and truncated versions of 5 human helicases were examined. Each protein construct bound G4 microarray features in the presence of potassium. Similar binding of IVT-expressed or purified helicase DHX36 was observed. Lithium chloride weakened binding for most proteins (IGF2, NCL, FANCJ, BLM, WRN, and DHX36), highlighting their preference for binding folded G4 structures. An effect of the specific cation (potassium or lithium) on protein binding cannot be ruled out, as a reduction in binding to negative control sequences was also observed for these proteins, similar to that observed for Cy5-BG4, CNBP, and the DNA-binding domain of FANCJ, and to a lesser extent PIF1. CNBP binding to lithium treated microarrays and dsDNA is consistent with previous reports that CNBP binds guanine-rich nucleic acids.19
The utility of the microarray platform to detect how single nucleotide variants (SNVs) of known G4s affect binding was assessed. Cy5-PDS binding the MYC Pu22 G4 was examined with the expectation that variation of the nucleotides that are important to the G4 structure would result in weaker binding. In general, it was found that alteration of the guanine repeats results in weaker binding, with the largest effect occurring in the central guanine of each G-tract. In the MYC Pu22 G4, there are two G-tracts (positions 8-11 and 17-20) that are four nucleotides long. Sequences with variants at G9 and G10 are more weakly bound by Cy5-PDS, suggesting they participate in one of the four strands of the G4. In contrast, G8 and G11 can accommodate other bases, suggesting that guanine trinucleotides comprised of positions 8-10 or 9-11 can participate in the G4 structure. For the second G-tract, variants of G20 are better bound than the consensus suggesting it is not in the G4 structure, while variants of G17, G18, and G19 are more weakly bound, suggesting they are the guanine trinucleotide that is part of the G4 structure, consistent with previous reports. 35.36 Variations in the loops (positions 7, 12, and 16) and tail sequences can either weaken or strengthen Cy5-PDS, with cytosine or thymine being preferred in the loops. Examination of Cy5-PDS binding SNVs of five other G4 sequences (MYC Pu26, BCL2 P1G4, BCL2 55G, hTelomeric, and hTelomeric1) also highlighted G-tracts participating in the G-tetrad for all sequences except for the hTelomeric sequence. For example, in the G-rich BCL2 P1G4, which contains five G-tracts, the four G-tracts participating in the G4 structure were identified and the long (12 nucleotides) second loop, consistent with previous reports. 37 Variations affect Cy5-PDS binding for the hTelomeric G4 sequence differently, in which nucleotide substitutions at most positions increase Cy5-PDS binding. This G4 differs from the hTelomeric1 G4 sequence only at the dinucleotide at the 3′ tail (TTAGGGTTAGGGTTAGGGTTAGGGTT (SEQ ID NO: 21) for the hTelomeric G4 versus TTAGGGTTAGGGTTAGGGTTAGGGAA (SEQ ID NO: 22) for hTelomeric1). These results are indicative of the interplay of the 3′ end and other nucleotides of the sequence in determining the G4 structure and Cy5-PDS binding, consistent with previous results suggesting that these nucleotides affect the structure of the telomeric G4.38 Examination of single nucleotide variants of longer G4s such as the MYC Pu40 and PDGFRβ G4s, which contain more than four G-tracts and can thus potentially form multiple G4 structures, revealed that mutations of these G-tracts have variable effects on Cy5-PDS binding. Thus, different G4 structures may be forming in these sequences.
Several truncations of the PDGFRB G4, which contain only four G-tracts, were examined and it was found that Cy-5 PDS can bind each truncation.
Examination of protein binding to SNVs of a panel of G4s identifies unique patterns and provides base resolution data for investigators interested in G4 structure and G4-protein interactions. For example, mutations of the G-tracts of the MYC Pu26 G4 reduce binding of all proteins examined except for in the case of PIF1, in which all variants increase binding. Another example is the effect of variations of hTelomeric and hTelomeric1 G4s on BLM binding. Here, SNVs have opposite effects on BLM binding, similar to that observed for Cy5-PDS. However, unlike Cy5-PDS, the binding pattern is reversed: substitutions of the G-tracts of the hTelomeric sequence decrease BLM binding, whereas sequence variations at most positions of the hTelomeric1 G4 increase BLM binding, suggesting that G4 topology may be an important determinant of BLM-binding specificity and function.
The effect of specific sequence parameters on molecule binding was examined. Loop length (Designs 1 and 3) and sequence (NGGGNGGGNNGGGNGGGN (SEQ ID NO: 2), Design 2) were examined, both of which influence G4 stability39 and topology.40
Whether the microarray platform could be used to reveal the G4-binding specificity of unlabeled molecules via a competition with Cy5-PDS binding was explored. Three example molecules, unlabeled PDS, TMPyP4 (a planar molecule that nonspecifically binds G4 structures 14), and DC-34 (a molecule that selectively binds the MYC G415) were examined. A competition experiment with unlabeled pyridostatin indicates no change in binding specificity, with weaker-bound G4s being more easily competed. Comparison of 1 μM Cy5-PDS binding in the presence or absence of various concentrations of unlabeled TMPyP4 indicated a uniform reduction in Cy5-PDS binding to all G4-containing features. These results confirm that TMPyP4 nonspecifically competes with Cy5-PDS for binding to all G4s. The binding of unlabeled DC-34 was examined (
How well the microarray-based measurements for Cy5-PDS binding correlate with G4 stability measured using high-throughput sequencing was evaluated.28 A method (G4Detector)42 that uses parameters learned from high-throughput sequencing-based measurements of hundreds of thousands of human G4 occurrences28 to predict microarray intensities based on the probe sequence was applied. The predicted intensities show a high positive correlation with the measured array intensities for Cy5-PDS binding (R=0.61, p-value <1e-15), indicating good agreement between PDS-binding measurements made using either microarray or sequencing-based technologies. These results further demonstrate the generalizability of using the array-based measurements described herein: although the model used was trained on human genomic sequences, it appears to have good predictive power on unrelated sequences (i.e. the array probes described herein).
Use of microarrays containing thousands of different ssDNA sequences to evaluate G4 DNA-binding specificity of proteins and small molecules is described herein. Previous efforts to use G4 microarrays have focused on examining the binding of labeled small molecules to ca. 2,000 G4-forming sequences.26 Herein, is described the systematic assessment of protein, small molecule, and antibody binding to more than 25,000 G4 sequences, approaching the number and sequence diversity of G4s thought to exist at a given time in the human genome.20 The binding preferences of a G4 antibody as well as a variety of helicases and known endogenous G4-binding proteins are demonstrated herein. Distinct and coherent patterns/preferences of each molecule for different sequences even with low relative differences in intensities are found, highlighting the sensitivity of the approach. Also demonstrated is that in competitive assays, the selectivity of unlabeled small molecules can also be assessed, revealing a label-free method for quantifying G4-binding specificity. This work highlights the utility of the microarray platform to assess the specificity of G4-binding molecules. For example, BG4 is an antibody developed to bind G4s31 and has been used to examine occurrences of the G4 structure in vivo.21 The G4-binding specificity of BG4 has only been validated using a handful of sequences.31 Examination of Cy5-BG4 binding to the G4 microarrays described herein indicates the binding specificity of Cy5-BG4 is distinct from Cy5-PDS, a small molecule that also broadly binds G4s. It has been discovered that unlike Cy5-PDS, Cy5-BG4 G4 has the capacity to bind to some unfolded and non-G-tract containing ssDNA sequences, including multiple cytosine-rich sequences. Still, the possibility exists that BG4 induces a G4-like fold in some G-rich ssDNA sequences. Analysis of the effect of loop lengths on binding indicates that Cy5-BG4 preferentially bind G4s with short loops, unlike Cy5-PDS, which binds similarly to G4 sequences with various loop lengths. Because BG4 does not bind to all G4s, it is possible that pulldown assays such as ChIP-seq with BG4 may either underrepresent or overrepresent the occurrence of G4s in cells or lysates. Thus, caution should be exercised in considering pulldown assays with BG4. Experiments using this approach can also provide insights into G4-mediated regulation of biological processes. Transcription initiation is a dynamic process that involves several mechanical and topological changes to dsDNA.43 It has been demonstrated that the use of microarray platforms can distinguish the binding specificity of a given molecule or protein for structured or linear DNAs. For example, examination of protein binding in the presence of lithium (disfavoring G4 formation) in comparison with potassium (stabilizing G4 formation) demonstrates that inhibiting G4 formation does not inhibit DNA binding of the known G4-binding proteins CNBP and PIF1. It may therefore be more appropriate to consider these proteins as binding to purine-rich sequences of multiple conformations. It may be that the flexibility in binding DNA in multiple conformations may allow these proteins to bind genomic regions undergoing transitions in DNA conformation. In contrast, proteins such as IGF2 and DHX36 only bind to folded G4 sequences. IGF2 traditionally is known to act extracellularly, binding to the surface of cells and activating multiple signaling pathways.44 The possibility that it also functions by directly binding to DNA is another example of a protein having multiple functions by binding totally unrelated cellular components.45 hTelomeric G4 is structurally polymorphic which may be important for its function. Interestingly, the data disclosed herein shows that BLM specifically binds the wt hTelomeric sequence that forms hyb-2 G4, while WRN can bind both hTelomeric (hyb-2 G4) and hTelomeric1 (hyb-1 G4) sequences, suggesting that G4 topology may be an important determinant of different binding specificities and functions of BLM and WRN. The differences in binding to G4 sequences between proteins and Cy5-PDS also suggest that they may recognize distinct surfaces of the G4 structure. Analysis of future structures of small molecules and proteins in complex with G4 DNA such as the one already described41 may aid in understanding the array data, such as the contribution of different SNVs to binding specificity.
In conclusion, it is shown that the microarray-based analysis of G4-binding events is a robust and sensitive technology to examine DNA-binding specificity of small molecules and proteins to tens of thousands of ssDNA structures including G4s in a single experiment. The data provide a rich resource for investigators interested in noncanonical nucleic acid structures and G4 molecule-binding specificity. The customizability and flexibility in using microarrays to examine various aspects of G4 structure, stability, and binding by small molecules and proteins is highlighted by this work. Many G4s are polymorphic and have topologies dependent on temperature,46 cation identity (K+, Na+, or Li+), or concentrations.32 The results disclosed herein anticipate experiments conducted using differing conditions (salt concentrations or alternative ions) for the determination of aspects of G4 formation and stability. Parameters affecting cooperative G4-binding specificity can be examined via additional custom array designs in which the number of G-tracts within a DNA probe is varied systematically. Finally, the platforms described herein present a unique approach to understanding the sequence and structure parameters that govern nucleic acid recognition by antibodies, proteins, and small molecules in an unbiased format.
Synthesis of Cy5 Conjugated Pyridostatin. To a 1-dram vial was added alkynyl pyridostatin (1.0 mg, 0.00102 mmol)47 from a 5 mg mL-1 stock in DMSO. The solution was diluted with a water/tertbutyl alcohol mixture (1.0 mL, 1:1 v/v). Cy5-N3 (1.03 mg, 0.00123 mmol) was then added from a 10 mM aqueous stock solution, followed by cupric sulfate (0.065mg, 0.00041 mmol) and sodium ascorbate (0.2 mg, 0.00102 mmol) which were added from 5 mg mL-1 aqueous stock solutions. The reaction was stirred at RT for 1 h, at which time LC/MS indicated consumption of the starting material. The reaction was diluted with water (3 mL), and the solution was directly purified by reverse-phase preparative HPLC (5-90% MeCN/0.1% aqueous (NH4HCO3). The product-containing fractions were lyophilized to afford Cy5-PDS (1.3 mg, 76%) as a blue solid.
BG4,31 conjugated with FluoProbes647H (Cy5-BG4), was obtained from Absolute Antibody (product number Ab00174-1.1). TMPyP4 was obtained from Sigma-Aldrich (catalog number 613560). N-terminal glutathione S-transferase (GST) tagged human nucleolin IGF2, CNBP, and helicase plasmids were synthesized by GenScript. Purified, recombinant bovine DHX3641 was provided as a gracious gift by the Ferré-D′Amaré Lab (National Institutes of Health, Bethesda). The sequences of all proteins used are listed in TABLE 3. All chimeric proteins were expressed via in vitro translation (IVT) reactions using the PURExpress In Vitro Protein Synthesis Kit (NEB) as described previously.23 For all IVT reactions, 288 ng of plasmid was added to 80 μL of a IVT mixture, and reactions were carried out at 37° C. for 2 h. Expression of all protein constructs was confirmed via Western blot (
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Homo
sa-
piens
Bos
taurus
Microarrays were preincubated with a 100 mM potassium chloride solution for 1h at RT to induce G4 formation. Protein binding microarray experiments were then performed as previously described.23 Microarrays were blocked with 4% nonfat dry milk in a potassium phosphate buffer before incubation with proteins or small molecules. Expressed proteins were blocked with 4% nonfat dry milk, ssDNA, and BSA. For the validation experiments, microarrays were also treated with 100 mM lithium chloride to inhibit G4 formation. For experiments examining dsDNA, single-stranded DNA probes were made double-stranded using a primer complementary to a 24-mer constant sequence following the method described previously.23,24 Double stranding efficiency was monitored using 4% Cy3-dCTP.
Protein or molecule-bound microarrays were scanned with the G5761A SureScan Dx Microarray Scanner System (Agilent) to detect a Cy5 signal at two laser settings (30 and 100 PMT) to ensure signal intensities were below saturation. Spot intensities from microarray images were extracted using the Agilent Feature Extraction Software and are reported as raw fluorescence units. All binding assays were performed at least twice, with high agreement between replicates (R>0.8). Microarrays with the fewest number of saturated spots were used for further analysis. Median intensity was then computed for probes containing identical sequence on each microarray. Sequence logos were generated from a position frequency matrix generated from selected sequences using ggseqlogo.48 To gauge the correlation between G4-seq and the microarray data, G4detector42 with a pretrained model on human genomic G4s stabilized by K+ and PDS with randomized negative genomic sequence was used. 28 For each microarray probe sequence, G4detector was used to predict the probability of it being a G4, i.e., a number between 0 and 1. The measured array data (Design 3, PDS) and predictions were normalized using the following
where X is the vector of array intensity measurements or G4 probability predictions. The Pearson correlation between log normalized predicted probabilities and log normalized intensities is reported.
The following clauses show several illustrative and non-limiting embodiments of the invention:
K+.
In another embodiment, the one or more targeted G4-quadruplex moieties occur in one or single-stranded oligonucleotides (single-stranded DNA or RNA molecules).
In another embodiment, the one or more targeted G4-quadruplex moieties occur in one or single-stranded oligonucleotides (single-stranded DNA or RNA molecules) containing one or more chemically modified nucleotides.
In another embodiment, the device is a microarray comprising a plurality of single-stranded DNA or RNA molecules (s-DNAs or RNAs) attached to a solid substrate; where each s-DNA or RNA is from 50 nucleotides (nt) to 100 nt in length and includes an independently selected linker sequence and an independently selected G-quadruplex-forming region (G4 sequence) where the G4 sequence has formula II, S1-T1-S2-T2-S3-T3-S4-T4-S5 (II) (DNA sequence is disclosed as SEQ ID NO: 55 and RNA sequence is disclosed as SEQ ID NO: 61), wherein T1 is G-Gx1, T2 is G-Gx2, T3 is G-Gx3, and T4 is G-Gx4; S1 to S5 are independently selected sequences of from 0 to 4 nucleotides independently selected in each instance from the group consisting of A, T, U, C, and G; and x1 to x4 are each independently selected in each instance from the group consisting of 2, 3, 4, and 5.
In another embodiment, the one or more targeted G4-quadruplex moieties occur in one or more nucleic acid aptamers. Aptamers are short single-stranded oligonucleotides (single-stranded DNA or RNA molecules) that are capable of binding various target molecules with high affinity and specificity. The DNA or RNA molecules in the aptamer may contained one or more chemically modified nucleotide. It has been found that many aptamers are capable of forming G4-quadruplex moieties.
In another embodiment, the G4-quadruplex moiety is formed in a single-stranded oligonucleotide molecule containing chemically modified nucleotides. In a non-limiting example the single-stranded oligonucleotide molecule containing the G4-quadruplex includes one or more nucleotides modified at the 2′-position of the ribose portion of the nucleotide. The 2′-fluoro (2′-F), 2′-amino (2′-NH2) and 2′-O-methyl (2′-OMe) are common 2′-substituent modifications on the ribose unit. These modifications may increase nuclease resistance and/or optimize aptamer affinity for its target molecules.
In another embodiment, the method of any one of the preceding embodiments wherein the test compound or the fluorescent test compound is independently a protein, an oligopeptide, an oligonucleotide, or a small molecule.
The term “small molecule” as used herein, generally refers to an organic chemical compound of less than about 1,000 Da
The terms “G4 sequences” and “G4-forming sequences” are and can be used interchangeably herein and generally refer to sequences capable of forming G quadruplexes.
G-quadruplexes (G4s) are four-stranded secondary structures formed in guanine-rich nucleic acids [1]. The building block of G4s is the G-tetrad, consisting of four guanines connected through Hoogsteen hydrogen bonds in a cyclic coplanar arrangement [2]. A G4 structure is formed when two or more G-tetrad planes stack on top of each other and is stabilized by physiological relevant monovalent cations, especially K+ [3-5]. The biologically relevant intramolecular G4s are globular nucleic acid structures with unique folding and capping structures that provide an opportunity for selective targeting by small molecules [6-8].
G4 structures are involved in many cellular processes of DNA, including gene transcription [9,10], DNA replication [11], and genome stability [12,13]. In the human genome, G4 structures are prevalent in the regulatory regions and enriched in the promoters of cancer-related genes [14,15]. In particular, MYC, one of the most deregulated oncogenes in human cancer, has a DNA-G4 forming motif (MycG4) in its promoter [9,16-20]. Compounds that bind and stabilize the MycG4 structure have been shown to repress MYC expression and lead to cancer cell death [8,9,16]. Therefore, the MycG4 is considered an attractive target for anticancer drugs. However, over 10,000 G4 structures have been discovered in human chromatin of precancerous cells [15,21]. It is thus important to determine the selectivity of a G4-targeting compound.
3,6-Bis (1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC) is a G4-interactive compound and the first fluorescent probe (λex,max=435, λem, max=580) to detect G4 structures in human cells [22-24]. BMVC has also been developed as a potential fluorescent marker for cancer cells [25,26]. Whereas BMVC was first developed to detect G4 structures in human telomeres, a recent study shows that BMVC binds the MYC promoter G4 (MycG4,
Microarray glass slides with hundred thousands of DNA sequences are a fast, straightforward, and high-throughput platform that has been employed to screen, profile, and quantify ligand and protein interactions with DNA and RNA molecules [28-30]. As described herein custom DNA microarrays have been designed that can assess the binding selectivities of proteins, small molecules, and antibodies across over 15,000 potential G4 structures [31].
Herein, is described a binding-selectivity analysis of BMVC to the MycG4 and other G4 structures using custom G4 microarrays and competition experiments between Cy5-fluorophore (λex,max=647, λem,max=665) labeled small molecule pyridostatin (Cy5-PDS) and unlabeled BMVC. The results show that BMVC differentially binds to various G4 structures and has a different G4 selectivity profile from Cy5-PDS. BMVC shows preferential binding to the MycG4 among the known G4 structures. Moreover, the microarray data reveals the sequence selectivity of BMVC to the flanking residues of the MycG4, especially at the 3′-end. The large-scale microarray results are confirmed by orthogonal small-scale NMR and fluorescence binding analyses. This is the first large-scale study of a G4-interactive ligand that shows a high-throughput evaluation of G4-binding selectivity and sequence specificity with unbiased selection of G4 sequences. It demonstrates the potential of custom DNA microarrays in the development of drugs targeting DNA or RNA structures.
Custom G4 microarrays have been designed that contain a total of 19,249 G4 DNA sequences [31, the entirety of disclosure of which, including the supplemental information, is incorporated herein by reference]. The G4 microarrays were created by covalently attaching thousands of unique G4-forming DNA 60-mers to a glass surface. Pyridostatin (PDS) is a known G4-interactive compound. Measured by the fluorescence intensity of Cy5-PDS bound to each sequence in potassium-containing solution, Cy5-PDS was shown to preferentially bind G4-forming sequences on the G4 microarrays [31]. To test the binding selectivity of BMVC, competition experiments using custom G4 microarrays were performed. The addition of potassium-containing solution to G4-forming oligonucleotides induced G4 formation. Subsequently, the microarrays were incubated with 1 μM Cy5-PDS in the absence or presence of 1 μM, 3 μM, or 10 μM of the unlabeled BMVC molecule. After washing to remove the unbound Cy5-PDS and BMVC, the fluorescence intensities of Cy5-PDS bound to DNA oligonucleotides were detected using a fluorescence scanner. The binding selectivity of BMVC to different G4 structures was assessed by measuring the relative fluorescence intensity reduction of Cy5-PDS as BMVC concentration increased.
The fluorescence intensities of 1 μM Cy5-PDS in the presence of various concentrations of unlabeled BMVC were plotted against the fluorescence intensities in the absence of BMVC (
To determine the G4-binding selectivity of BMVC, the BMVC binding to known G4 structures was examined, including 7 well-studied MYC promoter G4 sequences, 15 other oncogene promoter G4 sequences, and 3 human telomeric G4 sequences (TABLE 4). BMVC competes with the binding of Cy5-PDS to most G4 sequences in a dose-dependent manner as indicated by reduced fluorescence intensities (
Comparison of the inhibitory effects for the known G4 structures revealed differential G4 binding selectivity of BMVC vs. Cy5-PDS (
Cy5-PDS binds appears to bind less well to nonparallel G4s, such as human telomeric G4s, which show less than 25% fluorescence intensity as compared to parallel-stranded G4s (
In general, Cy5-PDS and BMVC both strongly bind to parallel G4s (
a T in MYC_14/23T and a G in MYC_Pu22[35]. The strikingly stronger binding of BMVC to MYC 14/23T than MYC_Pu22 (
To examine the preference of BMVC for specific flanking sequences, the binding of BMVC to MYC G4-derived sequence variants of the two flanking bases at both ends (5′-NNGGGTGGGGAGGGTGGGNN-3′ (SEQ ID NO: 3), variant 3) was examined using the competition microarray experiments. The differential reduction of Cy5-PDS binding to variants in the flanking sequences induced by BMVC addition reveals the binding selectivity for specific MYC G4 flanking sequences. In the absence of BMVC, Cy5-PDS exhibits a slight preference for the 3′-flanking C and T, as shown by the most-bound (top 10%) and least-bound (bottom 10%) flanking variants (
The effects of BMVC on the Cy5-PDS-binding to MYC G4 loop and single flanking-base sequence variants (5′-NGGGNGGGNNGGGNGGGN-3′ (SEQ ID NO: 2), variant 4) which include all possible loop and flanking variants (
The sequence selectivity shown by the flanking variants explains the markedly weaker binding of BMVC to Bcl-2_P1G4 (
The binding selectivity of BMVC to G4 structures and flanking sequences was confirmed by NMR titration experiments of BMVC to different G4 sequences, including parallel-stranded MYC_14/23T G4 and its 5′-and 3′-flanking variants, VEGF and MYC1234 G4s, basket-type human telomeric G4 (wtTel22 in Na+), and hybrid type human telomeric G4 (Tel26 in K+) (
While BMVC binds the MYC_14/23T G4 with the highest affinity (
A high-throughput, large-scale custom G4 DNA microarray to assess the binding selectivities of proteins and small molecules across ˜20,000 potential G4 structures simultaneously has been established. Competition binding experiments of the Cy5 labeled PDS and the unlabeled G4-interactive small molecule BMVC demonstrate that the custom G4microarray platform can assess the binding selectivity of BMVC to various G4 structures and flanking sequences, as well as differential G4 binding selectivity between BMVC and PDS. The results reveal that BMVC selectively binds parallel G4s, in particular the MYC_14/23T G4. Moreover, the G4 microarray data shows BMVC selectively recognizes the flanking sequences of parallel G4s, especially the 3′-flanking T. Importantly, the binding and sequence selectivity revealed by the large-scale DNA microarray data is in good agreement with the individual binding data by NMR and fluorescence. It has been found that the G4 DNA microarray provides a high-throughput and unbiased platform to assess the binding selectivity of G4-targeting molecules on a large scale and can help understand the properties that govern molecular recognition.
A custom microarray was designed that contains four identical sectors that contain ca. 177,440 ssDNA 60-mers to examine G4 binding selectivity (NCBI GEO Platform GPL28372). The microarray contains different sets of G4 variants designed to examine several sequence parameters that affect G4 formation and binding selectivity such as loop length, loop sequence, flanking tail sequence, and single nucleotide variants of known G4s [31]. Briefly, the array includes a set of sequences from human telomeres and oncogene promoters known to form G4s with various topologies as positive controls (TABLE 4) as well as a set of 295 additional G4-forming sequences from the literature [57]. Loop and flanking tail sequences were varied using A, T, G, and C polynucleotide stretches and a subset of combinations, described in [31]. For the flanking variants, 256 versions of the major MYC G4 with all possible dinucleotide flanking sequences (5′-NNGGGTGGGGAGGGTGGGNN-3′ (SEQ ID NO: 3)) were generated. For the loop sequence variants, 4,096 sequences of the form 5′-NGGGNGGGNNGGGNGGGN-3′ (SEQ ID NO: 2) were generated. Negative controls include 19 oncogene G4s in which all G-tracts are replaced with either A, T, or C, reverse complements of G4 sequences, as well as a set of 86 published non-G4 sequences [57].
DNA Microarray Binding Experiments DNA microarray experiments were performed and analyzed as described previously [31]. Microarrays were preincubated with a pH 7.4 phosphate buffer solution with 100 mM potassium for 1 h at room temperature to induce G4 formation. Arrays then were blocked with 4% nonfat dry-milk in a potassium phosphate buffer before incubation with small molecules (Cy5-PDS, Cy5-PDS+BMVC, or Cy5-PDS+PDS) for 1 h at room temperature.
Data Processing and Analysis Molecule-bound microarrays were scanned with an Agilent G5761A SureScan Dx Microarray Scanner System to detect Cy5 signal at two laser settings (30 and 100 PMT). Spot intensities from microarray images were extracted using Agilent Feature Extraction Software and are reported as raw fluorescence intensities. All binding assays were performed twice with high agreement between replicates (R>0.8). Microarrays with the fewest number of saturated spots were used for further analysis. Median intensity was then computed for probes containing identical sequence on each microarray. Sequence logos were generated from a position frequency matrix generated from selected sequences using ggseqlogo [58].
G4 DNA oligonucleotides were synthesized using β-cyanoethylphosphoramidite solid-phase chemistry (Applied Biosystem Expedite 8909), as described previously [36]. NMR experiments were performed on a Bruker AV-III-500-HD equipped with a BBFO Z-gradient cryoprobe. DNA samples were heated to 95° C. for 5 min, then cooled slowly for G4 formation. For the 1D 1H NMR experiments, samples contained 100-250 μM DNA in an appropriate buffer solution with 10% D20 for the lock. The titrations were performed by adding increasing amounts of the compounds to the DNA samples in solution.
This application claims the benefit under 35 U.S.C § 119 (e) of U.S. Provisional Application No. 63/016,385 filed on Apr. 28, 2020, the entirety of the disclosure of which is incorporated herein by reference.
This invention was made with government support under CA177585 and CA023168 awarded by the National Institutes of Health. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 17241912 | Apr 2021 | US |
Child | 18648173 | US |