Methods and product for optimising localised or spatial detection of gene expression in a tissue sample

Information

  • Patent Grant
  • RE50065
  • Patent Number
    RE50,065
  • Date Filed
    Thursday, March 14, 2019
    5 years ago
  • Date Issued
    Tuesday, July 30, 2024
    7 months ago
Abstract
The present invention relates to methods and products for localized or spatial detection and/or analysis of RNA in a tissue sample or a portion thereof, comprising: (a) providing an object substrate on which at least one species of capture probe, comprising a capture domain, is directly or indirectly immobilized such that the probes are oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer; (b) contacting said substrate with a tissue sample and allowing RNA of the tissue sample to hybridise to the capture probes; (c) generating cDNA molecules from the captured RNA molecules using said capture probes as RT primers; (d) labelling the cDNA molecules generated in step (c), wherein said labelling step may be contemporaneous with, or subsequent to, said generating step; (e) detecting a signal from the labelled cDNA molecules; and optionally (f) imaging the tissue sample, wherein the tissue sample is imaged before or after step (c).
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a reissue application of U.S. application Ser. No. 14/434,274, filed Apr. 8, 2015, which issued as U.S. Pat. No. 9,593,365 on Mar. 14, 2017, which is a 371 of PCT/EP2013/071645 filed Oct. 16, 2013, which claims the benefit of priority to Great Britain provisional application Nos. 1218654.0, filed on Oct. 17, 2012 and 1304585.1 filed on Mar. 14, 2013 under the provisions of 35 U.S.C. 119 and the International Convention for the protection of Industrial Property, which are incorporated herein by reference.


The present invention relates generally to the localised or spatial detection of nucleic acid in a tissue sample or a portion thereof. Particularly, the present invention provides methods for detecting and/or analysing RNA, e.g. RNA transcripts, so as to obtain spatial information about the localisation, distribution or expression of genes in a tissue sample, for example in an individual cell. The present invention thus enables spatial transcriptomics.


More particularly, the present invention relates to a method for localised or spatial detection of transcripts in a tissue sample or a portion thereof, e.g. for determining and/or analysing a transcriptome, and especially the global transcriptome, of a tissue sample or a portion thereof. In particular the method relates to a quantitative and/or qualitative method for analysing the distribution, location or expression of nucleic acid molecules in a tissue sample wherein the spatial expression or distribution or location pattern within the tissue sample is retained. Thus, the method provides a process for performing “spatial transcriptomics”, which enables the user to determine simultaneously the expression pattern, or the location/distribution pattern of the genes expressed, present in a tissue sample or a portion thereof. The present invention also provides methods for determining the optimum conditions for localized or spatial detection of (e.g. for capturing) nucleic acids from a tissue sample on a substrate, thereby allowing the maximum amount of nucleic acid molecules to be captured, whilst retaining the distribution or location pattern that originated within the tissue sample.


The invention is particularly based on array technology and may be coupled with high throughput DNA sequencing technologies. The methods of the invention allow the nucleic acid molecules (e.g. RNA molecules) in the tissue sample, particularly mRNA, to be captured on an object substrate (e.g. a slide or chip, which may be an array) and labelled, which may include the incorporation of a positional tag. The labelled molecules may be visualised to determine or assess the efficacy of the conditions used to capture the nucleic acid molecules. Alternatively or additionally, the captured nucleic acid molecules (or a subset thereof, e.g. a portion of the nucleic acid molecules captured from the tissue sample) may be analysed further, e.g. by sequence analysis. For instance, the captured nucleic acid molecules may be used to template the synthesis of DNA molecules which are sequenced and analysed to determine which genes are expressed in all or one or more parts of the tissue sample. Advantageously, the individual, separate and specific transcriptome of each cell in the tissue sample may be obtained at the same time. Hence, the methods of the invention may be said to provide highly parallel comprehensive transcriptome signatures from individual cells (or groups of cells) within a tissue sample, or a portion thereof, without losing spatial information within said investigated tissue sample. The invention also provides an object substrate, such as a chip or slide (e.g. an array) for performing the method of the invention and methods for making the object substrate e.g. chip or slide, of the invention.


The human body comprises over 100 trillion cells and is organized into more than 250 different organs and tissues. The development and organization of complex organs, such as the brain, are far from understood and there is a need to dissect the expression of genes expressed in such tissues using quantitative methods to investigate and determine the genes that control the development and function of such tissues. The organs are in themselves a mixture of differentiated cells that enable all bodily functions, such as nutrient transport, defense etc. to be coordinated and maintained. Consequently, cell function is dependent on the position of the cell within a particular tissue structure and the interactions it shares with other cells within that tissue, both directly and indirectly. Hence, there is a need to disentangle how these interactions influence each cell within a tissue at the transcriptional level.


Recent findings by deep RNA sequencing have demonstrated that a majority of the transcripts can be detected in a human cell line and that a large fraction (75%) of the human protein-coding genes are expressed in most tissues. Similarly, a detailed study of 1% of the human genome showed that chromosomes are ubiquitously transcribed and that the majority of all bases are included in primary transcripts. The transcription machinery can therefore be described as promiscuous at a global level.


It is well-known that transcripts are merely a proxy for protein abundance, because the rates of RNA translation, degradation etc will influence the amount of protein produced from any one transcript. In this respect, a recent antibody-based analysis of human organs and tissues suggests that tissue specificity is achieved by precise regulation of protein levels in space and time, and that different tissues in the body acquire their unique characteristics by controlling not which proteins are expressed but how much of each is produced.


However, in subsequent global studies transcriptome and proteome correlations have been compared demonstrating that the majority of all genes were shown to be expressed. Interestingly, there was shown to be a high correlation between changes in RNA and protein levels for individual gene products which is indicative of the biological usefulness of studying the transcriptome in individual cells in the context of the functional role of proteins.


Indeed, analysis of the histology and expression pattern in tissues is a cornerstone in biomedical research and diagnostics. Histology, utilizing different staining techniques, first established the basic structural organization of healthy organs and the changes that take place in common pathologies more than a century ago. Developments in this field resulted in the possibility of studying protein distribution by immunohistochemistry and gene expression by in situ hybridization.


However, the parallel development of increasingly advanced histological and gene expression techniques has resulted in the separation of imaging and transcriptome analysis and, until the methods of the present invention, there has not been any feasible method available for global transcriptome analysis with spatial resolution.


As an alternative, or in addition, to in situ techniques, methods have developed for the in vitro analysis of proteins and nucleic acids, i.e. by extracting molecules from whole tissue samples, single cell types, or even single cells, and quantifying specific molecules in said extracts, e.g. by ELISA, qPCR etc.


Recent developments in the analysis of gene expression have resulted in the possibility of assessing the complete transcriptome of tissues using microarrays or RNA sequencing, and such developments have been instrumental in our understanding of biological processes and for diagnostics. However, transcriptome analysis typically is performed on mRNA extracted from whole tissues (or even whole organisms), and methods for collecting smaller tissue areas or individual cells for transcriptome analysis are typically labour intensive, costly and have low precision.


Hence, the majority of gene expression studies based on microarrays or next generation sequencing of RNA use a representative sample containing many cells. Thus the results represent the average expression levels of the investigated genes. The separation of cells that are phenotypically different has been used in some cases together with the global gene expression platforms (Tang F et al, Nat Protoc. 2010; 5: 516-35; Wang D & Bodovitz S, Trends Biotechnol. 2010; 28:281-90) and resulted in very precise information about cell-to-cell variations. However, high throughput methods to study transcriptional activity with high resolution in intact tissues have not, until now, been available.


Thus, existing techniques for the analysis of gene expression patterns provide spatial transcriptional information only for one or a handful of genes at a time or offer transcriptional information for all of the genes in a sample at the cost of losing positional information. Hence, it is evident that methods to determine simultaneously, separately and specifically the transcriptome of each cell in a sample are required, i.e. to enable global gene expression analysis in tissue samples that yields transcriptomic information with spatial resolution, and the present invention addresses this need. The present invention may also be seen to provide alternative methods for the analysis of gene expression patterns that provide spatial transcriptional information for one or a handful of genes.


The novel approach of the methods and products of the present invention utilizes now conventional array technology and may utilise well established sequencing technology, which may yield transcriptional information for all of the genes in a sample, whilst retaining positional information for the transcripts. It will be evident to the person of skill in the art that this represents a milestone in the life sciences. The new technology opens a new field of so-called “spatial transcriptomics”, which is likely to have profound consequences for our understanding of tissue development and tissue and cellular function in all multicellular organisms. It will be apparent that such techniques will be particularly useful in our understanding of the cause and progress of disease states and in developing effective treatments for such diseases, e.g. cancer. The methods of the invention will also find uses in the diagnosis of numerous medical conditions.


Array technology, particularly microarrays, arose from research at Stanford University where small amounts of DNA oligonucleotides were successfully attached to a glass surface in an ordered arrangement, a so-called “array”, and used it to monitor the transcription of 45 genes (Schena M et al, Science. 1995; 270: 368-9, 371).


Since then, researchers around the world have published more than 30,000 papers using microarray technology. Multiple types of microarray have been developed for various applications, e.g. to detect single nucleotide polymorphisms (SNPs) or to genotype or re-sequence mutant genomes, and an important use of microarray technology has been for the investigation of gene expression. Indeed, the gene expression microarray was created as a means to analyze the level of expressed genetic material in a particular sample, with the real gain being the possibility to compare expression levels of many genes simultaneously. Several commercial microarray platforms are available for these types of experiments but it has also been possible to create custom made gene expression arrays.


Whilst the use of microarrays in gene expression studies is now commonplace, it is evident that new and more comprehensive so-called “next-generation DNA sequencing” (NGS) technologies are starting to replace DNA microarrays for many applications, e.g. in-depth transcriptome analysis.


The development of NGS technologies for ultra-fast genome sequencing represents a milestone in the life sciences (Petterson E et al, Genomics. 2009; 93: 105-11). These new technologies have dramatically decreased the cost of DNA sequencing and enabled the determination of the genome of higher organisms at an unprecedented rate, including those of specific individuals (Wade C M et al Science. 2009; 326: 865-7; Rubin J et al, Nature 2010; 464: 587-91). The new advances in high-throughput genomics have reshaped the biological research landscape and in addition to complete characterization of genomes it is possible also to study the full transcriptome in a digital and quantitative fashion. The bioinformatics tools to visualize and integrate these comprehensive sets of data have also been significantly improved during recent years.


However, it has surprisingly been found that a unique combination of histological and microarray techniques, which may also be coupled with NGS techniques, can yield comprehensive transcriptional information from multiple cells in a tissue sample which information is characterised by a two-dimensional spatial resolution. Thus, at one extreme the methods of the present invention can be used to analyse the expression of a single gene in a single cell in a sample, whilst retaining the cell within its context in the tissue sample. At the other extreme, and in a preferred aspect of the invention, the methods can be used to determine the expression of every gene in each and every cell, or substantially all cells, in a tissue sample (or portion thereof) simultaneously, i.e. the global spatial expression pattern of a tissue sample or portion thereof. It will be apparent that the methods of the invention also enable intermediate analyses to be performed. For instance, the methods may be used to determine or quantify the transcriptional activity of cells in a tissue sample (e.g. the relative abundance of transcripts in different cell or tissue types), which would allow transcriptome analysis to focus on specific regions of a tissue sample, e.g. regions or portions of tissues samples with high (or low) transcriptional activity.


It will be evident that the efficacy of the step of capturing nucleic acid molecules from tissue samples may be dependent on the source of the tissue and/or the methods used to prepare the tissue sample. Accordingly, the methods and arrays of the invention may be used to determine the optimum conditions to capture the nucleic acid molecules from a tissue sample on an object substrate, e.g. an array.


In its simplest form, the invention may be illustrated by the following summary. The invention requires reverse transcription (RT) primers to be immobilised on an object substrate, e.g. a glass slide or chip. Thin tissue sections are placed onto the substrate and a reverse transcription reaction is performed in the tissue section on the substrate. The RT primers, to which the RNA in the tissue sample binds (or hybridizes), are extended using the bound RNA as a template to obtain cDNA, which is therefore bound to the surface of the substrate. The synthesized part of the cDNA is labelled, e.g. with a visibly detectable label, such as a fluorescently labelled nucleotide which may be incorporated into the synthesized cDNA molecules. A consequence of labelling the synthesized cDNA is that each cDNA strand provides a detectable signal that corresponds to the presence of a RNA molecule in the tissue section, and the location of the cDNA on the surface of the substrate corresponds to its original location in the tissue section. The signal from the labelled cDNA is detected, e.g. the surface of the substrate is imaged, and accordingly, the relative abundance of transcript present in each part of the tissue section, e.g. each cell, can be detected and quantified. Optionally, the tissue section may be visualised or imaged, e.g. stained and photographed, before or after the cDNA synthesis step to enable the labelled cDNA molecule to be correlated with a position within the tissue sample.


Thus, in one aspect the method may be viewed as a method for capturing and/or labelling the transcriptome of a tissue sample on an object substrate and it will be evident from the discussion below that this method may find a variety of utilities, particularly in methods for detecting and/or analysing the transcriptome of a tissue sample or a portion thereof.


For instance, quantifying the relative abundance of the labelled cDNA may be used to determine the transcriptional activity of different regions of a tissue sample, e.g. to identify cells with high or no transcriptional activity. The method can be used to determine the optimum reaction conditions for detecting, e.g. capturing, the transcriptome of a tissue sample on an object substrate, e.g. by repeating the method using different conditions (e.g. conditions for permeabilizing the tissue to allow the nucleic acids in the tissue sample to interact with the immobilized primers on the substrate), comparing the intensity and/or resolution of the signal obtained from labelled cDNA molecules on the imaged substrates and optionally selecting the conditions that provide the optimum image intensity and/or resolution.


In some embodiments, the method may be viewed as a method for localized or spatial detection, e.g. quantification, of the relative abundance of one or more transcripts in a tissue sample, e.g. the RT primer may be specific for one or more transcripts thereby enabling a specific transcript (or set of transcripts) to be captured and labelled on the object surface, wherein subsequent detection, e.g. imaging, of the intensity and distribution of the signal from labelled transcript is representative of the amount of transcript (or set of transcripts) present in the tissue sample in specific locations.


In a related embodiment the method may be viewed as a method for localized or spatial detection and/or analysis of the transcriptome of one or more portions of a tissue sample, e.g. the RT primer may be capable of capturing all of the transcripts on the object surface, which are then labelled as described above. Subsequent detection, e.g. imaging, of the intensity and distribution of the signal from labelled transcriptome can be used to select one or more portions of the substrate for further analysis, e.g. sequence analysis. The labelled transcripts on portions of the substrate that are not selected for further analysis may be removed from the surface of the substrate, e.g. by laser ablation, and discarded. The remaining subset of labelled transcripts may be analysed, e.g. sequenced, and the sequence information may be correlated with the portion(s) of the substrate from which the labelled transcripts were not removed and that correspond(s) to a position in the tissue sample.


In yet another aspect of the invention the reverse transcription (RT) primers comprise also unique positional tags (domains) and the RT primers may be arrayed on the object substrate, e.g. a glass slide or chip, to generate an “array”. The unique positional tags correspond to the location of the RT primers on the array (the features of the array). Thin tissue sections are placed onto the array and a reverse transcription reaction is performed in the tissue section on the substrate. The RT primers, to which the RNA in the tissue sample binds (or hybridizes), are extended using the bound RNA as a template to obtain cDNA, which is therefore bound to the surface of the array. The synthesized part of the cDNA is labelled, e.g. a detectable label, such as a fluorescently labelled nucleotide, may be incorporated into the synthesized cDNA. As consequence of the unique positional tags in the RT primers, each cDNA strand carries information about the position of the template RNA in the tissue section. The labelled cDNA is imaged, which enables the efficacy of the transcriptome capture step to be assessed. In some embodiments, the visualisation of the cDNA molecules also allows areas of the substrate to be targeted for removal of surface bound material, e.g. by laser ablation, such that only transcripts from portions of tissue sample that are of interest may be analysed further, as described above. The tissue section may be visualised or imaged, e.g. stained and photographed, before or after the cDNA synthesis step to enable the positional tag in the cDNA molecule to be correlated with a position within the tissue sample. The cDNA is sequenced, which results in a transcriptome with exact positional information. The sequence data can then be matched to a position in the tissue sample, which enables the visualization, e.g. using a computer, of the sequence data together with the tissue section, for instance to display the expression pattern of any gene of interest across the tissue. Similarly, it would be possible to mark different areas of the tissue section on the computer screen and obtain information on differentially expressed genes between any selected areas of interest. It will be evident that the methods of the invention may result in data that is in stark contrast to the data obtained using current methods to study mRNA populations. For example, methods based on in situ hybridization provide only relative information of single mRNA transcripts. Thus, the methods of the present invention have clear advantages over current in situ technologies. The global gene expression information obtainable from the methods of the invention also allows co-expression information and quantitative estimates of transcript abundance. It will be evident that this is a generally applicable strategy available for the analysis of any tissue in any species, e.g. animal, plant, fungus.


It will be seen from the above explanation that there is an immense value in coupling positional information to transcriptome information. For instance, it enables global gene expression mapping at high resolution, which will find utility in numerous applications, including e.g. cancer research and diagnostics.


Furthermore, it is evident that the methods described herein differ significantly from the previously described methods for analysis of the global transcriptome of a tissue sample and these differences result in numerous advantages. The present invention is predicated on the surprising discovery that the use of tissue sections does not interfere with synthesis of DNA (e.g. cDNA) primed by primers (e.g. reverse transcription primers) that are coupled to the surface of an object substrate, e.g. an array. Moreover, labelling the cDNA synthesized on the object substrate allows specific portions of a tissue sample to be selected for further analysis, which enables resources, e.g. sequencing resources, to be focussed on the analysis of specific cell or tissue types within a tissue sample. This may result in reduced costs and a less complex data set which may be analysed more efficiently and robustly than a data set from the analysis of the transcriptome of the whole tissue sample.


Thus, in its first and broadest aspect, the present invention provides a method for localized or spatial detection and/or analysis of RNA, and particularly of transcripts, in a tissue sample or a portion thereof, comprising:


(a) providing an object substrate on which at least one species of capture probe is directly or indirectly immobilized such that the probes are oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer;


(b) contacting said substrate with a tissue sample and allowing RNA of the tissue sample to hybridise to the capture probes;


(c) generating cDNA molecules from the captured RNA molecules using said capture probes as RT primers;


(d) labelling the cDNA molecules generated in step (c), wherein said labelling step may be contemporaneous with, or subsequent to, said generating step, preferably wherein the label is incorporated into the synthesized part of the cDNA molecules;


(e) detecting a signal from the labelled cDNA molecules, e.g. imaging the substrate such that the signal from the labelled cDNA molecules is detected; and optionally


(f) imaging the tissue sample, wherein the tissue sample is imaged before or after step (c).


The method may alternatively or additionally be viewed as a method for determining and/or analysing a transcriptome of a tissue sample or a portion thereof or a method for capturing and/or labelling the transcriptome of a tissue sample on an object substrate, e.g. an array.


Thus, in a second more particular aspect of the invention, the present invention can be seen to provide a method for determining the optimum conditions for localised or spatial detection of RNA (e.g. transcripts) in a tissue sample on an object substrate, comprising steps (a)-(e), and optionally step (f), described above on a first object substrate and further steps:


(g) repeating steps (a)-(e), and optionally step (f), with a second object substrate, using different conditions in step (b);


(h) comparing the intensity and/or resolution of the signal from the labelled cDNA molecules immobilized on said first and second object substrate; and optionally


(i) selecting the conditions that provide the optimum signal intensity and/or resolution of the labelled cDNA molecules.


In a third aspect, the present invention can be seen to provide a method for determining and/or analysing RNA or a transcriptome of a tissue sample or a portion thereof comprising steps (a)-(e), and optionally step (f), described above and further steps:


(g′) removing the labelled cDNA from at least one portion of the surface of the object substrate;


(h′) optionally amplifying the remaining cDNA molecules immobilized on the surface of the object substrate;


(i′) releasing at least part of the remaining cDNA molecules and/or optionally their amplicons from the surface of the object substrate, wherein said released molecules may be a first strand and/or second strand cDNA molecule or an amplicon thereof;


(j′) directly or indirectly analysing the sequence of the released molecules.


It will be understood that this third aspect allows a part of the RNA or transcriptome to be determined and/or analysed, and in particular to be selectively analysed; by removing the labelled cDNA from at least a portion of the object substrate surface, it may be selected which of the cDNA (and hence which of the captured RNA) to be analysed. The removal step is discussed further below, but it will be understood that this could be achieved by removing a portion of the tissue sample from the substrate (which will concomitantly remove the labelled cDNA)


In a particularly preferred embodiment of the third aspect of the invention, the object substrate is an array and the capture probes each comprise a positional domain that corresponds to the position of each capture probe on the array. Accordingly, the method may be viewed as comprising:


(a″) providing an object substrate (e.g. an array) on which multiple species of capture probes are directly or indirectly immobilized such that each species occupies a distinct position on the object substrate and is oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer, wherein each species of said capture probe comprises a nucleic acid molecule with 5′ to 3′:


(i) a positional domain that corresponds to the position of the capture probe on the object substrate, and


(ii) a capture domain;


(b″) contacting said object substrate with a tissue sample such that the position of a capture probe on the object substrate may be correlated with a position in the tissue sample and allowing RNA of the tissue sample to hybridise to the capture domain in said capture probes;


(c″) generating cDNA molecules from the captured RNA molecules using said capture probes as RT primers,


(d″) labelling the cDNA molecules generated in step (c′), wherein said labelling step may be contemporaneous with, or subsequent to, said generating step, preferably wherein the label is incorporated into the synthesized part of the cDNA molecules;


(e″) detecting a signal from the labelled cDNA molecules;


(f″) optionally imaging the tissue sample, wherein the tissue sample is imaged before or after step (c″).


(g″) optionally removing the labelled cDNA from at least one portion of the surface of the object substrate;


(h″) optionally amplifying the cDNA molecules immobilized on the surface of the object substrate;


(i″) releasing at least part of the cDNA molecules and/or optionally their amplicons from the surface of the object substrate, wherein said released molecules may be a first strand and/or second strand cDNA molecule or an amplicon thereof and wherein said part includes the positional domain or a complement thereof;


(j″) directly or indirectly analysing the sequence of the released molecules.


The methods allow the abundance of the transcripts from a tissue sample to visualised directly, e.g. by fluorescence, akin to a standard microarray. However, unlike a standard microarray, the abundance of the transcripts can be correlated directly with their position in the tissue sample. Advantageously, the detection of the labelled cDNA molecules in situ on the surface of the object substrate (i.e. such that their distribution the object substrate corresponds directly their distribution in the tissue sample) also allows for a portion or portions of the tissue sample of interest to be selected for analysis, thereby minimising the amount of data to be evaluated. Furthermore, the detection of the labelled cDNA molecules in situ on the surface of the object substrate enables the provision of a method for determining the optimum conditions for capturing the transcriptome of a tissue sample on an object substrate, wherein the spatial distribution of the transcripts in the tissue sample is transferred directly to the surface of the object substrate. The object substrates used for optimising the conditions for capturing a transcriptome (e.g. wherein the capture probes do not contain a positional domain and/or the probes are immobilized uniformly on the surface of the object substrate) are relatively inexpensive in comparison to an object substrate on which capture probes comprising a positional domain are arrayed, such that each feature comprises a species of capture probe with a unique positional domain. However, the optimum conditions determined using the inexpensive object substrate can be used to perform analyses using the expensive arrays. Hence the methods may also be seen to reduce costs over other spatial transcriptomics methods. Thus, this aspect of the method may be viewed as providing or enabling a so-called “quality control” (QC) step to determine the optimum or most appropriate, e.g. cost-effective, conditions in which to perform a more detailed analysis using more expensive arrays.


The methods of the invention also represent a significant advance over other methods for spatial transcriptomics known in the art. For example the methods described herein may result in a global and spatial profile of all transcripts in the tissue sample or a portion thereof. Moreover, the methods may enable the expression of every gene to be quantified for each position or feature on an array, which enables a multiplicity of analyses to be performed based on data from a single assay. Thus, the methods of the present invention make it possible to detect and/or quantify the spatial expression of all genes in single tissue sample or a portion thereof. In some aspects of the invention the abundance of the transcripts also may be visualised both directly and indirectly. When the methods include methods of indirect detection, e.g. sequence analysis, it is possible to measure the expression of genes in a single sample simultaneously even wherein said transcripts are present at vastly different concentrations in the same sample.


As described in more detail below, any method of nucleic acid analysis may be used in the analysis step (j). Typically this may involve sequencing, but it is not necessary to perform an actual sequence determination. For example sequence-specific methods of analysis may be used. For example a sequence-specific amplification reaction may be performed, for example using primers which are specific for the positional domain and/or for a specific target sequence, e.g. a particular target DNA to be detected (i.e. corresponding to a particular cDNA/RNA etc). An exemplary analysis method is a sequence-specific PCR reaction.


The sequence analysis information obtained in step (j) may be used to obtain spatial information as to the RNA in the sample or a portion of the sample. In other words the sequence analysis information may provide information as to the location of the RNA in the tissue sample. This spatial information may be derived from the nature of the sequence analysis information determined, for example it may reveal the presence of a particular RNA which may itself be spatially informative in the context of the tissue sample used, and/or the spatial information (e.g. spatial localisation) may be derived from the position of the tissue sample on the array, coupled with the sequencing information. Thus, the method may involve simply correlating the sequence analysis information to a position in the tissue sample e.g. by virtue of the positional tag and its correlation to a position in the tissue sample. However, as described above, spatial information may conveniently be obtained by correlating the expression data, e.g. the intensity of the signal from the labelled cDNA detected, e.g. imaged, in step (e) or the sequence analysis data obtained from step (j), to an image of the tissue sample and this represents one preferred embodiment of the invention. Accordingly, in a preferred embodiment the method also includes a step of:


(f) imaging the tissue sample wherein the tissue sample is imaged before or after step (c), preferably wherein the image of the labelled cDNA is correlated with an image of said tissue sample.


Hence, the method described in the third aspect of the invention may comprise a step of:


(k) correlating said sequence analysis information with an image of said tissue sample, wherein the tissue sample is imaged before or after step (c).


In its broadest sense, the method of the invention may be used for localized or spatial detection of a nucleic acid, specifically RNA, in a tissue sample. Thus, in one embodiment, the method of the invention may be used for determining and/or analysing all of the transcriptome of a tissue sample e.g. the global transcriptome of a tissue sample. However, the method is not limited to this and encompasses determining and/or analysing all or part of the transcriptome of a tissue sample or a portion thereof. Thus, the method may involve determining and/or analysing a part or subset of the transcriptome, e.g. a transcriptome corresponding to one gene or a subset of genes, e.g. a set of particular genes, for example related to a particular disease or condition, tissue type etc. Alternatively or additionally, the method may involve determining and/or analysing all of the transcriptome of a portion of a tissue sample.


Viewed from another aspect, the method steps set out above can be seen as providing a method of obtaining a spatially defined transcriptome, and in particular the spatially defined global transcriptome, of a tissue sample or portion thereof.


Alternatively viewed, the method of the invention may be seen as a method for localised or spatial detection of nucleic acid, e.g. RNA, in a tissue sample or a portion thereof, or for localised or spatial determination and/or analysis of nucleic acid (e.g. RNA) in a tissue sample or a portion thereof. In particular, the method may be used for the localised or spatial detection or determination and/or analysis of gene expression in a tissue sample or a portion thereof. The localised/spatial detection/determination/analysis means that the RNA may be localised to its native position or location within a cell or tissue in the tissue sample. Thus for example, the RNA may be localised to a cell or group of cells, or type of cells in the sample, or to particular regions of areas within a tissue sample. The native location or position of the RNA (or in other words, the location or position of the RNA in the tissue sample), e.g. an expressed gene, may be determined.


The invention may also be viewed as providing methods for determining the optimum conditions for localised detection and/or analysis of nucleic acids in a tissue sample on an object substrate, i.e. for capturing and/or labelling nucleic acids from a tissue sample on an object substrate, e.g. a slide or chip.


The invention can also be seen to provide an object substrate, e.g. a slide or chip, for use in the methods of the invention comprising a substrate on which one or more species of capture probe is directly or indirectly immobilized such that each probe is oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer.


Optionally the probes are immobilised uniformly on the object substrate, i.e. the probes are not arrayed as distinct features. Hence, in some embodiments the object substrate of the invention may be viewed as a featureless array, i.e. a microarray without distinct features, which are defined below. In a particular embodiment of the invention, one species of capture probe is immobilized on the object surface, i.e. the capture probes are identical.


In some embodiments of the invention the probes are capable of hybridizing to (i.e. capturing) all mRNA, i.e. RNA molecules with a polyA tail. Hence, in particularly preferred embodiments of the invention the probes may comprise sequences of consecutive dTTP or dUTP nucleotides, e.g. oligoT and/or oligoU, as described in more detail below. In a preferred embodiment of the invention, the object substrate of the invention is for use in methods for determining the optimum conditions for the localised or spatial detection of transcripts from a tissue sample on an object substrate, e.g. array.


In some embodiments of the invention the probes may be capable of hybridizing to (i.e. capturing) specific types of mRNA, i.e. RNA expressed from a specific gene of set of genes. Hence, in some embodiments of the invention the probes may comprise gene specific sequences or sequences that are degenerate for a family of genes. In a preferred embodiment of the invention, the object substrate of the invention is for use in methods for determining and/or analysing one or more transcripts from a tissue sample or a portion thereof.


It will be seen therefore that the object substrate of the present invention may be used to capture RNA, e.g. mRNA, of a tissue sample that is contacted with said array. The array may also be used for determining and/or analysing a partial or global transcriptome of a tissue sample or for obtaining a spatially defined partial or global transcriptome of a tissue sample. The object substrate may be for use in methods of the invention that may be considered as methods of determining, e.g. quantifying, the localised or spatial expression of one or more genes in a tissue sample or portion thereof. Expressed another way, the object substrate may be for use in methods used to detect the spatial expression of one or more genes in a tissue sample or portion thereof. In yet another way, the object substrate may be for use in methods used to determine simultaneously the expression of one or more genes at one or more positions within a tissue sample or a portion thereof. Still further, the object substrate may be for use in methods for partial or global transcriptome analysis of a tissue sample or portion thereof with two-dimensional spatial resolution.


The RNA may be any RNA molecule which may occur in a cell. Thus it may be mRNA, tRNA, rRNA, viral RNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), microRNA (miRNA), small interfering RNA (sRNA), piwi-interacting RNA (piRNA), ribozymal RNA, antisense RNA or non-coding RNA. Preferably however it is mRNA.


Step (c) in the methods above of generating cDNA from the captured RNA will be seen as relating to the synthesis of the cDNA. This will involve a step of reverse transcription of the captured RNA, extending the capture probe, which functions as the RT primer, using the captured RNA as template. Such a step generates so-called first strand cDNA. As will be described in more detail below, second strand cDNA synthesis may optionally take place on the array, or it may take place in a separate step, after release of first strand cDNA from the array. As also described in more detail below, in certain embodiments second strand synthesis may occur in the first step of amplification of a released first strand cDNA molecule.


Step (d) in the methods above of labelling the cDNA molecules generated in step (c) will be seen as relating to any suitable method of labelling the cDNA molecules. In particular, the label will be provided to, e.g. as part of, or on, the generated cDNA molecule. In preferred embodiments of the invention, the labelling step is performed contemporaneously with, i.e. at the same time as, the generating step. Thus, labelling the may involve the incorporation of labelled nucleotides into the synthesized cDNA molecule directly. As discussed in more detail below, the nucleotides may be labelled with directly or indirectly signal giving molecules. For instance, directly signal giving labels may be fluorescent molecules, i.e. the labelled nucleotides may be fluorescently labelled nucleotides. Indirectly signal giving labels may be, for example, biotin molecules, i.e. the labelled nucleotides may be biotin labelled nucleotides, which require additional steps to provide a signal, e.g. the addition of streptavidin conjugated to an enzyme which may act on a chemical substrate to provide a detectable signal, e.g. a visibly detectable colour change.


In some embodiments the cDNA generated in step (c) may be labelled after its synthesis, e.g. stained. Various methods for labelling nucleic acid molecules are known in the art and could be employed in the methods of the invention. For instance, the cDNA may be stained with a nucleic acid stain. If the cDNA generating step only creates a first strand of cDNA, it may be advantageous to use a strain capable of detecting single stranded nucleic acid such as SYBR Gold® or GelStar®, as the RNA template may degrade. However, if a second strand of cDNA is generated a stain capable of detecting double stranded nucleic acid, such as ethidium bromide or SYBR Green® may be used. In some embodiments it may be advantageous to remove the tissue sample from the object substrate before labelling the cDNA, e.g. to avoid background signals from nucleic acid material remaining in the tissue sample, e.g. genomic DNA etc. In embodiments where it is desirable to image the tissue sample to be able to correlate the detection, e.g. image, of the labelled cDNA with an image of the tissue sample, it may be desirable to image the tissue sample before the step of generating the cDNA and particularly before the step of labelling the cDNA.


The “object substrate” or “substrate” of the invention may be any solid substrate on which nucleic acid molecules can be immobilized directly or indirectly, e.g. a slide or chip. In preferred embodiments the object substrate may be viewed as being an array substrate, i.e. any substrate that could be used to generate a nucleic acid array, e.g. a microarray substrate. In many embodiments the capture probes may be immobilized on the object substrate in the form of an array, i.e. in some embodiments the object substrate is an array, e.g. a microarray. In other embodiments the capture probes are not immobilized on the object substrate in an array format, i.e. the substrate may have no distinct features and the capture probes may be immobilized on the object substrate uniformly. Hence, in some embodiments the object substrate is not an array. Alternatively, the object subject may be viewed as a featureless array or alternatively as an array comprising a single large feature. Array substrates, i.e. object substrates, for use in the context of nucleic acid analysis are discussed and described below.


As used herein the term “multiple” means two or more, or at least two, e.g. 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 400, 500, 1000, 2000, 5000, 10,000, or more etc. Thus for example, the number of distinct capture probes (i.e. capture probes with different sequences, e.g. different positional domains) may be any integer in any range between any two of the aforementioned numbers. It will be appreciated however that it is envisaged that conventional-type arrays with many hundreds, thousands, tens of thousands, hundreds of thousands or even millions of capture probes may be used.


Thus, the methods outlined herein may utilise, but are not limited to, high density nucleic acid arrays comprising “capture probes” for capturing and labelling transcripts from all of the single cells within a tissue sample e.g. a thin tissue sample slice, or “section”. The tissue samples or sections for analysis are produced in a highly parallelized fashion, such that the spatial information in the section is retained. The captured RNA (preferably mRNA) molecules for each cell, or “transcriptomes”, are transcribed into cDNA and the resultant cDNA molecules are labelled and detected and/or analyzed. In the first instance the labelled cDNA molecules are detected and/or analysed by detecting the signal from the labelled molecules, e.g. by imaging the object substrate such that the signal from the label can be detected, e.g. quantified. The labelled cDNA molecules, or a portion thereof, may be subject to analysis, e.g. by high throughput sequencing. The resultant data from the first and/or subsequent detection and/or analysis may be correlated to images of the original tissue samples. For instance, an overlay of the two images may be used to determine areas of high, low or no expression, which may enable portions of the tissue sample to be selected for further analysis. The data from the further analyses may be correlated to images of the tissue sample by, e.g. so-called barcode sequences (or ID tags, defined herein as positional domains) incorporated into the arrayed nucleic acid probes.


High density nucleic acid arrays or microarrays form a core component of some of the spatial transcriptome labelling methods described herein. A microarray is a multiplex technology used in molecular biology. A typical microarray consists of an arrayed series of microscopic spots of oligonucleotides (hundreds of thousands of spots, generally tens of thousands, can be incorporated on a single array). The distinct position of each nucleic acid (oligonucleotide) spot (each species of oligonucleotide/nucleic acid molecule) is known as a “feature” (and hence in some of the methods set out above each species of capture probe may be viewed as a specific feature of the array; each feature occupies a distinct position on the array), and typically each separate feature contains in the region of picomoles (10−12 moles) of a specific DNA sequence (a “species”), which are known as “probes” (or “reporters”). Typically, these can be a short section of a gene or other nucleic acid element to which a cDNA or cRNA sample (or “target”) can hybridize under high-stringency hybridization conditions. However, as described below, the probes of the present invention and/or their distribution on the array may differ from the probes of standard microarrays.


In gene expression microarrays, probe-target hybridization is usually detected and quantified by detection of visual signal, e.g. a fluorophore, silver ion, or chemiluminescence-label, which has been incorporated into all of the targets before the targets are contacted with the array. The intensity of the visual signal correlates to the relative abundance of each target nucleic acid in the sample, but does not provide any spatial information about the origin of the target nucleic acid in the sample. Since an array can contain tens of thousands of probes, a microarray experiment can accomplish many genetic tests in parallel.


In standard microarrays, the probes are attached to a solid surface or substrate by a covalent bond to a chemical matrix, e.g. epoxy-silane, amino-silane, lysine, polyacrylamide etc. The substrate typically is a glass, plastic or silicon chip or slide, although other microarray platforms are known, e.g. microscopic beads.


The probes may be attached to the object substrate, e.g. array, of the invention by any suitable means. In a preferred embodiment the probes are immobilized to the substrate by chemical immobilization. This may be an interaction between the substrate (support material) and the probe based on a chemical reaction. Such a chemical reaction typically does not rely on the input of energy via heat or light, but can be enhanced by either applying heat, e.g. a certain optimal temperature for a chemical reaction, or light of certain wavelength. For example, a chemical immobilization may take place between functional groups on the substrate and corresponding functional elements on the probes. Such corresponding functional elements in the probes may either be an inherent chemical group of the probe, e.g. a hydroxyl group or be additionally introduced. An example of such a functional group is an amine group. Typically, the probe to be immobilized comprises a functional amine group or is chemically modified in order to comprise a functional amine group. Means and methods for such a chemical modification are well known.


The localization of said functional group within the probe to be immobilized may be used in order to control and shape the binding behaviour and/or orientation of the probe, e.g. the functional group may be placed at the 5′ or 3′ end of the probe or within sequence of the probe. A typical substrate for a probe to be immobilized comprises moieties which are capable of binding to such probes, e.g. to amine-functionalized nucleic acids. Examples of such substrates are carboxy, aldehyde or epoxy substrates. Such materials are known to the person skilled in the art. Functional groups, which impart a connecting reaction between probes that are chemically reactive by the introduction of an amine group, and array substrates are known to the person skilled in the art.


Alternative substrates on which probes may be immobilized may have to be chemically activated, e.g. by the activation of functional groups, available on the object substrate, e.g. array substrate. The term “activated substrate” relates to a material in which interacting or reactive chemical functional groups were established or enabled by chemical modification procedures as known to the person skilled in the art. For example, a substrate comprising carboxyl groups has to be activated before use. Furthermore, there are substrates available that contain functional groups that can react with specific moieties already present in the nucleic acid probes.


In some embodiments the probes may be immobilized on beads, e.g. plastic microbeads, which can be used to immobilize the probes on the substrate. Suitable techniques for immobilizing the nucleic acid molecules on beads may be selected from the techniques discussed above or selected from methods known in the art. The beads may be contacted with, and immobilized on, an object substrate, thereby indirectly immobilizing the probes on the surface of the substrate. For example, after contacting the beads with the substrate, the substrate may be treated crosslink the beads to each other and/or the surface of the substrate, e.g. the substrate may heated to partially melt the beads which are allowed to solidify, to generate an object substrate on which probes are indirectly immobilized.


Alternatively, the probes may be synthesized directly on the substrate. Suitable methods for such an approach are known to the person skilled in the art. Examples are manufacture techniques developed by Agilent Inc., Affymetrix Inc., Roche Nimblegen Inc. or Flexgen BV. Typically, lasers and a set of mirrors that specifically activate the spots where nucleotide additions are to take place are used. Such an approach may provide, for example, spot sizes (i.e. features) of around 30 μm or larger. However, in some embodiments the probes may be immobilized uniformly on the substrate, i.e. a uniform, consistent or homogeneous distribution of probes across the surface of the substrate. Hence, it may be necessary simply to activate a portion or area of the substrate on which the probes will be immobilized. A “portion” of the substrate is described below.


The object substrate therefore may be any suitable substrate known to the person skilled in the art. The substrate may have any suitable form or format, e.g. it may be flat, curved, e.g. convexly or concavely curved towards the area where the interaction between the tissue sample and the substrate takes place. Particularly preferred is the where the substrate is a flat, i.e. planar, such as a chip or slide.


Typically, the substrate is a solid support and thereby allows for an accurate and traceable positioning of the probes on the substrate. An example of a substrate is a solid material or a substrate comprising functional chemical groups, e.g. amine groups or amine-functionalized groups. A substrate envisaged by the present invention is a non-porous substrate. Preferred non-porous substrates are glass, silicon, poly-L-lysine coated material, nitrocellulose, polystyrene, cyclic olefin copolymers (COCs), cyclic olefin polymers (COPs), polypropylene, polyethylene and polycarbonate.


Any suitable material known to the person skilled in the art may be used. Typically, glass or polystyrene is used. Polystyrene is a hydrophobic material suitable for binding negatively charged macromolecules because it normally contains few hydrophilic groups. For nucleic acids immobilized on glass slides, it is furthermore known that by increasing the hydrophobicity of the glass surface the nucleic acid immobilization may be increased. Such an enhancement may permit a relatively more densely packed formation, which is advantageous when the probes are arranged in an array format. In addition to a coating or surface treatment with poly-L-lysine, the substrate, in particular glass, may be treated by silanation, e.g. with epoxy-silane or amino-silane or by silynation or by a treatment with polyacrylamide.


A number of standard arrays and array substrates are commercially available and both the number and size of the features may be varied. In the present invention, when the probes are distributed uniformly on the surface of the substrate, the concentration of the probes immobilized may be altered to correspond to the size and/or density of the cells present in different tissues or organisms. Similarly, when the probes are in an array format the arrangement of the features may be altered to correspond to the size and/or density of the cells present in different tissues or organisms. For instance, animal cells typically have a cross-section in the region of 1-100 μm, whereas the cross-section of plant cells typically may range from 1-10000 μm. Hence, in embodiments where the probes are arrayed on the substrate, Nimblegen® arrays, which are available with up to 2.1 million features, or 4.2 million features, and feature sizes of 13 micrometers, may be preferred for tissue samples from an animal or fungus, whereas other formats, e.g. with 8×130 k features, may be sufficient for plant tissue samples. Commercial arrays are also available or known for use in the context of sequence analysis and in particular in the context of NGS technologies. Such arrays may also be used as the substrate, e.g. array substrate in the context of the present invention, e.g. an IIlumina bead array. In addition to commercially available arrays, which can themselves be customized, it is possible to make custom or non-standard “in-house” arrays and methods for generating arrays are well-established. The methods of the invention may utilise both standard and non-standard arrays that comprise probes as defined below.


The probes on a substrate may be immobilized, i.e. attached or bound, to the substrate, e.g. array, via the 5′ or 3′ end, depending on the chemical matrix of the array. Typically, for commercially available arrays, the probes are attached via a 3′ linkage, thereby leaving a free 5′ end. However, substrates, e.g. arrays, comprising probes attached to the substrate via a 5′ linkage, thereby leaving a free 3′ end, are available and may be synthesized using standard techniques that are well known in the art and are described elsewhere herein.


The covalent linkage used to couple a nucleic acid probe to a substrate may be viewed as both a direct and indirect linkage, in that the although the probe is attached by a “direct” covalent bond, there may be a chemical moiety or linker separating the “first” nucleotide of the nucleic acid probe from the, e.g. glass or silicon, substrate i.e. an indirect linkage. For the purposes of the present invention probes that are immobilized to the substrate by a covalent bond and/or chemical linker are generally seen to be immobilized or attached directly to the substrate.


As will be described in more detail below, the capture probes of the invention may be immobilized on, or interact with, the substrate, e.g. array, directly or indirectly. Thus the capture probes need not bind directly to the substrate, but may interact indirectly, for example by binding to a molecule which itself binds directly or indirectly to the array (e.g. the capture probe may interact with (e.g. bind or hybridize to) a binding partner for the capture probe, i.e. a surface probe, which is itself bound to the substrate directly or indirectly). Generally speaking, however, the capture probe will be, directly or indirectly (by one or more intermediaries), bound to, or immobilized on, the substrate.


The method and object substrate, e.g. slide or chip, of the invention may comprise probes that are immobilized via their 5′ or 3′ end. However, when the capture probe is immobilized directly to the array substrate, it may be immobilized only such that the 3′ end of the capture probe is free to be extended, e.g. it is immobilized by its 5′ end. The capture probe may be immobilized indirectly, such that it has a free, i.e. extendible, 3′ end.


By extended or extendible 3′ end, it is meant that further nucleotides may be added to the most 3′ nucleotide of the nucleic acid molecule, e.g. capture probe, to extend the length of the nucleic acid molecule, i.e. the standard polymerization reaction utilized to extend nucleic acid molecules, e.g. templated polymerization catalyzed by a polymerase.


Thus, in one embodiment, the substrate, e.g. array, comprises probes that are immobilized directly via their 3′ end, so-called surface probes, which are defined below. Each species of surface probe comprises a region of complementarity to each species of capture probe, such that the capture probe may hybridize to the surface probe, resulting in the capture probe comprising a free extendible 3′ end. In a preferred aspect of the invention, when the substrate comprises surface probes, the capture probes are synthesized in situ on the substrate.


The probes may be made up of ribonucleotides and/or deoxyribonucleotides as well as synthetic nucleotide residues that are capable of participating in Watson-Crick type or analogous base pair interactions. Thus, the nucleic acid domain may be DNA or RNA or any modification thereof, e.g. PNA or other derivatives containing non-nucleotide backbones. However, the capture probe, e.g. the capture domain of the capture probe, must capable of priming a reverse transcription reaction to generate cDNA that is complementary to the captured RNA molecules.


In a preferred embodiment of the invention at least the capture domain of the capture probe comprises or consists of deoxyribonucleotides (dNTPs). In a particularly preferred embodiment the whole of the capture probe comprises or consists of deoxyribonucleotides.


In a preferred embodiment of the invention the capture probes are immobilized on the substrate directly, i.e. by their 5′ end, resulting in a free extendible 3′ end.


The capture probes of the invention comprise at least one domain, a capture domain, which is capable of interacting with (i.e. binding or hybridizing to) the RNA from the tissue, i.e. to capture the RNA. In some embodiments in which the capture probes are arrayed on the substrate, the probes preferably comprise at least two domains, a capture domain and a positional domain (or a feature identification tag or domain; the positional domain may alternatively be defined as an identification (ID) domain or tag, or as a positional tag). The capture probe may further comprise a universal domain as defined further below. Where the capture probe is indirectly attached to the array surface via hybridization to a surface probe, the capture probe requires a sequence (e.g. a portion or domain) which is complementary to the surface probe. Such a complementary sequence may be complementary to a positional/identification domain (if present in the capture probe) and/or a universal domain on the surface probe. In other words the positional domain and/or universal domain may constitute the region or portion of the probe which is complementary to the surface probe. However, the capture probe may also comprise an additional domain (or region, portion or sequence) which is complementary to the surface probe. For ease of synthesis, as described in more detail below, such a surface probe-complementary region may be provided as part of, or as an extension of, the capture domain (such a part or extension not itself being used for, or capable of, binding to the target nucleic acid, e.g. RNA).


Thus, in their simplest form the capture probes for use in the invention may comprise or consist of a capture domain. However, in some embodiments of the invention the capture probes may comprise or consist of: (i) a capture domain and a positional domain; (ii) a capture domain and a universal domain; (iii) a capture domain and a domain that is complementary to a surface probe; (iv) a capture domain, positional domain and a universal domain, and so forth.


In some embodiments a single species of capture probe is immobilized to the substrate, preferably wherein the capture probe is immobilized on the substrate uniformly. However, a single species of capture probe may be arrayed on the substrate, such that each feature on the array comprises the same probe. In some embodiments multiple species of capture probe are immobilized to the substrate, preferably wherein each species of capture probe is immobilized at a different position on the substrate (i.e. each species forms a feature in an array), although a single capture probe may in some embodiments be immobilized at more than one position (a single species of capture probe may be used to form more than one feature). In some embodiments multiple species of capture probe may be combined to form a mixture which is immobilized on the substrate uniformly, i.e. such that there is an even distribution of each species of capture probe on the surface of the substrate.


The capture domain is typically located at the 3′ end of the capture probe and comprises a free 3′ end that can be extended, e.g. by template dependent polymerization. The capture domain comprises a nucleotide sequence that is capable of hybridizing to nucleic acid, e.g. RNA (preferably mRNA) present in the cells of the tissue sample contacted with the array.


Advantageously, the capture domain may be selected or designed to bind (or put more generally may be capable of binding) selectively or specifically to the particular nucleic acid, e.g. RNA, it is desired to detect or analyse. For example the capture domain may be selected or designed for the selective capture of mRNA. As is well known in the art, this may be on the basis of hybridisation to the poly-A tail of mRNA. Thus, in a preferred embodiment the capture domain comprises a poly-T DNA oligonucleotide, i.e. a series of consecutive deoxythymidine residues linked by phosphodiester bonds, which is capable of hybridizing to the poly-A tail of mRNA. Alternatively, the capture domain may comprise nucleotides which are functionally or structurally analogous to poly-T, i.e. are capable of binding selectively to poly-A, for example a poly-U oligonucleotide or an oligonucleotide comprised of deoxythymidine analogues, wherein said oligonucleotide retains the functional property of binding specifically to poly-A. In a particularly preferred embodiment the capture domain, or more particularly the poly-T element of the capture domain, comprises at least 10 nucleotides, preferably at least 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 nucleotides. In such embodiments, the poly-T element of the capture domain may comprise up to 30 or up to 35 nucleotides. In a further embodiment, the capture domain, or more particularly the poly-T element of the capture domain comprises at least 25, 30 or 35 nucleotides. For instance, the poly-T element of the capture domain may comprise 10-14 nucleotides, 15-25 nucleotides or 25-35 nucleotides.


Random sequences may also be used in the capture of nucleic acid, as is known in the art, e.g. random hexamers or similar sequences, and hence such random sequences may be used to form all or a part of the capture domain. For example, random sequences may be used in conjunction with poly-T (or poly-T analogue etc.) sequences. Thus where a capture domain comprises a poly-T (or a “poly-T-like”) oligonucleotide, it may also comprise a random oligonucleotide sequence. This may for example be located 5′ or 3′ of the poly-T sequence, e.g. at the 3′ end of the capture probe, but the positioning of such a random sequence is not critical. Such a construct may facilitate the capturing of the initial part of the poly-A of mRNA. Alternatively, the capture domain may be an entirely random sequence. Degenerate capture domains may also be used, according to principles known in the art.


The capture domain may be capable of binding selectively to a desired sub-type or subset of nucleic acid, e.g. RNA, for example a particular type of RNA such mRNA or rRNA etc. as listed above, or to a particular subset of a given type of RNA, for example, a particular mRNA species e.g. corresponding to a particular gene or group of genes. Such a capture probe may be selected or designed based on sequence of the RNA it is desired to capture. Thus it may be a sequence-specific capture probe, specific for a particular RNA target or group of targets (target group etc). Thus, it may be based on a particular gene sequence or particular motif sequence or common/conserved sequence etc., according to principles well known in the art.


In embodiments where the capture probe is immobilized on the substrate indirectly, e.g. via hybridization to a surface probe, the capture domain may further comprise an upstream sequence (5′ to the sequence that hybridizes to the nucleic acid, e.g. RNA of the tissue sample) that is capable of hybridizing to 5′ end of the surface probe. Alone, the capture domain of the capture probe may be seen as a capture domain oligonucleotide, which may be used in the synthesis of the capture probe in embodiments where the capture probe is immobilized on the array indirectly.


The positional domain (feature identification domain or tag) of the capture probe, if present, is located directly or indirectly upstream, i.e. closer to the 5′ end of the capture probe nucleic acid molecule, of the capture domain. Preferably the positional domain is directly adjacent to the capture domain, i.e. there is no intermediate sequence between the capture domain and the positional domain. In some embodiments the positional domain forms the 5′ end of the capture probe, which may be immobilized directly or indirectly on the substrate of the array.


As discussed above, when the capture probes are arrayed on the substrate, each feature (distinct position) of the array comprises a spot of a species of nucleic acid probe, preferably wherein the positional domain at each feature is unique. In some embodiments, the same positional domain may be used for a group of features, preferably a group of features in close proximity to each other. For instance, when multiple species of capture probes that contain different capture domains are used on the same substrate, it may be advantageous to use the same positional domain for each type of capture domain that is immobilized in a group of directly or indirectly adjacent features.


Directly adjacent features are neighbouring features on the array, for instance if the features are arrayed in a standard grid formation, any single feature will have 8 features that are directly adjacent. Indirectly adjacent features may be viewed as features that are in close proximity to each other, i.e. they are immobilized within a specific area on the array surface, but may have one or more features separating them, e.g. 1, 2, 3, 4 or 5 features may separate indirectly adjacent features. In some cases, e.g. on high density arrays, indirectly adjacent features may be separated by up to 10, 20, 30, 40 or 50 features.


A “species” of capture probe is defined with reference to the sequence of the capture domain and, if present, its positional domain; a single species of capture probe will have a unique capture domain sequence and/or unique combination of capture domain sequence and positional domain sequence. However, it is not required that each member of a species of capture probe has the same sequence in its entirety. In particular, since the capture domain may be or may comprise a random or degenerate sequence, the capture domains of individual probes within a species may vary. Accordingly, in some embodiments where the capture domains of the capture probes are the same, each feature comprises a single probe sequence. However in other embodiments where the capture domain varies, members of a species of probe will not have the exact same sequence, although the sequence of the positional domain of each member in the species will be the same. What is required is that each feature or position of the array carries a capture probe of a single species (specifically each feature or position carries a capture probe which has an identical positional tag, i.e. there is a single positional domain at each feature or position, although probes immobilized at directly or indirectly adjacent features may comprise the same positional domain if they comprise different capture domains). Each species has a different capture domain, positional domain and/or combination of capture domain and positional domain which identifies the species. However, each member of a species, may in some cases, as described in more detail herein, have a different capture domain, as the capture domain may be random or degenerate or may have a random or degenerate component. This means that within a given feature, or position, the capture domain of the probes may differ.


Thus in some, but not necessarily in all embodiments, the nucleotide sequence of any one probe molecule immobilized at a particular feature is the same as the other probe molecules immobilized at the same feature, but the nucleotide sequence of the probes at each feature is different, distinct or distinguishable from the probes immobilized at every other feature. Preferably each feature comprises a different species of probe. However, in some embodiments it may be advantageous for a group of features to comprise the same species of probe, i.e. effectively to produce a feature covering an area of the array that is greater than a single feature, e.g. to lower the resolution of the array. In other embodiments of the array, the nucleotide sequence of the positional domain of any one probe molecule immobilized at a particular feature may be the same as the other probe molecules immobilized at the same feature but the capture domain may vary. The capture domain may nonetheless be designed to capture the same type of molecule, e.g. mRNA in general.


The positional domain (or tag), when present in the capture probe, comprises the sequence which is unique to each feature or a group of directly or indirectly adjacent features, and acts as a positional or spatial marker (the identification tag). In this way each region or domain of the tissue sample, e.g. each cell in the tissue, may be identified by spatial resolution across the array linking the nucleic acid, e.g. RNA (e.g. the transcripts) from a certain cell to a unique positional domain sequence in the capture probe. The positional domain of a capture probe in the array is one aspect of the methods of the invention that allows a specific transcript (or group of transcripts) to be correlated to a position in the tissue sample, for example it may be correlated to a cell in the sample. Thus, the positional domain of the capture domain may be seen as a nucleic acid tag (identification tag) and enables the position of a transcript to be correlated to a position in the sample indirectly, e.g. by analysis of the sequence of the captured transcript.


In some embodiments of the present invention, the methods allow a specific transcript (or group of transcripts) to be correlated to a position in the tissue sample directly, i.e. without the need for sequence analysis. For instance, a species of capture probe may be immobilized on a substrate (either in an array format or uniformly), wherein the capture domain of the capture probe is specific for a transcript (or group of transcripts). Only the specific transcript(s) will interact with (hybridize to) the capture probes. The transcripts will be captured on the substrate in a position relative to where the transcript is expressed in the tissue sample. The steps of generating and labelling the cDNA molecules using the captured transcript as a template and subsequent detection, e.g. imaging, of the labelled cDNA will allow the spatial expression pattern of the transcript to be determined directly. The information obtained from the spatial detection, e.g. image, of the labelled cDNA may be correlated with an image the tissue sample to determine the precise areas of expression in the tissue sample.


It will be evident that multiple species of capture probe, each specific for a different transcript could be used to determine the expression pattern of multiple genes simultaneously. In a preferred embodiment the species of capture probe are arrayed on the substrate and the capture probes comprise a positional domain. In some embodiments groups of adjacent features (i.e. defining a small area on the array) may comprise capture probes with the same positional domain and different capture domains. The step of detecting, e.g. imaging, the labelled cDNA will provide a preliminary analysis of where the transcripts are expressed in the tissue sample. If more specific expression analysis is required or desirable, the immobilized cDNA molecules may be processed and analysed further, as described below. Sequence analysis of the immobilised cDNA allows the position of a particular transcript to be correlated to a position in the tissue sample, e.g. a cell, by virtue of the positional domain in the capture probe.


Alternatively or additionally, the labelled cDNA may be used to as a marker to select areas of cDNA immobilized on the substrate (which are representative of expression activity in the tissue sample) for further analysis. For instance, immobilized cDNA molecules may be removed from all areas of the substrate except the area of interest, e.g. by laser ablation, and the remaining immobilized cDNA molecules may be processed and analysed as described in more detail below. The removal of immobilized cDNA molecules from the surface of the substrate, e.g. from regions that correspond to cell or tissues in the tissue sample that are not of interest or from regions where the signal from the labelled cDNA molecules indicates that the transcripts are expressed above or below a specific threshold level, reduces the amount of further analysis required, i.e. fewer cDNA molecules for analysis means that less sequence analysis is required, which may result in a reduction in the amount of reagents and/or time required to perform the analysis.


Any suitable sequence may be used as the positional domain in the capture probes of the invention. By a suitable sequence, it is meant that the positional domain should not interfere with (i.e. inhibit or distort) the interaction between the RNA of the tissue sample and the capture domain of the capture probe. For example, the positional domain should be designed such that nucleic acid molecules in the tissue sample do not hybridize specifically to the positional domain. Preferably, the nucleic acid sequence of the positional domain of the capture probes has less than 80% sequence identity to the nucleic acid sequences in the tissue sample. Preferably, the positional domain of the capture probe has less than 70%, 60%, 50% or less than 40% sequence identity across a substantial part of the nucleic acids molecules in the tissue sample. Sequence identity may be determined by any appropriate method known in the art, e.g. using the BLAST alignment algorithm.


In a preferred embodiment the positional domain of each species of capture probe contains a unique barcode sequence. The barcode sequences may be generated using random sequence generation. The randomly generated sequences may be followed by stringent filtering by mapping to the genomes of all common reference species and with pre-set Tm intervals, GC content and a defined distance of difference to the other barcode sequences to ensure that the barcode sequences will not interfere with the capture of the nucleic acid, e.g. RNA from the tissue sample and will be distinguishable from each other without difficulty.


As mentioned above, in some embodiments, the capture probe may comprise a universal domain (or linker domain or tag). The universal domain of the capture probe is located directly or indirectly upstream, i.e. closer to the 5′ end of the capture probe nucleic acid molecule, of the capture domain or, if present, the positional domain. Preferably the universal domain is directly adjacent to the capture domain or, if present, the positional domain, i.e. there is no intermediate sequence between the capture domain and the universal domain or the positional domain and the universal domain. In embodiments where the capture probe comprises a universal domain, the domain will form the 5′ end of the capture probe, which may be immobilized directly or indirectly on the substrate of the array.


The universal domain may be utilized in a number of ways in the methods of the invention. For example, in some embodiments the methods of the invention comprise a step of releasing (e.g. removing) at least part of the synthesised (i.e. extended) nucleic acid, e.g. cDNA molecules from the surface of the array. As described elsewhere herein, this may be achieved in a number of ways, of which one comprises cleaving the nucleic acid, e.g. cDNA molecule from the surface of the array. Thus, the universal domain may itself comprise a cleavage domain, i.e. a sequence that can be cleaved specifically, either chemically or preferably enzymatically.


Thus, the cleavage domain may comprise a sequence that is recognised by one or more enzymes capable of cleaving a nucleic acid molecule, i.e. capable of breaking the phosphodiester linkage between two or more nucleotides. For instance, the cleavage domain may comprise a restriction endonuclease (restriction enzyme) recognition sequence. Restriction enzymes cut double-stranded or single stranded DNA at specific recognition nucleotide sequences known as restriction sites and suitable enzymes are well known in the art. For example, it is particularly advantageous to use rare-cutting restriction enzymes, i.e. enzymes with a long recognition site (at least 8 base pairs in length), to reduce the possibility of cleaving elsewhere in the immobilized nucleic acid, e.g. cDNA molecule. In this respect, it will be seen that removing or releasing at least part of the nucleic acid, e.g. cDNA molecule requires releasing a part comprising the capture domain of the nucleic acid, e.g. cDNA, and all of the sequence downstream of the capture domain, e.g. all of the sequence that is 3′ to the first nucleotide in the capture domain. Hence, cleavage of the nucleic acid, e.g. cDNA molecule should take place 5′ to the capture domain. In preferred embodiments, removing or releasing at least part of the nucleic acid, e.g. cDNA, molecule requires releasing a part comprising the positional domain of the nucleic acid, e.g. cDNA and all of the sequence downstream of the positional domain, e.g. all of the sequence that is 3′ to the first nucleotide in the positional domain. Hence, cleavage of the nucleic acid, e.g. cDNA molecule should take place 5′ to the positional domain.


By way of example, the cleavage domain may comprise a poly-U sequence which may be cleaved by a mixture of Uracil DNA glycosylase (UDG) and the DNA glycosylase-lyase Endonuclease VIII, commercially known as the USER™ enzyme.


A further example of a cleavage domain can be utilised in embodiments where the capture probe is immobilized to the array substrate indirectly, i.e. via a surface probe. The cleavage domain may comprise one or more mismatch nucleotides, i.e. when the complementary parts of the surface probe and the capture probe are not 100% complementary. Such a mismatch is recognised, e.g. by the MutY and T7 endonuclease I enzymes, which results in cleavage of the nucleic acid molecule at the position of the mismatch.


In some embodiments of the invention, the capture domain of the capture probe comprises a cleavage domain, wherein the said cleavage domain is located at the 5′ end of the capture domain. This cleavage domain may be viewed as a universal domain or part of the universal domain. In some embodiments of the invention, the positional domain of the capture probe comprises a cleavage domain, wherein the said cleavage domain is located at the 5′ end of the positional domain. This cleavage domain may be viewed as a universal domain or part of the universal domain.


The universal domain may comprise also an amplification domain. This may be in addition to, or instead of, a cleavage domain. In some embodiments of the invention, as described elsewhere herein, it may be advantageous to amplify the nucleic acid, e.g. cDNA molecules, for example after they have been released (e.g. removed or cleaved) from the substrate. It will be appreciated however, that the initial cycle of amplification, or indeed any or all further cycles of amplification may also take place in situ on the substrate. The amplification domain comprises a distinct sequence to which an amplification primer may hybridize. The amplification domain of the universal domain of the capture probe is preferably identical for each species of capture probe. Hence a single amplification reaction will be sufficient to amplify all of the nucleic acid, e.g. cDNA, molecules (which may or may not be released from the substrate prior to amplification).


Any suitable sequence may be used as the amplification domain in the capture probes of the invention. By a suitable sequence, it is meant that the amplification domain should not interfere with (i.e. inhibit or distort) the interaction between the nucleic acid, e.g. RNA of the tissue sample, and the capture domain of the capture probe. Furthermore, the amplification domain should comprise a sequence that is not the same or substantially the same as any sequence in the nucleic acid, e.g. RNA of the tissue sample, such that the primer used in the amplification reaction can hybridize only to the amplification domain under the amplification conditions of the reaction.


For example, the amplification domain should be designed such that nucleic acid molecules in the tissue sample do not hybridize specifically to the amplification domain or the complementary sequence of the amplification domain. Preferably, the nucleic acid sequence of the amplification domain of the capture probes and the complement thereof has less than 80% sequence identity to the nucleic acid sequences in the tissue sample. Preferably, the positional domain of the capture probe has less than 70%, 60%, 50% or less than 40% sequence identity across a substantial part of the nucleic acid molecules in the tissue sample. Sequence identity may be determined by any appropriate method known in the art, e.g. the using BLAST alignment algorithm.


Thus, alone, the universal domain of the capture probe may be seen as a universal domain oligonucleotide, which may be used in the synthesis of the capture probe in embodiments where the capture probe is immobilized on the array indirectly.


In some embodiments, the capture domain of the capture probe may be used as an amplification domain. For instance, in embodiments in which the capture probe does not contain a positional domain or universal domain. In a representative embodiment, the capture probe may be used to capture mRNA from a tissue sample, e.g. using a poly-T oligonucleotide. The signal from the labelled cDNA may be detected, e.g. imaged, and a portion of the array may be selected for further analysis. Thus, the unwanted cDNA molecules may be removed from the substrate, e.g. using laser ablation, and the remaining immobilized cDNA molecules may be released and/or amplified using the capture domain as a primer site, i.e. amplified using a poly-A oligonucleotide primer. The sequence analysis may provide positional information even when the captures probes do not contain positional domains because the sequence information is derived from nucleic acid molecules amplified only from a specific region of the substrate, which correlates to a specific region or portion of the tissue sample.


In one representative embodiment of the invention only the positional domain of each species of capture probe is unique. Hence, the capture domains and universal domains (if present) are in one embodiment the same for every species of capture probe for any particular array to ensure that the capture of the nucleic acid, e.g. RNA, from the tissue sample is uniform across the array. However, as discussed above, in some embodiments the capture domains may differ by virtue of including random or degenerate sequences or gene specific sequences.


In embodiments where the capture probe is immobilized on the substrate indirectly, e.g. via hybridisation to a surface probe, the capture probe may be synthesised on the substrate as described below.


The surface probes are immobilized on the substrate directly by or at, e.g. their 3′ end. In embodiments where the probes are arrayed on the substrate each species of surface probe may be unique to each feature (distinct position) or groups of features (directly or indirectly adjacent features) of the array and is partly complementary to the capture probe, defined above.


Hence the surface probe comprises at its 5′ end a domain (complementary capture domain) that is complementary to a part of the capture domain that does not bind to the nucleic acid, e.g. RNA, of the tissue sample. In other words, it comprises a domain that can hybridize to at least part of a capture domain oligonucleotide. The surface probe may further comprise a domain (complementary positional domain or complementary feature identification domain) that is complementary to the positional domain of the capture probe, if present. The complementary positional domain is located directly or indirectly downstream (i.e. at the 3′ end) of the complementary capture domain, i.e. there may be an intermediary or linker sequence separating the complementary positional domain and the complementary capture domain. In embodiments where the capture probe is synthesized on the array surface, the surface probes of the array always comprise a domain (complementary universal domain) at the 3′ end of the surface probe, i.e. directly or indirectly downstream of the positional domain (if present), which is complementary to the universal domain of the capture probe. In other words, it comprises a domain that can hybridize to at least part of the universal domain oligonucleotide.


In some embodiments of the invention the sequence of the surface probe shows 100% complementarity or sequence identity to the positional domain (if present) and the universal domain and to the part of the capture domain that does not bind to the nucleic acid, e.g. RNA, of the tissue sample. In other embodiments the sequence of the surface probe may show less than 100% sequence identity to the domains of the capture probe, e.g. less than 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91% or 90%. In a particularly preferred embodiment of the invention, the complementary universal domain shares less than 100% sequence identity to the universal domain of the capture probe.


In one embodiment of the invention, the capture probe is synthesized or generated on the substrate. In a representative embodiment (see FIG. 1), the substrate comprises surface probes as defined above. Oligonucleotides that correspond to the capture domain and universal domain of the capture probe are contacted with the substrate and allowed to hybridize to the complementary domains of the surface probes. Excess oligonucleotides may be removed by washing the substrate under standard hybridization conditions. The resultant substrate comprises partially single stranded probes, wherein both the 5′ and 3′ ends of the surface probe are double stranded and the complementary positional domain is single stranded. The substrate may be treated with a polymerase enzyme to extend the 3′ end of the universal domain oligonucleotide, in a template dependent manner, so as to synthesize the positional domain of the capture probe. The 3′ end of the synthesized positional domain is then ligated, e.g. using a ligase enzyme, to the 5′ end of the capture domain oligonucleotide to generate the capture probe. It will be understood in this regard that the 5′ end of the capture domain oligonucleotide is phosphorylated to enable ligation to take place. As each species of surface probe comprises a unique complementary positional domain, each species of capture probe will comprise a unique positional domain.


It will be evident that in embodiments of the invention where the capture probe does not comprise a positional domain, the polymerase extension step described above may be omitted. Hence, the capture domain and universal domain may be allowed to hybridize to the complementary domains of the surface probes. Excess oligonucleotides may be removed by washing the substrate under standard hybridization conditions. The 3′ end of the universal domain is then ligated, e.g. using a ligase enzyme, to the 5′ end of the capture domain oligonucleotide to generate the capture probe.


The term “hybridisation” or “hybridises” as used herein refers to the formation of a duplex between nucleotide sequences which are sufficiently complementary to form duplexes via Watson-Crick base pairing. Two nucleotide sequences are “complementary” to one another when those molecules share base pair organization homology. “Complementary” nucleotide sequences will combine with specificity to form a stable duplex under appropriate hybridization conditions. For instance, two sequences are complementary when a section of a first sequence can bind to a section of a second sequence in an anti-parallel sense wherein the 3′-end of each sequence binds to the 5′-end of the other sequence and each A, T(U), G and C of one sequence is then aligned with a T(U), A, C and G, respectively, of the other sequence. RNA sequences can also include complementary G=U or U=G base pairs. Thus, two sequences need not have perfect homology to be “complementary” under the invention. Usually two sequences are sufficiently complementary when at least about 90% (preferably at least about 95%) of the nucleotides share base pair organization over a defined length of the molecule. The domains of the capture and surface probes thus contain a region of complementarity. Furthermore the capture domain of the capture probe contains a region of complementarity for the nucleic acid, e.g. RNA (preferably mRNA), of the tissue sample.


The capture probe may also be synthesised on the substrate using polymerase extension (similarly to as described above) and a terminal transferase enzyme to add a “tail” which may constitute the capture domain. This is described further in Example 5 below. The use of terminal transferases to add nucleotide sequences to the end of an oligonucleotide is known in the art, e.g. to introduce a homopolymeric tail, e.g. a poly-T tail. Accordingly, in such a synthesis an oligonucleotide that corresponds to the universal domain of the capture probe may be contacted with the substrate and allowed to hybridize to the complementary domain of the surface probes. Excess oligonucleotides may be removed by washing the substrate under standard hybridization conditions. The resultant substrate comprises partially single stranded probes, wherein the 3′ ends of the surface probes are double stranded and the complementary positional domain is single stranded. The substrate may be treated with a polymerase enzyme to extend the 3′ end of the universal domain oligonucleotide, in a template dependent manner, so as to synthesize the positional domain of the capture probe. The capture domain, e.g. comprising a poly-T sequence, may then be introduced using a terminal transferase to add a poly-T tail to the positional domain to generate the capture probe. As described above, in embodiments where the capture probe does not comprise a positional domain, the polymerase extension step may be omitted and the capture domain may be introduced using a terminal transferase to add a poly-T tail to the universal domain to generate the capture probe.


The object substrate (often simply referred to as the “substrate”) of, and for use in the methods of, the invention may contain multiple spots, or “features”. Accordingly, in some embodiments of the invention the object substrate may be an array, i.e. an object substrate, e.g. slide or chip, on which the immobilized probes are arrayed on the surface of the substrate. A feature may be defined as an area or distinct position on the array substrate at which a single species of capture probe is immobilized. Hence each feature will comprise a multiplicity of probe molecules, of the same species. It will be understood in this context that whilst it is encompassed that each capture probe of the same species may have the same sequence, this need not necessarily be the case. Each species of capture probe may have the same positional domain (i.e. each member of a species and hence each probe in a feature may be identically “tagged”), but the sequence of each member of the feature (species) may differ, because the sequence of a capture domain may differ. As described above, random, degenerate or sequence specific capture domains may be used. Thus the capture probes within a feature may comprise different random or degenerate sequences. The number and density of the features on the substrate, e.g. array, will determine the resolution of the array, i.e. the level of detail at which the transcriptome of the tissue sample can be analysed. Hence, a higher density of features will typically increase the resolution of the array.


As discussed above, the size and number of the features on the substrate, e.g. array, of the invention will depend on the nature of the tissue sample and required resolution. Thus, if it is desirable to determine a transcriptome only for regions of cells within a tissue sample (or the sample contains large cells) then the number and/or density of features on the array may be reduced (i.e. lower than the possible maximum number of features) and/or the size of the features may be increased (i.e. the area of each feature may be greater than the smallest possible feature), e.g. an array comprising few large features. Alternatively, if it is desirable to determine a transcriptome of individual cells within a sample, it may be necessary to use the maximum number of features possible, which would necessitate using the smallest possible feature size, e.g. an array comprising many small features.


In some embodiments the capture probes immobilized on the substrate are not in an array format, i.e. the capture probes may be distributed uniformly on the substrate. In these embodiments, it is not necessary for the capture probes to comprise a positional domain, because the capture probes are not immobilized at specific positions on the substrate. However, the capture probes may comprise a universal domain.


By distributed uniformly on the substrate it is meant that the capture probes are immobilized on at least a portion of the substrate and there is an even amount of capture probe immobilized in any specific area in that portion, i.e. the mean amount of probe immobilized per unit area is consistent across the portion of substrate on which the probe is immobilized. The mean amount of probe immobilized per unit area may be controlled by the concentration of probe contacted with the substrate to immobilize the probe or the conditions used to immobilize the probe. For instance, when the capture probe is immobilized to the substrate indirectly, e.g. by hybridisation to a surface probe, the hybridisation and/or wash conditions may be modified such that not all of the surface probes are bound to a capture probe, i.e. in some embodiments not all of the surface probes are occupied by (i.e. bound to) a capture probe. Substrates on which the amount of probe immobilized per unit area is high will have a higher resolution.


A portion of the substrate may be at least 10% of the total substrate area. In some embodiments, a portion may be at least 20, 30, 40, 50, 60, 70, 80, 90, 95, 99 or 100% of the total substrate area. The portion of the substrate on which capture probes may be immobilized will be dependent on the size of the substrate and the size of the tissue sample to be contacted with the substrate. Advantageously, the area of the portion of the substrate on which probe is immobilized will be larger than the total area of the tissue sample. Preferably the area of the portion will be at least 1, 2, 3, 4 or 5% larger than the area of the tissue sample. In some embodiments the area of the portion will be least 10, 15, 20, 30, 40, 50% larger than the area of the tissue sample.


Whilst single cell resolution may be a preferred and advantageous feature of the present invention, it is not essential to achieve this, and resolution at the cell group level is also of interest, for example to detect or distinguish a particular cell type or tissue region, e.g. normal vs tumour cells.


In representative embodiments of the invention where the substrate is an array, the array may contain at least 2, 5, 10, 50, 100, 500, 750, 1000, 1500, 3000, 5000, 10000, 20000, 40000, 50000, 75000, 100000, 150000, 200000, 300000, 400000, 500000, 750000, 800000, 1000000, 1200000, 1500000, 1750000, 2000000, 2100000. 3000000, 3500000, 4000000, 4200000 or 4300000 features. Whilst 4300000 represents the maximum number of features presently available on a commercial array, it is envisaged that arrays with features in excess of this may be prepared and such arrays are of interest in the present invention. For instance, commercially available arrays allow for more than one array to be provided on a single substrate, e.g. slide or chip. Hence, the number of features on a substrate may be multiples of the above figures. For instance, the substrate, e.g. array, may comprise at least 8600000, 12900000 or 17200000 features. Given that array technology is continually developing, the array could contain even larger numbers of features, e.g. it has been postulated that is may be possible to include as many as 3.3×109 features on an array. As noted above, feature size may be decreased and this may allow greater numbers of features to be accommodated within the same or a similar area. By way of example these features may be comprised in an area of less than about 20 cm2, 10 cm2, 5 cm2, 1 cm2, 1 mm2, or 100 μm2.


Thus, in some embodiments of the invention the area of each feature may be from about 1 μm2, 2 μm2, 3 μm2, 4 μm2, 5 μm2, 10 μm2, 12 μm2, 15 μm2, 20 μm2, 50 μm2, 75 μm2, 100 μm2, 150 μm2, 200 μm2, 250 μm2, 300 μm2, 400 μm2, or 500 μm2. In some embodiments the area of a feature may be less than 1 μm2, e.g. less than 0.5, 0.4, 0.2 or 0.1 μm2. In some embodiments, e.g. when the object substrate comprises a single feature, the feature (e.g. the area on which a capture probe is immobilized on the substrate with a homogeneous distribution, i.e. uniformly) may be from about 100 μm2-20 cm2, 1 mm2-10 cm2, 0.5 cm2-5 cm2, 0.6 cm2-4 cm2, 0.7 cm2-3 cm2, 0.8 cm2-2 cm2 or 0.9 cm2-1 cm2. e.g. at least about 0.5 cm2, 0.6 cm2, 0.7 cm2, 0.8 cm2, 0.9 cm2, 1 cm2, 2 cm2, 3 cm2, 4 cm2 or 5 cm2,.


It will be evident that a tissue sample from any organism could be used in the methods of the invention, e.g. plant, animal or fungal. The substrate, e.g. array, of the invention allows the capture of any nucleic acid, e.g. mRNA molecules, which are present in cells that are capable of transcription and/or translation. The substrates, e.g. arrays, and methods of the invention are particularly suitable for isolating and analysing the transcriptome of cells within a sample, wherein spatial resolution of the transcriptomes is desirable, e.g. where the cells are interconnected or in contact directly with adjacent cells. However, it will be apparent to a person of skill in the art that the methods of the invention may also be useful for the analysis of the transcriptome of different cells or cell types within a sample even if said cells do not interact directly, e.g. a blood sample. In other words, the cells do not need to present in the context of a tissue and can be applied to the array as single cells (e.g. cells isolated from a non-fixed tissue). Such single cells, whilst not necessarily fixed to a certain position in a tissue, are nonetheless applied to a certain position on the substrate, e.g. array, and can be individually identified. Thus, in the context of analysing cells that do not interact directly, or are not present in a tissue context, the spatial properties of the described methods may be applied to obtaining or retrieving unique or independent transcriptome information from individual cells. Thus, a tissue sample may be defined as a sample of tissue comprising one or more cells. It may include a suspension of cells.


The sample may thus be a harvested or biopsied tissue sample, or possibly a cultured sample. Representative samples include clinical samples e.g. whole blood or blood-derived products, blood cells, tissues, biopsies, or cultured tissues or cells etc. including cell suspensions. In some embodiments, the sample may be enriched for one or more types of cell, e.g. specific types of blood cell or tumour cells. Techniques for cell isolation or enrichment are known in the art, and may include positive or negative selection based on expression of particular cell markers. Artificial tissues may for example be prepared from cell suspension (including for example blood cells). Cells may be captured in a matrix (for example a gel matrix e.g. agar, agarose, etc) and may then be sectioned in a conventional way. Such procedures are known in the art in the context of immunohistochemistry (see e.g. Andersson et al 2006, J. Histochem. Cytochem. 54(12): 1413-23. Epub 2006 Sep. 6).


The methods of the invention may find particular utility in the identification of tumour cells, especially transcriptionally active, e.g. metastatic, tumour cells or tumour cells with metastatic potential. In this respect, tumour cells may be found in blood. Whilst about 90% of the population of circulating tumour cells may show no or little gene activity, because apoptosis or necrosis pathways are activated in this population, the remaining 10% are transcriptionally active. At least some of the transcriptionally active cells are likely to give rise to metastasis and it would be useful to be able to identify these cells. Accordingly, the tissue sample may be a suspension of cells containing tumour cells (e.g. a sample of tumour cells isolated from a blood sample, or a blood sample in which the tumour cells have been enriched, or a biopsy or tissue sample, or tumour cells enriched from such a sample). The method may be performed as described above, wherein the detection of labelled cDNA will correlate to transcriptionally active, e.g. metastatic or potentially metastatic, tumour cells. Thus, in some embodiments the invention may be seen as providing a method for the identification of tumour cells, especially transcriptionally active, e.g. potentially metastatic, tumour cells.


The mode of tissue preparation and how the resulting sample is handled may affect the transcriptomic analysis of the methods of the invention. Moreover, various tissue samples will have different physical characteristics and it is well within the skill of a person in the art to perform the necessary manipulations to yield a tissue sample for use with the methods of the invention. However, it is evident from the disclosures herein that any method of sample preparation may be used to obtain a tissue sample that is suitable for use in the methods of the invention. For instance any layer of cells with a thickness of approximately 1 cell or less may be used in the methods of the invention. In one embodiment, the thickness of the tissue sample may be less than 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2 or 0.1 of the cross-section of a cell. However, since as noted above, the present invention is not limited to single cell resolution and hence it is not a requirement that the tissue sample has a thickness of one cell diameter or less; thicker tissue samples may, if desired, be used. For example cryostat sections may be used, which may be e.g. 10-20 μm thick.


The tissue sample may be prepared in any convenient or desired way and the invention is not restricted to any particular type of tissue preparation. Fresh, frozen, fixed or unfixed tissues may be used. Any desired convenient procedure may be used for fixing or embedding the tissue sample, as described and known in the art. Thus any known fixatives or embedding materials may be used.


As a first representative example of a tissue sample for use in the invention, the tissue may prepared by deep freezing at temperature suitable to maintain or preserve the integrity (i.e. the physical characteristics) of the tissue structure, e.g. less than −20° C. and preferably less than −25, −30, −40, −50, −60, −70 or −80° C. The frozen tissue sample may be sectioned, i.e. thinly sliced, onto the substrate surface by any suitable means. For example, the tissue sample may be prepared using a chilled microtome, a cryostat, set at a temperature suitable to maintain both the structural integrity of the tissue sample and the chemical properties of the nucleic acids in the sample, e.g. to less than −15° C. and preferably less than −20 or −25° C. Thus, the sample should be treated so as to minimize the degeneration or degradation of the nucleic acid, e.g. RNA in the tissue. Such conditions are well-established in the art and the extent of any degradation may be monitored through nucleic acid extraction, e.g. total RNA extraction and subsequent quality analysis at various stages of the preparation of the tissue sample.


In a second representative example, the tissue may be prepared using standard methods of formalin-fixation and paraffin-embedding (FFPE), which are well-established in the art. Following fixation of the tissue sample and embedding in a paraffin or resin block, the tissue samples may sectioned, i.e. thinly sliced, onto the substrate, e.g. array. As noted above, other fixatives and/or embedding materials can be used.


It will be apparent that the tissue sample section will need to be treated to remove the embedding material, e.g. to deparaffinize, i.e. to remove the paraffin or resin, from the sample prior to carrying out the methods of the invention. This may be achieved by any suitable method and the removal of paraffin or resin or other material from tissue samples is well established in the art, e.g. by incubating the sample (on the surface of the array) in an appropriate solvent e.g. xylene, e.g. twice for 10 minutes, followed by an ethanol rinse, e.g. 99.5% ethanol for 2 minutes, 96% ethanol for 2 minutes, and 70% ethanol for 2 minutes.


It will be evident to the skilled person that the RNA in tissue sections prepared using methods of FFPE or other methods of fixing and embedding is more likely to be partially degraded than in the case of frozen tissue. However, without wishing to be bound by any particular theory, it is believed that this may be advantageous in the methods of the invention. For instance, if the RNA in the sample is partially degraded the average length of the RNA polynucleotides will be less and more randomized than a non-degraded sample. It is postulated therefore that partially degraded RNA would result in less bias in the various processing steps, described elsewhere herein, e.g. ligation of adaptors (amplification domains), amplification of the cDNA molecules and sequencing thereof.


Hence, in one embodiment of the invention the tissue sample, i.e. the section of the tissue sample contacted with the substrate, e.g. array, is prepared using FFPE or other methods of fixing and embedding. In other words the sample may be fixed, e.g. fixed and embedded. In an alternative embodiment of the invention the tissue sample is prepared by deep-freezing. In another embodiment a touch imprint of a tissue may be used, according to procedures known in the art. In other embodiments an unfixed sample may be used.


The thickness of the tissue sample section for use in the methods of the invention may be dependent on the method used to prepare the sample and the physical characteristics of the tissue. Thus, any suitable section thickness may be used in the methods of the invention. In representative embodiments of the invention the thickness of the tissue sample section will be at least 0.1 μm, further preferably at least 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2, 3, 4, 5, 6, 7, 8, 9 or 10 μm. In other embodiments the thickness of the tissue sample section is at least 10, 12, 13, 14, 15, 20, 30, 40 or 50 μm. However, the thickness is not critical and these are representative values only. Thicker samples may be used if desired or convenient e.g. 70 or 100 μm or more. Typically, the thickness of the tissue sample section is between 1-100 μm, 1-50 μm, 1-30 μm, 1-25 μm, 1-20 μm, 1-15 μm, 1-10 μm, 2-8 μm, 3-7 μm or 4-6 μm, but as mentioned above thicker samples may be used.


On contact of the tissue sample section with the substrate, e.g. following removal of the embedding material e.g. deparaffinization, the nucleic acid, e.g. RNA, molecules in the tissue sample will bind to the immobilized capture probes on the substrate. In some embodiments it may be advantageous to facilitate the hybridization of the nucleic acid, e.g. RNA molecules to the capture probes. Typically, facilitating the hybridization comprises modifying the conditions under which hybridization occurs. The primary conditions that can be modified are the time and temperature of the incubation of the tissue section on the array prior to the reverse transcription step, which is described elsewhere herein.


It will be evident that tissue samples from different sources may require different treatments to allow the nucleic acids to interact with, i.e. hybridize to, the capture probes immobilized on the substrate. For instance, it may be useful to permeabilize the tissue sample to facilitate the transfer of nucleic acid to the substrate surface. If the tissue sample is not permeabilized sufficiently the amount of nucleic acid captured on the substrate may be too low to enable further analysis (see FIG. 2A), i.e. the signal from the labelled cDNA molecules may be of low intensity. Conversely, if the tissue sample is too permeable, the nucleic acid may diffuse away from its origin in the tissue sample. Hence, the nucleic acid may be captured on the substrate, but may not correlate accurately with its original spatial distribution in the tissue sample (see FIG. 2C), i.e. the signal from the labelled cDNA molecules may have low spatial resolution. Hence, there must be a balance between permeabilizing the tissue sample enough to obtain a good signal intensity whilst maintaining the spatial resolution of the nucleic acid distribution in the tissue sample (see FIG. 2B). The methods used to fix the tissue sample may also impact on the nucleic acid transfer from tissue sample to substrate.


Suitable methods and agents for permeabilizing and/or fixing cells and tissues are well known in the art and any appropriate method may be selected for use in the methods of the invention. In this respect, the methods of the invention may be used to determine the optimum conditions, e.g. the optimum combination of permeabilizing and/or fixative agents, for the capture of nucleic acids from a particular tissue sample. The inventors have found that some proteases are particularly useful in permeabilizing cells in a tissue sample, e.g. pepsin. Particularly useful fixatives include, e.g. methanol.


Thus, the methods and substrate of the invention are particularly useful for determining the optimum conditions for localised or spatial detection of the transcriptome of a tissue sample. In this respect, the step of labelling the cDNA generated on the substrate is particularly important because it enables the efficacy of the nucleic acid molecule capture to be assessed. Labelling the cDNA allows it to be detected, e.g. visualised, directly and the intensity and/or resolution of the detected signal can be quantified. The signal intensity and/or resolution may be compared with the signal obtained from cDNA generated on a substrate prepared using different methods, e.g. tissue permeabilization and/or fixation methods. The methods that result in the best signal intensity and/or resolution may be selected for use in future analyses and/or may be optimised further. The methods do not require the capture probes to comprise positional domains and/or universal domains (although the capture probes may comprise these domains in some embodiments). Furthermore, the capture probes do not need to be arrayed on the substrate (although the capture probes may be arrayed in some embodiments). Consequently, the methods and substrates of the invention are particularly advantageous because they can be performed cheaply and using commonly available instrumentation or apparatus. Once optimum conditions have been determined for capturing nucleic acid molecules on a substrate from a particularly type of tissue sample and/or tissue sample prepared using a particular method, the optimum conditions can be used to analyse similar tissue samples, wherein further analysis, such as sequence analysis may be performed. The methods of the invention therefore obviate the need to use expensive substrates to optimise the nucleic acid capture conditions, i.e. arrays comprising multiple species of immobilized capture probes, which contain positional and/or universal domains.


As conditions for localised or spatial detection of nucleic acid molecules from a tissue sample on a substrate vary depending on the tissue sample, a typical range of parameters is discussed herein. For instance, on contacting the tissue sample section with the substrate, e.g. an array, the substrate may be incubated for at least 1 hour to allow the nucleic acid, e.g. RNA, to hybridize to the capture probes. This may be particularly useful for FFPE tissue samples before the paraffin is removed. Preferably the substrate may be incubated for at least 2, 3, 5, 10, 12, 15, 20, 22 or 24 hours or until the tissue sample section has dried. In other embodiments, e.g. for FFPE tissue samples after the paraffin has been removed or fresh frozen tissue, the substrate may be incubated for less time, e.g. at least 5 minutes, e.g. at least 10, 15, 20, 25 or 30 minutes. The substrate incubation time is not critical and any convenient or desired time may be used. Typical substrate, e.g. array, incubations may be up to 72 hours. Thus, the incubation may occur at any suitable temperature, for instance at room temperature, although in a preferred embodiment the tissue sample section is incubated on the array at a temperature of at least 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 or 37° C. Incubation temperatures of up to 55° C., e.g. 40, 45 or 50° C. are commonplace in the art. In a particularly preferred embodiment the tissue sample section is allowed to dry on the substrate, e.g. array, at 37° C. for 24 hours. In another preferred embodiment, the tissue sample section is allowed to dry on the substrate, e.g. array, at 50° C. for 15 minutes. It will be understood therefore that the precise conditions and methods for contacting the tissue sample with the array are not critical and may vary according to the nature of the sample and the fixation. Once the tissue sample section has dried the substrate may be stored at room temperature before performing the reverse transcription step. It will be understood that the if the tissue sample section is allowed to dry on the substrate surface, it will need to be rehydrated before further manipulation of the captured nucleic acid can be achieved, e.g. the step of reverse transcribing the captured RNA.


Hence, the method of the invention may comprise a further step of rehydrating the tissue sample after contacting the sample with the substrate, e.g. array.


In some embodiments, the tissue sample, e.g. tissue section, may be treated or modified prior to the step of contacting the tissue sample with the substrate and/or prior to generating the cDNA molecules on the substrate, e.g. to select one or more portions of the tissue sample for analysis. For instance, the tissue sample may be dissected to isolate one or more portions for analysis. Alternatively viewed, the tissue sample may be dissected to discard one or more portions for which analysis is not required. Any suitable method for dissecting the tissue sample may be utilised in the methods of the invention. In some embodiments, the tissue sample is dissected using laser capture microdissection (LCM). Accordingly, the method of the invention may comprise a step of dissecting the tissue sample. This aspect of the method comprise a step of retaining one or more portions of tissue sample for analysis and/or discarding one or more portions of tissue sample.


In a preferred aspect of the invention, the tissue sample may be dissected on the substrate. For instance, the tissue sample may be contacted with (e.g. fixed to) a LCM membrane. The LCM membrane:tissue sample composite may be further contacted with the object substrate to form a “sandwich”, in which the tissue sample is the central layer in the sandwich. One or more portions of the tissue sample may be dissected using a laser, wherein the one or more portions of the tissue sample that are not required for analysis are removed from the substrate (e.g. peeled off along with the LCM membrane) and optionally discarded. The LCM membrane may be removed from the remaining one or more portions of tissue sample on the substrate and the method of the invention may be performed as described herein. In some embodiments, the one or more portions of tissue sample removed from the substrate may be used for analysis. Thus, in some embodiments capture probes may be immobilized on the surface of the LCM membrane and/or the substrate. Alternatively viewed, the LCM membrane may be an object substrate as described herein. Thus, the step of dissecting the tissue sample may comprise contacting the tissue sample with more than one substrate, wherein RNA is captured from one or more portions of the tissue sample on each substrate.


In some embodiments it may be advantageous to block (e.g. mask or modify) the capture probes prior to contacting the tissue sample with the substrate, particularly when the nucleic acid in the tissue sample, or the tissue sample itself, is subject to a process of modification prior to its capture on the substrate. Specifically, it may be advantageous to block or modify the free 3′ end of the capture probe. It may be necessary to block or modify the capture probes, particularly the free 3′ end of the capture probe, prior to contacting the tissue sample with the substrate to avoid modification of the capture probes, e.g. to avoid the removal or modification of the free 3′ OH group on the end of the capture probes. Preferably the incorporation of a blocking domain may be incorporated into the capture probe when it is synthesised. However, the blocking domain may be incorporated to the capture probe after its synthesis.


In some embodiments the capture probes may be blocked by any suitable and reversible means that would prevent modification of the capture domains during the process of modifying the nucleic acid and/or the tissue sample, which occurs after the tissue sample has been contacted with the substrate. In other words, the capture probes may be reversibly masked or modified such that the capture domain of the capture probe does not comprise a free 3′ end, i.e. such that the 3′ end is removed or modified, or made inaccessible so that the capture probe is not susceptible to the process or reaction which is used to modify the nucleic acid and/or the tissue sample. Alternatively, if the capture probes are not blocked prior to the process or reaction used to modify the nucleic acid and/or tissue sample, capture probe may be modified after the process or reaction to reveal and/or restore the 3′ end of the capture domain of the capture probe.


For example, blocking probes may be hybridised to the capture probes to mask the free 3′ end of the capture domain, e.g. hairpin probes or partially double stranded probes, suitable examples of which are known in the art. The free 3′ end of the capture domain may be blocked by chemical modification, e.g. addition of an azidomethyl group as a chemically reversible capping moiety such that the capture probes do not comprise a free 3′ end. Suitable alternative capping moieties are well known in the art, e.g. the terminal nucleotide of the capture domain could be a reversible terminator nucleotide, which could be included in the capture probe during or after probe synthesis.


Alternatively or additionally, the capture domain of the capture probe could be modified so as to allow the removal of any modifications of the capture probe, e.g. additional nucleotides, that occur when the nucleic acid molecules and/or the tissue sample are modified. For instance, the capture probes may comprise an additional sequence downstream of the capture domain, i.e. 3′ to capture domain, namely a blocking domain. This could be in the form of, e.g. a restriction endonuclease recognition sequence or a sequence of nucleotides cleavable by specific enzyme activities, e.g. uracil. Following the modification of the nucleic acid and/or the tissue sample, the capture probes could be subjected to an enzymatic cleavage, which would allow the removal of the blocking domain and any of the additional nucleotides that are added to the 3′ end of the capture probe during the modification process. The removal of the blocking domain would reveal and/or restore the free 3′ end of the capture domain of the capture probe. The blocking domain could be synthesised as part of the capture probe or could be added to the capture probe in situ (i.e. as a modification of an existing substrate), e.g. by ligation of the blocking domain.


The capture probes may be blocked using any combination of the blocking mechanisms described above.


Once the nucleic acid and/or tissue sample has been modified or processed to enable the nucleic acid to hybridise to the capture domain of the capture probe, the capture probe must be unblocked, e.g. by dissociation of the blocking oligonucleotide, removal of the capping moiety and/or blocking domain.


In order to correlate the transcriptome information, e.g. signal intensity and/or resolution of the labelled cDNA, sequence analysis etc., obtained from the substrate, e.g. by imaging the substrate and/or sequence analysis of the immobilized cDNA at one or more features of the array, with the region (i.e. an area or cell) of the tissue sample the tissue sample is oriented in relation to the immobilized probes on the substrate, e.g. oriented in relation to the features on the array. In other words, the tissue sample is placed on the substrate, e.g. array, such that the position of a capture probe on the substrate, e.g. array, may be correlated with a position in the tissue sample. Thus it may be identified where in the tissue sample the position of each species of capture probe (or each feature of the array) corresponds. In other words, it may be identified to which location in the tissue sample the position of each species of capture probe corresponds. This may be done by virtue of positional markers present on the array, as described below.


Conveniently, but not necessarily, the tissue sample may be imaged following its contact with the array. This may be performed before or after the nucleic acid of the tissue sample is processed, e.g. before or after the cDNA generation step of the method, in particular the step of generating the first strand cDNA by reverse transcription. In some embodiments, the tissue sample is imaged before the immobilized cDNA is labelled. However, the tissue sample may be imaged at the same time as the labelled cDNA is imaged. In embodiments in which the cDNA is released from the surface of the substrate, the tissue sample may be imaged prior to the release of the captured and synthesised (i.e. extended) cDNA from the substrate, e.g. array. In a particularly preferred embodiment the tissue is imaged after the nucleic acid of the tissue sample has been processed, e.g. after the reverse transcription step, and any residual tissue is removed (e.g. washed) from the array prior to detecting, e.g. imaging, the labelled cDNA and/or the release of molecules from the substrate, e.g. array. In some embodiments, the step of processing the captured nucleic acid, e.g. the reverse transcription step, may act to remove residual tissue from the array surface, e.g. when using tissue preparing by deep-freezing. In such a case, imaging of the tissue sample may take place prior to the processing step, e.g. the cDNA synthesis step. Generally speaking, imaging may take place at any time after contacting the tissue sample with the substrate, but before any step which degrades or removes the tissue sample. As noted above, this may depend on the tissue sample.


Advantageously, the substrate, e.g. array, may comprise markers to facilitate the orientation of the tissue sample or the image thereof in relation to the immobilized capture probes on the substrate, e.g. the features of the array. Any suitable means for marking the array may be used such that they are detectable when the tissue sample is imaged. For instance, a molecule, e.g. a fluorescent molecule, that generates a signal, preferably a visible signal, may be immobilized directly or indirectly on the surface of the array. Preferably, the array comprises at least two markers in distinct positions on the surface of the substrate, further preferably at least 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40, 50, 60, 70, 80, 90 or 100 markers. Conveniently several hundred or even several thousand markers may be used. In some embodiments, tens of thousands of markers may be used. The markers may be provided in a pattern, for example the markers may make up an outer edge of the portion of the substrate on which the capture probes are immobilized, e.g. the markers may be a row of features on the outer border of the portion on which the capture probes are immobilized on the substrate, e.g. an entire outer row of features on an array. Other informative patterns may be used, e.g. lines sectioning the array. This may facilitate aligning an image of the tissue sample to the signal detected from the labelled cDNA molecules, (e.g. the image of the labelled cDNA molecules) i.e. to the portion on which the capture probes are immobilized on the substrate, e.g. an array, or indeed generally in correlating the features of the array to the tissue sample. Thus, the marker may be an immobilized molecule to which a signal giving molecule may interact to generate a signal. In a representative example, the substrate, e.g. array, may comprise a marker feature, e.g. a nucleic acid probe immobilized on the substrate to which a labelled nucleic acid may hybridize. For instance, a labelled nucleic acid molecule, or marker nucleic acid, may be linked or coupled to a chemical moiety capable of fluorescing when subjected to light of a specific wavelength (or range of wavelengths), i.e. excited. Such a marker nucleic acid molecule may be contacted with the array before, contemporaneously with or after the tissue sample is stained in order to visualize or image the tissue sample. However, the marker must be detectable when the tissue sample is imaged. Thus, in a preferred embodiment the marker may be detected using the same imaging conditions used to visualize the tissue sample. Furthermore, it is advantageous that the marker is detectable when the labelled cDNA is detected, e.g. imaged. Hence, in some embodiments the marker may be detected using the same conditions e.g. imaging conditions, used to detect the signal from the labelled cDNA.


In a particularly preferred embodiment of the invention, the substrate, e.g. array, comprises marker features to which a labelled, preferably fluorescently labelled, marker nucleic acid molecule, e.g. oligonucleotide, is hybridized.


The step of detecting, e.g. imaging, the labelled cDNA may use any convenient means known in the art, but typically will comprise microscopy e.g. light, bright field, dark field, phase contrast, fluorescence, reflection, interference, confocal microscopy or a combination thereof. However, the method used will be dependent on the method used to label the cDNA synthesized on the surface of the substrate. Numerous methods for labelling nucleic acid molecules, both single stranded and double stranded molecules are known in the art. The label must result in a visibly detectable signal. Whilst the label does not have to be directly signal giving, this is preferred as it reduces the number of processing steps require to generate a signal. If several steps are required to generate a signal from the labelled cDNA, the resulting signal may be inconsistent, i.e. signals from different areas of the substrate may be non-uniform.


A directly detectable label is one that can be directly detected without the use of additional reagents, while an indirectly detectable label is one that is detectable by employing one or more additional reagents, e.g., where the label is a member of a signal producing system made up of two or more components. In many embodiments, the label is a directly detectable label, where directly detectable labels of interest include, but are not limited to: fluorescent labels, coloured labels, radioisotopic labels, chemiluminescent labels, and the like. Any spectrophotometrically or optically-detectable label may be used. In other embodiments the label may provide a signal indirectly, i.e. it may require the addition of further components to generate signal. For instance, the label may be capable of binding a molecule that is conjugated to a signal giving molecule.


The label is incorporated into the synthesized part of the cDNA molecules, i.e. as part of the synthesized molecules, e.g. a labelled nucleotide, or binds to the newly synthesized part of the nucleic acid molecule. Hence, the capture probe, or a part thereof (such as a positional or universal domain), is not a label for the purpose of this aspect of the invention. The function of the label is to indicate areas on the substrate at which transcript has been captured and cDNA has been synthesized. Accordingly, a capture probe, or part thereof, cannot achieve this function as its presence on the surface of the substrate is not conditional on the presence of transcript captured on the surface of the substrate.


In preferred embodiments, the cDNA is labelled by the incorporation of a labelled nucleotide when the cDNA is synthesized. The labelled nucleotide may be incorporated in the first and/or second strand synthesis. In a particularly preferred embodiment, the labelled nucleotide is a fluorescently labelled nucleotide. Thus, the labelled cDNA may be imaged by fluorescence microscopy. Whilst fluorescent labels require excitation to provide a detectable signal, as the source of excitation is derived from the instrument/apparatus used to detect the signal, fluorescent labels may be viewed as directly signal giving labels. Fluorescent molecules that may be used to label nucleotides are well known in the art, e.g. fluorescein, the cyanine dyes, such as Cy3, Cy5, Alexa 555, Bodipy 630/650, and the like. Other labels, such as those described below, may also be employed as are known in the art. In preferred embodiments fluorescently tagged CTP (such as Cy3-CTP, Cy5-CTP) is incorporated into the cDNA molecules synthesized on the surface of the array.


As mentioned above, labels may be incorporated into the synthesized cDNA by binding to the molecules, e.g., via intercalation. Representative detectable molecules that may find use in such embodiments include fluorescent nucleic acid stains, such as phenanthridinium dyes, including monomers or homo- or heterodimers thereof, that give an enhanced fluorescence when complexed with nucleic acids. Examples of phenanthridinium dyes include ethidium homodimer, ethidium bromide, propidium iodide, and other alkyl-substituted phenanthridinium dyes. In another embodiment of the invention, the nucleic acid stain is or incorporates an acridine dye, or a homo- or heterodimer thereof, such as acridine orange, acridine homodimer, ethidium-acridine heterodimer, or 9-amino-6-chloro-2-methoxyacridine. In yet another embodiment of the invention, the nucleic acid stain is an indole or imidazole dye, such as Hoechst 33258, Hoechst 33342, Hoechst 34580 (BIOPROBES 34, Molecular Probes, Inc. Eugene, Oreg., (May 2000)) DAPI (4′,6-diamidino-2-phenylindole) or DIPI (4′,6-(diimidazolin-2-yl)-2-phenylindole). Other permitted nucleic acid stains include, but are not limited to, 7-aminoactinomycin D, hydroxystilbamidine, LDS 751, selected psoralens (furocoumarins), styryl dyes, metal complexes such as ruthenium complexes, and transition metal complexes (incorporating Tb3+ and Eu3+, for example). In certain embodiments of the invention, the nucleic acid stain is a cyanine dye or a homo- or heterodimer of a cyanine dye that gives an enhanced fluorescence when associated with nucleic acids. Any of the dyes described in U.S. Pat. No. 4,883,867 to Lee (1989), U.S. Pat. No. 5,582,977 to Yue et al. (1996), U.S. Pat. No. 5,321,130 to Yue et al. (1994), and U.S. Pat. No. 5,410,030 to Yue et al. (1995) (all four patents incorporated by reference) may be used, including nucleic acid stains commercially available under the trademarks TOTO, BOBO, POPO, YOYO, TO-PRO, BO-PRO, PO-PRO and YO-PRO from Molecular Probes, Inc., Eugene, Oreg. Any of the dyes described in U.S. Pat. No. 5,436,134 to Haugland et al. (1995), U.S. Pat. No. 5,658,751 to Yue et al. (1997), and U.S. Pat. No. 5,863,753 to Haugland et al. (1999) (all three patents incorporated by reference) may be used, including nucleic acid stains commercially available under the trademarks SYBR Green, SYBR Gold, EvaGreen, SYTO, SYTOX, PICOGREEN, OLIGREEN, and RIBOGREEN from Molecular Probes, Inc., Eugene, Oreg. In yet other embodiments of the invention, the nucleic acid stain is a monomeric, homodimeric or heterodimeric cyanine dye that incorporates an aza- or polyazabenzazolium heterocycle, such as an azabenzoxazole, azabenzimidazole, or azabenzothiazole, that gives an enhanced fluorescence when associated with nucleic acids, including nucleic acid stains commercially available under the trademarks SYTO, SYTOX, JOJO, JO-PRO, LOLO, LO-PRO from Molecular Probes, Inc., Eugene, Oreg. The type of nucleic acid stain may be selected based on its capacity to bind to single or double stranded nucleic acid. In embodiments where the first cDNA strand is labelled, it may be preferable to use nucleic acid stains capable of labelling single stranded nucleic acid molecules as the RNA transcript captured on the substrate and used to template cDNA synthesis may be partially or fully degraded.


In a particularly advantageous embodiment of the invention, the methods may include a step of removing a portion of the nucleic acid molecules immobilized on the surface of the substrate. This step may be particularly advantageous for analysing the transcriptome of part or portion of a tissue sample, e.g. an area of interest, particular cell or tissue type etc. Removing nucleic acid molecules immobilized on the surface of the substrate that are not of interest may reduce costs and/or time required for further analysis steps. Fewer reagents are needed to perform sequence analysis on cDNA molecules from a portion of the tissue sample in comparison to the reagents required to perform sequence analysis on cDNA molecules from the whole of the tissue sample. Correspondingly, less sequence analysis is required for cDNA molecules from a portion of the tissue sample. A further benefit derived from removing a portion of the nucleic acid molecules from the surface of the substrate is that it is not necessary to include a positional domain in the capture probe to correlate the sequence analysis with a position in the tissue sample. In this respect, because cDNA molecules that are not of interest (i.e. from areas of the tissue sample that are not of interest) have been removed from the substrate, the sequences analysed will have been derived from the specific area of the tissue sample that correlates to the portion of cDNA molecules that were not removed from the substrate. Accordingly, it is not necessary to immobilize the capture probes on the substrate in the form of an array. However, in many embodiments of the invention, the capture probes comprise a positional domain and/or are immobilized on the substrate in an array format, i.e. the substrate is an array.


The signal obtained from the step of detecting, e.g. imaging, the labelled cDNA molecules enables areas of the tissue sample to be selected for further analysis. In its simplest form, a single discrete portion of the immobilized cDNA on the substrate (corresponding to a portion of the tissue sample) may be selected for further analysis and all other immobilized nucleic acid molecules on the surface of the substrate may be removed. It will evident that more than one portion may be selected for further analysis, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more portions. In some embodiments 15, 20, 25, 30, 40, 50 or more portions may be selected. Accordingly, cDNA molecules from one or more portions may be selected for removal, e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more portions. In some embodiments 15, 20, 25, 30, 40, 50 or more portions may be selected. In some embodiments, the portions selected for further analysis (or removal) may be based cell or tissue types, by reference an image of the tissue sample and correlating the position in the tissue sample with the position on the substrate. In still further embodiments, the portions selected for further analysis (or removal) may be based on the amount of cDNA immobilized in a particular area. For instance, portions of the substrate in which the intensity of the signal from the immobilized labelled cDNA molecules is above and/or below specific threshold limits may be targeted for removal (or further analysis). Hence, portions on the substrate that correlate to parts of the tissue sample with high levels of transcription may be removed to enrich the proportion of the transcriptome analysed for parts of the tissue sample with moderate or low levels of transcription. Similarly, the analysis may be focussed on parts of the tissue sample with high levels of transcription.


The step of removing a portion of the nucleic acid molecules immobilized on the surface of the substrate may be achieved using any convenient means. In some embodiments the immobilized cDNA molecules may be removed by laser ablation, e.g. the portion(s) of the substrate from which the cDNA molecules are to be removed may be identified by detecting, e.g. imaging, the labelled cDNA molecules and those areas subjected to treatment with a laser that is sufficient to remove the cDNA molecules from the surface of the substrate. Advantageously, the laser ablation may also remove the tissue sample from the targeted areas. In some embodiments the tissue sample may be removed from the substrate, as described elsewhere herein, prior to the removal of a portion the immobilized cDNA molecules. Suitable instruments and apparatus for removing cDNA molecules from the surface of an array are known in the art, e.g. a MMI Cell cut instrument (Molecular Machines and Industries AG, Glattburg, Switzerland). Other means for removing cDNA molecules from the surface of the substrate may include cleavage, e.g. enzymatic cleavage. For instance, the portion(s) of the substrate for further analysis may be masked (e.g. using standard array mask apparatus) and the non-masked areas of the substrate subjected to a cleavage agent, e.g. an enzyme, to release the capture probes (and attached cDNA molecules) from the surface of the substrate, as described above. The portion of the substrate selected for further analysis may be unmasked and subsequent analysis performed according to the remaining method steps described herein.


The step of imaging the tissue may use any convenient histological means known in the art, e.g. light, bright field, dark field, phase contrast, fluorescence, reflection, interference, confocal microscopy or a combination thereof. Typically the tissue sample is stained prior to visualization to provide contrast between the different regions, e.g. cells, of the tissue sample. The type of stain used will be dependent on the type of tissue and the region of the cells to be stained. Such staining protocols are known in the art. In some embodiments more than one stain may be used to visualize (image) different aspects of the tissue sample, e.g. different regions of the tissue sample, specific cell structures (e.g. organelles) or different cell types. In other embodiments, the tissue sample may be visualized or imaged without staining the sample, e.g. if the tissue sample contains already pigments that provide sufficient contrast or if particular forms of microscopy are used.


In a preferred embodiment, the tissue sample is visualized or imaged using fluorescence microscopy. Accordingly, in some embodiments, the tissue sample and the labelled cDNA may be visualized or imaged at the same time or sequentially using the same imaging apparatus.


The tissue sample, i.e. any residual tissue that remains in contact with the substrate following the reverse transcription step and detecting, e.g. imaging, the labelled cDNA, and optionally imaging the tissue sample if imaging the tissue sample is desired and was not carried out before reverse transcription, preferably is removed prior to the step of releasing the cDNA molecules from the substrate. Thus, the methods of the invention may comprise a step of washing the substrate. Removal of the residual tissue sample may be performed using any suitable means and will be dependent on the tissue sample. In the simplest embodiment, the substrate may be washed with water. The water may contain various additives, e.g. surfactants (e.g. detergents), enzymes etc to facilitate to removal of the tissue. In some embodiments, the substrate is washed with a solution comprising a proteinase enzyme (and suitable buffer) e.g. proteinase K. In other embodiments, the solution may comprise also or alternatively cellulase, hemicellulase or chitinase enzymes, e.g. if the tissue sample is from a plant or fungal source. In further embodiments, the temperature of the solution used to wash the substrate may be, e.g. at least 30° C., preferably at least 35, 40, 45, 50 or 55° C. It will be evident that the wash solution should minimize the disruption of the immobilized nucleic acid molecules. For instance, in some embodiments the nucleic acid molecules may be immobilized on the substrate indirectly, e.g. via hybridization of the capture probe and the RNA and/or the capture probe and the surface probe, thus the wash step should not interfere with the interaction between the molecules immobilized on the substrate, i.e. should not cause the nucleic acid molecules to be denatured.


Following the step of contacting the substrate with a tissue sample, under conditions sufficient to allow hybridization to occur between the nucleic acid, e.g. RNA (preferably mRNA), of the tissue sample to the capture probes, the step of securing (acquiring) the hybridized nucleic acid takes place. Securing or acquiring the captured nucleic acid involves extending the capture probe to produce a copy of the captured nucleic acid, e.g. generating cDNA from the captured (hybridized) RNA. It will be understood that this refers to the synthesis of a complementary strand of the hybridized nucleic acid, e.g. generating cDNA based on the captured RNA template (the RNA hybridized to the capture domain of the capture probe). Thus, in an initial step of extending the capture probe, e.g. the cDNA generation, the captured (hybridized) nucleic acid, e.g. RNA acts as a template for the extension, e.g. reverse transcription, step. In some embodiments, securing or acquiring the capture nucleic acid may be viewed as tagging or marking the captured nucleic acid with the positional domain specific to the feature on which the nucleic acid is captured. In many embodiments, the step of securing or acquiring the captured nucleic acid involves the directly incorporating a signal giving label into the synthesized copy of the captured nucleic acid molecule.


Reverse transcription concerns the step of synthesizing cDNA (complementary or copy DNA) from RNA, preferably mRNA (messenger RNA), by reverse transcriptase. Thus cDNA can be considered to be a copy of the RNA present in a cell at the time at which the tissue sample was taken, i.e. it represents all or some of the genes that were expressed in said cell at the time of isolation.


The capture probe, specifically the capture domain of the capture probe, acts as a primer for producing the complementary strand of the nucleic acid hybridized to the capture probe, e.g. a primer for reverse transcription. Hence, the nucleic acid, e.g. cDNA, molecules generated by the extension reaction, e.g. reverse transcription reaction, incorporate the sequence of the capture probe, i.e. the extension reaction, e.g. reverse transcription reaction. Advantageously the molecules generated by the extension reaction incorporate directly a label such that the amount of transcript in the tissue sample that is in contact with the substrate may be determined, e.g. by measuring the intensity of the signal generated by the label. As mentioned above, in some embodiments each species of capture probe may comprise a positional domain (feature identification tag) that represents a unique sequence for each feature of the array. Thus, in some embodiments all of the nucleic acid, e.g. cDNA, molecules synthesized at a specific feature will comprise the same nucleic acid “tag”.


The nucleic acid, e.g. cDNA, molecules synthesized at a specific position or area on the surface of the substrate, e.g. each feature of an array, may represent the genes expressed from the region or area of the tissue sample in contact with that position or area, e.g. feature. For instance, a tissue or cell type or group or sub-group thereof, and may further represent genes expressed under specific conditions, e.g. at a particular time, in a specific environment, at a stage of development or in response to stimulus etc. Hence, the cDNA at any single position or area, e.g. feature, may represent the genes expressed in a single cell, or if the position or area, e.g. feature, is in contact with the sample at a cell junction, the cDNA may represent the genes expressed in more than one cell. Similarly, if a single cell is in contact with a large area of the substrate, e.g. multiple features, then each position within the area, e.g. each feature, may represent a proportion of the genes expressed in said cell.


The step of extending the capture probe, e.g. reverse transcription, may be performed using any suitable enzymes and protocol of which many exist in the art, as described in detail below. However, it will be evident that it is not necessary to provide a primer for the synthesis of the first nucleic acid, e.g. cDNA, strand because the capture domain of the capture probe acts as the primer, e.g. reverse transcription primer.


Preferably, in the context of the present invention the secured nucleic acid (i.e. the nucleic acid covalently attached to the capture probe), e.g. cDNA, is treated to comprise double stranded DNA. Treatment of the captured nucleic acid to produce double stranded DNA may be achieved in a single reaction to generate only a second DNA, e.g. cDNA, strand, i.e. to produce double stranded DNA molecules without increasing the number of double stranded DNA molecules, or in an amplification reaction to generate multiple copies of the second strand, which may be in the form of single stranded DNA (e.g. linear amplification) or double stranded DNA, e.g. cDNA (e.g. exponential amplification).


The step of second strand DNA, e.g. cDNA, synthesis may take place in situ on the substrate, either as a discrete step of second strand synthesis, for example using random primers as described in more detail below, or in the initial step of an amplification reaction. Alternatively, the first strand DNA, e.g. cDNA (the strand comprising, i.e. incorporating, the capture probe) may be released from the array and second strand synthesis, whether as a discrete step or in an amplification reaction may occur subsequently, e.g. in a reaction carried out in solution.


Where second strand synthesis takes place on the substrate (i.e. in situ) the method may include an optional step of removing the captured nucleic acid, e.g. RNA, before the second strand synthesis, for example using an RNA digesting enzyme (RNase) e.g. RNase H. Procedures for this are well known and described in the art. However, this is generally not necessary, and in most cases the RNA degrades naturally. Removal of the tissue sample from the array will generally remove the RNA from the array. RNase H can be used if desired to increase the robustness of RNA removal. RNA removal may be useful in embodiments where the cDNA is labelled after it has been generated, e.g. labelled with a nucleic acid stain. Removal of the RNA may provide a consistent target to which the nucleic acid stain can interact (bind), i.e. all of the immobilized molecules will be single stranded after RNA removal. Prior to a step of RNA removal, the immobilized molecules may be a mixture of fully or partially double stranded molecules (RNA:DNA hybrids) and single stranded molecules (where the RNA has already degraded). Some nucleic acid stains may provide a stronger signal when interacting with double stranded nucleic acid, when compared to the signal from single stranded nucleic acid. Thus, it is preferable when using a nucleic acid stain to label the immobilised cDNA that the molecules are either all fully single stranded or double stranded.


In tissue samples that comprise large amounts of RNA, the step of generating the double stranded cDNA may yield a sufficient amount of cDNA that it may be sequenced directly (following release from the substrate). In this case, second strand cDNA synthesis may be achieved by any means known in the art and as described below. The second strand synthesis reaction may be performed on the substrate directly, i.e. whilst the cDNA is immobilized on the substrate, or preferably after the cDNA has been released from the substrate, as described below.


In other embodiments it will be necessary to enhance, i.e. amplify, the amount of secured nucleic acid, e.g. synthesized cDNA, to yield quantities that are sufficient for DNA sequencing. In this embodiment, the first strand of the secured nucleic acid, e.g. cDNA molecules, which comprise also the capture probe of the substrate, acts as a template for the amplification reaction, e.g. a polymerase chain reaction. The first reaction product of the amplification will be a second strand of DNA, e.g. cDNA, which itself will act as a template for further cycles of the amplification reaction.


In either of the above described embodiments, the second strand of DNA, e.g. cDNA, will comprise a complement of the capture probe. If the capture probe comprises a universal domain, and particularly an amplification domain within the universal domain, then this may be used for the subsequent amplification of the DNA, e.g. cDNA, e.g. the amplification reaction may comprise a primer with the same sequence as the amplification domain, i.e. a primer that is complementary (i.e. hybridizes) to the complement of the amplification domain. In view of the fact that the amplification domain is upstream of the positional domain (if present) of the capture probe (in the secured nucleic acid, e.g. the first cDNA strand), the complement of the positional domain (if the position domain is present in the capture probe) will be incorporated in the second strand of the DNA, e.g. cDNA molecules.


In embodiments where the second strand of DNA, e.g. cDNA, is generated in a single reaction, the second strand synthesis may be achieved by any suitable means. For instance, the first strand cDNA, preferably, but not necessarily, released from the substrate, may be incubated with random primers, e.g. hexamer primers, and a DNA polymerase, preferably a strand displacement polymerase, e.g. klenow (exo), under conditions sufficient for templated DNA synthesis to occur. This process will yield double stranded cDNA molecules of varying lengths and is unlikely to yield full-length cDNA molecules, i.e. cDNA molecules that correspond to entire mRNA from which they were synthesized. The random primers will hybridise to the first strand cDNA molecules at a random position, i.e. within the sequence rather than at the end of the sequence.


If it is desirable to generate full-length DNA, e.g. cDNA, molecules, i.e. molecules that correspond to the whole of the captured nucleic acid, e.g. RNA molecule (if the nucleic acid, e.g. RNA, was partially degraded in the tissue sample then the captured nucleic acid, e.g. RNA, molecules will not be “full-length” transcripts), then the 3′ end of the secured nucleic acid, e.g. first stand cDNA, molecules may be modified. For example, a linker or adaptor may be ligated to the 3′ end of the cDNA molecules. This may be achieved using single stranded ligation enzymes such as T4 RNA ligase or Circligase™ (Epicentre Biotechnologies).


Alternatively, a helper probe (a partially double stranded DNA molecule capable of hybridising to the 3′ end of the first strand cDNA molecule), may be ligated to the 3′ end of the secured nucleic acid, e.g. first strand cDNA, molecule using a double stranded ligation enzyme such as T4 DNA ligase. Other enzymes appropriate for the ligation step are known in the art and include, e.g. Tth DNA ligase, Taq DNA ligase, Thermococcus sp. (strain 9° N) DNA ligase (9° N™ DNA ligase, New England Biolabs), and Ampligase™ (Epicentre Biotechnologies). The helper probe comprises also a specific sequence from which the second strand DNA, e.g. cDNA, synthesis may be primed using a primer that is complementary to the part of the helper probe that is ligated to the secured nucleic acid, e.g. first cDNA strand. A further alternative comprises the use of a terminal transferase active enzyme to incorporate a polynucleotide tail, e.g. a poly-A tail, at the 3′ end of the secured nucleic acid, e.g. first strand of cDNA, molecules. The second strand synthesis may be primed using a poly-T primer, which may also comprise a specific amplification domain for further amplification. Other methods for generating “full-length” double stranded DNA, e.g. cDNA, molecules (or maximal length second strand synthesis) are well-established in the art.


In some embodiments, second strand synthesis may use a method of template switching, e.g. using the SMART™ technology from Clontech®. SMART (Switching Mechanism at 5′ End of RNA Template) technology is well established in the art and is based that the discovery that reverse transcriptase enzymes, e.g. Superscript® II (Invitrogen), are capable of adding a few nucleotides at the 3′ end of an extended cDNA molecule, i.e. to produce a DNA/RNA hybrid with a single stranded DNA overhang at the 3′ end. The DNA overhang may provide a target sequence to which an oligonucleotide probe can hybridise to provide an additional template for further extension of the cDNA molecule. Advantageously, the oligonucleotide probe that hybridises to the cDNA overhang contains an amplification domain sequence, the complement of which is incorporated into the synthesised first strand cDNA product. Primers containing the amplification domain sequence, which will hybridise to the complementary amplification domain sequence incorporated into the cDNA first strand, can be added to the reaction mix to prime second strand synthesis using a suitable polymerase enzyme and the cDNA first strand as a template. This method avoids the need to ligate adaptors to the 3′ end of the cDNA first strand. Whilst template switching was originally developed for full-length mRNAs, which have a 5′ cap structure, it has since been demonstrated to work equally well with truncated mRNAs without the cap structure. Thus, template switching may be used in the methods of the invention to generate full length and/or partial or truncated cDNA molecules. Thus, in a preferred embodiment of the invention, the second strand synthesis may utilise, or be achieved by, template switching. In a particularly preferred embodiment, the template switching reaction, i.e. the further extension of the cDNA first strand to incorporate the complementary amplification domain, is performed in situ (whilst the capture probe is still attached, directly or indirectly, to the substrate, e.g. array). Preferably, the second strand synthesis reaction is also performed in situ.


As mentioned above, in some embodiments the immobilized cDNA may be labelled by incorporating label into the second strand of the cDNA, e.g. incorporating labelled nucleotides into the cDNA second strand. This may be in addition to, or as an alternative to, incorporating labelled nucleotides into the first cDNA strand.


In embodiments where it may be necessary or advantageous to enhance, enrich or amplify the DNA, e.g. cDNA, molecules, amplification domains may be incorporated in the DNA, e.g. cDNA, molecules. As discussed above, a first amplification domain may be incorporated into the secured nucleic acid molecules, e.g. the first strand of the cDNA molecules, when the capture probe comprises a universal domain comprising an amplification domain. In these embodiments, the second strand synthesis may incorporate a second amplification domain. For example, the primers used to generate the second strand cDNA, e.g. random hexamer primers, poly-T primer, the primer that is complementary to the helper probe, may comprise at their 5′ end an amplification domain, i.e. a nucleotide sequence to which an amplification primer may hybridize. Thus, the resultant double stranded DNA may comprise an amplification domain at or towards each 5′ end of the double stranded DNA, e.g. cDNA, molecules. These amplification domains may be used as targets for primers used in an amplification reaction, e.g. PCR. Alternatively, the linker or adaptor which is ligated to the 3′ end of the secured nucleic acid molecules, e.g. first strand cDNA molecules, may comprise a second universal domain comprising a second amplification domain. Similarly, a second amplification domain may be incorporated into the first strand cDNA molecules by template switching.


In embodiments where the capture probe does not comprise a universal domain, particularly comprising an amplification domain, the second strand of the cDNA molecules may be synthesised in accordance with the above description. The resultant double stranded DNA molecules may be modified to incorporate an amplification domain at the 5′ end of the first DNA, e.g. cDNA, strand (a first amplification domain) and, if not incorporated in the second strand DNA, e.g. cDNA synthesis step, at the 5′ end of the second DNA, e.g. cDNA, strand (a second amplification domain). Such amplification domains may be incorporated, e.g. by ligating double stranded adaptors to the ends of the DNA, e.g. cDNA, molecules. Enzymes appropriate for the ligation step are known in the art and include, e.g. Tth DNA ligase, Taq DNA ligase, Thermococcus sp. (strain 9° N) DNA ligase (9° N™ DNA ligase, New England Biolabs), Ampligase™ (Epicentre Biotechnologies) and T4 DNA ligase. In a preferred embodiment the first and second amplification domains comprise different sequences.


From the above, it is therefore apparent that universal domains, which may comprise an amplification domain, may be added to the secured (i.e. extended) DNA molecules, for example to the cDNA molecules, or their complements (e.g. second strand) by various methods and techniques and combinations of such techniques known in the art, e.g. by use of primers which include such a domain, ligation of adaptors, use of terminal transferase enzymes and/or by template switching methods. As is clear from the discussion herein, such domains may be added before or after release of the DNA molecules from the array.


It will be apparent from the above description that all of the DNA, e.g. cDNA, molecules from a single substrate that have been synthesized by the methods of the invention may all comprise the same first and second amplification domains. Consequently, a single amplification reaction, e.g. PCR, may be sufficient to amplify all of the DNA, e.g. cDNA, molecules. Thus in a preferred embodiment, the method of the invention may comprise a step of amplifying the DNA, e.g. cDNA, molecules. In one embodiment the amplification step is performed after the release of the DNA, e.g. cDNA molecules from the substrate. In other embodiments amplification may be performed on the substrate (i.e. in situ on the substrate). It is known in the art that amplification reactions may be carried out on substrates, such as arrays, and on-chip thermocyclers exist for carrying out such reactions. Thus, in one embodiment arrays which are known in the art as sequencing platforms or for use in any form of sequence analysis (e.g. in or by next generation sequencing technologies) may be used as the basis of the substrates of the present invention (e.g. Illumina bead arrays etc.)


For the synthesis of the second strand of DNA, e.g. cDNA, it is preferable to use a strand displacement polymerase (e.g. Φ29 DNA polymerase, Bst (exo) DNA polymerase, klenow (exo) DNA polymerase) if the cDNA released from the substrate of the array comprises a partially double stranded nucleic acid molecule. For instance, the released nucleic acids will be at least partially double stranded (e.g. DNA:RNA hybrid) in embodiments where the capture probe is immobilized indirectly on the substrate of the array via a surface probe and the step of releasing the DNA, e.g. cDNA molecules comprises a cleavage step. The strand displacement polymerase is necessary to ensure that the second cDNA strand synthesis incorporates the complement of the capture probe including the positional domain (feature identification domain), if present, into the second DNA, e.g. cDNA strand.


It will be evident that the step of releasing at least part of the DNA, e.g. cDNA molecules or their amplicons from the surface of the substrate may be achieved using a number of methods. In some embodiments, it will be evident that the primary aim of the release step is to yield molecules into which the positional domain of the capture probe (or its complement) is incorporated (or included), such that the DNA, e.g. cDNA, molecules or their amplicons are “tagged” according to their feature (or position) on the array. However, as discussed above, a positional domain is not essential, particularly where only a portion of the nucleic acid molecules are released because the other nucleic acid molecules have been removed from the surface of the substrate (and discarded) in an earlier step. The release step thus removes DNA, e.g. cDNA, molecules or amplicons thereof from the substrate, which DNA, e.g. cDNA, molecules or amplicons include the positional information that can be correlated to the tissue sample. For instance, in some embodiments the released DNA comprises a positional domain or its complement (by virtue of it having been incorporated into the secured nucleic acid, e.g. the first strand cDNA by, e.g. extension of the capture probe, and optionally copied in the second strand DNA if second strand synthesis takes place on the array, or copied into amplicons if amplification takes place on the array). Hence, in order to yield sequence analysis data that can be correlated specifically with the various regions in the tissue sample it is advantageous that the released molecules comprise the positional domain of the capture probe (or its complement). However, if the DNA molecules have been released from a specific portion of the substrate, it will be evident that the sequence analysis can be correlated with the region(s) in the tissue sample that were not removed from the substrate.


Since the released molecule may be a first and/or second strand DNA, e.g. cDNA, molecule or amplicon, and since the capture probe may be immobilised indirectly on the substrate, it will be understood that whilst the release step may comprise a step of cleaving a DNA, e.g. cDNA molecule from the array, the release step does not require a step of nucleic acid cleavage; a DNA, e.g. cDNA molecule or an amplicon may simply be released by denaturing a double-stranded molecule, for example releasing the second cDNA strand from the first cDNA strand, or releasing an amplicon from its template or releasing the first strand cDNA molecule (i.e. the extended capture probe) from a surface probe. Accordingly, a DNA, e.g. cDNA, molecule may be released from the substrate by nucleic acid cleavage and/or by denaturation (e.g. by heating to denature a double-stranded molecule). Where amplification is carried out in situ on the substrate, this will of course encompass releasing amplicons by denaturation in the cycling reaction.


In some embodiments, the DNA, e.g. cDNA, molecules are released by enzymatic cleavage of a cleavage domain, which may be located in the universal domain or positional domain of the capture probe. As mentioned above, in some embodiments the cleavage domain must be located upstream (at the 5′ end) of the positional domain such that the released DNA, e.g. cDNA, molecules comprise the positional (identification) domain. Suitable enzymes for nucleic acid cleavage include restriction endonucleases, e.g. Rsal. Other enzymes, e.g. a mixture of Uracil DNA glycosylase (UDG) and the DNA glycosylase-lyase Endonuclease VIII (USER™ enzyme) or a combination of the MutY and T7 endonuclease I enzymes, are preferred embodiments of the methods of the invention.


In an alternative embodiment, the DNA, e.g. cDNA, molecules may be released from the surface of the substrate by physical means. For instance, in embodiments where the capture probe is indirectly immobilized on the substrate, e.g. via hybridization to the surface probe, it may be sufficient to disrupt the interaction between the nucleic acid molecules. Methods for disrupting the interaction between nucleic acid molecules, e.g. denaturing double stranded nucleic acid molecules, are well known in the art. A straightforward method for releasing the DNA, e.g. cDNA, molecules (i.e. of stripping the substrate, e.g. array, of the synthesized DNA, e.g. cDNA molecules) is to use a solution that interferes with the hydrogen bonds of the double stranded molecules. In a preferred embodiment of the invention, the DNA, e.g. cDNA, molecules may be released by applying heated water, e.g. water or buffer of at least 85° C., preferably at least 90, 91, 92, 93, 94, 95, 96, 97, 98, 99° C. As an alternative or addition to the use of a temperature sufficient to disrupt the hydrogen bonding, the solution may comprise salts, surfactants etc. that may further destabilize the interaction between the nucleic acid molecules, resulting in the release of the DNA, e.g. cDNA, molecules.


It will be understood that the application of a high temperature solution, e.g. 90-99° C. water may be sufficient to disrupt a covalent bond used to immobilize the capture probe or surface probe to the substrate. Hence, in a preferred embodiment, the DNA, e.g. cDNA, molecules may be released by applying hot water to the substrate to disrupt covalently immobilized capture or surface probes.


It is implicit that the released DNA, e.g. cDNA, molecules (the solution comprising the released DNA, e.g. cDNA, molecules) are collected for further manipulation, e.g. second strand synthesis and/or amplification. Nevertheless, the method of the invention may be seen to comprise a step of collecting or recovering the released DNA, e.g. cDNA, molecules. As noted above, in the context of in situ amplification the released molecules may include amplicons of the secured nucleic acid, e.g. cDNA.


In embodiments of methods of the invention, it may be desirable to remove any unextended capture probes. This may be, for example, after the step of releasing DNA molecules from the substrate. Any desired or convenient method may be used for such removal including, for example, use of an enzyme to degrade the unextended probes, e.g. exonuclease.


The DNA, e.g. cDNA molecules, or amplicons, that have been released from the substrate, which may have been modified as discussed above, are analysed to investigate (e.g. determine their sequence, although as noted above actual sequence determination is not required—any method of analysing the sequence may be used). Thus, any method of nucleic acid analysis may be used. The step of sequence analysis may identify the positional domain and hence allow the analysed molecule to be localised to a position in the tissue sample. Similarly, the nature or identity of the analysed molecule may be determined. In this way the nucleic acid, e.g. RNA, at given position in the substrate, and hence in the tissue sample may be determined. Hence the analysis step may include or use any method which identifies the analysed molecule (and hence the “target” molecule) and its positional domain. Generally such a method will be a sequence-specific method. For example, the method may use sequence-specific primers or probes, particularly primers or probes specific for the positional domain and/or for a specific nucleic acid molecule to be detected or analysed e.g. a DNA molecule corresponding to a nucleic acid, e.g. RNA or cDNA molecule to be detected. Typically in such a method sequence-specific amplification primers e.g. PCR primers may be used.


In some embodiments it may be desirable to analyse a subset or family of target related molecules, e.g. all of the sequences that encode a particular group of proteins which share sequence similarity and/or conserved domains, e.g. a family of receptors. Hence, the amplification and/or analysis methods described herein may use degenerate or gene family specific primers or probes that hybridise to a subset of the captured nucleic acids or nucleic acids derived therefrom, e.g. amplicons. In a particularly preferred embodiment, the amplification and/or analysis methods may utilise a universal primer (i.e. a primer common to all of the captured sequences) in combination with a degenerate or gene family specific primer specific for a subset of target molecules.


Thus in one embodiment, amplification-based, especially PCR-based, methods of sequence analysis are used.


However, the steps of modifying and/or amplifying the released DNA, e.g. cDNA, molecules may introduce additional components into the sample, e.g. enzymes, primers, nucleotides etc. Hence, the methods of the invention may further comprise a step of purifying the sample comprising the released DNA, e.g. cDNA molecules or amplicons prior to the sequence analysis, e.g. to remove oligonucleotide primers, nucleotides, salts etc that may interfere with the sequencing reactions. Any suitable method of purifying the DNA, e.g. cDNA molecules may be used.


As noted above, sequence analysis of the released DNA molecules may be direct or indirect. Thus the sequence analysis material or substrate (which may be viewed as the molecules which are subjected to the sequence analysis step or process) may directly be the molecules which is released from the object substrate, e.g. array, or it may be a molecule which is derived therefrom. Thus, for example in the context of sequence analysis step which involves a sequencing reaction, the sequencing template may be the molecule which is released from the object substrate, e.g. array, or it may be a molecule derived therefrom. For example, a first and/or second strand DNA, e.g. cDNA, molecule released from the substrate, e.g. array, may be directly subjected to sequence analysis (e.g. sequencing), i.e. may directly take part in the sequence analysis reaction or process (e.g. the sequencing reaction or sequencing process, or be the molecule which is sequenced or otherwise identified). In the context of in situ amplification the released molecule may be an amplicon. Alternatively, the released molecule may be subjected to a step of second strand synthesis or amplification before sequence analysis (e.g. sequencing or identification by other means). The sequence analysis substrate (e.g. template) may thus be an amplicon or a second strand of a molecule which is directly released from the object substrate, e.g. array.


Both strands of a double stranded molecule may be subjected to sequence analysis (e.g. sequenced) but the invention is not limited to this and single stranded molecules (e.g. cDNA) may be analysed (e.g. sequenced). For example various sequencing technologies may be used for single molecule sequencing, e.g. the Helicos or Pacbio technologies, or nanopore sequencing technologies which are being developed. Thus, in one embodiment the first strand of DNA, e.g. cDNA may be subjected to sequencing. The first strand DNA, e.g. cDNA may need to be modified at the 3′ end to enable single molecule sequencing. This may be done by procedures analogous to those for handling the second DNA, e.g. cDNA strand. Such procedures are known in the art.


In a preferred aspect of the invention the sequence analysis will identify or reveal a portion of captured nucleic acid, e.g. RNA, sequence and optionally the sequence of the positional domain. In some embodiments the sequence of the positional domain (or tag) will identify the feature to which the nucleic acid, e.g. mRNA, molecule was captured. The sequence of the captured nucleic acid, e.g. RNA, molecule may be compared with a sequence database of the organism from which the sample originated to determine the gene to which it corresponds. By determining which region (e.g. cell) of the tissue sample was in contact with the position or area, e.g. feature, of the substrate from which the captured nucleic acid was released, it is possible to determine which region of the tissue sample was expressing said gene. This analysis may be achieved for all of the DNA, e.g. cDNA, molecules generated by the methods of the invention, yielding a spatial transcriptome of the tissue sample. However, in some embodiments only a selection of the transcripts present in the tissue sample may be captured on the substrate (e.g. if the capture domain of the capture probe comprises a sequence specific for a gene or set of genes) and/or only a portion of the captured molecules may be selected for further analysis, e.g. sequence analysis (e.g. a portion of the captured molecules may be removed from the substrate prior to the sequence analysis step).


By way of a representative example, sequencing data may be analysed to sort the sequences into specific species of capture probe, e.g. according to the sequence of the positional domain. This may be achieved by, e.g. using the FastX toolkit FASTQ Barcode splitter tool to sort the sequences into individual files for the respective capture probe positional domain (tag) sequences. The sequences of each species, i.e. from each feature, may be analyzed to determine the identity of the transcripts. For instance, the sequences may be identified using e.g. Blastn software, to compare the sequences to one or more genome databases, preferably the database for the organism from which the tissue sample was obtained. The identity of the database sequence with the greatest similarity to the sequence generated by the methods of the invention will be assigned to said sequence. In general, only hits with a certainty of at least 1e−6, preferably 1e−7, 1e−8, or 1e−9 will be considered to have been successfully identified.


It will be apparent that any nucleic acid sequencing method may be utilised in the methods of the invention. However, the so-called “next generation sequencing” techniques will find particular utility in the present invention. High-throughput sequencing is particularly useful in the methods of the invention because it enables a large number of nucleic acids to be partially sequenced in a very short period of time. In view of the recent explosion in the number of fully or partially sequenced genomes, it is not essential to sequence the full length of the generated DNA, e.g. cDNA molecules to determine the gene to which each molecule corresponds. For example, the first 100 nucleotides from each end of the DNA, e.g. cDNA molecules should be sufficient to identify the gene expressed and, in embodiments in which the capture probes are arrayed on the substrate, the feature to which the nucleic acid, e.g. mRNA, was captured (i.e. its location on the array). In some embodiments, the sequence reaction from the “capture probe end” of the DNA, e.g. cDNA molecules, yields the sequence of the positional domain and at least about 20 bases, preferably 30 or 40 bases of transcript specific sequence data. However, in embodiments in which the capture probe does not contain a positional domain, the sequence reaction from the “capture probe end” of the DNA, may yield at least about 70 bases, preferably 80, 90, or 100 bases of transcript specific sequence data. The sequence reaction from the “non-capture probe end” may yield at least about 70 bases, preferably 80, 90, or 100 bases of transcript specific sequence data.


As a representative example, the sequencing reaction may be based on reversible dye-terminators, such as used in the Illumina™ technology. For example, DNA molecules are first attached to primers on, e.g. a glass or silicon slide and amplified so that local clonal colonies are formed (bridge amplification). Four types of ddNTPs are added, and non-incorporated nucleotides are washed away. Unlike pyrosequencing, the DNA can only be extended one nucleotide at a time. A camera takes images of the fluorescently labelled nucleotides then the dye along with the terminal 3′ blocker is chemically removed from the DNA, allowing a next cycle. This may be repeated until the required sequence data is obtained. Using this technology, thousands of nucleic acids may be sequenced simultaneously on a single slide.


Other high-throughput sequencing techniques may be equally suitable for the methods of the invention, e.g. pyrosequencing. In this method the DNA is amplified inside water droplets in an oil solution (emulsion PCR), with each droplet containing a single DNA template attached to a single primer-coated bead that then forms a clonal colony. The sequencing machine contains many picolitre-volume wells each containing a single bead and sequencing enzymes. Pyrosequencing uses luciferase to generate light for detection of the individual nucleotides added to the nascent DNA and the combined data are used to generate sequence read-outs.


An example of a technology in development is based on the detection of hydrogen ions that are released during the polymerisation of DNA. A microwell containing a template DNA strand to be sequenced is flooded with a single type of nucleotide. If the introduced nucleotide is complementary to the leading template nucleotide it is incorporated into the growing complementary strand. This causes the release of a hydrogen ion that triggers a hypersensitive ion sensor, which indicates that a reaction has occurred. If homopolymer repeats are present in the template sequence multiple nucleotides will be incorporated in a single cycle. This leads to a corresponding number of released hydrogen ions and a proportionally higher electronic signal.


Thus, it is clear that future sequencing formats are slowly being made available, and with shorter run times as one of the main features of those platforms it will be evident that other sequencing technologies will be useful in the methods of the invention, e.g. nanopore sequencing methods.


An essential feature of the present invention, as described above, is a step of securing a complementary strand of the captured nucleic acid molecules to the capture probe, e.g. reverse transcribing the captured RNA molecules. The reverse transcription reaction is well known in the art and in representative reverse transcription reactions, the reaction mixture includes a reverse transcriptase, dNTPs and a suitable buffer. The reaction mixture may comprise other components, e.g. RNase inhibitor(s). The primers and template are the capture domain of the capture probe and the captured RNA molecules, as described above. In the subject methods, each dNTP will typically be present in an amount ranging from about 10 to 5000 μM, usually from about 20 to 1000 μM. It will be evident that an equivalent reaction may be performed to generate a complementary strand of a captured DNA molecule, using an enzyme with DNA polymerase activity. Reactions of this type are well known in the art and are described in more detail below.


In some embodiments, a labelled dNTP may be present in the reaction mix, thereby incorporating a label into the synthesized DNA molecule. In a representative embodiment, the labelled dNTP is a fluorescently labelled dNTP, e.g. Cy3-dCTP.


The desired reverse transcriptase activity may be provided by one or more distinct enzymes, wherein suitable examples are: M-MLV, MuLV, AMV, HIV, ArrayScript™, MultiScribe™, ThermoScript™, and SuperScript® I, II, and III enzymes.


The reverse transcriptase reaction may be carried out at any suitable temperature, which will be dependent on the properties of the enzyme. Typically, reverse transcriptase reactions are performed between 37-55° C., although temperatures outside of this range may also be appropriate. The reaction time may be as little as 1, 2, 3, 4 or 5 minutes or as much as 48 hours. Typically the reaction will be carried out for between 3-12 hours, such as 5-120 minutes, 5-60, 5-45 or 5-30 minutes or 1-10 or 1-5 minutes according to choice. The reaction time is not critical and any desired reaction time may be used. For instance, overnight incubations are commonplace.


As indicated above, certain embodiments of the methods include an amplification step, where the copy number of generated DNA, e.g. cDNA molecules is increased, e.g. in order to enrich the sample to obtain a better representation of the nucleic acids, e.g. transcripts, captured from the tissue sample. The amplification may be linear or exponential, as desired, where representative amplification protocols of interest include, but are not limited to: polymerase chain reaction (PCR); isothermal amplification, etc.


The polymerase chain reaction (PCR) is well known in the art, being described in U.S. Pat. Nos. 4,683,202; 4,683,195; 4,800,159; 4,965,188 and 5,512,462, the disclosures of which are herein incorporated by reference. In representative PCR amplification reactions, the reaction mixture that includes the above released DNA, e.g. cDNA molecules from the substrate, e.g. array, which are combined with one or more primers that are employed in the primer extension reaction, e.g., the PCR primers that hybridize to the first and/or second amplification domains (such as forward and reverse primers employed in geometric (or exponential) amplification or a single primer employed in a linear amplification). The oligonucleotide primers with which the released DNA, e.g. cDNA molecules (hereinafter referred to as template DNA for convenience) is contacted will be of sufficient length to provide for hybridization to complementary template DNA under annealing conditions (described in greater detail below). The length of the primers will depend on the length of the amplification domains, but will generally be at least 10 bp in length, usually at least 15 bp in length and more usually at least 16 bp in length and may be as long as 30 bp in length or longer, where the length of the primers will generally range from 18 to 50 bp in length, usually from about 20 to 35 bp in length. The template DNA may be contacted with a single primer or a set of two primers (forward and reverse primers), depending on whether primer extension, linear or exponential amplification of the template DNA is desired.


In addition to the above components, the reaction mixture produced in the subject methods typically includes a polymerase and deoxyribonucleoside triphosphates (dNTPs). The desired polymerase activity may be provided by one or more distinct polymerase enzymes. In many embodiments, the reaction mixture includes at least a Family A polymerase, where representative Family A polymerases of interest include, but are not limited to: Thermus aquaticus polymerases, including the naturally occurring polymerase (Taq) and derivatives and homologues thereof, such as Klentaq (as described in Barnes et al, Proc. Natl. Acad. Sci USA (1994) 91:2216-2220); Thermus thermophilus polymerases, including the naturally occurring polymerase (Tth) and derivatives and homologues thereof, and the like. In certain embodiments where the amplification reaction that is carried out is a high fidelity reaction, the reaction mixture may further include a polymerase enzyme having 3′-5′ exonuclease activity, e.g., as may be provided by a Family B polymerase, where Family B polymerases of interest include, but are not limited to: Thermococcus litoralis DNA polymerase (Vent) as described in Perler et al., Proc. Natl. Acad. Sci. USA (1992) 89:5577-5581; Pyrococcus species GB-D (Deep Vent); Pyrococcus furiosus DNA polymerase (Pfu) as described in Lundberg et al., Gene (1991) 108:1-6, Pyrococcus woesei (Pwo) and the like. Where the reaction mixture includes both a Family A and Family B polymerase, the Family A polymerase may be present in the reaction mixture in an amount greater than the Family B polymerase, where the difference in activity will usually be at least 10-fold, and more usually at least about 100-fold. Usually the reaction mixture will include four different types of dNTPs corresponding to the four naturally occurring bases present, i.e. dATP, dTTP, dCTP and dGTP. In the subject methods, each dNTP will typically be present in an amount ranging from about 10 to 5000 μM, usually from about 20 to 1000 μM.


The reaction mixtures prepared in the reverse transcriptase and/or amplification steps of the subject methods may further include an aqueous buffer medium that includes a source of monovalent ions, a source of divalent cations and a buffering agent. Any convenient source of monovalent ions, such as KCl, K-acetate, NH4-acetate, K-glutamate, NH4Cl, ammonium sulphate, and the like may be employed. The divalent cation may be magnesium, manganese, zinc and the like, where the cation will typically be magnesium. Any convenient source of magnesium cation may be employed, including MgCl2, Mg-acetate, and the like. The amount of Mg2+ present in the buffer may range from 0.5 to 10 mM, but will preferably range from about 3 to 6 mM, and will ideally be at about 5 mM. Representative buffering agents or salts that may be present in the buffer include Tris, Tricine, HEPES, MOPS and the like, where the amount of buffering agent will typically range from about 5 to 150 mM, usually from about 10 to 100 mM, and more usually from about 20 to 50 mM, where in certain preferred embodiments the buffering agent will be present in an amount sufficient to provide a pH ranging from about 6.0 to 9.5, where most preferred is pH 7.3 at 72° C. Other agents which may be present in the buffer medium include chelating agents, such as EDTA, EGTA and the like.


In preparing the reverse transcriptase, DNA extension or amplification reaction mixture of the steps of the subject methods, the various constituent components may be combined in any convenient order. For example, in the amplification reaction the buffer may be combined with primer, polymerase and then template DNA, or all of the various constituent components may be combined at the same time to produce the reaction mixture.


As discussed above, a preferred embodiment of the invention the DNA, e.g. cDNA molecules may be modified by the addition of amplification domains to the ends of the nucleic acid molecules, which may involve a ligation reaction. A ligation reaction is also required for the in situ synthesis of the capture probe on the substrate, when the capture probe is immobilized indirectly on the substrate surface.


As is known in the art, ligases catalyze the formation of a phosphodiester bond between juxtaposed 3′-hydroxyl and 5′-phosphate termini of two immediately adjacent nucleic acids. Any convenient ligase may be employed, where representative ligases of interest include, but are not limited to: Temperature sensitive and thermostable ligases. Temperature sensitive ligases include, but are not limited to, bacteriophage T4 DNA ligase, bacteriophage T7 ligase, and E. coli ligase. Thermostable ligases include, but are not limited to, Taq ligase, Tth ligase, and Pfu ligase. Thermostable ligase may be obtained from thermophilic or hyperthermophilic organisms, including but not limited to, prokaryotic, eukaryotic, or archael organisms. Certain RNA ligases may also be employed in the methods of the invention.


In this ligation step, a suitable ligase and any reagents that are necessary and/or desirable are combined with the reaction mixture and maintained under conditions sufficient for ligation of the relevant oligonucleotides to occur. Ligation reaction conditions are well known to those of skill in the art. During ligation, the reaction mixture in certain embodiments may be maintained at a temperature ranging from about 4° C. to about 50° C., such as from about 20° C. to about 37° C. for a period of time ranging from about 5 seconds to about 16 hours, such as from about 1 minute to about 1 hour. In yet other embodiments, the reaction mixture may be maintained at a temperature ranging from about 35° C. to about 45° C., such as from about 37° C. to about 42° C., e.g., at or about 38° C., 39° C., 40° C. or 41° C., for a period of time ranging from about 5 seconds to about 16 hours, such as from about 1 minute to about 1 hour, including from about 2 minutes to about 8 hours. In a representative embodiment, the ligation reaction mixture includes 50 mM Tris pH7.5, 10 mM MgCl2, 10 mM DTT, 1 mM ATP, 25 mg/ml BSA, 0.25 units/ml RNase inhibitor, and T4 DNA ligase at 0.125 units/ml. In yet another representative embodiment, 2.125 mM magnesium ion, 0.2 units/ml RNase inhibitor; and 0.125 units/ml DNA ligase are employed. The amount of adaptor in the reaction will be dependent on the concentration of the DNA, e.g. cDNA in the sample and will generally be present at between 10-100 times the molar amount of DNA, e.g. cDNA.


By way of a representative example the method of the invention may comprise the following steps:


(a) contacting an object substrate with a tissue sample, wherein at least one species of capture probe is directly or indirectly immobilized on said substrate such that the probes are oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer, such that RNA of the tissue sample hybridises to said capture probes;


(b) imaging the tissue sample on the substrate;


(c) reverse transcribing the captured mRNA molecules to generate cDNA molecules, wherein labelled nucleotides are incorporated into the synthesized part of the cDNA molecules;


(d) washing the substrate to remove residual tissue;


(e) imaging the substrate such that the signal from the labelled cDNA molecules is detected;


(f) removing the labelled cDNA from at least one portion of the surface of the substrate;


(g) releasing at least part of the remaining labelled cDNA molecules from the surface of the array;


(h) performing second strand cDNA synthesis on the released cDNA molecules;


and


(i) analysing the sequence of (e.g. sequencing) the cDNA molecules.


By way of an alternative representative example the method of the invention may comprise the following steps:


(a) contacting an object substrate with a tissue sample, wherein at least one species of capture probe is directly or indirectly immobilized on said substrate such that the probes are oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer, such that RNA of the tissue sample hybridises to said capture probes;


(b) optionally rehydrating the tissue sample;


(c) reverse transcribing the captured mRNA molecules to generate cDNA molecules;


(d) imaging the tissue sample on the substrate;


(e) washing the substrate to remove residual tissue;


(f) labelling the cDNA molecules with a nucleic acid stain;


(g) imaging the substrate such that the signal from the labelled cDNA molecules is detected;


(h) removing the labelled cDNA from at least one portion of the surface of the substrate;


(i) releasing at least part of the remaining labelled cDNA molecules from the surface of the array;


(j) amplifying the released cDNA molecules;


(k) optionally purifying the cDNA molecules to remove components that may interfere with the sequencing reaction;


and


(l) analysing the sequence of (e.g. sequencing) the cDNA molecules.


By way of yet a further representative example the method of the invention may comprise the following steps:


(a) contacting an object substrate with a tissue sample, wherein at least one species of capture probe is directly or indirectly immobilized on said substrate such that the probes are oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer, such that RNA of the tissue sample hybridises to said capture probes;


(b) imaging the tissue sample on the substrate;


(c) reverse transcribing the captured mRNA molecules to generate cDNA molecules, wherein labelled nucleotides are incorporated into the synthesized part of the cDNA molecules;


(d) washing the substrate to remove residual tissue;


(e) imaging the substrate such that the signal from the labelled cDNA molecules is detected;


(f) repeating steps (a)-(e), with a second object substrate, using different conditions in step (a);


(g) comparing the intensity and/or resolution of the signal from the labelled cDNA molecules immobilized on said first and second object substrate; and


(h) selecting the conditions that provide the optimum signal intensity and/or resolution of the labelled cDNA molecules.


By way of a further alternative representative example the method of the invention may comprise the following steps:


(a) contacting an object substrate with a tissue sample, wherein multiple species of capture probes are directly or indirectly immobilized such that each species occupies a distinct position on said substrate and is oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer, wherein each species of said capture probe comprises a nucleic acid molecule with 5′ to 3′:


(i) a positional domain that corresponds to the position of the capture probe on the substrate, and


(ii) a capture domain;


such that RNA of the tissue sample hybridises to said capture probes;


(b) optionally rehydrating the tissue sample;


(c) imaging the tissue sample on the substrate;


(d) reverse transcribing the captured mRNA molecules to generate cDNA molecules, wherein labelled nucleotides are incorporated into the synthesized part of the cDNA molecules;


(e) washing the substrate to remove residual tissue;


(f) imaging the substrate such that the signal from the labelled cDNA molecules is detected;


(g) removing the labelled cDNA from at least one portion of the surface of the substrate;


(h) releasing at least part of the remaining labelled cDNA molecules from the surface of the array;


(i) amplifying the released cDNA molecules;


(j) optionally purifying the cDNA molecules to remove components that may interfere with the sequencing reaction;


and


(k) analysing the sequence of (e.g. sequencing) the cDNA molecules.


The present invention includes any suitable combination of the steps in the above described methods. It will be understood that the invention also encompasses variations of these methods, for example where amplification is performed in situ on the substrate, e.g. array. Also encompassed are methods which omit the step of imaging the tissue sample.


The invention may also be seen to include a method for making or producing an object substrate (i) for use in capturing mRNA from a tissue sample that is contacted with said substrate; (ii) for use in determining and/or analysing a (e.g. the partial or global) transcriptome of a tissue sample; or (iii) for use in determining the optimum conditions for localised or spatial detection of nucleic acid from a tissue sample contacted with a substrate, said method comprising immobilizing, directly or indirectly, at least one species of capture probe to a substrate such that each probe is oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer.


Optionally the probes are immobilized uniformly on the object substrate, i.e. the probes are not arrayed as distinct features. In a particular embodiment of the invention, the probes are identical.


In some embodiments of the invention the probes are capable of hybridizing to (i.e. capturing) all mRNA, i.e. RNA molecules with a polyA tail. Hence, in particularly preferred embodiments of the invention the probes may comprise regions of consecutive dTTP or dUTP nucleotides, e.g. oligoT and/or oligoU nucleotides, as described in more detail above.


The method of immobilizing the capture probes on the object substrate may be achieved using any suitable means as described herein. Where the capture probes are immobilized on the array indirectly the capture probe may be synthesized on the object substrate. Said method may comprise any one or more of the following steps:


(a) immobilizing directly or indirectly multiple surface probes to a substrate, wherein the surface probes comprise:

    • (i) a domain capable of hybridizing to part of the capture domain oligonucleotide (a part not involved in capturing the nucleic acid, e.g. RNA); and
    • (ii) a complementary universal domain;


(b) hybridizing to the surface probes immobilized on the substrate capture domain oligonucleotides and universal domain oligonucleotides;


(c) ligating the universal domain to the capture domain oligonucleotide to produce the capture oligonucleotide.


Thus, in one particular embodiment the method may be viewed as a method for making or producing an object substrate comprising a substrate on which one or more species of capture probe, comprising a capture domain, is directly or indirectly immobilized such that each probe is oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer, wherein the probes are immobilised on the object substrate with a homogeneous distribution and said substrate is for use in:


(i) capturing RNA from a tissue sample that is contacted with said object substrate; or


(ii) localised or spatial detection of RNA in a tissue sample, said method comprising:


(a) immobilizing directly or indirectly multiple surface probes to a substrate, wherein the surface probes comprise:

    • (i) a domain capable of hybridizing to part of a capture domain oligonucleotide; and
    • (ii) a domain that is complementary to a universal domain oligonucleotide;


(b) hybridizing to the surface probes immobilized on the substrate, capture domain oligonucleotides and universal domain oligonucleotides;


(c) ligating the universal domain oligonucleotides to the capture domain oligonucleotides to produce the capture probes.


The features of the object substrate produced by the above method of producing the array of the invention, may be further defined in accordance with the above description.


Thus, in one embodiment the invention provides an object substrate for use in the localised or spatial detection of RNA in a tissue sample, comprising a planar substrate on which one or more species of capture probe, comprising a capture domain, is directly or indirectly immobilized such that each probe is oriented to have a free 3′ end to enable said probe to function as a reverse transcriptase (RT) primer wherein the probes are immobilised on the object substrate with a homogeneous distribution and wherein the capture probe is selected from an oligonucleotide comprising a poly-T, poly-U and/or random oligonucleotide sequence.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be further described with reference to the following non-limiting Examples with reference to the following drawings in which:



FIG. 1 shows 3′ to 5′ surface probe composition and synthesis of 5′ to 3′ oriented capture probes that are indirectly immobilized at the array surface.



FIG. 2 shows how the methods of the invention can be used to determine the optimum conditions for capturing RNA from a tissue sample on a substrate, wherein: (A) shows a tissue sample that is not permeabilized sufficiently to allow the capture of RNA on the substrate; (B) shows a tissue sample that is permeabilized to allow capture of RNA on the substrate whilst retaining spatial information; and (C) shows a tissue sample that is too permeable such that the RNA has been allowed to diffuse away from its origin in the tissue sample and captured RNA does not correlate accurately with its original spatial distribution in the tissue sample.



FIG. 3 shows a bar chart demonstrating the efficiency of enzymatic cleavage (USER or Rsal) from in-house manufactured arrays and by 99° C. water from Agilent manufactured arrays, as measured by hybridization of fluorescently labelled probes to the array surface after probe release.



FIG. 4 shows a table that lists the reads sorted for their origin across the low density in-house manufactured DNA-capture array as seen in the schematic representation.



FIG. 5 shows a schematic illustration of the principle of the method described in Example 4, i.e. use of microarrays with immobilized DNA oligos (capture probes) carrying spatial labelling tag sequences (positional domains). Each feature of oligos of the microarray carries a 1) a unique labelling tag (positional domain) and 2) a capture sequence (capture domain).



FIG. 6 shows the composition of 5′ to 3′ oriented capture probes used on high-density capture arrays.



FIG. 7 shows a Matlab visualization of captured transcripts from total RNA extracted from mouse olfactory bulb.



FIG. 8 shows Olfr (olfactory receptor) transcripts as visualized across the capture array using Matlab visualization after capture from mouse olfactory bulb tissue.



FIG. 9 shows a pattern of printing for in-house 41-ID-tag microarrays.



FIG. 10 shows a Matlab visualization of captured ID-tagged transcripts from mouse olfactory bulb tissue on 41-ID-tag in-house arrays overlaid with the tissue image. For clarity, the specific features on which particular genes were identified have been circled.



FIG. 11 shows a pattern of cDNA synthesis on array surface from a section of mouse brain olfactory bulb, as visualized by an Agilent microarray scanner.



FIG. 12 shows a pattern of cDNA synthesis on array surface from a section of mouse brain cortex, as visualized by an Agilent microarray scanner.



FIG. 13 shows a pattern of cDNA synthesis on array surface from a section of mouse brain olfactory bulb, before ablation (A) and after ablation of non-wanted areas (B), as imaged on the MMI cellcut instrument.



FIG. 14 shows the resulting library made from cleaved fluorescently labelled cDNA library of non-ablated areas as visualized with a DNA high sensitivity chip on an Agilent Bioanalyzer.



FIG. 15 shows a pattern of cDNA synthesis on a high-density feature array surface from a section of mouse brain olfactory bulb. A frame (visible at the top and to the right in the image) consisting of features containing a single DNA probe sequence was labelled by hybridization of a complementary oligonucleotide labelled with Cy3.



FIG. 16 shows a bar chart of Cy3 intensities on arrays using different amounts of Cy3 labelled dCTP.



FIG. 17 shows images of cDNA synthesis on array surfaces and corresponding images of the tissue sections on the array surface using various alternative sample types, wherein: (A) depicts the phase contrast image (left) and corresponding Cy3 labelled cDNA footprint (right) of a zebra fish sample; (B) depicts the phase contrast image (left) and corresponding Cy3 labelled cDNA footprint (right) of a fruit fly (Drosophila) sample; (C) depicts the phase contrast image (left) and corresponding Cy3 labelled cDNA footprint (right) of a prostate tumour section; and (D) depicts the phase contrast image (left) and corresponding Cy3 labelled cDNA footprint (right) of mouse fibroblast cells.





EXAMPLES
Example 1
Preparation of the Array

The following experiments demonstrate how oligonucleotide probes may be attached to an array substrate by either the 5′ or 3′ end to yield an array with capture probes capable of hybridizing to mRNA.


Preparation of In-House Printed Microarray with 5′ to 3′ Oriented Probes


20 RNA-capture oligonucleotides with individual tag sequences (Tag 1-20, Table 1 were spotted on glass slides to function as capture probes. The probes were synthesized with a 5′-terminus amino linker with a C6 spacer. All probes where synthesized by Sigma-Aldrich (St. Louis, Mo., USA). The RNA-capture probes were suspended at a concentration of 20 μM in 150 mM sodium phosphate, pH 8.5 and were spotted using a Nanoplotter NP2.1/E (Gesim, Grosserkmannsdorf, Germany) onto CodeLink™ Activated microarray slides (7.5 cm×2.5 cm; Surmodics, Eden Prairie, Minn., USA). After printing, surface blocking was performed according to the manufacturer's instructions. The probes were printed in 16 identical arrays on the slide, and each array contained a pre-defined printing pattern. The 16 sub-arrays were separated during hybridization by a 16-pad mask (ChipClip™ Schleicher & Schuell BioScience, Keene, N.H., USA).













TABLE 1





Name
Sequence
5′ mod
3′ mod
Length















Sequences for free 3′ capture probes











TAP-ID1
UUAAGTACAAATCTCGACTGCCACTCTGAACCTTCT
Amino-C6

72



CCTTCTCCTTCACCTTTTTTTTTTTTTTTTTTTTVN






(SEQ ID NO: 1)








Enzymatic
UUAAGTACAA (SEQ ID NO: 2)


10


recog









Universal
ATCTCGACTGCCACTCTGAA (SEQ ID NO: 3)


20


amp handle P









ID1
CCTTCTCCTTCTCCTTCACC (SEQ ID NO: 4)


20





Capture
TTTTTTTTTTTTTTTTTTTTVN (SEQ ID NO: 5)


22


sequence









ID1
CCTTCTCCTTCTCCTTCACC (SEQ ID NO: 6)


20





ID2
CCTTGCTGCTTCTCCTCCTC (SEQ ID NO: 7)


20





ID3
ACCTCCTCCGCCTCCTCCTC (SEQ ID NO: 8)


20





ID4
GAGACATACCACCAAGAGAC (SEQ ID NO: 9)


20





ID5
GTCCTCTATTCCGTCACCAT (SEQ ID NO: 10)


20





ID6
GACTGAGCTCGAACATATGG (SEQ ID NO: 11)


20





ID7
TGGAGGATTGACACAGAACG (SEQ ID NO: 12)


20





ID8
CCAGCCTCTCCATTACATCG (SEQ ID NO: 13)


20





ID9
AAGATCTACCAGCCAGCCAG (SEQ ID NO: 14)


20





ID10
CGAACTTCCACTGTCTCCTC (SEQ ID NO: 15)


20





ID11
TTGCGCCTTCTCCAATACAC (SEQ ID NO: 16)


20





ID12
CTCTTCTTAGCATGCCACCT (SEQ ID NO: 17)


20





ID13
ACCACTTCTGCATTACCTCC (SEQ ID NO: 18)


20





ID14
ACAGCCTCCTCTTCTTCCTT (SEQ ID NO: 19)


20





ID15
AATCCTCTCCTTGCCAGTTC (SEQ ID NO: 20)


20





ID16
GATGCCTCCACCTGTAGAAC (SEQ ID NO: 21)


20





ID17
GAAGGAATGGAGGATATCGC (SEQ ID NO: 22)


20





ID18
GATCCAAGGACCATCGACTG (SEQ ID NO: 23)


20





ID19
CCACTGGAACCTGACAACCG (SEQ ID NO: 24)


20





ID20
CTGCTTCTTCCTGGAACTCA (SEQ ID NO: 25)


20










Sequences for free 5′ surface probes and on-chip free 3′ capture probe synthesis










Free 5′
GCGTTCAGAGTGGCAGTCGAGATCACGCGGCAATCATATC
Amino C7
66


surface
GGACAGATCGGAAGAGCGTAGTGTAG (SEQ ID NO: 26)




probe-A








Free 5′
GCGTTCAGAGTGGCAGTCGAGATCACGCGGCAATCATATC
Amino C7
66


surface
GGACGGCTGCTGGTAAATAGAGATCA (SEQ ID NO: 27)




probe-U

















Nick
GCG


 3





LP′
TTCAGAGTGGCAGTCGAGATCAC (SEQ ID NO: 28)


23





ID′
GCGGCAATCATATCGGAC (SEQ ID NO: 29)


18





A′ 22
AGATCGGAAGAGCGTAGTGTAG (SEQ ID NO: 30)


22


bp MutY






mismatch









U′ 22
GGCTGCTGGTAAATAGAGATCA (SEQ ID NO: 31)





bp MutY






mismatch














Hybridized sequences for capture probe synthesis











Illumina amp
ACACTCTTTCCCTACACGACGCTCTTCCGATCT


33


handle A
(SEQ ID NO: 32)








Universa ampl
AAGTGTGGAAAGTTGATCGCTATTTACCAGCAGCC


35


handle U
(SEQ ID NO: 33)
















Capture_LP_Poly-
GTGATCTCGACTGCCACTCTGAATTTTTTTTTTTTTTTTTTTTVN
Phosphorylated
45


dTVN
(SEQ ID NO: 34)







Capture_LP_Poly-
GTGATCTCGACTGCCACTCTGAATTTTTTTTTTTTTTTTTTTTTTTT
Phosphorylated
47


d24T
(SEQ ID NO: 35)












Additional secondary universal amplification handles











Illumina
AGACGTGTGCTCTTCCGATCT (SEQ ID NO: 36)


21


amp handle B









Universal
ACGTCTGTGAATAGCCGCAT (SEQ ID NO: 37)


20


amp handle X









B_R6 handle
AGACGTGTGCTCTTCCGATCTNNNNNNNN (SEQ ID NO: 38)


27 (26)


(or X)









B_R8 handle
AGACGTGTGCTCTTCCGATCTNNNNNNNNNN (SEQ ID NO: 39)


29 (28)


(or X)









B_polyTVN
AGACGTGTGCTCTTCCGATCTTTTTTTTTTTTTTTTTTTTTVN


43 (42)


(or X)
(SEQ ID NO: 40)








B_poly24T
AGACGTGTGCTCTTCCGATCTTTTTTTTTTTTTTTTTTTTTTTTT


45 (44)


(or X)
(SEQ ID NO: 41)













Amplification handle to incorporate A handle into P handle products











A_P handle
ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCTCGACTGCCAC


53



TCTGAA (SEQ ID NO: 42)









Preparation of In-House Printed Microarray with 3′ to 5′ Oriented Probes and Synthesis of 5′ to 3′ Oriented Capture Probes


Printing of surface probe oligonucleotides was performed as in the case with 5′ to 3′ oriented probes above, with an amino-C7 linker at the 3′ end, as shown in Table 1.


To hybridize primers for capture probe synthesis, hybridization solution containing 4×SSC and 0.1% SDS, 2 μM extension primer (the universal domain oligonucleotide) and 2 μM thread joining primer (the capture domain oligonucleotide) was incubated for 4 min at 50° C. Meanwhile the in-house array was attached to a ChipClip (Whatman). The array was subsequently incubated at 50° C. for 30 min at 300 rpm shake with 50 μL of hybridization solution per well.


After incubation, the array was removed from the ChipClip and washed with the 3 following steps: 1) 50° C. 2×SSC solution with 0.1% SDS for 6 min at 300 rpm shake; 2) 0.2×SSC for 1 min at 300 rpm shake; and 3) 0.1×SSC for 1 min at 300 rpm shake. The array was then spun dry and placed back in the ChipClip.


For extension and ligation reaction (to generate the positional domain of the capture probe) 50 μL of enzyme mix containing 10× Ampligase buffer, 2.5 U AmpliTaq DNA Polymerase Stoffel Fragment (Applied Biosystems), 10 U Ampligase (Epicentre Biotechnologies), dNTPs 2 mM each (Fermentas) and water, was pipetted to each well. The array was subsequently incubated at 55° C. for 30 min. After incubation the array was washed according to the previously described array washing method but the first step has the duration of 10 min instead of 6 min.


The method is depicted in FIG. 1.


Tissue Preparation


The following experiments demonstrate how tissue sample sections may be prepared for use in the methods of the invention.


Preparation of Fresh Frozen Tissue and Sectioning onto Capture Probe Arrays


Fresh non-fixed mouse brain tissue was trimmed if necessary and frozen down in −40° C. cold isopentane and subsequently mounted for sectioning with a cryostat at 10 μm. A slice of tissue was applied onto each capture probe array to be used.


Preparation of Formalin-Fixed Paraffin-Embedded (FFPE) Tissue


Mouse brain tissue was fixed in 4% formalin at 4° C. for 24 h. After that it was incubated as follows: 3× incubation in 70% ethanol for 1 hour; 1× incubation in 80% ethanol for 1 hour; 1× incubation in 96% ethanol for 1 hour; 3× incubation in 100% ethanol for 1 hour; and 2× incubation in xylene at room temperature for 1 h.


The dehydrated samples were then incubated in liquid low melting paraffin 52-54° C. for up to 3 hours, during which the paraffin was changed once to wash out residual xylene. Finished tissue blocks were then stored at RT. Sections were then cut at 4 μm in paraffin with a microtome onto each capture probe array to be used.


The sections were dried at 37° C. on the array slides for 24 hours and stored at RT.


Deparaffinization of FFPE Tissue


Formalin fixed paraffinized mouse brain 10 μm sections attached to CodeLink slides were deparaffinized in xylene twice for: 10 min, 99.5% ethanol for 2 min; 96% ethanol for 2 min; 70% ethanol for 2 min; and were then air dried.


cDNA Synthesis


The following experiments demonstrate that mRNA captured on the array from the tissue sample sections may be used as template for cDNA synthesis.


cDNA Synthesis on Chip


A 16 well mask and Chip Clip slide holder from Whatman was attached to a CodeLink slide. The SuperScript™ III One-step RT-PCR System with Platinum® Taq DNA Polymerase from Invitrogen was used when performing the cDNA synthesis. For each reaction 25 μl 2× reaction mix (SuperScript™ III One-step RT-PCR System with Platinum® Taq DNA Polymerase, Invitrogen), 22.5 μl H2O and 0.5 μl 100×BSA were mixed and heated to 50° C. SuperScript III/Platinum Taq enzyme mix was added to the reaction mix, 2 μl per reaction, and 50 μl of the reaction mix was added to each well on the chip. The chip was incubated at 50° C. for 30 min (Thermomixer Comfort, Eppendorf).


The reaction mix was removed from the wells and the slide was washed with: 2×SSC, 0.1% SDS at 50° C. for 10 min; 0.2×SSC at room temperature for 1 min; and 0.1×SSC at room temperature for 1 min. The chip was then spin dried.


In the case of FFPE tissue sections, the sections could now be stained and visualized before removal of the tissue, see below section on visualization.


Visualization


Hybridization of Fluorescent Marker Probes Prior to Staining


Prior to tissue application fluorescent marker probes were hybridized to features comprising marker oligonucleotides printed on the capture probe array. The fluorescent marker probes aid in the orientation of the resulting image after tissue visualization, making it possible to combine the image with the resulting expression profiles for individual capture probe “tag” (positional domain) sequences obtained after sequencing. To hybridize fluorescent probes a hybridization solution containing 4×SSC and 0.1% SDS, 2 μM detection probe (P) was incubated for 4 min at 50° C. Meanwhile the in-house array was attached to a ChipClip (Whatman). The array was subsequently incubated at 50° C. for 30 min at 300 rpm shake with 50 μL of hybridization solution per well.


After incubation, the array was removed from the ChipClip and washed with the 3 following steps: 1) 50° C. 2×SSC solution with 0.1% SDS for 6 min at 300 rpm shake, 2) 0.2×SSC for 1 min at 300 rpm shake and 3) 0.1×SSC for 1 min at 300 rpm shake. The array was then spun dry.


General Histological Staining of FFPE Tissue Sections Prior to or Post cDNA Synthesis


FFPE tissue sections immobilized on capture probe arrays were washed and rehydrated after deparaffinization prior to cDNA synthesis as described previously, or washed after cDNA synthesis as described previously. They are then treated as follows: incubate for 3 minutes in Hematoxylin; rinse with deionized water; incubate 5 minutes in tap water; rapidly dip 8 to 12 times in acid ethanol; rinse 2×1 minute in tap water; rinse 2 minutes in deionized water; incubate 30 seconds in Eosin; wash 3×5 minutes in 95% ethanol; wash 3×5 minutes in 100% ethanol; wash 3×10 minutes in xylene (can be done overnight); place coverslip on slides using DPX; dry slides in the hood overnight.


General Immunohistochemistry Staining of a Target Protein in FFPE Tissue Sections Prior to or Post cDNA Synthesis


FFPE tissue sections immobilized on capture probe arrays were washed and rehydrated after deparaffinization prior to cDNA synthesis as described previously, or washed after cDNA synthesis as described previously. They were then treated as follows without being allowed to dry during the whole staining process: sections were incubated with primary antibody (dilute primary antibody in blocking solution comprising 1× Tris Buffered Saline (50 mM Tris, 150 mM NaCl, pH 7.6), 4% donkey serum and 0.1% triton-x) in a wet chamber overnight at RT; rinse three times with 1×TBS; incubate section with matching secondary antibody conjugated to a fluorochrome (FITC, Cy3 or Cy5) in a wet chamber at RT for 1 hour. Rinse 3× with 1×TBS, remove as much as possible of TBS and mount section with ProLong Gold+DAPI (Invitrogen) and analyze with fluorescence microscope and matching filter sets.


Removal of Residual Tissue


Frozen Tissue


For fresh frozen mouse brain tissue the washing step directly following cDNA synthesis was enough to remove the tissue completely.


FFPE Tissue


The slides with attached formalin fixed paraffinized mouse brain tissue sections were attached to ChipClip slide holders and 16 well masks (Whatman). For each 150 μl Proteinase K Digest Buffer from the RNeasy FFPE kit (Qiagen), 10 μl Proteinase K Solution (Qiagen) was added. 50 μl of the final mixture was added to each well and the slide was incubated at 56° C. for 30 min.


Capture Probe (cDNA) Release


Capture Probe Release with Uracil Cleaving USER Enzyme Mixture in PCR Buffer (Covalently Attached Probes)


A 16 well mask and CodeLink slide was attached to the ChipClip holder (Whatman). 50 μl of a mixture containing 1× FastStart High Fidelity Reaction Buffer with 1.8 mM MgCl2 (Roche), 200 μM dNTPs (New England Biolabs) and 0.1 U/1 μl USER Enzyme (New England Biolabs) was heated to 37° C. and was added to each well and incubated at 37° C. for 30 min with mixing (3 seconds at 300 rpm, 6 seconds at rest) (Thermomixer comfort; Eppendorf). The reaction mixture containing the released cDNA and probes was then recovered from the wells with a pipette.


Capture Probe Release with Uracil Cleaving USER Enzyme Mixture in TdT (Terminal Transferase) Buffer (Covalently Attached Probes)


50 μl of a mixture containing: 1× TdT buffer (20 mM Tris-acetate (pH 7.9), 50 mM Potassium Acetate and 10 mM Magnesium Acetate) (New England Biolabs, www.neb.com); 0.1 μg/μl BSA (New England Biolabs); and 0.1 U/μl USER Enzyme (New England Biolabs) was heated to 37° C. and was added to each well and incubated at 37° C. for 30 min with mixing (3 seconds at 300 rpm, 6 seconds at rest) (Thermomixer comfort; Eppendorf). The reaction mixture containing the released cDNA and probes was then recovered from the wells with a pipette.


Capture Probe Release with Boiling Hot Water (Covalently Attached Probes)


A 16 well mask and CodeLink slide was attached to the ChipClip holder (Whatman). 50 μl of 99° C. water was pipetted into each well. The 99° C. water was allowed to react for 30 minutes. The reaction mixture containing the released cDNA and probes was then recovered from the wells with a pipette.


Capture Probe Release with Heated PCR Buffer (Hybridized In Situ Synthesized Capture Probes, i.e. Capture Probes Hybridized to Surface Probes)


50 μl of a mixture containing: 1× TdT buffer (20 mM Tris-acetate (pH 7.9), 50 mM Potassium Acetate and 10 mM Magnesium Acetate) (New England Biolabs, www.neb.com); 0.1 μg/μl BSA (New England Biolabs); and 0.1 U/μl USER Enzyme (New England Biolabs) was preheated to 95° C. The mixture was then added to each well and incubated for 5 minutes at 95° C. with mixing (3 seconds at 300 rpm, 6 seconds at rest) (Thermomixer comfort; Eppendorf). The reaction mixture containing the released probes was then recovered from the wells.


Capture Probe Release with Heated TdT (Terminal Transferase) Buffer (Hybridized In Situ Synthesized Capture Probes, i.e. Capture Probes Hybridized to Surface Probes)


50 μl of a mixture containing: 1× TdT buffer (20 mM Tris-acetate (pH 7.9), 50 mM Potassium Acetate and 10 mM Magnesium Acetate) (New England Biolabs, www.neb.com); 0.1 μg/μl BSA (New England Biolabs); and 0.1 U/μl USER Enzyme (New England Biolabs) was preheated to 95° C. The mixture was then added to each well and incubated for 5 minutes at 95° C. with mixing (3 seconds at 300 rpm, 6 seconds at rest) (Thermomixer comfort; Eppendorf). The reaction mixture containing the released probes was then recovered from the wells.


The efficacy of treating the array with the USER enzyme and water heated to 99° C. can be seen in FIG. 3. Enzymatic cleavage using the USER enzyme and the Rsal enzyme was performed using the “in-house” arrays described above (FIG. 3). Hot water mediated release of DNA surface probes was also performed using commercial arrays manufactured by Agilent.


Probe Collection and Linker Introduction


The experiments demonstrate that first strand cDNA released from the array surface may be modified to produce double stranded DNA and subsequently amplified.


Whole Transcriptome Amplification by the Picoplex Whole Genome Amplification Kit (Capture Probe Sequences Including Positional Domain (Taq) Sequences not Retained at the Edge of the Resulting dsDNA)


Capture probes were released with uracil cleaving USER enzyme mixture in PCR buffer (covalently attached capture probes) or with heated PCR buffer (hybridized in situ synthesized capture probes, i.e. capture probes hybridized to surface probes).


The released cDNA was amplified using the Picoplex (Rubicon Genomics) random primer whole genome amplification method, which was carried out according to manufacturers instructions.


Whole Transcriptome Amplification by dA Tailing with Terminal Transferase (TdT) (Capture Probe Sequences Including Positional Domain (Tag) Sequences Retained at the End of the Resulting dsDNA)


Capture probes were released with uracil cleaving USER enzyme mixture in TdT (terminal transferase) buffer (covalently attached capture probes) or with heated TdT (terminal transferase) buffer (hybridized in situ synthesized capture probes, i.e. capture probes hybridized to surface probes).


38 μl of cleavage mixture was placed in a clean 0.2 ml PCR tube. The mixture contained: 1× TdT buffer (20 mM Tris-acetate (pH 7.9), 50 mM Potassium Acetate and 10 mM Magnesium Acetate) (New England Biolabs, www.neb.com), 0.1 μg/μl BSA (New England Biolabs); 0.1 U/μl USER Enzyme (New England Biolabs) (not for heated release); released cDNA (extended from surface probes); and released surface probes. To the PCR tube, 0.5 μl RNase H (5 U/μl, final concentration of 0.06 U/μl), 1 μl TdT (20 U/μl, final concentration of 0.5 U/μl), and 0.5 μl dATPs (100 mM, final concentration of 1.25 mM), were added. For dA tailing, the tube was incubated in a thermocycler (Applied Biosystems) at 37° C. for 15 min followed by an inactivation of TdT at 70° C. for 10 min. After dA tailing, a PCR master mix was prepared. The mix contained: 1× Faststart HiFi PCR Buffer (pH 8.3) with 1.8 mM MgCl2 (Roche); 0.2 mM of each dNTP (Fermentas); 0.2 μM of each primer, A (complementary to the amplification domain of the capture probe) and B_(dT)24 (Eurofins MWG Operon) (complementary to the poly-A tail to be added to the 3′ end of the first cDNA strand); and 0.1 U/μl Faststart HiFi DNA polymerase (Roche). 23 μl of PCR Master mix was placed into nine clean 0.2 ml PCR tubes. 2 μl of dA tailing mixture were added to eight of the tubes, while 2 μl water (RNase/DNase free) was added to the last tube (negative control). PCR amplification was carried out with the following program: Hot start at 95° C. for 2 minutes, second strand synthesis at 50° C. for 2 minutes and 72° C. for 3 minutes, amplification with 30 PCR cycles at 95° C. for 30 seconds, 65° C. for 1 minutes, 72° C. for 3 minutes, and a final extension at 72° C. for 10 minutes.


Post-Reaction Cleanup and Analysis


Four amplification products were pooled together and were processed through a Qiaquick PCR purification column (Qiagen) and eluted into 30 μl EB (10 mM Tris-Cl, pH 8.5). The product was analyzed on a Bioanalyzer (Agilent). A DNA 1000 kit was used according to manufacturers instructions.


Sequencing


Illumina Sequencing


dsDNA library for Illumina sequencing using sample indexing was carried out according to manufacturers instructions. Sequencing was carried out on an HiSeq2000 platform (Illumina).


Bioinformatics


Obtaining Digital Transcriptomic Information from Sequencing Data from Whole Transcriptome Libraries Amplified Using the dA Tailing Terminal Transferase Approach


The sequencing data was sorted through the FastX toolkit FASTQ Barcode splitter tool into individual files for the respective capture probe positional domain (tag) sequences. Individually tagged sequencing data was then analyzed through mapping to the mouse genome with the Tophat mapping tool. The resulting SAM file was processed for transcript counts through the HTseq-count software.


Obtaining Digital Transcriptomic Information from Sequencing Data from Whole Transcriptome Libraries Amplified Using the Picoplex Whole Genome Amplification Kit Approach


The sequencing data was converted from FASTQ format to FASTA format using the FastX toolkit FASTQ-to-FASTA converter. The sequencing reads was aligned to the capture probe positional domain (tag) sequences using Blastn and the reads with hits better than 1e−6 to one of tag sequences were sorted out to individual files for each tag sequence respectively. The file of tag sequence reads was then aligned using Blastn to the mouse transcriptome, and hits were collected.


Combining Visualization Data and Expression Profiles


The expression profiles for individual capture probe positional domain (tag) sequences are combined with the spatial information obtained from the tissue sections through staining. Thereby the transcriptomic data from the cellular compartments of the tissue section can be analyzed in a directly comparative fashion, with the availability to distinguish distinct expression features for different cellular subtypes in a given structural context


Example 2

Stained FFPE mouse brain tissue (olfactory bulb) sections were placed on top of a bar-coded transcriptome capture array, according to the general procedure described in Example 1. As compared with the experiment with fresh frozen tissue in Example 1, better morphology was observed with the FFPE tissue.


Example 3

Whole Transcriptome Amplification by Random Primer Second Strand Synthesis Followed by Universal Handle Amplification (Capture Probe Sequences Including Taq Sequences Retained at the End of the Resulting dsDNA)


Following capture probe release with uracil cleaving USER enzyme mixture in PCR buffer (covalently attached probes)


OR


Following capture probe release with heated PCR buffer (hybridized in situ synthesized capture probes)


1 μl RNase H (5 U/μl) was added to each of two tubes, final concentration of 0.12 U/μl, containing 40 μl× Faststart HiFi PCR Buffer (pH 8.3) with 1.8 mM MgCl2 (Roche, www.roche-applied-science.com), 0.2 mM of each dNTP (Fermentas, www.fermentas.com), 0.1 μg/μl BSA (New England Biolabs, www.neb.com), 0.1 U/μl USER Enzyme (New England Biolabs), released cDNA (extended from surface probes) and released surface probes. The tubes were incubated at 37° C. for 30 min followed by 70° C. for 20 min in a thermo cycler (Applied Biosystems, www.appliedbiosystems.com). 1 μl Klenow Fragment (3′ to 5′ exo minus) (Illumina, www.illumina.com) and 1 μl handle coupled random primer (10 μM) (Eurofins MWG Operon, www.eurofinsdna.com) was added to the two tubes (B_R8 (octamer) to one of the tubes and B_R6 (hexamer) to the other tube), final concentration of 0.23 μM. The two tubes were incubated at 15° C. for 15 min, 25° C. for 15 min, 37° C. for 15 min and finally 75° C. for 20 min in a thermo cycler (Applied Biosystems). After the incubation, 1 μl of each primer, A_P and B (10 μM) (Eurofins MWG Operon), was added to both tubes, final concentration of 0.22 μM each. 1 μl Faststart HiFi DNA polymerase (5 U/μl) (Roche) was also added to both tubes, final concentration of 0.11 U/μl. PCR amplification were carried out in a thermo cycler (Applied Biosystems) with the following program: Hot start at 94° C. for 2 min, followed by 50 cycles at 94° C. for 15 seconds, 55° C. for 30 seconds, 68° C. for 1 minute, and a final extension at 68° C. for 5 minutes. After the amplification, 40 μl from each of the two tubes were purified with Qiaquick PCR purification columns (Qiagen, www.giagen.com) and eluted into 30 μl EB (10 mM Tris-Cl, pH 8.5). The Purified products were analyzed with a Bioanalyzer (Agilent, www.home.agilent.com), DNA 7500 kit were used. This Example demonstrates the use of random hexamer and random octamer second strand synthesis, followed by amplification to generate the population from the released cDNA molecules.


Example 4
Amplification of ID-Specific and Gene Specific Products after cDNA Synthesis and Probe Collection

Following capture probe release with uracil cleaving USER enzyme mixture in PCR buffer (covalently attached probes).


The cleaved cDNA was amplified in final reaction volumes of 10 μl. 7 μl cleaved template, 1 μl ID-specific forward primer (2 μM), 1 μl gene-specific reverse primer (2 μM) and 1 μl FastStart High Fidelity Enzyme Blend in 1.4× FastStart High Fidelity Reaction Buffer with 1.8 mM MgCl2 to give a final reaction of 10 μl with 1× FastStart High Fidelity Reaction Buffer with 1.8 mM MgCl2 and 1 U FastStart High Fidelity Enzyme Blend. PCR amplification were carried out in a thermo cycler (Applied Biosystems) with the following program: Hot start at 94° C. for 2 min, followed by 50 cycles at 94° C. for 15 seconds, 55° C. for 30 seconds, 68° C. for 1 minute, and a final extension at 68° C. for 5 minutes.


Primer sequences, resulting in a product of approximately 250 bp,











Beta-2 microglobulin (B2M) primer



(SEQ ID NO: 43)



5′-TGGGGGTGAGAATTGCTAAG-3′






ID-1 primer



(SEQ ID NO: 44)



5′-CCTTCTCCTTCTCCTTCACC-3′






ID-5 primer



(SEQ ID NO: 45)



5′-GTCCTCTATTCCGTCACCAT-3′






ID-20 primer



(SEQ ID NO: 46)



5′-CTGCTTCTTCCTGGAACTCA-3′






The results show successful amplification of ID-specific and gene-specific products using two different ID primers (i.e. specific for ID tags positioned at different locations on the microarray and the same gene specific primer from a brain tissue covering all the probes). Accordingly this experiment establishes that products may be identified by an ID tag-specific or target nucleic acid specific amplification reaction. It is further established that different ID tags may be distinguished. A second experiment, with tissue covering only half of the ID probes (i.e. capture probes) on the array resulted in a positive result (PCR product) for spots that were covered with tissue.


Example 5
Alternative Synthesis of 5′ to 3′ Oriented Capture Probes Using Polymerase Extension and Terminal Transferase Tailing

To hybridize primers for capture probe synthesis hybridization solution containing 4×SSC and 0.1% SDS and 2 μM extension primer (A_primer) was incubated for 4 min at 50° C. Meanwhile the in-house array (see Example 1) was attached to a ChipClip (Whatman). The array was subsequently incubated at 50° C. for 30 min at 300 rpm shake with 50 μL of hybridization solution per well.


After incubation, the array was removed from the ChipClip and washed with the 3 following steps: 1) 50° C. 2×SSC solution with 0.1% SDS for 6 min at 300 rpm shake, 2) 0.2×SSC for 1 min at 300 rpm shake and 3) 0.1×SSC for 1 min at 300 rpm shake. The array was then spun dry and placed back in the ChipClip.


1 μl Klenow Fragment (3′ to 5′ exo minus) (Illumina, www.illumina.com) together with 10× Klenow buffer, dNTPs 2 mM each (Fermentas) and water, was mixed into a 50 μl reaction and was pipetted into each well.


The array was incubated at 15° C. for 15 min, 25° C. for 15 min, 37° C. for 15 min and finally 75° C. for 20 min in an Eppendorf Thermomixer.


After incubation, the array was removed from the ChipClip and washed with the 3 following steps: 1) 50° C. 2×SSC solution with 0.1% SDS for 6 min at 300 rpm shake, 2) 0.2×SSC for 1 min at 300 rpm shake and 3) 0.1×SSC for 1 min at 300 rpm shake. The array was then spun dry and placed back in the ChipClip.


For dT tailing a 50 μl reaction mixture containing 1× TdT buffer (20 mM Tris-acetate (pH 7.9), 50 mM Potassium Acetate and 10 mM Magnesium Acetate) (New England Biolabs, www.neb.com), 0.1 μg/μl BSA (New England Biolabs), 0.5 μl RNase H (5 U/μl), 1 μl TdT (20 U/μl) and 0.5 μl dTTPs (100 mM) was prepared. The mixture was added to the array surface and the array was incubated in a thermo cycler (Applied Biosystems) at 37° C. for 15 min followed by an inactivation of TdT at 70° C. for 10 min.


Example 6
Spatial Transcriptomics Using 5′ to 3′ High Probe Density Arrays and Formalin-Fixed Frozen (FF-Frozen) Tissue with USER System Cleavage and Amplification Via Terminal Transferase

Array Preparation


Pre-fabricated high-density microarrays chips were ordered from Roche-Nimblegen (Madison, Wis., USA). Each capture probe array contained 135,000 features of which 132,640 features carried a capture probe comprising a unique ID-tag sequence (positional domain) and a capture region (capture domain). Each feature was 13×13 μm in size. The capture probes were composed 5′ to 3′ of a universal domain containing five dUTP bases (a cleavage domain) and a general amplification domain, an ID tag (positional domain) and a capture region (capture domain) (FIG. 6 and Table 4). Each array was also fitted with a frame of marker probes carrying a generic 30 bp sequence (Table 4) to enable hybridization of fluorescent probes to help with orientation during array visualization.


Tissue Preparation—Preparation of Formalin-Fixed Frozen Tissue


The animal (mouse) was perfused with 50 ml PBS and 100 ml 4% formalin solution. After excision of the olfactory bulb, the tissue was put into a 4% formalin bath for post-fixation for 24 hrs. The tissue was then sucrose treated in 30% sucrose dissolved in PBS for 24 hrs to stabilize morphology and to remove excess formalin. The tissue was frozen at a controlled rate down to −40° C. and kept at −20° C. between experiments. Similar preparation of tissue postfixed for 3 hrs or without post-fixation was carried out for a parallel specimen. Perfusion with 2% formalin without post-fixation was also used successfully. Similarly the sucrose treatment step could be omitted. The tissue was mounted into a cryostat for sectioning at 10 μm. A slice of tissue was applied onto each capture probe array to be used. Optionally for better tissue adherence, the array chip was placed at 50° C. for 15 minutes.


Optional Control—Total RNA Preparation from Sectioned Tissue


Total RNA was extracted from a single tissue section (10 μm) using the RNeasy FFPE kit (Qiagen) according to manufacturers instructions. The total RNA obtained from the tissue section was used in control experiments for a comparison with experiments in which the RNA was captured on the array directly from the tissue section. Accordingly, in the case where total RNA was applied to the array the staining, visualization and degradation of tissue steps were omitted.


On-Chip Reactions


The hybridization of marker probe to the frame probes, reverse transcription, nuclear staining, tissue digestion and probe cleavage reactions were all performed in a 16 well silicone gasket (ArrayIt, Sunnyvale, Calif., USA) with a reaction volume of 50 μl per well. To prevent evaporation, the cassettes were covered with plate sealers (In Vitro AB, Stockholm, Sweden).


Optional—Tissue Permeabilization Prior to cDNA Synthesis


For permeabilization using Proteinase K, proteinase K (Qiagen, Hilden, Germany) was diluted to 1 μg/ml in PBS. The solution was added to the wells and the slide incubated at room temperature for 5 minutes, followed by a gradual increase to 80° C. over 10 minutes. The slide was washed briefly in PBS before the reverse transcription reaction.


Alternatively for permeabilization using microwaves, after tissue attachment, the slide was placed at the bottom of a glass jar containing 50 ml 0.2×SSC (Sigma-Aldrich) and was heated in a microwave oven for 1 minute at 800 W. Directly after microwave treatment the slide was placed onto a paper tissue and was dried for 30 minutes in a chamber protected from unnecessary air exposure. After drying, the slide was briefly dipped in water (RNase/DNase free) and finally spin-dried by a centrifuge before cDNA synthesis was initiated.


cDNA Synthesis


For the reverse transcription reaction the SuperScript III One-Step RT-PCR System with Platinum Taq (Life Technologies/Invitrogen, Carlsbad, Calif., USA) was used. Reverse transcription reactions contained 1× reaction mix, 1×BSA (New England Biolabs, Ipswich, Mass., USA) and 2 μl SuperScript III RT/Platinum Taq mix in a final volume of 50 μl. This solution was heated to 50° C. before application to the tissue sections and the reaction was performed at 50° C. for 30 minutes. The reverse transcription solution was subsequently removed from the wells and the slide was allowed to air dry for 2 hours.


Tissue Visualization


After cDNA synthesis, nuclear staining and hybridization of the marker probe to the frame probes (probes attached to the array substrate to enable orientation of the tissue sample on the array) was done simultaneously. A solution with DAPI at a concentration of 300 nM and marker probe at a concentration of 170 nM in PBS was prepared. This solution was added to the wells and the slide was incubated at room temperature for 5 minutes, followed by brief washing in PBS and spin drying.


Alternatively the marker probe was hybridized to the frame probes prior to placing the tissue on the array. The marker probe was then diluted to 170 nM in hybridization buffer (4×SSC, 0.1% SDS). This solution was heated to 50° C. before application to the chip and the hybridization was performed at 50° C. for 30 minutes at 300 rpm. After hybridization, the slide was washed in 2×SSC, 0.1% SDS at 50° C. and 300 rpm for 10 minutes, 0.2×SSC at 300 rpm for 1 minute and 0.1×SSC at 300 rpm for 1 minute. In that case the staining solution after cDNA synthesis only contained the nuclear DAPI stain diluted to 300 nM in PBS. The solution was applied to the wells and the slide was incubated at room temperature for 5 minutes, followed by brief washing in PBS and spin drying.


The sections were microscopically examined with a Zeiss Axio Imager Z2 and processed with MetaSystems software.


Tissue Removal


The tissue sections were digested using Proteinase K diluted to 1.25 μg/μl in PKD buffer from the RNeasy FFPE Kit (both from Qiagen) at 56° C. for 30 minutes with an interval mix at 300 rpm for 3 seconds, then 6 seconds rest. The slide was subsequently washed in 2×SSC, 0.1% SDS at 50° C. and 300 rpm for 10 minutes, 0.2×SSC at 300 rpm for 1 minute and 0.1×SSC at 300 rpm for 1 minute.


Probe Release


The 16-well Hybridization Cassette with silicone gasket (ArrayIt) was preheated to 37° C. and attached to the Nimblegen slide. A volume of 50 μl of cleavage mixture preheated to 37° C., consisting of Lysis buffer at an unknown concentration (Takara), 0.1 U/μl USER Enzyme (NEB) and 0.1 μg/μl BSA was added to each of wells containing surface immobilized cDNA. After removal of bubbles the slide was sealed and incubated at 37° C. for 30 minutes in a Thermomixer comfort with cycled shaking at 300 rpm for 3 seconds with 6 seconds rest in between. After the incubation 45 μl cleavage mixture was collected from each of the used wells and placed into 0.2 ml PCR tubes.


Library Preparation


Exonuclease Treatment


After cooling the solutions on ice for 2 minutes, Exonuclease I (NEB) was added, to remove unextended cDNA probes, to a final volume of 46.2 μl and a final concentration of 0.52 U/μl. The tubes were incubated in a thermo cycler (Applied Biosystems) at 37° C. for 30 minutes followed by inactivation of the exonuclease at 80° C. for 25 minutes.


dA-Tailing by Terminal Transferase


After the exonuclease step, 45 μl polyA-tailing mixture, according to manufacturers instructions consisting of TdT Buffer (Takara), 3 mM dATP (Takara) and manufacturers TdT Enzyme mix (TdT and RNase H) (Takara), was added to each of the samples. The mixtures were incubated in a thermocycler at 37° C. for 15 minutes followed by inactivation of TdT at 70° C. for 10 minutes.


Second-Strand Synthesis and PCR-Amplification


After dA-tailing, 23 μl PCR master mix was placed into four new 0.2 ml PCR tubes per sample, to each tube 41 sample was added as a template. The final PCRs consisted of 1× Ex Taq buffer (Takara), 200 μM of each dNTP (Takara), 600 nM A_primer (MWG), 600 nM B_dT20VN_primer (MWG) and 0.025 U/μl Ex Taq polymerase (Takara)(Table 4). A second cDNA strand was created by running one cycle in a thermocycler at 95° C. for 3 minutes, 50° C. for 2 minutes and 72° C. for 3 minutes. Then the samples were amplified by running 20 cycles (for library preparation) or 30 cycles (to confirm the presence of cDNA) at 95° C. for 30 seconds, 67° C. for 1 minute and 72° C. for 3 minutes, followed by a final extension at 72° C. for 10 minutes.


Library Cleanup


After amplification, the four PCRs (100 μl) were mixed with 500 μl binding buffer (Qiagen) and placed in a Qiaquick PCR purification column (Qiagen) and spun for 1 minute at 17,900×g in order to bind the amplified cDNA to the membrane. The membrane was then washed with wash buffer (Qiagen) containing ethanol and finally eluted into 50 μl of 10 mM Tris-Cl, pH 8.5.


The purified and concentrated sample was further purified and concentrated by CA-purification (purification by superparamagnetic beads conjugated to carboxylic acid) with an MBS robot (Magnetic Biosolutions). A final PEG concentration of 10% was used in order to remove fragments below 150-200 bp. The amplified cDNA was allowed to bind to the CA-beads (Invitrogen) for 10 min and were then eluted into 15 μl of 10 mM Tris-Cl, pH 8.5.


Library Quality Analysis


Samples amplified for 30 cycles were analyzed with an Agilent Bioanalyzer (Agilent) in order to confirm the presence of an amplified cDNA library, the DNA High Sensitivity kit or DNA 1000 kit were used depending on the amount of material.


Sequencing Library Preparation


Library Indexing


Samples amplified for 20 cycles were used further to prepare sequencing libraries. An index PCR master mix was prepared for each sample and 23 μl was placed into six 0.2 ml tubes. 2 μl of the amplified and purified cDNA was added to each of the six PCRs as template making the PCRs containing 1× Phusion master mix (Fermentas), 500 nM InPE1.0 (Illumina), 500 nM Index 1-12 (IIlumina), and 0.4 nM InPE2.0 (IIlumina). The samples were amplified in a thermocycler for 18 cycles at 98° C. for 30 seconds, 65° C. for 30 seconds and 72° C. for 1 minute, followed by a final extension at 72° C. for 5 minutes.


Sequencing Library Cleanup


After amplification, the six PCRs (150 μl) were mixed with 750 μl binding buffer and placed in a Qiaquick PCR purification column and spun for 1 minute at 17,900×g in order to bind the amplified cDNA to the membrane (because of the large sample volume (900 μl), the sample was split in two (each 450 μl) and was bound in two separate steps). The membrane was then washed with wash buffer containing ethanol and finally eluted into 50 μl of 10 mM Tris-Cl, pH 8.5.


The purified and concentrated sample was further purified and concentrated by CA-purification with an MBS robot. A final PEG concentration of 7.8% was used in order to remove fragments below 300-350 bp. The amplified cDNA was allowed to bind to the CA-beads for 10 min and were then eluted into 15 μl of 10 mM Tris-Cl, pH 8.5. Samples were analyzed with an Agilent Bioanalyzer in order to confirm the presence and size of the finished libraries, the DNA High Sensitivity kit or DNA 1000 kit were used according to manufacturers instructions depending on the amount of material.


Sequencing


The libraries were sequenced on the Illumina Hiseq2000 or Miseq depending on desired data throughput according to manufacturers instructions. Optionally for read 2, a custom sequencing primer B_r2 was used to avoid sequencing through the homopolymeric stretch of 20 T.


Data Analysis


Read 1 was trimmed 42 bases at 5′ end. Read 2 was trimmed 25 bases at 5′ end (optionally no bases were trimmed from read 2 if the custom primer was used). The reads were then mapped with bowtie to the repeat masked Mus musculus 9 genome assembly and the output was formatted in the SAM file format. Mapped reads were extracted and annotated with UCSC refGene gene annotations. Indexes were retrieved with ‘indexFinder’ (an inhouse software for index retrieval). A mongo DB database was then created containing information about all caught transcripts and their respective index position on the chip.


A matlab implementation was connected to the database and allowed for spatial visualization and analysis of the data (FIG. 7).


Optionally the data visualization was overlaid with the microscopic image using the fluorescently labelled frame probes for exact alignment and enabling spatial transcriptomic data extraction.


Example 7
Spatial Transcriptomics Using 3′ to 5′ High Probe Density Arrays and FFPE Tissue with MutY System Cleavage and Amplification Via TdT

Array Preparation


Pre-fabricated high-density microarrays chips were ordered from Roche-Nimblegen (Madison, Wis., USA). Each used capture probe array contained 72 k features out of which 66,022 contained a unique ID-tag complementary sequence. Each feature was 16×16 μm in size. The capture probes were composed 3′ to 5′ in the same way as the probes used for the in-house printed 3′ to 5′ arrays with the exception to 3 additional bases being added to the upper (P′) general handle of the probe to make it a long version of P′, LP′ (Table 4). Each array was also fitted with a frame of probes carrying a generic 30 bp sequence to enable hybridization of fluorescent probes to help with orientation during array visualization.


Synthesis of 5′ to 3′ Oriented Capture Probes


The synthesis of 5′ to 3′ oriented capture probes on the high-density arrays was carried out as in the case with in-house printed arrays, with the exception that the extension and ligation steps were carried out at 55° C. for 15 mins followed by 72° C. for 15 mins. The A-handle probe (Table 4) included an A/G mismatch to allow for subsequent release of probes through the MutY enzymatic system described below. The P-probe was replaced by a longer LP version to match the longer probes on the surface.


Preparation of Formalin-Fixed Paraffin-Embedded Tissue and Deparaffinization


This was carried out as described above in the in-house protocol.


cDNA Synthesis and Staining


cDNA synthesis and staining was carried out as in the protocol for 5′ to 3′ oriented high-density Nimblegen arrays with the exception that biotin labelled dCTPs and dATPs were added to the cDNA synthesis together with the four regular dNTPs (each was present at 25× times more than the biotin labelled ones).


Tissue Removal


Tissue removal was carried out in the same way as in the protocol for 5′ to 3′ oriented high-density Nimblegen arrays described in Example 6.


Probe Cleavage by MutY


A 16-well Incubation chamber with silicone gasket (ArrayIT) was preheated to 37° C. and attached to the Codelink slide. A volume of 50 μl of cleavage mixture preheated to 37° C., consisting of 1× Endonucelase VIII Buffer (NEB), 10 U/μl MutY (Trevigen), 10 U/μl Endonucelase VIII (NEB), 0.1 μg/μl BSA was added to each of wells containing surface immobilized cDNA. After removal of bubbles the slide was sealed and incubated at 37° C. for 30 minutes in a Thermomixer comfort with cycled shaking at 300 rpm for 3 seconds with 6 seconds rest in between. After the incubation, the plate sealer was removed and 40 μl cleavage mixture was collected from each of the used wells and placed into a PCR plate.


Library Preparation


Biotin-Streptavidin Mediated Library Cleanup


To remove unextended cDNA probes and to change buffer, the samples were purified by binding the biotin labeled cDNA to streptavidin coated Cl-beads (Invitrogen) and washing the beads with 0.1M NaOH (made fresh). The purification was carried out with an MBS robot (Magnetic Biosolutions), the biotin labelled cDNA was allowed to bind to the Cl-beads for 10 min and was then eluted into 20 μl of water by heating the bead-water solution to 80° C. to break the biotin-streptavidin binding.


dA-Tailing by Terminal Transferase


After the purification step, 18 μl of each sample was placed into new 0.2 ml PCR tubes and mixed with 22 μl of a polyA-tailing master mix leading to a 40 μl reaction mixture according to manufacturers instructions consisting of lysis buffer (Takara, Cellamp Whole Transcriptome Amplification kit), TdT Buffer (Takara), 1.5 mM dATP (Takara) and TdT Enzyme mix (TdT and RNase H) (Takara). The mixtures were incubated in a thermocycler at 37° C. for 15 minutes followed by inactivation of TdT at 70° C. for 10 minutes.


Second-Strand Synthesis and PCR-Amplification


After dA-tailing, 23 μl PCR master mix was placed into four new 0.2 ml PCR tubes per sample, to each tube 41 sample was added as a template. The final PCRs consisted of 1× Ex Taq buffer (Takara), 200 μM of each dNTP (Takara), 600 nM A_primer (MWG), 600 nM B_dT20VN_primer (MWG) and 0.025 U/μl Ex Taq polymerase (Takara). A second cDNA strand was created by running one cycle in a thermo cycler at 95° C. for 3 minutes, 50° C. for 2 minutes and 72° C. for 3 minutes. Then the samples were amplified by running 20 cycles (for library preparation) or 30 cycles (to confirm the presence of cDNA) at 95° C. for 30 seconds, 67° C. for 1 minute and 72° C. for 3 minutes, followed by a final extension at 72° C. for 10 minutes.


Library Cleanup


After amplification, the four PCRs (100 μl) were mixed with 500 μl binding buffer (Qiagen) and placed in a Qiaquick PCR purification column (Qiagen) and spun for 1 minute at 17,900×g in order to bind the amplified cDNA to the membrane. The membrane was then washed with wash buffer (Qiagen) containing ethanol and finally eluted into 50 μl of 10 mM Tris-HCl, pH 8.5.


The purified and concentrated sample was further purified and concentrated by CA-purification (purification by superparamagnetic beads conjugated to carboxylic acid) with an MBS robot (Magnetic Biosolutions). A final PEG concentration of 10% was used in order to remove fragments below 150-200 bp. The amplified cDNA was allowed to bind to the CA-beads (Invitrogen) for 10 min and were then eluted into 15 μl of 10 mM Tris-HCl, pH 8.5.


Second PCR-Amplification


The final PCRs consisted of 1× Ex Taq buffer (Takara), 200 μM of each dNTP (Takara), 600 nM A_primer (MWG), 600 nM B_ primer (MWG) and 0.025 U/μl Ex Taq polymerase (Takara). The samples were heated to 95° C. for 3 minutes, and then amplified by running 10 cycles at 95° C. for 30 seconds, 65° C. for 1 minute and 72° C. for 3 minutes, followed by a final extension at 72° C. for 10 minutes.


Second Library Cleanup


After amplification, the four PCRs (100 μl) were mixed with 500 μl binding buffer (Qiagen) and placed in a Qiaquick PCR purification column (Qiagen) and spun for 1 minute at 17,900×g in order to bind the amplified cDNA to the membrane. The membrane was then washed with wash buffer (Qiagen) containing ethanol and finally eluted into 50 μl of 10 mM Tris-Cl, pH 8.5.


The purified and concentrated sample was further purified and concentrated by CA-purification (purification by super-paramagnetic beads conjugated to carboxylic acid) with an MBS robot (Magnetic Biosolutions). A final PEG concentration of 10% was used in order to remove fragments below 150-200 bp. The amplified cDNA was allowed to bind to the CA-beads (Invitrogen) for 10 min and were then eluted into 15 μl of 10 mM Tris-HCl, pH 8.5.


Sequencing Library Preparation


Library Indexing


Samples amplified for 20 cycles were used further to prepare sequencing libraries. An index PCR master mix was prepared for each sample and 23 μl was placed into six 0.2 ml tubes. 2 μl of the amplified and purified cDNA was added to each of the six PCRs as template making the PCRs containing 1× Phusion master mix (Fermentas), 500 nM InPE1.0 (Illumina), 500 nM Index 1-12 (Illumina), and 0.4 nM InPE2.0 (Illumina). The samples were amplified in a thermo cycler for 18 cycles at 98° C. for 30 seconds, 65° C. for 30 seconds and 72° C. for 1 minute, followed by a final extension at 72° C. for 5 minutes.


Sequencing Library Cleanup


After amplification, the samples was purified and concentrated by CA-purification with an MBS robot. A final PEG concentration of 7.8% was used in order to remove fragments below 300-350 bp. The amplified cDNA was allowed to bind to the CA-beads for 10 min and were then eluted into 15 μl of 10 mM Tris-HCl, pH 8.5.


10 μl of the amplified and purified samples were placed on a Caliper XT chip and fragments between 480 bp and 720 bp were cut out with the Caliper XT (Caliper). Samples were analyzed with an Agilent Bioanalyzer in order to confirm the presence and size of the finished libraries, the DNA High Sensitivity kit was used.


Sequencing and Data Analysis


Sequencing and Bioinformatic was carried out in the same way as in the protocol for 5′ to 3′ oriented high-density Nimblegen arrays described in Example 6. However, in the data analysis, read 1 was not used in the mapping of transcripts. Specific Olfr transcripts could be sorted out using the Matlab visualization tool (FIG. 8).


Example 8
Spatial Transcriptomics Using in House Printed 41-Taq Microarray with 5′ to 3′ Oriented Probes and Formalin-Fixed Frozen (FF-Frozen) Tissue with Permeabilization Through ProteinaseK or Microwaving with USER System Cleavage and Amplification Via TdT

Array Preparation


In-house arrays were printed as previously described but with a pattern of 41 unique ID-tag probes with the same composition as the probes in the 5′ to 3′ oriented high-density array in Example 6 (FIG. 9).


All other steps were carried out in the same way as in the protocol described in Example 6.


Example 9
Alternative Method for Performing the cDNA Synthesis Step

cDNA synthesis on chip as described above can also be combined with template switching to create a second strand by adding a template switching primer to the cDNA synthesis reaction (Table 4). The second amplification domain is introduced by coupling it to terminal bases added by the reverse transcriptase at the 3′ end of the first cDNA strand, and primes the synthesis of the second strand. The library can be readily amplified directly after release of the double-stranded complex from the array surface.


Example 10

The following experiments demonstrate how the secured (captured) cDNA molecules can be labelled and detected on the surface of the object substrate, e.g. array.


Preparation of In-House Printed Microarray with 5′ to 3′ Oriented Probes


The RNA-capture oligonucleotide (Table 2) was printed on glass slides to function as the capture probe. The probe was synthesized with a 5′-terminus amino linker with a C6 spacer. All probes where synthesized by Sigma-Aldrich (St. Louis, Mo., USA). The RNA-capture probe was suspended at a concentration of 20 μM in 150 mM sodium phosphate, pH 8.5 and spotted using a pipette onto CodeLink™ Activated microarray slides (7.5 cm×2.5 cm; Surmodics, Eden Prairie, Minn., USA). Each array was printed with 10 μl of capture probe-containing solution, and left to dry. After printing, surface blocking was performed according to the manufacturer's instructions. The probes were printed in 16 arrays on the slide. The 16 sub-arrays were separated during reaction steps by a 16-pad mask (Arrayit Corporation, Sunnyvale, Calif., USA).


Preparation of Fresh Frozen Tissue and Sectioning onto Capture Probe Arrays


Fresh non-fixed mouse brain tissue was trimmed if necessary and frozen in −40° C. cold isopentane and subsequently mounted for sectioning with a cryostat at 10 μm. A slice of tissue was applied onto each probe array.


Fixation of Tissue Section Using Formalin


50 μl of 4% paraformaldehyde dissolved in PBS was added directly to the probe array to cover the tissue section. The array was incubated at room temperature for 10 minutes and then washed for 10 seconds in PBS. The array was then incubated at 50° C. for 15 minutes.


Permeabilization of the Tissue Sample Using Pepsin and HCl


Pepsin was diluted to 0.1% in 0.1M HCl and was preheated to 37° C. The array was attached to an ArrayIt 16-well mask and holder. 50 μl of the pepsin/HCl mixture was added to each well. The array was incubated for 10 minutes at 37° C. and the wells were washed with 100 μl 0.1×SSC by pipetting.


cDNA Synthesis with Cy3-dNTP


For each well a cDNA synthesis mixture (80 μl) was prepared containing 4 μl each of dATP/dGTP/dTTP (10 mM), 4 μl dCTP (2.5 mM), 4 μl Cy3-dCTP (1 mM), 4 μl DTT (0.1M), 1×BSA, 20 U/μl Superscript III, 5 U/μl RNaseOUT, 1× first strand buffer (Superscript III, Invitrogen) and MilliQ water. 70 μl of the reaction mixture was added to each well. The reactions were covered with a plastic sealer and incubated at 37° C. overnight.


Washing


After incubation the array was removed from the ArrayIt mask and holder and washed using the following steps: 1) 50° C. 2×SSC solution with 0.1% SDS for 10 min at 300 rpm shake; 2) 0.2×SSC for 1 min at 300 rpm shake; and 3) 0.1×SSC for 1 min at 300 rpm shake. The array was spun dry.


Tissue Removal


The array was attached to an ArrayIt slide holder and 16 well mask (ArrayIt Corporation). 10 μl Proteinase K Solution (Qiagen) was added for each 150 μl Proteinase K Digest Buffer from the RNeasy FFPE kit (Qiagen). 50 μl of the final mixture was added to each well and the array was incubated at 56° C. for 1 hour. The array was washed as described above.


Imaging


The array was imaged at 532 nm using an Agilent microarray scanner at 100% exposure and 5 μm resolution (FIG. 11 and FIG. 12).









TABLE 2





Probe 1















Amino-C6-UUACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCCGA


TATGATTGCCGCTTTTTTTTTTTTTTTTTTTTVN (SEQ ID NO: 47)









Example 11

The following experiments demonstrate how a portion of the secured (captured) cDNA molecules can be removed from selected parts of the surface of the object substrate, e.g. array. This enables isolation of cDNA from limited parts of the tissue section.


The method described in Example 10 was performed up to and including the step of tissue removal. Followed by the steps described below.


cDNA Removal by Laser Ablation


The array was mounted into a MMI Cellcut instrument (Molecular Machines and Industries AG, Glattbrugg, Switzerland) and the sections of the fluorescently labelled cDNA to be removed were marked for ablation by laser.


Imaging


The codelink glass chip was imaged at 532 nm using an Agilent microarray scanner at 100% exposure and 5 μm resolution. Removal of ablated areas was verified (FIGS. 13a and b). The array was washed according to the procedure described in Example 10.


Release of Remaining cDNA from the Array


The array was attached to an ArrayIt slide holder and 16 well mask (ArrayIt Corporation). A cleavage mixture (50 μl) containing 1× Exo I buffer (New England Biolabs, Ipswich, Mass., USA), 1×BSA, RNase/DNase free water, 5 U of USER enzyme mix (New England Biolabs) was added to each well. The reactions were covered with a plastic sealer and incubated at 37° C. for 1 hour using interval mixing of 3 seconds at 300 rpm and 6 seconds rest. After the incubation, 45 μl cleavage mixture was collected from each of the used wells and placed into 0.2 ml PCR tubes.


Exonuclease Treatment


After cooling the solutions on ice for 2 minutes, Exonuclease I (NEB) was added, to remove unextended cDNA probes, to a final volume of 46.41 and a final concentration of 0.52 U/μl. The tubes were incubated in a thermocycler (Applied Biosystems) at 37° C. for 30 minutes followed by inactivation of the exonuclease at 80° C. for 25 minutes.


dA-Tailing by Terminal Transferase


After the exonuclease step, 45 μl polyA-tailing mixture consisting of TdT Buffer (Takara), 3 mM dATP (Takara) and manufacturers TdT Enzyme mix (TdT and RNase H) (Takara), was added to each of the samples according to manufacturer's instructions. The mixtures were incubated in a thermo cycler at 37° C. for 15 minutes followed by inactivation of TdT at 70° C. for 10 minutes.


Second-Strand Synthesis and PCR-Amplification


After dA-tailing, 23 μl PCR master mix was placed into four new 0.2 ml PCR tubes per sample. 2 μl of sample was added to each tube as a template. The final PCRs consisted of 1× Ex Taq buffer (Takara), 200 μM of each dNTP (Takara), 600 nM A_primer (MWG), 600 nM B_dT20VN_primer (MWG) and 0.025 U/μl Ex Taq polymerase (Takara)(Table 3). A second cDNA strand was created by running one cycle in a thermocycler at 95° C. for 3 minutes, 50° C. for 2 minutes and 72° C. for 3 minutes. The samples were amplified by running 20 cycles (for library preparation) or 30 cycles (to confirm the presence of cDNA) at 95° C. for 30 seconds, 67° C. for 1 minute and 72° C. for 3 minutes, followed by a final extension at 72° C. for 10 minutes.


Library Cleanup


After amplification, the four PCRs (100 μl) were mixed with 500 μl binding buffer (Qiagen) and placed in a Qiaquick PCR purification column (Qiagen) and spun for 1 minute at 17,900×g in order to bind the amplified cDNA to the membrane. The membrane was then washed with wash buffer (Qiagen) containing ethanol and finally eluted into 50 μl of 10 mM Tris-Cl, pH 8.5.


The purified and concentrated sample was further purified and concentrated by CA-purification (purification by superparamagnetic beads conjugated to carboxylic acid) with an MBS robot (Magnetic Biosolutions). A final PEG concentration of 10% was used in order to remove fragments below 150-200 bp. The amplified cDNA was allowed to bind to the CA-beads (Invitrogen) for 10 min and were then eluted into 15 μl of 10 mM Tris-Cl, pH 8.5.


Library Quality Analysis


Samples amplified for 30 cycles were analyzed with an Agilent Bioanalyzer (Agilent) in order to confirm the presence of an amplified cDNA library, the DNA High Sensitivity kit or DNA 1000 kit were used depending on the amount of material (FIG. 14).









TABLE 3





Second strand synthesis and first PCR


Amplification handles
















A_primer
ACACTCTTTCCCTACACGACGCTCTTCCGATCT



(SEQ ID NO: 48)





B_dt20VN_primer
AGACGTGTGCTCTTCCGATCTTTTTTTTTTTTT



TTTTTTTTVN (SEQ ID NO: 49)
















TABLE 4







Oligos used for spatial transcriptomics









5′ to 3′










Example 6








Nimblegen 5′ to 3′



arrays with free 3′



end Array probes



Probe1 (SEQ ID NO: 50)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



TCCGATATGATTGCCGCTTTTTTTTTTTTTTTTTTTTVN





Probe2 (SEQ ID NO: 51)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TGAGCCGGGTTCATCTTTTTTTTTTTTTTTTTTTTTTVN





Probe3 (SEQ ID NO: 52)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



GAGGCACTCTGTTGGGATTTTTTTTTTTTTTTTTTTTVN





Probe4 (SEQ ID NO: 53)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TGATTAGTCGCCATTCGTTTTTTTTTTTTTTTTTTTTVN





Probe5 (SEQ ID NO: 54)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



CTTGAGGGTAGATGTTTTTTTTTTTTTTTTTTTTTTTVN





Probe6 (SEQ ID NO: 55)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TGGCCAATACTGTTATCTTTTTTTTTTTTTTTTTTTTVN





Probe7 (SEQ ID NO: 56)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



GCTACCCTGATTCGACCTTTTTTTTTTTTTTTTTTTTVN





Probe8 (SEQ ID NO: 57)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



CCCACTTTCGCCGTAGTTTTTTTTTTTTTTTTTTTTTVN





Probe9 (SEQ ID NO: 58)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



GCAACTTTGAGCAAGATTTTTTTTTTTTTTTTTTTTTVN





Probe10 (SEQ ID NO: 59)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



CCAATTCGGAATTCCGGTTTTTTTTTTTTTTTTTTTTVN





Probe11 (SEQ ID NO: 60)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



CGCCCAAGGTAATACATTTTTTTTTTTTTTTTTTTTTVN





Probel2 (SEQ ID NO: 61)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



CGCATTTCCTATTCGAGTTTTTTTTTTTTTTTTTTTTVN





Probel3 (SEQ ID NO: 62)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



TGCTAAATCTAACCGCCTTTTTTTTTTTTTTTTTTTTVN





Probel4 (SEQ ID NO: 63)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



GAATTAAATTCTGATGGTTTTTTTTTTTTTTTTTTTTVN





Probel5 (SEQ ID NO: 64)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



ATTACATAGGTGCTAAGTTTTTTTTTTTTTTTTTTTTVN





Probel6 (SEQ ID NO: 65)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TTGACTTGCGCTCGCACTTTTTTTTTTTTTTTTTTTTVN





Probel7 (SEQ ID NO: 66)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TAGTATCTCCCAAGTTCTTTTTTTTTTTTTTTTTTTTVN





Probel8 (SEQ ID NO: 67)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



TGCGCCTGTAATCCGCATTTTTTTTTTTTTTTTTTTTVN





Probel9 (SEQ ID NO: 68)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



CGCCACTCTTTAGGTAGTTTTTTTTTTTTTTTTTTTTVN





Probe20 (SEQ ID NO: 69)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



ATGCAAGTGATTGGCTTTTTTTTTTTTTTTTTTTTTTVN





Probe2l (SEQ ID NO: 70)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



CAAGCCACGTTTATACGTTTTTTTTTTTTTTTTTTTTVN





Probe22 (SEQ ID NO: 71)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



CCTGATTGCTGTATAACTTTTTTTTTTTTTTTTTTTTVN





Probe23 (SEQ ID NO: 72)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



AGCGCATCTATCCTCTATTTTTTTTTTTTTTTTTTTTVN





Probe24 (SEQ ID NO: 73)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



CCACGCGTAGGACTAGTTTTTTTTTTTTTTTTTTTTTVN





Probe25 (SEQ ID NO: 74)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



GACTAAGTATGTAGCGCTTTTTTTTTTTTTTTTTTTTVN





Frame probe



Layout1 (SEQ ID NO: 75)
AAATTTCGTCTGCTATCGCGCTTCTGTACC





Fluorescent marker probe



PS_1 (SEQ ID NO: 76)
GGTACAGAAGCGCGATAGCAG-Cy3





Second strand synthesis and



first PCR Amplification handles



A_primer (SEQ ID NO: 77)
ACACTCTTTCCCTACACGACGCTCTTCCGATCT





B_dt20VN primer
AGACGTGTGCTCTTCCGATCTTTTTTTTTTTTTTTTTTT


(SEQ ID NO: 78)
TTVN





Custom sequencing primer



B_r2 (SEQ ID NO: 79)
TCA GAC GTG TGC TCT TCC GAT CTT TTT TTT



TTT TTT TTT TTT T










Example 7








Nimblegen 3′ to



5′ arrays with free



5′ end Array probes



Probe1 (SEQ ID NO: 80)
GCGTTCAGAGTGGCAGTCGAGATCACGCGGCAATCATAT



CGGACAGATCGGAAGAGCGTAGTGTAG





Probe2 (SEQ ID NO: 81)
GCGTTCAGAGTGGCAGTCGAGATCACAAGATGAACCCGG



CTCATAGATCGGAAGAGCGTAGTGTAG





Probe3 (SEQ ID NO: 82)
GCGTTCAGAGTGGCAGTCGAGATCACTCCCAACAGAGTG



CCTCAAGATCGGAAGAGCGTAGTGTAG





Probe4 (SEQ ID NO: 83)
GCGTTCAGAGTGGCAGTCGAGATCACCGAATGGCGACTA



ATCATAGATCGGAAGAGCGTAGTGTAG





Probe5 (SEQ ID NO: 84)
GCGTTCAGAGTGGCAGTCGAGATCACAAACATCTACCCT



CAAGTAGATCGGAAGAGCGTAGTGTAG





Probe6 (SEQ ID NO: 85)
GCGTTCAGAGTGGCAGTCGAGATCACGATAACAGTATTG



GCCATAGATCGGAAGAGCGTAGTGTAG





Probe7 (SEQ ID NO: 86)
GCGTTCAGAGTGGCAGTCGAGATCACGGTCGAATCAGGG



TAGCGAGATCGGAAGAGCGTAGTGTAG





Probe8 (SEQ ID NO: 87)
GCGTTCAGAGTGGCAGTCGAGATCACACTACGGCGAAAG



TGGGCAGATCGGAAGAGCGTAGTGTAG





Probe9 (SEQ ID NO: 88)
GCGTTCAGAGTGGCAGTCGAGATCACATCTTGCTCAAAG



TTGCTAGATCGGAAGAGCGTAGTGTAG





Probe10 (SEQ ID NO: 89)
GCGTTCAGAGTGGCAGTCGAGATCACCCGGAATTCCGAA



TTGGCAGATCGGAAGAGCGTAGTGTAG





Probe11 (SEQ ID NO: 90)
GCGTTCAGAGTGGCAGTCGAGATCACATGTATTACCTTG



GGCGAAGATCGGAAGAGCGTAGTGTAG





Probe12 (SEQ ID NO: 91)
GCGTTCAGAGTGGCAGTCGAGATCACCTCGAATAGGAAA



TGCGAAGATCGGAAGAGCGTAGTGTAG





Probe13 (SEQ ID NO: 92)
GCGTTCAGAGTGGCAGTCGAGATCACGGCGGTTAGATTT



AGCAAAGATCGGAAGAGCGTAGTGTAG





Probe14 (SEQ ID NO: 93)
GCGTTCAGAGTGGCAGTCGAGATCACCCATCAGAATTTA



ATTCCAGATCGGAAGAGCGTAGTGTAG





Probe15 (SEQ ID NO: 94)
GCGTTCAGAGTGGCAGTCGAGATCACCTTAGCACCTATG



TAATGAGATCGGAAGAGCGTAGTGTAG





Probe16 (SEQ ID NO: 95)
GCGTTCAGAGTGGCAGTCGAGATCACGTGCGAGCGCAAG



TCAATAGATCGGAAGAGCGTAGTGTAG





Probe17 (SEQ ID NO: 96)
GCGTTCAGAGTGGCAGTCGAGATCACGAACTTGGGAGAT



ACTATAGATCGGAAGAGCGTAGTGTAG





Probe18 (SEQ ID NO: 97)
GCGTTCAGAGTGGCAGTCGAGATCACTGCGGATTACAGG



CGCACAGATCGGAAGAGCGTAGTGTAG





Probe19 (SEQ ID NO: 98)
GCGTTCAGAGTGGCAGTCGAGATCACCTACCTAAAGAGT



GGCGCAGATCGGAAGAGCGTAGTGTAG





Probe20 (SEQ ID NO: 99)
GCGTTCAGAGTGGCAGTCGAGATCACAAGCCAATCACTT



GCATAAGATCGGAAGAGCGTAGTGTAG





Probe21 (SEQ ID NO: 100)
GCGTTCAGAGTGGCAGTCGAGATCACCGTATAAACGTGG



CTTGGAGATCGGAAGAGCGTAGTGTAG





Probe22 (SEQ ID NO: 101)
GCGTTCAGAGTGGCAGTCGAGATCACGTTATACAGCAAT



CAGGTAGATCGGAAGAGCGTAGTGTAG





Probe23 (SEQ ID NO: 102)
GCGTTCAGAGTGGCAGTCGAGATCACTAGAGGATAGATG



CGCTGAGATCGGAAGAGCGTAGTGTAG





Probe24 (SEQ ID NO: 103)
GCGTTCAGAGTGGCAGTCGAGATCACACTAGTCCTACGC



GTGGAAGATCGGAAGAGCGTAGTGTAG





Probe25 (SEQ ID NO: 104)
GCGTTCAGAGTGGCAGTCGAGATCACGCGCTACATACTT



AGTCGAGATCGGAAGAGCGTAGTGTAG





Frame probe



Layout1 (SEQ ID NO: 105)
AAATTTCGTCTGCTATCGCGCTTCTGTACC





Capture probe



LP_Poly-dTVN (SEQ ID NO: 106)
GTGATCTCGACTGCCACTCTGAATTTTTTTTTTTTTTTT



TTTTVN





Amplification handle probe



A-handle (SEQ ID NO: 107)
ACACTCTTTCCCTACACGACGCTCTTCCGATCT





Second strand synthesis



and first PCR



amplification handles



A_primer (SEQ ID NO: 108)
ACACTCTTTCCCTACACGACGCTCTTCCGATCT





B_dt20VN_primer
AGACGTGTGCTCTTCCGATCTTTTTTTTTTTTTTTTTTT


(SEQ ID NO: 109)
TTVN





Second PCR



A_primer (SEQ ID NO: 110)
ACACTCTTTCCCTACACGACGCTCTTCCGATCT





B_primer (SEQ ID NO: 111)
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT










Example 9








Template switching



Templateswitch_longB
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATrGr


(SEQ ID NO: 112)
GrG









Example 12

The following experiment demonstrates that the step of labelling the secured (captured) cDNA molecules can be performed using arrays that comprise a high density of capture probes comprising unique positional domains.


Array Preparation


Pre-fabricated high-density microarray chips were ordered from Roche-Nimblegen (Madison, Wis., USA). Each chip contained multiple probe arrays, each with 270,000 features of which 135,000 features carried a capture probe comprising a unique ID-tag sequence (positional domain) and a capture region (capture domain). Each feature was 13×13 μm in size. The capture probes were composed 5′ to 3′ of: a universal domain containing five dUTP bases (a cleavage domain) and a general 5′ amplification domain; an ID tag (positional domain); and a capture region (capture domain) (see Table 5). Each array was also fitted with a frame of marker probes carrying a generic 30 bp sequence (Table 5) to enable hybridization of fluorescent probes to help with orientation during array visualization.


The probe-arrays were separated during reaction steps by a 16-pad mask (Arrayit Corporation, Sunnyvale, Calif., USA).


The method described in Example 10 was performed up to and including the step of tissue removal.


Imaging


A solution with frame marker probe (Table 5) at a concentration of 170 nM in PBS was prepared. This solution was added to the wells and the slide was incubated at room temperature for 5 minutes, followed by brief washing in PBS and spin drying.


The high-density microarray glass chip was imaged at 532 nm using an Agilent microarray scanner at 100% exposure and 5 μm resolution (FIG. 15).









TABLE 5







Nimblegen 5′ to 3′ arrays with free 3′ end Array probes









5′ to 3′





Probe1 (SEQ ID NO: 113)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



TCCGATATGATTGCCGCTTTTTTTTTTTTTTTTTTTTVN





Probe2 (SEQ ID NO: 114)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TGAGCCGGGTTCATCTTTTTTTTTTTTTTTTTTTTTTVN





Probe3 (SEQ ID NO: 115)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



GAGGCACTCTGTTGGGATTTTTTTTTTTTTTTTTTTTVN





Probe4 (SEQ ID NO: 116)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TGATTAGTCGCCATTCGTTTTTTTTTTTTTTTTTTTTVN





Probe5 (SEQ ID NO: 117)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



CTTGAGGGTAGATGTTTTTTTTTTTTTTTTTTTTTTTVN





Probe6 (SEQ ID NO: 118)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TGGCCAATACTGTTATCTTTTTTTTTTTTTTTTTTTTVN





Probe7 (SEQ ID NO: 119)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



GCTACCCTGATTCGACCTTTTTTTTTTTTTTTTTTTTVN





Probe8 (SEQ ID NO: 120)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



CCCACTTTCGCCGTAGTTTTTTTTTTTTTTTTTTTTTVN





Probe9 (SEQ ID NO: 121)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



GCAACTTTGAGCAAGATTTTTTTTTTTTTTTTTTTTTVN





Probe10 (SEQ ID NO: 122)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



CCAATTCGGAATTCCGGTTTTTTTTTTTTTTTTTTTTVN





Probe11 (SEQ ID NO: 123)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



CGCCCAAGGTAATACATTTTTTTTTTTTTTTTTTTTTVN





Probe12 (SEQ ID NO: 124)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



CGCATTTCCTATTCGAGTTTTTTTTTTTTTTTTTTTTVN





Probe13 (SEQ ID NO: 125)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



TGCTAAATCTAACCGCCTTTTTTTTTTTTTTTTTTTTVN





Probe14 (SEQ ID NO: 126)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



GAATTAAATTCTGATGGTTTTTTTTTTTTTTTTTTTTVN





Probe15 (SEQ ID NO: 127)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



ATTACATAGGTGCTAAGTTTTTTTTTTTTTTTTTTTTVN





Probe16 (SEQ ID NO: 128)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TTGACTTGCGCTCGCACTTTTTTTTTTTTTTTTTTTTVN





Probe17 (SEQ ID NO: 129)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



TAGTATCTCCCAAGTTCTTTTTTTTTTTTTTTTTTTTVN





Probe18 (SEQ ID NO: 130)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



TGCGCCTGTAATCCGCATTTTTTTTTTTTTTTTTTTTVN





Probe19 (SEQ ID NO: 131)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTG



CGCCACTCTTTAGGTAGTTTTTTTTTTTTTTTTTTTTVN





Probe20 (SEQ ID NO: 132)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



ATGCAAGTGATTGGCTTTTTTTTTTTTTTTTTTTTTTVN





Probe21 (SEQ ID NO: 133)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



CAAGCCACGTTTATACGTTTTTTTTTTTTTTTTTTTTVN





Probe22 (SEQ ID NO: 134)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTA



CCTGATTGCTGTATAACTTTTTTTTTTTTTTTTTTTTVN





Probe23 (SEQ ID NO: 135)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



AGCGCATCTATCCTCTATTTTTTTTTTTTTTTTTTTTVN





Probe24 (SEQ ID NO: 136)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTT



CCACGCGTAGGACTAGTTTTTTTTTTTTTTTTTTTTTVN





Probe25 (SEQ ID NO: 137)
UUUUUACACTCTTTCCCTACACGACGCTCTTCCGATCTC



GACTAAGTATGTAGCGCTTTTTTTTTTTTTTTTTTTTVN





Frame probe (SEQ ID NO: 138)
AAATTTCGTCTGCTATCGCGCTTCTGTACC





Fluorescent marker probe
GGTACAGAAGCGCGATAGCAG-Cy3


(SEQ ID NO: 139)









Example 13

The following experiment demonstrates that the step of labelling the secured (captured) cDNA molecules is effective at lower concentrations of fluorescently labelled nucleotides.


The method described in Example 10 was performed up to the cDNA synthesis step, which was replaced by the step described below.


cDNA Synthesis with Cy3-dNTP


For each well an 80 μl cDNA synthesis mixture was prepared containing 4 μl each of dATP/dGTP/dTTP (10 mM), 4 ul DTT (0.1M), 1×BSA, 20 U/μl Superscript III, 5 U/ul RNaseOUT, 1× first strand buffer (Superscript III, Invitrogen) and MilliQ water. The concentration of dCTP and Cy3-dCTP was varied so that in five parallel experiments 1/1, 1/2, 1/4, 1/8 and 1/16 of the original concentration of 2.5 mM for dCTP and 1 mM for Cy3-dCTP was used. 4 μl of dCTP and 4 μl of Cy3-dCTP with these concentrations were pipetted into each respective synthesis mixture. 70 μl of the reaction mixture was added to each well. The reactions were covered with a plastic sealer and incubated at 37° C. overnight.


The washing, tissue removal and imaging steps were performed according to Example 10.


Signal Quantitation


The signal intensities resulting from imaging of the codelink glass chip in the Agilent microarray scanner were analyzed using the Genepix pro software. Average signal intensities were calculated from multiple selected areas within each Cy3 footprint and plotted in a diagram (FIG. 16).


Example 14

The following experiment demonstrates that a variety of tissues can be used in the methods of the invention.


The method described in Example 10 was performed up to the Imaging step. The tissue preparation, fixation and imaging steps were replaced by the steps described below.


Preparation of Fresh Frozen Tissue and Sectioning onto Capture Probe Arrays


Fresh non-fixed drosophila or zebrafish tissue was frozen with dry ice and subsequently mounted for sectioning with a cryostat at 10 μm. A slice of tissue was applied onto each probe array to be used.


Fixation of Tissue Section Using Methanol


The sections were fixed in a pre-chilled methanol bath at −20° C. for 10 min. After fixation, the slide was briefly washed for 10 seconds 1×PBS and heat dried at 50° C. for 15 min in an eppendorf thermomixer.


Imaging


The probe array chip with zebrafish (FIG. 17A) or drosophila (FIG. 17B) tissue was imaged before removal using phase-contrast imaging. Imaging after removal of tissue use the Cy3 compatible channel on a MMI Cellcut instrument mounted on an Olympus IX 81 microscope.


Example 15

The following experiment demonstrates further that a variety of tissues can be used in the methods of the invention.


The method described in Example 10 was performed up to the Imaging step. The tissue preparation, fixation, permeabilization, tissue removal and imaging steps were replaced by the steps described below.


Preparation of Fresh Frozen Tissue and Sectioning onto Capture Probe Arrays


Fresh prostate cancer tissue was trimmed if necessary, embedded in Neg-50 (Thermo Scientific) and snap frozen in liquid nitrogen. The tissue was subsequently mounted for sectioning with a cryostat at 10 μm. A slice of tissue was applied onto each probe array to be used.


Fixation of Tissue Section Using Formalin


The chip was attached to an ArrayIt 16-well mask and holder. 70 μl of 4% paraformaldehyde dissolved in PBS was added to the probe array well to cover the tissue section. The reaction was incubated at room temperature for 10 minutes. The mask was removed and the chip was washed for 10 seconds in PBS. The chip was then incubated at 50° C. for 15 minutes.


Permeabilization Using Pepsin and HCl


Pepsin was diluted to 0.1% in 0.1M HCl and was preheated to 37° C. The chip was attached to an ArrayIt 16-well mask and holder. 70 μl of the pepsin/HCl mixture was added to each well. The reaction was incubated for 10 minutes at 37° C. The wells were washed with 100 μl 0.1×SSC by pipetting.


Tissue Removal


The array was attached to an ArrayIt slide holder and 16 well mask (ArrayIt Corporation). 20 μl Proteinase K Solution (Qiagen) was added for each 150 μl Proteinase K Digest Buffer from the RNeasy FFPE kit (Qiagen). 50 μl of the final mixture was added to each well and the array was incubated at 56° C. for 1 hour. The array was washed as described in Example 10.


Imaging


The probe array chip with prostate tissue was imaged before removal using phase-contrast imaging. Imaging after removal of tissue use the Cy3 compatible channel on a MMI Cellcut instrument mounted on an Olympus IX 81 microscope (FIG. 17C).


Example 16

The following experiment demonstrates that a cell sample, i.e. a suspension of cells, can be used as the tissue sample in the methods of the invention.


The method described in Example 10 was performed up to the Imaging step. The tissue preparation, fixation, permeabilization, cDNA synthesis, tissue removal and imaging steps were replaced by the steps described below.


Tissue Preparation: Application of Cells onto Capture Probe Arrays


Approximately 1000-2000 mouse fibroblast cells (cell line (NIH 373)) in a 5 μl volume (in 0.1×SSC) were pipetted onto the probe array and distributed using the pipette tip. The chip was then incubated at 37° C. for 5.5 minutes.


Fixation of Cells Using Formalin


The chip was attached to an ArrayIt 16-well mask and holder. 100 ul of 4% paraformaldehyde dissolved in PBS was added to the probe array well to cover the cells. The reaction was incubated at room temperature for 10 minutes. The probe array well was washed once with 100 μl 0.1×SSC by pipetting. The chip was then incubated at 50° C. for 15 minutes.


Permeabilization Using Pepsin and HCl


Pepsin was diluted to 0.1% in 0.1M HCl and was preheated to 37° C. The chip was attached to an ArrayIt 16-well mask and holder. 70 μl of the pepsin/HCl mixture was added to each well. The reaction was incubated for 1 minute at 37° C. The wells were washed with 100 μl 0.1×SSC by pipetting.


cDNA Synthesis with Cy3-dNTP


For each well an 80 μl cDNA synthesis mixture was prepared containing 4 μl each of dATP/dGTP/dTTP (10 mM), 2 μl dCTP (2.5 mM), 2 μl Cy3-dCTP (1 mM), 4 μl DTT (0.1M), 1×BSA, 20 U/μl Superscript III, 5 U/μl RNaseOUT, 1× first strand buffer (Superscript III, Invitrogen) and MilliQ water. 70 μl of the reaction mixture was added to each well. The reactions were covered with a plastic sealer and incubated at 37° C. overnight.


Imaging


The probe array chip with cells was imaged before removal using phase-contrast imaging. Imaging after removal of tissue use the Cy3 compatible channel on a MMI Cellcut instrument mounted on an Olympus IX 81 microscope (FIG. 17D).

Claims
  • 1. A method for localized or spatial detection and/or analysis of RNA in a tissue sample or a portion thereofsection, comprising: (a) providing an object substrate on which at least one species of capture probe, comprising a capture domain, is directly or indirectly immobilized on the object substrate such that the probes arecapture probe is oriented to have a free 3′ end to enable said capture probe to function as a reverse transcriptase (RT) primer,(b) contacting said object substrate with a tissue samplesection and allowing RNA of the tissue samplesection to directly hybridise to the capture probes under a set of conditions;(c) generating first strand cDNA molecules from the capturedhybridised RNA molecules using said capture probes as RT primers and a fluorescently labelled nucleotide, thereby incorporating the fluorescently labelled nucleotide into the cDNA molecules,wherein said incorporation of the fluorescently labelled nucleotide is contemporaneous with said generating step;(d) labelling the cDNA molecules generated in step (c), wherein said labelling step may be contemporaneous with, or subsequent to, said generating step;(e)(d) detecting a signal from the fluorescently labelled cDNA molecules on the object substrate, thereby spatially detecting RNA of the tissue section; and optionally(f)(e) imaging the tissue samplesection, wherein the tissue samplesection is imaged before or after step (c), and combining the signal from the fluorescently labelled cDNA molecules with the image of the tissue section, thereby spatially detecting the RNA in the tissue section.
  • 2. The method of claim 1, being a method for determining the optimum conditions for localised or spatial detection of RNA in a tissue samplesection on an object substrate, comprising: (g)(f) repeating steps (a)-(e), and optionally step (f), using a second set of conditions that are different to the conditions used in step (b);(h)(g) comparing thesignal intensity and/or resolution of the signal from the labelled cDNA molecules immobilized on the object substrate; and optionally(i)(h) selecting, from the conditions used in step (b) and the second set of conditions used in step (g)(f), the conditions that provide the optimum signal intensity and/or resolution of the labelled cDNA molecules.
  • 3. The method of claim 1, being a method for determining and/or analysing RNA or a transcriptome of a tissue sample or a portion thereofsection comprising further steps: (g′)(f′) removing the labelled cDNA from at least one portion of the surface of the object substrate;(h′)(g′) optionally amplifying the remaining cDNA molecules immobilized on the surface of the object substrate;(i′)(h′) releasing at least part of the remaining cDNA molecules and/or optionally their amplicons from the surface of the object substrate, wherein said released molecules may be a first strand and/or second strand cDNA molecule or an amplicon thereof; and (j′)(i′) directly or indirectly analysing the sequences of the released cDNA molecules or the amplicon thereof.
  • 4. The method of claim 3, further comprising step (k)(j) correlating said sequence analysis informationthe released cDNA molecule or amplicon sequences with an image of said tissue samplesection, wherein the tissue samplesection is imaged before or after step (c).
  • 5. The method of claim 3, wherein the at least one portion of labelled cDNA molecules is removed fromfrom the at least one portion of the surface of the object substrate is removed by laser ablation.
  • 6. The method of claim 1, being a method for determining and/or analysing RNA or a transcriptome of a tissue sample or a portion thereofsection comprising: (a″) providing an object substrate on which multiple species of capture probes are directly or indirectly immobilized such that each species of capture probe occupies a distinct position on the object substrate and is oriented to have a free 3′ end to enable said capture probe to function as a reverse transcriptase (RT) primer, wherein each species of said capture probe comprises a nucleic acid molecule with 5′ to 3′:(i) a positional domain that corresponds to the position of the capture probe on the object substrate, and(ii) a capture domain;(b″) contacting said object substrate with a tissue samplesection such that the position of athe capture probeprobes on the object substrate may be correlated with a position in the tissue samplesection and allowing RNA of the tissue samplesection to hybridise to the capture domain in said capture probes under a set of conditions;(c″) generating cDNA molecules from the capturedhybridised RNA molecules using said capture probes as RT primers,(d″) labelling the cDNA molecules generated in step (c′), wherein said labelling step may beis contemporaneous with , or subsequent to, said generating step;(e″) detecting a signal from the labelled cDNA molecules;(f″) optionally imaging the tissue samplesection, wherein the tissue samplesection is imaged before or after step (c″);(g″) optionally removing the labelled cDNA molecules from at least one portion of the surface of the object substrate;(h″) optionally amplifying theremaining cDNA molecules immobilized on the surface of the object substrate;(i″) releasing at least part of the remaining cDNA molecules and/or optionally their amplicons from the surface of the object substrate, wherein said released molecules may be a first strand and/or second strand cDNA molecule or an amplicon thereof and wherein said part includes the positional domain or a complement thereof; and (j″) directly or indirectly analysing the sequencesequences of the released cDNA molecules or the amplicons thereof.
  • 7. The method of claim 6, wherein the remaining cDNA molecules are released from the surface of the object substrate by: (i) nucleic acid cleavage;(ii) denaturation; and/or(iii) physical means.
  • 8. The method of claim 7, wherein the remaining cDNA molecules are released by enzymatic cleavage of a cleavage domain, which is located in thea universal domain or positional domain of the capture probe; or wherein the remaining cDNA molecules are released by applying hot water or buffer to the object substrate.
  • 9. The method of claim 6, further comprising a step of washing the object substrate to remove residual tissue section.
  • 10. The method of claim 6, wherein each species of capture probe is immobilized on the object substrate by bridge amplification to form a local clonal colony of capture probe such that each species of capture probe occupies a distinct position on the object substrate.
  • 11. The method of claim 6, wherein the object substrate is a bead array.
  • 12. The method of claim 11, wherein each species of capture probe is immobilized on a different bead such that each species of capture probe occupies a distinct position on the object substrate.
  • 13. The method of claim 1, further comprising a step of correlating the signal detected from the labelled cDNA molecules with an image of said tissue sample, wherein the tissue sample is imaged before or after step (c).
  • 14. The method of claim 1, wherein the label is incorporated into the cDNA molecules generated in step (c).
  • 15. The method of claim 14, wherein the label is conjugated to a nucleotide and the step of labelling comprises the incorporation of labelled nucleotides into the synthesized cDNA molecule.
  • 16. The method of claim 15, wherein the lapelled nucleotides are fluorescently labelled nucleotides.
  • 17. The method of claim 1, wherein the step of detecting a signal from the labelled cDNA molecules comprises imaging the object substrate such that the signal from the labelled cDNA molecules is detected.
  • 18. The method of claim 17, being a method for the identification of transcriptionally active tumour cells, wherein the tissue sample is a cell suspension comprisingsection comprises tumour cells and the image of the labelled cDNA on the object substrate corresponds to transcriptionally active cells.
  • 19. The method of claim 17, wherein the object substrate is imaged using light, bright field, dark field, phase contrast, fluorescence, reflection, interference or confocal microscopy or a combination thereof.
  • 20. The method of claim 1, wherein the capture probes are DNA molecules.
  • 21. The method of claim 1, wherein the capture probes further comprise a positional domain which is 5′ relative to the capture domain, wherein said positional domain comprises a sequence that corresponds to the position of the capture probe position on the object substrate.
  • 22. The method of claim 21, wherein the positional domain of each species of capture probe comprises a unique barcode sequence.
  • 23. The method of claim 1, wherein the capture probes further comprise a universal domain which is 5′ relative to the capture domainor, if present the positional domain, wherein said universal domain comprises: (i) an amplification domain, for amplifying the generated DNAcDNA molecules; and/or(ii) a cleavage domain for releasing the generated DNAcDNA molecules from the surface of the object substrate.
  • 24. The method of claim 1, wherein the capture domain comprises either (a) a poly-T or poly-U DNA oligonucleotide comprising at least 10 deoxythymidine and/or deoxyuridine residues and/ or (b) a random or degenerate oligonucleotide sequence.
  • 25. The method of claim 1, wherein the capture probes are directly immobilized on the object substrate surface by their 5′ end.
  • 26. The method of claim 1, wherein the capture probes are indirectly immobilized on the object substrate surface by hybridization to a surface probeprobes, wherein the capture domain of the capture probes comprises an upstream sequence that is capable of hybridizing to 5′ end of the surface probes that are immobilized on the object substrate.
  • 27. The method of claim 26, wherein the surface probes are immobilized to the object substrate surface by their 3′ ends.
  • 28. The method of claim 26, wherein the surface probes comprise a sequence that is complementary to: (i) at least part of the capture domain; and(ii) at least part of thea universal amplification domain.
  • 29. The method of claim 28, wherein the surface probes further comprise a sequence that is complementary to thea positional domain.
  • 30. The method of claim 1, wherein the object substrate is composed of a material selected from the group consisting of glass, silicon, poly-L-lysine coated material, nitrocellulose, polystyrene, cyclic olefin copolymers (COCs), cyclic olefin polymers (COPS), polypropylene, polyethylene and polycarbonate.
  • 31. The method of claim 1, wherein the tissue sample is a tissue section or a cell suspension.
  • 32. The method of claim 1, wherein the object substrate comprises at least one positional marker to enable orientation of the tissue samplesection on the object substrate.
  • 33. The method of claim 32, wherein the positional marker is capable of hybridizing to a labelled marker nucleic acid molecule.
  • 34. The method of claim 32, wherein the positional marker is capable of hybridizing to a fluorescently labelled marker nucleic acid molecule.
  • 35. The method of claim 1, wherein the tissue samplesection is imaged using light, bright field, dark field, phase contrast, fluorescence, reflection, interference or confocal microscopy or a combination thereof.
  • 36. The method of claim 35, wherein the tissue samplesection is imaged using fluorescence microscopy.
  • 37. The method of claim 1, comprising a step of modifying the tissue sample prior to the step of contacting the tissue sample with the substrate and/orsection prior to the step of generating the cDNA molecules on the object substrate.
  • 38. The method of claim 37, wherein the step of modifying the tissue sample comprises dissecting the tissue sample.
  • 39. The method of claim 38, wherein the tissue sample is dissected using laser capture microdissection (LCM).
  • 40. The method of claim 1, wherein the object substrate is an array substrate that is suitable for use as a sequencing platform.
  • 41. The method of claim 40, wherein the object substrate is an array substrate that is suitable for use in next generation sequencing technologies.
  • 42. The method of claim 1, wherein the capture probe is immobilized on the object substrate by bridge amplification.
  • 43. The method of claim 1, wherein the object substrate is a bead array.
  • 44. A method for spatial detection of a nucleic acid in a tissue section, comprising: (a) contacting a tissue section with an object substrate, wherein the object substrate comprises a capture probe comprising a capture domain and a positional domain, wherein the positional domain comprises a plurality of nucleotides that identify a unique location of the capture probe on the object substrate;(b) allowing a nucleic acid of the tissue section to directly hybridise to the capture probe immobilized on the object substrate under a set of conditions, thereby forming a captured nucleic acid molecule;(c) generating an amplified nucleic acid molecule from the captured nucleic acid molecule on the object substrate;(d) labelling the amplified nucleic acid molecule on the object substrate generated in step (c), wherein said labelling step is contemporaneous with said generating step; and(e) detecting a signal from the labelled amplified nucleic acid molecule on the object substrate,thereby spatially detecting the nucleic acid in the tissue section.
  • 45. The method of claim 44, wherein the nucleic acid of the tissue section comprises RNA.
  • 46. The method of claim 44, wherein the nucleic acid of the tissue section comprises mRNA.
  • 47. The method of claim 44, further comprising imaging the tissue section.
  • 48. The method of claim 47, wherein the tissue section is imaged before step (c).
  • 49. The method of claim 44, wherein the detecting comprises sequencing.
  • 50. The method of claim 49, wherein the detecting comprises in situ sequencing on the object substrate.
  • 51. The method of claim 44, wherein the tissue section is disposed in a gel matrix.
  • 52. The method of claim 44, wherein a two-dimensional spatial pattern of members of the captured nucleic acid molecules is preserved.
  • 53. The method of claim 44, wherein the object substrate comprises a slide or chip.
  • 54. The method of claim 44, wherein the capture probe is oriented to have a free 3′ end to enable the capture probe to function as a reverse transcriptase (RT) primer.
  • 55. The method of claim 44, wherein the positional domain is 5′ relative to the capture domain.
  • 56. The method of claim 1, further comprising imaging the tissue section before step (c).
  • 57. The method of claim 1, further comprising imaging the tissue section after step (c).
Priority Claims (2)
Number Date Country Kind
1218654 Oct 2012 GB national
1304585 Mar 2013 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2013/071645 10/16/2013 WO
Publishing Document Publishing Date Country Kind
WO2014/060483 4/24/2014 WO A
US Referenced Citations (1116)
Number Name Date Kind
4514388 Psaledakis Apr 1985 A
4574729 Wells Mar 1986 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4800159 Mullis et al. Jan 1989 A
4883867 Lee et al. Nov 1989 A
4965188 Mullis et al. Oct 1990 A
4968601 Jacobson et al. Nov 1990 A
4988617 Landegren et al. Jan 1991 A
5002882 Lunnen Mar 1991 A
5061049 Hornbeck Oct 1991 A
5130238 Malek Jul 1992 A
5183053 Yeh et al. Feb 1993 A
5308751 Ohkawa May 1994 A
5321130 Yue et al. Jun 1994 A
5410030 Yue et al. Apr 1995 A
5436134 Haugland et al. Jul 1995 A
5455166 Walker Oct 1995 A
5472881 Beebe et al. Dec 1995 A
5494810 Barany et al. Feb 1996 A
5503980 Cantor Apr 1996 A
5512439 Hornes Apr 1996 A
5512462 Cheng Apr 1996 A
5559032 Pomeroy Sep 1996 A
5582977 Yue et al. Dec 1996 A
5589173 O'Brien Dec 1996 A
5599675 Brenner Feb 1997 A
5610287 Nikiforov et al. Mar 1997 A
5641658 Adams Jun 1997 A
5648245 Fire et al. Jul 1997 A
5658751 Yue et al. Aug 1997 A
5672344 Kelley et al. Sep 1997 A
5695940 Drmanac et al. Dec 1997 A
5716825 Hancock et al. Feb 1998 A
5750341 Macevicz May 1998 A
5763175 Brenner Jun 1998 A
5807522 Brown et al. Sep 1998 A
5830711 Barany et al. Nov 1998 A
5837832 Chee et al. Nov 1998 A
5837860 Anderson et al. Nov 1998 A
5854033 Lizardi Dec 1998 A
5863753 Haugland et al. Jan 1999 A
5866377 Kim et al. Feb 1999 A
5871921 Landegren et al. Feb 1999 A
5912148 Eggerding Jun 1999 A
5919626 Shi et al. Jul 1999 A
5925545 Reznikoff et al. Jul 1999 A
5928906 Koester et al. Jul 1999 A
5958775 Wickstrom et al. Sep 1999 A
5965443 Reznikoff et al. Oct 1999 A
5994136 Naldini et al. Nov 1999 A
6013440 Lipshutz Jan 2000 A
6013516 Verma et al. Jan 2000 A
6027889 Barany et al. Feb 2000 A
6054274 Sampson et al. Apr 2000 A
6060240 Kamb et al. May 2000 A
6083761 Kedar et al. Jul 2000 A
6130073 Eggerding Oct 2000 A
6136592 Leighton Oct 2000 A
6143496 Brown Nov 2000 A
6153389 Haarer Nov 2000 A
6157432 Helbing Dec 2000 A
6159736 Reznikoff et al. Dec 2000 A
6165714 Lane et al. Dec 2000 A
6172218 Brenner Jan 2001 B1
6210891 Nyren Apr 2001 B1
6210894 Brennan Apr 2001 B1
6214587 Dattagupta Apr 2001 B1
6221591 Aerts Apr 2001 B1
6221654 Quake Apr 2001 B1
6251639 Kurn Jun 2001 B1
6258558 Szostak Jul 2001 B1
6258568 Nyren Jul 2001 B1
6261804 Szostak Jul 2001 B1
6265552 Schatz Jul 2001 B1
6266459 Walt Jul 2001 B1
6268148 Barany et al. Jul 2001 B1
6274320 Rothberg Aug 2001 B1
6281804 Haller Aug 2001 B1
6291180 Chu Sep 2001 B1
6291187 Kingsmore et al. Sep 2001 B1
6300063 Lipshutz et al. Oct 2001 B1
6306597 Macevicz Oct 2001 B1
6309824 Drmanac Oct 2001 B1
6323009 Lasken et al. Nov 2001 B1
6337472 Garner et al. Jan 2002 B1
6344316 Lockhart Feb 2002 B1
6344329 Lizardi et al. Feb 2002 B1
6348990 Igasaki et al. Feb 2002 B1
6355431 Chee Mar 2002 B1
6368801 Faruqi Apr 2002 B1
6391937 Beuhler et al. May 2002 B1
6401267 Drmanac Jun 2002 B1
6404907 Gilchrist Jun 2002 B1
6416950 Lohse Jul 2002 B1
6432360 Church et al. Aug 2002 B1
6485982 Charlton Nov 2002 B1
6503713 Rana Jan 2003 B1
6506561 Cheval et al. Jan 2003 B1
6518018 Szostak Feb 2003 B1
6534266 Singer Mar 2003 B1
6544732 Chee Apr 2003 B1
6544790 Sabatini Apr 2003 B1
6565727 Shenderov May 2003 B1
6573043 Cohen et al. Jun 2003 B1
6579695 Lambalot Jun 2003 B1
6620584 Chee Sep 2003 B1
6632641 Brennan Oct 2003 B1
6673620 Loeffler Jan 2004 B1
6677160 Stockman et al. Jan 2004 B1
6699710 Kononen Mar 2004 B1
6737236 Pieken et al. May 2004 B1
6770441 Dickinson Aug 2004 B2
6773566 Shenderov Aug 2004 B2
6773886 Kaufman Aug 2004 B2
6787308 Balasubramanian Sep 2004 B2
6797470 Barany et al. Sep 2004 B2
6800453 Labaer Oct 2004 B2
6812005 Fan et al. Nov 2004 B2
6828100 Ronaghi Dec 2004 B1
6833246 Balasubramanian Dec 2004 B2
6852487 Barany et al. Feb 2005 B1
6859570 Walt Feb 2005 B2
6864052 Drmanac Mar 2005 B1
6867028 Janulaitis Mar 2005 B2
6872816 Hall et al. Mar 2005 B1
6875572 Prudent et al. Apr 2005 B2
6878515 Landegren Apr 2005 B1
6890741 Fan et al. May 2005 B2
6897023 Fu May 2005 B2
6911132 Pamula Jun 2005 B2
6911345 Quake Jun 2005 B2
6913881 Aizenstein et al. Jul 2005 B1
6913921 Fischer Jul 2005 B2
6942968 Dickinson et al. Sep 2005 B1
6969488 Bridgham Nov 2005 B2
6969589 Patil Nov 2005 B2
6977033 Becker Dec 2005 B2
7001792 Sauer et al. Feb 2006 B2
7011944 Prudent et al. Mar 2006 B2
7052244 Fouillet May 2006 B2
7057026 Barnes Jun 2006 B2
7083980 Reznikoff et al. Aug 2006 B2
7098041 Kaylor et al. Aug 2006 B2
7115400 Adessi Oct 2006 B1
7118883 Inoue Oct 2006 B2
7128893 Leamon et al. Oct 2006 B2
7163612 Sterling Jan 2007 B2
7166431 Chee et al. Jan 2007 B2
7192735 Lambalot Mar 2007 B2
7211414 Hardin May 2007 B2
7223371 Hayenga et al. May 2007 B2
7229769 Kozlov Jun 2007 B2
7244559 Rothberg Jul 2007 B2
7255994 Lao Aug 2007 B2
7258976 Mitsuhashi Aug 2007 B2
7259258 Kozlov et al. Aug 2007 B2
7264929 Rothberg Sep 2007 B2
7270950 Szostak Sep 2007 B2
7282328 Kong et al. Oct 2007 B2
7297518 Quake Nov 2007 B2
7315019 Turner Jan 2008 B2
7328979 Decre Feb 2008 B2
7329492 Hardin Feb 2008 B2
7358047 Hafner et al. Apr 2008 B2
7361488 Fan et al. Apr 2008 B2
7375234 Sharpless et al. May 2008 B2
7378242 Hurt May 2008 B2
7393665 Brenner Jul 2008 B2
7405281 Xu Jul 2008 B2
7407757 Brenner Aug 2008 B2
7427678 Pieken et al. Sep 2008 B2
7456012 Ryttsen et al. Nov 2008 B2
7462449 Quake Dec 2008 B2
7473767 Dimitrov Jan 2009 B2
7499806 Kermani et al. Mar 2009 B2
7501245 Quake Mar 2009 B2
7534991 Miller et al. May 2009 B2
7537897 Brenner May 2009 B2
7544473 Brennan Jun 2009 B2
7547380 Velev Jun 2009 B2
7555155 Levenson et al. Jun 2009 B2
7561336 Osaka et al. Jul 2009 B2
7563576 Chee Jul 2009 B2
7579153 Brenner Aug 2009 B2
7582420 Oliphant et al. Sep 2009 B2
7595883 El Gamal Sep 2009 B1
7601492 Fu et al. Oct 2009 B2
7601498 Mao Oct 2009 B2
7608434 Reznikoff et al. Oct 2009 B2
7611869 Fan Nov 2009 B2
7635566 Brenner Dec 2009 B2
7641779 Becker Jan 2010 B2
7655898 Miller Feb 2010 B2
7666612 Johnsson Feb 2010 B2
7674589 Cohen et al. Mar 2010 B2
7674752 He Mar 2010 B2
7700286 Stroun et al. Apr 2010 B2
7709198 Luo et al. May 2010 B2
7754429 Rigatti Jul 2010 B2
7776547 Roth Aug 2010 B2
7776567 Mao Aug 2010 B2
7785869 Belgrader et al. Aug 2010 B2
7803943 Mao Sep 2010 B2
7844940 Shin et al. Nov 2010 B2
7848553 Hertel et al. Dec 2010 B2
7858321 Glezer Dec 2010 B2
7888009 Barany et al. Feb 2011 B2
7892747 Barany et al. Feb 2011 B2
7910304 Drmanac Mar 2011 B2
7914981 Barany et al. Mar 2011 B2
7941279 Hwang et al. May 2011 B2
7955794 Shen et al. Jun 2011 B2
7960119 Chee Jun 2011 B2
7960120 Rigatti Jun 2011 B2
7985565 Mayer et al. Jul 2011 B2
8003354 Shen et al. Aug 2011 B2
8030477 Cerrina et al. Oct 2011 B2
8076063 Fan Dec 2011 B2
8092784 Mao Jan 2012 B2
8124751 Pierce et al. Feb 2012 B2
8148068 Brenner Apr 2012 B2
8148518 Buchanan Apr 2012 B2
8198028 Rigatti Jun 2012 B2
8199999 Hoyt et al. Jun 2012 B2
8206917 Chee Jun 2012 B2
8207093 Szostak Jun 2012 B2
8268554 Schallmeiner Sep 2012 B2
8278034 Muraca Oct 2012 B2
8288103 Oliphant Oct 2012 B2
8288122 O'Leary et al. Oct 2012 B2
8330087 Domenicali Dec 2012 B2
8337851 Aukerman Dec 2012 B2
8343500 Wraith Jan 2013 B2
8383338 Kitzman Feb 2013 B2
8415102 Geiss et al. Apr 2013 B2
8431691 McKernan et al. Apr 2013 B2
8460865 Chee Jun 2013 B2
8462981 Determan et al. Jun 2013 B2
8481257 Van Eijk Jul 2013 B2
8481258 Church et al. Jul 2013 B2
8481292 Casbon Jul 2013 B2
8481698 Lieberman et al. Jul 2013 B2
8486625 Gunderson Jul 2013 B2
8507204 Pierce et al. Aug 2013 B2
8519115 Webster et al. Aug 2013 B2
8551710 Bernitz et al. Oct 2013 B2
8568979 Stuelpnagel et al. Oct 2013 B2
RE44596 Stroun et al. Nov 2013 E
8586310 Mitra Nov 2013 B2
8597891 Barany et al. Dec 2013 B2
8603743 Liu et al. Dec 2013 B2
8604182 Luo et al. Dec 2013 B2
8614073 Van Eijk Dec 2013 B2
8624016 Barany et al. Jan 2014 B2
8637242 Shen Jan 2014 B2
8658361 Wu et al. Feb 2014 B2
8685889 Van Eijk Apr 2014 B2
8741564 Seligmann Jun 2014 B2
8741606 Casbon Jun 2014 B2
8748103 Faham et al. Jun 2014 B2
8771950 Church et al. Jul 2014 B2
8778849 Bowen Jul 2014 B2
8785353 Van Eijk Jul 2014 B2
8790873 Namsaraev et al. Jul 2014 B2
8809238 Livak et al. Aug 2014 B2
8815512 Van Eijk Aug 2014 B2
8835358 Fodor Sep 2014 B2
8865410 Shendure Oct 2014 B2
8895249 Shen Nov 2014 B2
8906626 Oliphant et al. Dec 2014 B2
8911945 Van Eijk Dec 2014 B2
8936912 Mitra Jan 2015 B2
8951726 Luo et al. Feb 2015 B2
8951728 Rasmussen Feb 2015 B2
8951781 Reed Feb 2015 B2
8986926 Ferree et al. Mar 2015 B2
9005891 Sinicropi et al. Apr 2015 B2
9005935 Belyaev Apr 2015 B2
9023768 Van Eijk May 2015 B2
9062348 Van Eijk Jun 2015 B1
9080210 Van Eijk Jul 2015 B2
9085798 Chee Jul 2015 B2
9121069 Lo Sep 2015 B2
9163283 Chee et al. Oct 2015 B2
9194001 Brenner Nov 2015 B2
9201063 Sood et al. Dec 2015 B2
9217176 Faham et al. Dec 2015 B2
9273349 Nguyen et al. Mar 2016 B2
9290808 Fodor Mar 2016 B2
9290809 Fodor Mar 2016 B2
9309556 Myllykangas et al. Apr 2016 B2
9328383 Van Eijk May 2016 B2
9334536 Van Eijk May 2016 B2
9340830 Lipson May 2016 B2
9371563 Geiss et al. Jun 2016 B2
9371598 Chee Jun 2016 B2
9376716 Van Eijk Jun 2016 B2
9376717 Gao et al. Jun 2016 B2
9376719 Van Eijk Jun 2016 B2
9404156 Hicks Aug 2016 B2
9416409 Hayden Aug 2016 B2
9447459 Van Eijk Sep 2016 B2
9453256 Van Eijk Sep 2016 B2
9493820 Van Eijk Nov 2016 B2
9494588 Springer et al. Nov 2016 B2
9506061 Brown Nov 2016 B2
9512422 Barnard et al. Dec 2016 B2
9512487 Faham et al. Dec 2016 B2
9518980 Looger et al. Dec 2016 B2
9541504 Hoyt Jan 2017 B2
9557330 Siciliano et al. Jan 2017 B2
9574230 Van Eijk Feb 2017 B2
9582877 Fu Feb 2017 B2
9593365 Frisen et al. Mar 2017 B2
9598728 Barany et al. Mar 2017 B2
9624538 Church et al. Apr 2017 B2
9644204 Hindson et al. May 2017 B2
9657335 Van Eijk May 2017 B2
9670542 Van Eijk Jun 2017 B2
9694361 Bharadwaj Jul 2017 B2
9702004 Van Eijk Jul 2017 B2
9714446 Webster et al. Jul 2017 B2
9714937 Dunaway Jul 2017 B2
9745627 Van Eijk Aug 2017 B2
9777324 Van Eijk Oct 2017 B2
9778155 Gradinaru et al. Oct 2017 B2
9783841 Nolan et al. Oct 2017 B2
9816134 Namsaraev Nov 2017 B2
9834814 Peter et al. Dec 2017 B2
9850536 Oliphant et al. Dec 2017 B2
9856521 Stevens et al. Jan 2018 B2
9868979 Chee et al. Jan 2018 B2
9879313 Chee et al. Jan 2018 B2
9889422 Smith et al. Feb 2018 B2
9896721 Van Eijk Feb 2018 B2
9898576 Van Eijk Feb 2018 B2
9898577 Van Eijk Feb 2018 B2
9902950 Church et al. Feb 2018 B2
9902991 Sinicropi et al. Feb 2018 B2
9938566 Shepard et al. Apr 2018 B2
9957550 Yeakley et al. May 2018 B2
9958454 Kozlov et al. May 2018 B2
10023907 Van Eijk Jul 2018 B2
10030261 Frisen et al. Jul 2018 B2
10032064 Hoyt Jul 2018 B2
10041949 Bendall et al. Aug 2018 B2
10049770 Madabhushi et al. Aug 2018 B2
10053723 Hindson et al. Aug 2018 B2
10059989 Giresi et al. Aug 2018 B2
10059990 Boyden et al. Aug 2018 B2
10072104 Winnik et al. Sep 2018 B2
10078895 Madabhushi et al. Sep 2018 B2
10095832 Van Eijk Oct 2018 B2
10138509 Church et al. Nov 2018 B2
10144966 Cantor Dec 2018 B2
10196691 Harkin Feb 2019 B2
10221461 Robins et al. Mar 2019 B2
10227639 Levner et al. Mar 2019 B2
10246752 Faham et al. Apr 2019 B2
10266874 Weissleder et al. Apr 2019 B2
10266876 Cai et al. Apr 2019 B2
10267808 Cai Apr 2019 B2
10273541 Hindson et al. Apr 2019 B2
10308982 Chee Jun 2019 B2
10357771 Bharadwaj Jul 2019 B2
10457980 Cai et al. Oct 2019 B2
10465235 Gullberg et al. Nov 2019 B2
10472669 Chee Nov 2019 B2
10480022 Chee Nov 2019 B2
10494662 Church et al. Dec 2019 B2
10494667 Chee Dec 2019 B2
10501791 Church et al. Dec 2019 B2
10510435 Cai et al. Dec 2019 B2
10545075 Deisseroth et al. Jan 2020 B2
10580128 Miller Mar 2020 B2
10612079 Chee Apr 2020 B2
10619196 Chee Apr 2020 B1
10640826 Church et al. May 2020 B2
10655163 Weissleder et al. May 2020 B2
10662467 Chee May 2020 B2
10662468 Chee May 2020 B2
10669569 Gullberg et al. Jun 2020 B2
10697013 Brenner et al. Jun 2020 B1
10724078 Van Driel et al. Jul 2020 B2
10725027 Bell Jul 2020 B2
10767223 Brenner et al. Sep 2020 B1
10774372 Chee et al. Sep 2020 B2
10774374 Frisen et al. Sep 2020 B2
10787701 Chee Sep 2020 B2
10794802 Gradinaru et al. Oct 2020 B2
10829803 Terbrueggen et al. Nov 2020 B2
10858702 Lucero et al. Dec 2020 B2
10914730 Chee et al. Feb 2021 B2
10927403 Chee et al. Feb 2021 B2
10961566 Chee Mar 2021 B2
10962532 Chee Mar 2021 B2
10964001 Miller Mar 2021 B2
10982268 Chee Apr 2021 B2
10983113 Chee Apr 2021 B2
10996219 Chee et al. May 2021 B2
11001878 Chee et al. May 2021 B1
11001879 Chee et al. May 2021 B1
11008607 Chee May 2021 B2
11046996 Chee et al. Jun 2021 B1
11067567 Chee Jul 2021 B2
11156603 Chee Oct 2021 B2
11162132 Frisen et al. Nov 2021 B2
11208684 Chee Dec 2021 B2
11286515 Chee et al. Mar 2022 B2
11293917 Chee Apr 2022 B2
11299774 Frisen et al. Apr 2022 B2
11313856 Chee Apr 2022 B2
11332790 Chell et al. May 2022 B2
11352659 Frisen et al. Jun 2022 B2
11359228 Chee et al. Jun 2022 B2
11365442 Chee Jun 2022 B2
11371086 Chee Jun 2022 B2
11384386 Chee Jul 2022 B2
11390912 Frisen et al. Jul 2022 B2
11401545 Chee Aug 2022 B2
11407992 Dadhwal Aug 2022 B2
11408029 Katiraee et al. Aug 2022 B2
11434524 Ramachandran Iyer et al. Sep 2022 B2
11479809 Frisen et al. Oct 2022 B2
11479810 Chee Oct 2022 B1
11492612 Dadhwal Nov 2022 B1
11505828 Chell et al. Nov 2022 B2
11512308 Gallant et al. Nov 2022 B2
11519022 Chee Dec 2022 B2
11519033 Schnall-Levin et al. Dec 2022 B2
11519138 Meier et al. Dec 2022 B2
11535887 Gallant et al. Dec 2022 B2
11542543 Chee Jan 2023 B2
11549138 Chee Jan 2023 B2
11560587 Chee Jan 2023 B2
11560592 Chew et al. Jan 2023 B2
11560593 Chell et al. Jan 2023 B2
11592447 Uytingco et al. Feb 2023 B2
11608498 Gallant et al. Mar 2023 B2
11608520 Galonska et al. Mar 2023 B2
11613773 Frisen et al. Mar 2023 B2
11618897 Kim et al. Apr 2023 B2
11618918 Chee et al. Apr 2023 B2
11624063 Dadhwal Apr 2023 B2
11624086 Uytingco et al. Apr 2023 B2
11634756 Chee Apr 2023 B2
11649485 Yin et al. May 2023 B2
11661626 Katiraee et al. May 2023 B2
11680260 Kim et al. Jun 2023 B2
11692218 Engblom et al. Jul 2023 B2
11702693 Bharadwaj Jul 2023 B2
11702698 Stoeckius Jul 2023 B2
11732292 Chee Aug 2023 B2
11732299 Ramachandran Iyer Aug 2023 B2
11732300 Bava Aug 2023 B2
11733238 Chee Aug 2023 B2
11739372 Frisen et al. Aug 2023 B2
11739381 Chew et al. Aug 2023 B2
11753673 Chew et al. Sep 2023 B2
11753674 Chee et al. Sep 2023 B2
11753675 Ramachandran Iyer Sep 2023 B2
11761030 Chee Sep 2023 B2
11761038 Stoeckius Sep 2023 B1
11767550 Chee Sep 2023 B2
11768175 Kim et al. Sep 2023 B1
11773433 Gallant et al. Oct 2023 B2
11781130 Dadhwal Oct 2023 B2
11788122 Frisen et al. Oct 2023 B2
11795498 Frisen et al. Oct 2023 B2
11795507 Chell et al. Oct 2023 B2
11808769 Uytingco et al. Nov 2023 B2
11821024 Chee et al. Nov 2023 B2
11821035 Bent et al. Nov 2023 B1
11827935 Ramachandran Iyer et al. Nov 2023 B1
11835462 Bava Dec 2023 B2
11840687 Gallant et al. Dec 2023 B2
11840724 Chew et al. Dec 2023 B2
11845979 Engblom et al. Dec 2023 B2
11859178 Gallant et al. Jan 2024 B2
11866767 Uytingco et al. Jan 2024 B2
11866770 Chee Jan 2024 B2
11873482 Kim et al. Jan 2024 B2
11891654 Alvarado Martinez et al. Feb 2024 B2
20010039029 Nemori et al. Nov 2001 A1
20010055764 Empendocles et al. Dec 2001 A1
20020006477 Shishido et al. Jan 2002 A1
20020040275 Cravatt Apr 2002 A1
20020045169 Shoemaker et al. Apr 2002 A1
20020045272 McDevitt et al. Apr 2002 A1
20020048766 Doyle et al. Apr 2002 A1
20020051986 Baez et al. May 2002 A1
20020055100 Kawashima May 2002 A1
20020058250 Firth May 2002 A1
20020064779 Landegren May 2002 A1
20020086441 Baranov et al. Jul 2002 A1
20020132246 Kallioniemi et al. Sep 2002 A1
20020137031 Wolber Sep 2002 A1
20020150909 Stuelpnagel Oct 2002 A1
20020164611 Bamdad Nov 2002 A1
20020168645 Taylor Nov 2002 A1
20030017451 Wang et al. Jan 2003 A1
20030022207 Balasubramanian Jan 2003 A1
20030040035 Slamon et al. Feb 2003 A1
20030064398 Barnes Apr 2003 A1
20030073086 Guire et al. Apr 2003 A1
20030087232 Christians May 2003 A1
20030096323 James May 2003 A1
20030113713 Glezer Jun 2003 A1
20030124595 Lizardi Jul 2003 A1
20030134279 Isola et al. Jul 2003 A1
20030138879 Lambalot Jul 2003 A1
20030148335 Shen et al. Aug 2003 A1
20030153850 Davis et al. Aug 2003 A1
20030162216 Gold Aug 2003 A1
20030165948 Alsmadi et al. Sep 2003 A1
20030170637 Pirrung et al. Sep 2003 A1
20030175844 Nadler et al. Sep 2003 A1
20030175947 Liu et al. Sep 2003 A1
20030190744 McGarry et al. Oct 2003 A1
20030205632 Kim et al. Nov 2003 A1
20030211489 Shen et al. Nov 2003 A1
20030215936 Kallioniemi et al. Nov 2003 A1
20030224419 Corcoran Dec 2003 A1
20030232348 Jones et al. Dec 2003 A1
20030232382 Brennan Dec 2003 A1
20030235535 Zhou Dec 2003 A1
20030235852 Roberts Dec 2003 A1
20030235854 Chan et al. Dec 2003 A1
20040002090 Mayer et al. Jan 2004 A1
20040019005 Van Ness Jan 2004 A1
20040023320 Steiner et al. Feb 2004 A1
20040033499 Ilsley et al. Feb 2004 A1
20040050699 Goncalves Mar 2004 A1
20040067492 Peng et al. Apr 2004 A1
20040067493 Matsuzaki Apr 2004 A1
20040082058 Schleifer et al. Apr 2004 A1
20040082059 Webb et al. Apr 2004 A1
20040096853 Mayer May 2004 A1
20040106110 Balasubramanian Jun 2004 A1
20040112442 Maerkl Jun 2004 A1
20040121456 Fischer Jun 2004 A1
20040175822 Timperman et al. Sep 2004 A1
20040219588 Furuta Nov 2004 A1
20040224326 Kim et al. Nov 2004 A1
20040235103 Reznikoff et al. Nov 2004 A1
20040248325 Bukusoglu et al. Dec 2004 A1
20040259105 Fan et al. Dec 2004 A1
20050003431 Wucherpfennig Jan 2005 A1
20050014203 Darfler et al. Jan 2005 A1
20050019776 Callow et al. Jan 2005 A1
20050019842 Prober et al. Jan 2005 A1
20050026188 Van Kessel Feb 2005 A1
20050037362 Remacle et al. Feb 2005 A1
20050037393 Gunderson et al. Feb 2005 A1
20050042695 Hong Feb 2005 A1
20050048580 Labaer Mar 2005 A1
20050064432 Huang et al. Mar 2005 A1
20050064460 Holliger et al. Mar 2005 A1
20050079520 Wu Apr 2005 A1
20050095627 Kolman et al. May 2005 A1
20050100900 Kawashima et al. May 2005 A1
20050116161 Hafeman et al. Jun 2005 A1
20050130173 Leamon et al. Jun 2005 A1
20050130188 Walt Jun 2005 A1
20050136414 Gunderson et al. Jun 2005 A1
20050164292 Farooqui Jul 2005 A1
20050179746 Roux et al. Aug 2005 A1
20050191656 Drmanac et al. Sep 2005 A1
20050191698 Chee et al. Sep 2005 A1
20050196786 Levy Sep 2005 A1
20050202433 Van Beuningen Sep 2005 A1
20050226780 Sandell et al. Oct 2005 A1
20050227271 Kwon Oct 2005 A1
20050239119 Tsukada et al. Oct 2005 A1
20050239192 Nasarabadi et al. Oct 2005 A1
20050244850 Huang Nov 2005 A1
20050255548 Lipovsek et al. Nov 2005 A1
20050257284 Nakajima et al. Nov 2005 A1
20050260653 LaBaer Nov 2005 A1
20050266417 Barany et al. Dec 2005 A1
20060003394 Song Jan 2006 A1
20060039823 Yamakawa et al. Feb 2006 A1
20060046313 Roth Mar 2006 A1
20060063160 West et al. Mar 2006 A1
20060073506 Christians et al. Apr 2006 A1
20060079453 Sidney et al. Apr 2006 A1
20060084078 Zhao Apr 2006 A1
20060105352 Qiao et al. May 2006 A1
20060110739 Heyduk May 2006 A1
20060134669 Casasanta Jun 2006 A1
20060154286 Kong et al. Jul 2006 A1
20060164490 Kim et al. Jul 2006 A1
20060183150 Cohen et al. Aug 2006 A1
20060188875 Cox et al. Aug 2006 A1
20060188901 Barnes et al. Aug 2006 A1
20060188906 Kim et al. Aug 2006 A1
20060194331 Pamula et al. Aug 2006 A1
20060199183 Valat et al. Sep 2006 A1
20060199207 Matysiak Sep 2006 A1
20060211001 Yu et al. Sep 2006 A1
20060216721 Kozlov et al. Sep 2006 A1
20060216775 Burkart et al. Sep 2006 A1
20060228758 Muchhal et al. Oct 2006 A1
20060240439 Smith et al. Oct 2006 A1
20060263789 Kincaid Nov 2006 A1
20060275782 Gunderson et al. Dec 2006 A1
20060275799 Banerjee et al. Dec 2006 A1
20060281109 Barr Ost et al. Dec 2006 A1
20070003954 Kodadek et al. Jan 2007 A1
20070014810 Baker et al. Jan 2007 A1
20070020625 Duchaud et al. Jan 2007 A1
20070020640 McCloskey et al. Jan 2007 A1
20070020669 Ericsson Jan 2007 A1
20070023292 Kim et al. Feb 2007 A1
20070026430 Andersen et al. Feb 2007 A1
20070036511 Lundquist et al. Feb 2007 A1
20070048812 Moravec et al. Mar 2007 A1
20070054288 Su et al. Mar 2007 A1
20070087360 Boyd Apr 2007 A1
20070099208 Drmanac et al. May 2007 A1
20070116612 Williamson May 2007 A1
20070128071 Shea et al. Jun 2007 A1
20070128624 Gormley et al. Jun 2007 A1
20070128656 Agrawal Jun 2007 A1
20070134723 Kozlov et al. Jun 2007 A1
20070141718 Bui et al. Jun 2007 A1
20070161020 Luo et al. Jul 2007 A1
20070161029 Li et al. Jul 2007 A1
20070166705 Milton et al. Jul 2007 A1
20070166725 McBride et al. Jul 2007 A1
20070172873 Brenner et al. Jul 2007 A1
20070178503 Jiang Aug 2007 A1
20070207482 Church et al. Sep 2007 A1
20070215466 Okada Sep 2007 A1
20070231823 McKernan Oct 2007 A1
20070243634 Pamula et al. Oct 2007 A1
20070251824 Patton Nov 2007 A1
20070254305 Paik et al. Nov 2007 A1
20070264656 Kawamura Nov 2007 A1
20070269805 Hogers Nov 2007 A1
20070280517 De La Torre-Bueno et al. Dec 2007 A1
20080003586 Hyde et al. Jan 2008 A1
20080009420 Schroth et al. Jan 2008 A1
20080032301 Rank et al. Feb 2008 A1
20080038734 Sorge et al. Feb 2008 A1
20080047835 MacConnell Feb 2008 A1
20080071071 LaBaer et al. Mar 2008 A1
20080108082 Rank et al. May 2008 A1
20080108804 Hayashizaki et al. May 2008 A1
20080124252 Marchand et al. May 2008 A1
20080124810 Terbrueggen et al. May 2008 A1
20080128627 Lundquist et al. Jun 2008 A1
20080132429 Perov et al. Jun 2008 A1
20080145378 Ovaa et al. Jun 2008 A1
20080145616 Gharib et al. Jun 2008 A1
20080153086 Wong Jun 2008 A1
20080160580 Adessi et al. Jul 2008 A1
20080199929 Yeung Aug 2008 A1
20080220434 Thomas Sep 2008 A1
20080220981 McGregor Sep 2008 A1
20080261204 Lexow Oct 2008 A1
20080280773 Fedurco et al. Nov 2008 A1
20080286795 Kawashima et al. Nov 2008 A1
20080293046 Allawi et al. Nov 2008 A1
20080293591 Taussig et al. Nov 2008 A1
20080312103 Nemoto et al. Dec 2008 A1
20090005252 Drmanac et al. Jan 2009 A1
20090006002 Honisch et al. Jan 2009 A1
20090018024 Church et al. Jan 2009 A1
20090023148 Moyle et al. Jan 2009 A1
20090026082 Rothberg et al. Jan 2009 A1
20090036323 van Eijk et al. Feb 2009 A1
20090062148 Goldberg Mar 2009 A1
20090082212 Williams Mar 2009 A1
20090099041 Church et al. Apr 2009 A1
20090105959 Braverman et al. Apr 2009 A1
20090117573 Fu et al. May 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090155781 Drmanac et al. Jun 2009 A1
20090169089 Hunt et al. Jul 2009 A1
20090170713 van Eijk et al. Jul 2009 A1
20090181375 Peter et al. Jul 2009 A1
20090192044 Fouillet Jul 2009 A1
20090197326 El Gamal et al. Aug 2009 A1
20090202998 Schlumpberger et al. Aug 2009 A1
20090215633 van Eijk et al. Aug 2009 A1
20090233802 Bignell et al. Sep 2009 A1
20090239232 Kurn Sep 2009 A1
20090253163 Xie et al. Oct 2009 A1
20090253581 van Eijk et al. Oct 2009 A1
20090253582 Pena et al. Oct 2009 A1
20090264299 Drmanac et al. Oct 2009 A1
20090280487 Hung et al. Nov 2009 A1
20090283407 Van Eijk Nov 2009 A1
20090289184 Deininger Nov 2009 A1
20090291854 Weisinger-Mayr et al. Nov 2009 A1
20090305237 Cantor et al. Dec 2009 A1
20090312193 Byung-Chul Dec 2009 A1
20090321262 Adachi et al. Dec 2009 A1
20100009871 Reed et al. Jan 2010 A1
20100014537 Jacquet et al. Jan 2010 A1
20100035249 Hayashizaki et al. Feb 2010 A1
20100055733 Lutolf et al. Mar 2010 A1
20100069263 Shendure et al. Mar 2010 A1
20100096266 Kim et al. Apr 2010 A1
20100099103 Hsieh et al. Apr 2010 A1
20100105052 Drmanac et al. Apr 2010 A1
20100105112 Heltze et al. Apr 2010 A1
20100111768 Banerjee et al. May 2010 A1
20100113302 Williams May 2010 A1
20100120043 Sood et al. May 2010 A1
20100120097 Matz et al. May 2010 A1
20100120098 Grunenwald et al. May 2010 A1
20100126862 Sabin et al. May 2010 A1
20100129874 Mitra et al. May 2010 A1
20100137143 Rothberg et al. Jun 2010 A1
20100145037 Makarov et al. Jun 2010 A1
20100151447 Ely Jun 2010 A1
20100151464 Stuelpnagel et al. Jun 2010 A1
20100151511 Gereenizer et al. Jun 2010 A1
20100159446 Haff et al. Jun 2010 A1
20100173384 Johnsson et al. Jul 2010 A1
20100184614 Ye et al. Jul 2010 A1
20100184618 Namsaraev et al. Jul 2010 A1
20100210475 Lee et al. Aug 2010 A1
20100227329 Cuppens Sep 2010 A1
20100267590 Grudzien et al. Oct 2010 A1
20100273219 May et al. Oct 2010 A1
20100273679 Cuppoletti et al. Oct 2010 A1
20100282617 Rothberg et al. Nov 2010 A1
20100303722 Jin et al. Dec 2010 A1
20110024511 Rietzler et al. Feb 2011 A1
20110027772 Ahn et al. Feb 2011 A1
20110028685 Purkayastha et al. Feb 2011 A1
20110033854 Drmanac et al. Feb 2011 A1
20110045462 Fu et al. Feb 2011 A1
20110048951 Wu Mar 2011 A1
20110059436 Hardin et al. Mar 2011 A1
20110059865 Smith et al. Mar 2011 A1
20110086774 Dunaway Apr 2011 A1
20110111409 Sinicropi et al. May 2011 A1
20110151451 Lemaire et al. Jun 2011 A1
20110152111 Fan et al. Jun 2011 A1
20110172115 Thompson et al. Jul 2011 A1
20110177518 Kartalov et al. Jul 2011 A1
20110201515 Webster et al. Aug 2011 A1
20110207134 Faham et al. Aug 2011 A1
20110223613 Gut Sep 2011 A1
20110244448 Shirai et al. Oct 2011 A1
20110245101 Chee et al. Oct 2011 A1
20110245111 Chee Oct 2011 A1
20110269155 Reker-Hadrup et al. Nov 2011 A1
20110269647 Ule et al. Nov 2011 A1
20110275077 James Nov 2011 A1
20110287435 Grunenwald et al. Nov 2011 A1
20120010091 Linnarson Jan 2012 A1
20120021930 Schoen et al. Jan 2012 A1
20120046175 Rodesch et al. Feb 2012 A1
20120046178 Van Den Boom et al. Feb 2012 A1
20120065081 Chee Mar 2012 A1
20120077693 Cazalis et al. Mar 2012 A1
20120129248 Chee et al. May 2012 A1
20120135871 van Eijk et al. May 2012 A1
20120142014 Cai Jun 2012 A1
20120157322 Myllykangas Jun 2012 A1
20120160683 Ye et al. Jun 2012 A1
20120195810 Cohen et al. Aug 2012 A1
20120196297 Yost et al. Aug 2012 A1
20120202698 van Eijk et al. Aug 2012 A1
20120202704 Fan et al. Aug 2012 A1
20120220479 Ericsson et al. Aug 2012 A1
20120245053 Shirai et al. Sep 2012 A1
20120252702 Muratani et al. Oct 2012 A1
20120258871 Kozlov et al. Oct 2012 A1
20120270305 Reed et al. Oct 2012 A1
20120270748 Chee et al. Oct 2012 A1
20120279954 Ceremony et al. Nov 2012 A1
20120289414 Mitra et al. Nov 2012 A1
20120301925 Belyaev Nov 2012 A1
20120322099 Lapen et al. Dec 2012 A1
20130005594 Terbrueggen et al. Jan 2013 A1
20130005600 Olek Jan 2013 A1
20130023433 Luo et al. Jan 2013 A1
20130035239 Kong et al. Feb 2013 A1
20130052331 Kram et al. Feb 2013 A1
20130053273 Juncker et al. Feb 2013 A1
20130065768 Zheng et al. Mar 2013 A1
20130065788 Sigal et al. Mar 2013 A1
20130079232 Kain et al. Mar 2013 A1
20130096033 Routenberg Apr 2013 A1
20130109595 Routenberg May 2013 A1
20130122516 Meares May 2013 A1
20130146459 Bazant et al. Jun 2013 A1
20130171621 Luo et al. Jul 2013 A1
20130202718 Pepin et al. Aug 2013 A1
20130203100 Otter et al. Aug 2013 A1
20130211249 Barnett et al. Aug 2013 A1
20130244884 Jacobson et al. Sep 2013 A1
20130260372 Buermann et al. Oct 2013 A1
20130261019 Lin et al. Oct 2013 A1
20130296174 Peumans Nov 2013 A1
20130302801 Asbury et al. Nov 2013 A1
20130338042 Shen et al. Dec 2013 A1
20140065609 Hicks et al. Mar 2014 A1
20140066318 Frisen et al. Mar 2014 A1
20140079923 George et al. Mar 2014 A1
20140080715 Lo et al. Mar 2014 A1
20140121118 Warner May 2014 A1
20140155274 Xie et al. Jun 2014 A1
20140155295 Hindson et al. Jun 2014 A1
20140162293 Springer et al. Jun 2014 A1
20140213533 Suthanthiran et al. Jul 2014 A1
20140227705 Vogelstein et al. Aug 2014 A1
20140243224 Barnard et al. Aug 2014 A1
20140274731 Raymond et al. Sep 2014 A1
20140296081 Diehn et al. Oct 2014 A1
20140323330 Glezer et al. Oct 2014 A1
20140342921 Weiner Nov 2014 A1
20140378345 Hindson et al. Dec 2014 A1
20140378350 Hindson et al. Dec 2014 A1
20150000854 Gann-Fetter et al. Jan 2015 A1
20150005447 Berti et al. Jan 2015 A1
20150010860 Kataoka et al. Jan 2015 A1
20150051085 Vogelstein et al. Feb 2015 A1
20150072867 Soldatov Mar 2015 A1
20150087027 Makarov et al. Mar 2015 A1
20150125053 Vieveli et al. May 2015 A1
20150148239 Jon May 2015 A1
20150219618 Krishnan et al. Aug 2015 A1
20150246336 Somoza et al. Sep 2015 A1
20150344942 Frisen et al. Dec 2015 A1
20160003812 Porreca et al. Jan 2016 A1
20160019337 Roberts et al. Jan 2016 A1
20160024555 Church et al. Jan 2016 A1
20160024576 Chee Jan 2016 A1
20160032282 Vigneault et al. Feb 2016 A1
20160033496 Chou et al. Feb 2016 A1
20160041159 Labaer et al. Feb 2016 A1
20160108458 Frei et al. Apr 2016 A1
20160122817 Jarosz et al. May 2016 A1
20160138091 Chee et al. May 2016 A1
20160145677 Chee et al. May 2016 A1
20160201125 Samuels et al. Jul 2016 A1
20160298180 Chee Oct 2016 A1
20160304952 Boyden et al. Oct 2016 A1
20160333403 Chee Nov 2016 A1
20160369329 Cai et al. Dec 2016 A1
20160376642 Landegren et al. Dec 2016 A1
20170009278 Söderberg et al. Jan 2017 A1
20170016053 Beechem et al. Jan 2017 A1
20170029872 Ya et al. Feb 2017 A1
20170029875 Zhang et al. Feb 2017 A1
20170058339 Chee Mar 2017 A1
20170058340 Chee Mar 2017 A1
20170058345 Chee Mar 2017 A1
20170067096 Wassie et al. Mar 2017 A1
20170088881 Chee Mar 2017 A1
20170089811 Tillberg et al. Mar 2017 A1
20170166962 van Eijk et al. Jun 2017 A1
20170241911 Rockel et al. Aug 2017 A1
20170253918 Kohman Sep 2017 A1
20170275669 Weissleder et al. Sep 2017 A1
20180051322 Church et al. Feb 2018 A1
20180052081 Kohman Feb 2018 A1
20180094316 Scott et al. Apr 2018 A1
20180105808 Mikkelsen et al. Apr 2018 A1
20180112209 Eshoo Apr 2018 A1
20180163265 Zhang et al. Jun 2018 A1
20180201925 Steemers et al. Jul 2018 A1
20180201980 Chee et al. Jul 2018 A1
20180208967 Larman et al. Jul 2018 A1
20180216161 Chen et al. Aug 2018 A1
20180216162 Belhocine et al. Aug 2018 A1
20180237864 Imler et al. Aug 2018 A1
20180245142 So et al. Aug 2018 A1
20180247017 van Eijk et al. Aug 2018 A1
20180291439 van Eijk et al. Oct 2018 A1
20180312822 Lee et al. Nov 2018 A1
20190017106 Frisen et al. Jan 2019 A1
20190024153 Frisen et al. Jan 2019 A1
20190024154 Frisen et al. Jan 2019 A1
20190055594 Samusik et al. Feb 2019 A1
20190064173 Bharadwaj et al. Feb 2019 A1
20190085383 Church et al. Mar 2019 A1
20190145982 Chee et al. May 2019 A1
20190161796 Hauling et al. May 2019 A1
20190177777 Chee Jun 2019 A1
20190177778 Chee Jun 2019 A1
20190177789 Hindson et al. Jun 2019 A1
20190177800 Boutet et al. Jun 2019 A1
20190194709 Church et al. Jun 2019 A1
20190203275 Friesen et al. Jul 2019 A1
20190218276 Regev et al. Jul 2019 A1
20190264268 Frisen et al. Aug 2019 A1
20190271030 Chee Sep 2019 A1
20190271031 Chee Sep 2019 A1
20190300943 Chee et al. Oct 2019 A1
20190300944 Chee et al. Oct 2019 A1
20190300945 Chee et al. Oct 2019 A1
20190309353 Chee Oct 2019 A1
20190309354 Chee Oct 2019 A1
20190309355 Chee Oct 2019 A1
20190323071 Chee Oct 2019 A1
20190330617 Church et al. Oct 2019 A1
20190360034 Zhou et al. Nov 2019 A1
20190367982 Belhocine et al. Dec 2019 A1
20190367997 Bent et al. Dec 2019 A1
20200002764 Belgrader et al. Jan 2020 A1
20200024641 Nolan et al. Jan 2020 A1
20200048690 Chee Feb 2020 A1
20200063195 Chee Feb 2020 A1
20200063196 Chee Feb 2020 A1
20200080136 Zhang et al. Mar 2020 A1
20200109443 Chee Apr 2020 A1
20200140934 Chee May 2020 A1
20200140935 Chee May 2020 A1
20200208205 Chee Jul 2020 A1
20200208206 Chee Jul 2020 A1
20200224244 Nilsson et al. Jul 2020 A1
20200224256 Chee Jul 2020 A1
20200239946 Dewal Jul 2020 A1
20200256867 Hennek et al. Aug 2020 A1
20200277663 Ramachandran Iyer et al. Sep 2020 A1
20200277664 Frenz Sep 2020 A1
20200283852 Oliphant et al. Sep 2020 A1
20200299757 Chee et al. Sep 2020 A1
20200325531 Chee Oct 2020 A1
20200332368 Ferree et al. Oct 2020 A1
20200354774 Church et al. Nov 2020 A1
20200370106 Chee Nov 2020 A1
20200399687 Frisen et al. Dec 2020 A1
20200407781 Schnall-Levin et al. Dec 2020 A1
20210002713 Chee et al. Jan 2021 A1
20210010068 Chee et al. Jan 2021 A1
20210010070 Schnall-Levin et al. Jan 2021 A1
20210017583 Chee et al. Jan 2021 A1
20210017586 Chee Jan 2021 A1
20210062249 Chee Mar 2021 A1
20210123095 Chee Apr 2021 A1
20210130883 Chee et al. May 2021 A1
20210130884 Chee et al. May 2021 A1
20210140982 Uytingco May 2021 A1
20210172007 Chee et al. Jun 2021 A1
20210189475 Tentori et al. Jun 2021 A1
20210190770 Delaney et al. Jun 2021 A1
20210198741 Williams Jul 2021 A1
20210199660 Williams et al. Jul 2021 A1
20210207202 Chee Jul 2021 A1
20210214785 Stoeckius Jul 2021 A1
20210222235 Chee Jul 2021 A1
20210222241 Bharadwaj Jul 2021 A1
20210222242 Ramachandran Iyer Jul 2021 A1
20210222253 Uytingco Jul 2021 A1
20210223227 Stoeckius Jul 2021 A1
20210230681 Patterson et al. Jul 2021 A1
20210230692 Daugharthy et al. Jul 2021 A1
20210237022 Bava Aug 2021 A1
20210238581 Mikkelsen et al. Aug 2021 A1
20210238664 Bava Aug 2021 A1
20210238675 Bava Aug 2021 A1
20210238680 Bava Aug 2021 A1
20210247316 Bava Aug 2021 A1
20210255175 Chee et al. Aug 2021 A1
20210262019 Alvarado Martinez et al. Aug 2021 A1
20210269864 Chee Sep 2021 A1
20210270822 Chee Sep 2021 A1
20210285036 Yin et al. Sep 2021 A1
20210285046 Chell et al. Sep 2021 A1
20210292748 Frisen et al. Sep 2021 A1
20210292822 Frisen et al. Sep 2021 A1
20210317510 Chee et al. Oct 2021 A1
20210317524 Lucero et al. Oct 2021 A1
20210324457 Ramachandran Iyer et al. Oct 2021 A1
20210332424 Schnall-Levin Oct 2021 A1
20210332425 Pfeiffer et al. Oct 2021 A1
20210348221 Chell et al. Nov 2021 A1
20220002791 Frisen et al. Jan 2022 A1
20220003755 Chee Jan 2022 A1
20220010367 Ramachandran Iyer et al. Jan 2022 A1
20220017951 Ramachandran Iyer et al. Jan 2022 A1
20220025446 Shah Jan 2022 A1
20220025447 Tentori et al. Jan 2022 A1
20220033888 Schnall-Levin et al. Feb 2022 A1
20220049293 Frenz et al. Feb 2022 A1
20220049294 Uytingco et al. Feb 2022 A1
20220064630 Bent et al. Mar 2022 A1
20220081728 Williams Mar 2022 A1
20220090058 Frisen et al. Mar 2022 A1
20220090175 Uytingco et al. Mar 2022 A1
20220090181 Gallant et al. Mar 2022 A1
20220098576 Dadhwal Mar 2022 A1
20220098661 Chew et al. Mar 2022 A1
20220106632 Galonska et al. Apr 2022 A1
20220106633 Engblom et al. Apr 2022 A1
20220112486 Ramachandran Iyer et al. Apr 2022 A1
20220112545 Chee Apr 2022 A1
20220119869 Ramachandran Iyer et al. Apr 2022 A1
20220127659 Frisen et al. Apr 2022 A1
20220127666 Katiraee et al. Apr 2022 A1
20220127672 Stoeckius Apr 2022 A1
20220145361 Frenz et al. May 2022 A1
20220154255 Chee et al. May 2022 A1
20220170083 Khaled et al. Jun 2022 A1
20220195422 Gallant et al. Jun 2022 A1
20220195505 Frisen et al. Jun 2022 A1
20220196644 Chee Jun 2022 A1
20220213526 Frisen et al. Jul 2022 A1
20220241780 Tentori et al. Aug 2022 A1
20220267844 Ramachandran Iyer et al. Aug 2022 A1
20220282329 Chell et al. Sep 2022 A1
20220290217 Frenz et al. Sep 2022 A1
20220290219 Chee Sep 2022 A1
20220298560 Frisen et al. Sep 2022 A1
20220325325 Chee et al. Oct 2022 A1
20220326251 Uytingco et al. Oct 2022 A1
20220333171 Chee Oct 2022 A1
20220333191 Mikkelsen et al. Oct 2022 A1
20220333192 Uytingco Oct 2022 A1
20220333195 Schnall-Levin et al. Oct 2022 A1
20220334031 Delaney et al. Oct 2022 A1
20220348905 Dadhwal Nov 2022 A1
20220348992 Stoeckius et al. Nov 2022 A1
20220356464 Kim et al. Nov 2022 A1
20220364163 Stahl et al. Nov 2022 A1
20220389491 Chee Dec 2022 A1
20220389503 Mikkelsen et al. Dec 2022 A1
20220389504 Chew et al. Dec 2022 A1
20220403455 Ramachandran Iyer et al. Dec 2022 A1
20220404245 Chell et al. Dec 2022 A1
20230002812 Stoeckius et al. Jan 2023 A1
20230014008 Shastry Jan 2023 A1
20230416807 Chee Jan 2023 A1
20230416808 Sukovich et al. Jan 2023 A1
20230033960 Gallant et al. Feb 2023 A1
20230034039 Shahjamali Feb 2023 A1
20230034216 Bava Feb 2023 A1
20230040363 Chee Feb 2023 A1
20230042088 Chee Feb 2023 A1
20230042817 Mignardi Feb 2023 A1
20230047782 Tentori et al. Feb 2023 A1
20230056549 Dadhwal Feb 2023 A1
20230064372 Chell et al. Mar 2023 A1
20230069046 Chew et al. Mar 2023 A1
20230077364 Patterson et al. Mar 2023 A1
20230080543 Katiraee et al. Mar 2023 A1
20230081381 Chew et al. Mar 2023 A1
20230100497 Frisen et al. Mar 2023 A1
20230107023 Chee Apr 2023 A1
20230111225 Chew et al. Apr 2023 A1
20230113230 Kim et al. Apr 2023 A1
20230126825 Nagendran et al. Apr 2023 A1
20230129552 Ramachandran Iyer Apr 2023 A1
20230135010 Tentori et al. May 2023 A1
20230143569 Iyer et al. May 2023 A1
20230145575 Gallant et al. May 2023 A1
20230147726 Hadrup et al. May 2023 A1
20230151412 Chee May 2023 A1
20230159994 Chee May 2023 A1
20230159995 Iyer et al. May 2023 A1
20230160008 Chell et al. May 2023 A1
20230175045 Katsori et al. Jun 2023 A1
20230183785 Frisen et al. Jun 2023 A1
20230194469 Tentori et al. Jun 2023 A1
20230194470 Kim et al. Jun 2023 A1
20230203478 Kim et al. Jun 2023 A1
20230183684 Gallant et al. Jul 2023 A1
20230212650 Chew et al. Jul 2023 A1
20230212655 Chee Jul 2023 A1
20230220368 Kim Jul 2023 A1
20230220454 Bent et al. Jul 2023 A1
20230220455 Galonska et al. Jul 2023 A1
20230227811 Dadhwal Jul 2023 A1
20230228762 Uytingco et al. Jul 2023 A1
20230242973 Frisen et al. Aug 2023 A1
20230242976 Tentori et al. Aug 2023 A1
20230265488 Gohil et al. Aug 2023 A1
20230265489 Uytingco et al. Aug 2023 A1
20230265491 Tentori et al. Aug 2023 A1
20230279474 Katiraee Sep 2023 A1
20230279477 Kvastad et al. Sep 2023 A1
20230279481 Marrache et al. Sep 2023 A1
20230287399 Gallant et al. Sep 2023 A1
20230287475 Chell et al. Sep 2023 A1
20230287481 Katsori et al. Sep 2023 A1
20230295699 Sukovich et al. Sep 2023 A1
20230295722 Bharadwaj Sep 2023 A1
20230304074 Chee et al. Sep 2023 A1
20230304078 Frisen et al. Sep 2023 A1
20230313279 Giacomello et al. Oct 2023 A1
20230323340 Dadhwal Oct 2023 A1
20230323434 Yin et al. Oct 2023 A1
20230323436 Chee Oct 2023 A1
20230323447 Schnall-Levin et al. Oct 2023 A1
20230323453 Stoeckius Oct 2023 A1
20230332138 Kim et al. Oct 2023 A1
20230332211 Chee Oct 2023 A1
20230332212 Chew et al. Oct 2023 A1
20230332227 Ramachandran Iyer Oct 2023 A1
20230332247 Singh et al. Oct 2023 A1
20230358733 Chee Nov 2023 A1
20230366008 Chew et al. Nov 2023 A1
20230383285 Kim et al. Nov 2023 A1
20230383344 Stoeckius Nov 2023 A1
20230392204 Chell et al. Dec 2023 A1
20230393071 Bava Dec 2023 A1
20230407404 Baumgartner et al. Dec 2023 A1
20230416850 Singh et al. Dec 2023 A1
20240002931 Bava Jan 2024 A1
20240011081 Chee Jan 2024 A1
20240011090 Chew et al. Jan 2024 A1
20240018572 Mignardi Jan 2024 A1
20240018575 Gallant et al. Jan 2024 A1
20240018589 Schnall-Levin et al. Jan 2024 A1
20240026445 Ramachandran Iyer et al. Jan 2024 A1
20240035937 Cox et al. Feb 2024 A1
Foreign Referenced Citations (257)
Number Date Country
2003200718 Oct 2006 AU
1273609 Nov 2000 CN
1425133 Jun 2003 CN
1537953 Oct 2004 CN
1680604 Oct 2005 CN
1749752 Mar 2006 CN
1898398 Jan 2007 CN
1981188 Jun 2007 CN
101142325 Mar 2008 CN
101205560 Jun 2008 CN
101221182 Jul 2008 CN
101522915 Sep 2009 CN
202548048 Nov 2012 CN
102851369 Jan 2013 CN
102947330 Feb 2013 CN
0901631 Mar 1999 EP
0961110 Dec 1999 EP
1782737 May 2007 EP
1878502 Jan 2008 EP
1910562 Apr 2008 EP
1923471 May 2008 EP
1929039 Jun 2008 EP
1966393 Sep 2008 EP
2002017 Dec 2008 EP
2161336 Mar 2010 EP
2292788 Mar 2011 EP
2302070 Mar 2011 EP
2350648 Aug 2011 EP
2363504 Sep 2011 EP
2580351 Apr 2013 EP
2789696 Oct 2014 EP
2881465 Jun 2015 EP
2963127 Jan 2016 EP
3045544 Jul 2016 EP
3239304 Nov 2017 EP
3425053 Aug 2020 EP
2007-014297 Jan 2007 JP
2007-074967 Mar 2007 JP
2009-036694 Feb 2009 JP
2011-182702 Sep 2011 JP
2013-544498 Dec 2013 JP
2014-217381 Nov 2014 JP
10-2009-0000812 Jan 2009 KR
10-20090081260 Jul 2009 KR
2145635 Feb 2000 RU
2270254 Feb 2006 RU
2410439 Jan 2011 RU
WO 1989010977 Nov 1989 WO
WO 1991006678 May 1991 WO
WO 1993004199 Mar 1993 WO
WO 1995023875 Sep 1995 WO
WO 1995025116 Sep 1995 WO
WO 1995035505 Dec 1995 WO
WO 1997031256 Aug 1997 WO
WO 1998044151 Oct 1998 WO
9932654 Jul 1999 WO
WO 1999032654 Jul 1999 WO
WO 1999044062 Sep 1999 WO
WO 1999044063 Sep 1999 WO
WO 1999063385 Dec 1999 WO
WO 199967641 Dec 1999 WO
WO 200017390 Mar 2000 WO
WO 2000018957 Apr 2000 WO
0024940 May 2000 WO
WO 2000024940 May 2000 WO
WO 200106012 Jan 2001 WO
0107915 Feb 2001 WO
WO 2001007915 Feb 2001 WO
WO 2001009363 Feb 2001 WO
WO 2001012862 Feb 2001 WO
0142796 Jun 2001 WO
WO 2001042796 Jun 2001 WO
WO 2001046402 Jun 2001 WO
WO 2001059161 Aug 2001 WO
WO 2001090415 Nov 2001 WO
WO 2001096608 Dec 2001 WO
0224952 Mar 2002 WO
WO 2002024952 Mar 2002 WO
WO 2002040874 May 2002 WO
WO 2002059355 Aug 2002 WO
WO 2002059364 Aug 2002 WO
02077283 Oct 2002 WO
WO 2002077283 Oct 2002 WO
02088396 Nov 2002 WO
WO 2002088396 Nov 2002 WO
WO 2003002979 Jan 2003 WO
WO 2003003810 Jan 2003 WO
WO 2003008538 Jan 2003 WO
WO 2003010176 Feb 2003 WO
WO 2003102233 Dec 2003 WO
WO 2003106973 Dec 2003 WO
WO 2004015080 Feb 2004 WO
WO 2004028955 Apr 2004 WO
WO-2004055159 Jul 2004 WO
WO 2004067759 Aug 2004 WO
WO 2004081225 Sep 2004 WO
WO 2004108268 Dec 2004 WO
WO 2005007814 Jan 2005 WO
WO 2005010145 Feb 2005 WO
WO 2005026387 Mar 2005 WO
WO 2005042759 May 2005 WO
WO 2005067648 Jul 2005 WO
WO 2005113804 Dec 2005 WO
WO 2006020515 Feb 2006 WO
WO 2006056861 Jun 2006 WO
WO 2006064199 Jun 2006 WO
WO 2006065597 Jun 2006 WO
WO 2006074351 Jul 2006 WO
WO 2006084130 Aug 2006 WO
WO 2006117541 Nov 2006 WO
WO 2006124771 Nov 2006 WO
WO 2006137733 Dec 2006 WO
WO 2007000669 Jan 2007 WO
WO 2007010251 Jan 2007 WO
WO 2007030373 Mar 2007 WO
WO 2007037678 Apr 2007 WO
WO 2007041689 Apr 2007 WO
WO 2007060599 May 2007 WO
WO 2007073165 Jun 2007 WO
WO 2007073171 Jun 2007 WO
WO 2007073271 Jun 2007 WO
WO 2007076128 Jul 2007 WO
WO 2007076726 Jul 2007 WO
WO 2007114693 Oct 2007 WO
WO 2007120241 Oct 2007 WO
WO 2007145612 Dec 2007 WO
WO 2007139766 Dec 2007 WO
WO 2008022332 Feb 2008 WO
WO 2008069906 Jun 2008 WO
WO 2008157801 Dec 2008 WO
WO 2009032167 Mar 2009 WO
WO 2009036525 Mar 2009 WO
WO 2009152928 Dec 2009 WO
WO 2009156725 Dec 2009 WO
WO 2010019826 Feb 2010 WO
WO 2010027870 Mar 2010 WO
WO 2010053587 May 2010 WO
WO 2010060439 Jun 2010 WO
WO 2010126614 Nov 2010 WO
WO 2010127186 Nov 2010 WO
WO 2011008502 Jan 2011 WO
WO 2011014879 Feb 2011 WO
WO 2011062933 May 2011 WO
WO 2011071943 Jun 2011 WO
WO 2011102903 Aug 2011 WO
WO 2011127006 Oct 2011 WO
WO 2011127099 Oct 2011 WO
WO 2011143583 Nov 2011 WO
WO 2011155833 Dec 2011 WO
WO 2012022975 Feb 2012 WO
WO 2012049316 Apr 2012 WO
WO-2012048341 Apr 2012 WO
WO 2012058096 May 2012 WO
WO 2012061832 May 2012 WO
WO 2012071428 May 2012 WO
WO 2012083225 Jun 2012 WO
WO 2012129242 Sep 2012 WO
2012140224 Oct 2012 WO
WO 2012139110 Oct 2012 WO
WO 2012140224 Oct 2012 WO
WO 2012142213 Oct 2012 WO
WO 2012148477 Nov 2012 WO
WO 2012159089 Nov 2012 WO
WO 2012168003 Dec 2012 WO
WO 2013033271 Mar 2013 WO
WO 2013090390 Jun 2013 WO
WO 2013123442 Aug 2013 WO
WO 2013131962 Sep 2013 WO
WO 2013138510 Sep 2013 WO
WO 2013142389 Sep 2013 WO
WO 2013150083 Oct 2013 WO
WO 2013155119 Oct 2013 WO
WO 2013158936 Oct 2013 WO
WO-2013150082 Oct 2013 WO
WO 2013025952 Dec 2013 WO
WO 2014044724 Mar 2014 WO
WO 2014060483 Apr 2014 WO
WO 2014085725 Jun 2014 WO
WO 2014128129 Aug 2014 WO
WO 2014130576 Aug 2014 WO
WO 2014142841 Sep 2014 WO
WO 2014144713 Sep 2014 WO
WO 2014152397 Sep 2014 WO
WO 2014163886 Oct 2014 WO
WO 2014200767 Dec 2014 WO
WO 2014210223 Dec 2014 WO
WO 2014210225 Dec 2014 WO
WO 2014210353 Dec 2014 WO
WO 2017013170 Jan 2017 WO
WO 2020076979 Apr 2020 WO
WO 2020123305 Jun 2020 WO
WO 2020123309 Jun 2020 WO
WO 2020123311 Jun 2020 WO
WO 2020123316 Jun 2020 WO
WO 2020123317 Jun 2020 WO
WO 2020123318 Jun 2020 WO
WO 2020123319 Jun 2020 WO
WO 2020167862 Aug 2020 WO
WO 2020176882 Sep 2020 WO
WO 2020190509 Sep 2020 WO
WO 2020198071 Oct 2020 WO
WO 2020219901 Oct 2020 WO
WO 2021091611 May 2021 WO
WO 2021092433 May 2021 WO
WO 2021097255 May 2021 WO
WO 2021133842 Jul 2021 WO
WO 2021133849 Jul 2021 WO
WO 2021142233 Jul 2021 WO
WO 2021168261 Aug 2021 WO
WO 2021168278 Aug 2021 WO
WO 2021207610 Oct 2021 WO
WO 2021216708 Oct 2021 WO
WO 2021225900 Nov 2021 WO
WO 2021236625 Nov 2021 WO
WO 2021236929 Nov 2021 WO
WO 2021237056 Nov 2021 WO
WO 2021237087 Nov 2021 WO
WO 2021242834 Dec 2021 WO
WO 2021247543 Dec 2021 WO
WO 2021247568 Dec 2021 WO
WO 2021252499 Dec 2021 WO
WO 2021252576 Dec 2021 WO
WO 2021252591 Dec 2021 WO
WO 2021263111 Dec 2021 WO
WO 2022025965 Feb 2022 WO
WO 2022060798 Mar 2022 WO
WO 2022060953 Mar 2022 WO
WO 2022087273 Apr 2022 WO
WO 2022098810 May 2022 WO
WO 2022099037 May 2022 WO
WO 2022103712 May 2022 WO
WO 2022109181 May 2022 WO
WO 2022140028 Jun 2022 WO
WO 2022147005 Jul 2022 WO
WO 2022147296 Jul 2022 WO
WO 2022164615 Aug 2022 WO
WO 2022178267 Aug 2022 WO
WO 2022198068 Sep 2022 WO
WO 2022221425 Oct 2022 WO
WO 2022226057 Oct 2022 WO
WO 2022236054 Nov 2022 WO
WO 2022256503 Dec 2022 WO
WO 2022271820 Dec 2022 WO
WO 2023287765 Jan 2023 WO
WO 2023018799 Feb 2023 WO
WO 2023034489 Mar 2023 WO
WO 2023076345 May 2023 WO
WO 2023086880 May 2023 WO
WO 2023102118 Jun 2023 WO
WO 2023150098 Aug 2023 WO
WO 2023150163 Aug 2023 WO
WO 2023150171 Aug 2023 WO
WO 2023215552 Nov 2023 WO
WO 2023225519 Nov 2023 WO
WO 2023229988 Nov 2023 WO
WO 2023250077 Dec 2023 WO
WO 2024015578 Jan 2024 WO
Non-Patent Literature Citations (762)
Entry
Emmert-Buck et al.(Science, 1996. vol. 274, pp. 998-1001) (Year: 1996).
U.S. Appl. No. 61/687,681 Priority Document Soldatov Specification, Apr. 30, 2012.
U.S. Appl. No. 61/687,681 Priority Document Soldatov Drawings, Apr. 30, 2012.
U.S. Appl. No. 61/687,681 Priority Document Soldatov Sequence Listing, Apr. 30, 2012.
Chen et al., “A Homogeneous, Ligase-mediated DNA diagnostic test,” Genome research, 1998, 8(5):549-556.
Tegtmeyer et al., “Alternative Interactions of the SV40 A Protein with DNA,” Virology, 1981, 115:75-87.
Examination Search Report issued in Australian Appln. No. 2012241730, dated Jun. 27, 2016, 3 pages.
Hejatko et al., “In Situ Hybridization Techniques for mRNA Detection in Whole Mount Arabidopsis Samples,” Nature Protocols, 2006, 1(4):1939-1946.
Thiery et al., “Multiplex target protein imagine in tissue sections by mass spectrometry—TAMSIM,” Rapid. Commun. Mass Spectrom, 2007, 21:823-829.
Ahern et al., “Biochemical, Reagents Kits Offer Scientists Good Return On Investment,” The Scientist, 1995, 9(15):20, 7 pages.
Extended European Search Report issued in European Appln. No. 19204655.5, dated Jun. 8, 2020, 13 pages.
Geiss et al., “Direct multiplexed measurement of gene expression with color-coded probe pairs,” nature biotechnology, 2008, 26(3):317-325.
Liu et al., An integrated and sensitive detection platform for biosensing application based on Fe@Au magnetic nanoparticles as bead array carries Biosensors and Bioelectronics, 2010, 26(4): 1442-1448.
Sumitomo et al., “Ca2+ ion transport through channels formed by −hemolysin analyzed using a microwell array on a Si substrate,” Biosensors and Bioelectronics, 2012, 31(1):445-450.
Wu et al., “Detection DNA Point Mutation with Rolling-Circle Amplification Chip,” Bioinformatics and Biomedical Engineering (ICBBE), 2010 4th International Conference on IEEE, Piscatway, NJ, USA, Jun. 18, 2010, 1-4 pages.
Bullard et al., “Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4,” Biochem. J. 2006, 398:135-144.
U.S. Appl. No. 60/416,118 Fan et al., Multiplex Nucleic Acid Analysis Using Archived or Fixed Samples, filed Oct. 3, 2002, 22 pages.
Invitrogen, Immune Response Biomarker Profiling Service Report, Invitrogen, 2009, 1-33.
Kapteyn et al., “Incorporation of Non-Natural Nucleotides Into Template-Switching Oligonucleotides Reduces Background and Improves cDNA Synthesis From Very Small RNA Samples,” BMC Genomics, 2010, 11(413): 1-9.
Zhu et al., “Reverse Transcriptase Template Switching: A Smart Approach for Full-Length cDNA Library Construction,” BioTechniques, 2001, 30(4): 892-897.
Affymetrix, “GeneChip Human Genome U133 Set,” retrieved from the Internet: on the World Wide Web at affymetrix.com/support/technical/datasheets/hgu133_datasheet.pdf, retrieved on Feb. 26, 2003.
Affymetrix, “Human Genome U95Av2,” Internet Citation, retrieved from the internet: on the World Wide Web affymetrix.com, retrieved on Oct. 2, 2002.
Albretsen et al., “Applications of magnetic beads with covalently attached oligonucleotides in hybridization: Isolation and detection of specific measles virus mRNA from a crude cell lysate”, Anal. Biochem. 189: 40-50, 1990.
Allawi and SantaLucia, “Thermodynamics and NMR of Internal GâT Mismatches in DNA,” Biochemistry, 36:10581-94.
Anderson et al., “Microarrayed Compound Screening to Identify Activators and Inhibitors of AMP-Activated Protein Kinase,” J. of Biomolecular Screening, 2004, 9:112.
Andersson et al., “Analysis of protein expression in cell microarrays: a tool for antibody-based proteomics.,” J Histochem Cytochem., 4(12): 1413-1423, 2006.
Andresen et al., “Deciphering the Antibodyome—Peptide Arrays for Serum Antibody Biomarker Diagnostics,” Current Proteomics, 6(1), 1-12, 2009.
Angenendt et al., “Cell-free expression and functional assay in a nanowell chip format,” Analytical Chemistry, 2004, 76(7): 1844-49.
Angenendt et al., “Generation of High Density Protein Microarrays by Cell-free in Situ Expression of Unpurified PCR Products,” Molecular and Cellular Proteomics, (2006) Ch. 5.9, pp. 1658-1666.
Armani et al., “2D-PCR: a method of mapping DNA in tissue sections, ” Lab on a Chip, 2009, 9(24):3526-34.
Atkinson, Overview of Translation: Lecture Manuscript, U of Texas (2000) DD. 6.1-6.8.
Bains et al., “A Novel Method for Nucleic Acid Sequence Determination”, Journal of Theoretical Biology, 1988, 135(3), 303-7.
Baird et al., “Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD markers,” PLOS One, 2008, 3(1 0):e3376.
Barnes, “PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates.,” Proc. Natl. Acad. Sci USA, 91: 2216-2220, 1994.
Baugh et al., “Quantitative analysis of mRNA amplification by in vitro transcription,” Nucleic Acids Res., 2001, 29:5:e29.
Bell, “A Simple Way to Treat PCR Products Prior to Sequencing Using ExoSAP-IT,” Biotechniques, 2008, vol. 44, No. 6.
Bentley et al., “Accurate whole human genome sequencing using reversible terminator chemistry”, Nature, 2008, 456:53-59.
Bielas et al., “Human cancers express a mutator phenotype,” Proc. Natl. Acad. Sci. USA, 2006, 103(48): 18238-18242.
Bielas et al., “Quantification of random genomic mutations,” Nat. Methods, 2005, 2(4):285-290.
Birney, et al., “Identification and analysis of functional elements in 1% of the human genome by the Encode pilot project,” Nature, 2007, 447:799-816.
Blokzijl et al., “Profiling protein expression and interactions: proximity liqation as a tool for personalized medicine,” J Intern. Med., 2010, 268:232-245.
Blow, “Tissue Issues,” Nature, 448(23), 959-962, 2007.
Bonfield et al., “The application of numerical estimates of base calling accuracy to DNA sequencing projects,” Nucleic Acids Research, 1995, 23(8):1406-1410.
Bowtell, “The genesis and evolution of high-grade serous ovarian cancer,” Nat. Rev. Cancer, 2010, (11 ):803-808 Abstract.
Brandon et al., “Mitochondrial mutations in cancer,” Oncogene, 2006, 25(34):4647-4662.
Brenner et al., “In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs,” Proc. Natl. Acad. Sci. USA, 2000, 97, 1665-1670.
Brenner et al., “Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays”, Nat. Biotech. 18: 630-634, 2000.
Brockman et al., “Quality scores and SNP detection in sequencing-by-synthesis systems,” Methods, 2008, 18:763-770.
Burns et al., “Well-less, gel-permeation formats for ultra-HTS,” DDT, 2001, 6(12):S40-S47.
Burton et al., “Coverslip Mounted-Immersion Cycled in Situ RT-PCR for the Localization of mRNA in Tissue Sections,” Biotechniques, 1998, 24; pp. 92-100.
Carlson et al., “Formylglycine-generating Enzyme,” J. of Biological Chemistry, 2008, 283(29):20117-125.
Carter et al., “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Applied Optics, 2007, 46:421-427.
Cerutti et al., “Generation of sequence-specific, high affinity anti-DNA antibodies,” Journal of Biological Chemistry, 2001, 276(16):12769-12773.
Cha et al., “Specificity, Efficiency and Fidelity of PCR,” Genome Res., 1993, 3:518-29.
Chandra et al., “Cell-free synthesis-based protein microarrays and their applications,” Proteomics, 2009, 5(6):717-30.
Chatterjee et al., “Protein Microarray On-Demand: A Novel Protein Microarray System,” PLos One, 2008, 3(9):e3265.
Chatterjee, et al., “Mitochondrial DNA mutations in human cancer. Oncogene,” 2006, 25(34):4663-4674.
Chen et al., “DNA hybridization detection in a microfluidic Channel using two fluorescently labelled nucleic acid probes,” Biosensors and Bioelectronics, 2008, 23:1878-1882.
Chen et al., “Spatially resolved, highly multiplexed RNA profiling in single cells”, Science 348(6233), 36 pages, 2015.
Cheng et al., “Sensitive Detection of Small Molecules by Competitive Immunomagnetic-Proximity Ligation Assay,” Anal Chem, 2012, 84:2129-2132.
Condina et al., “A sensitive magnetic bead method for the detection and identification of tyrosine phosphorylation in proteins by Maldi-Tof/Tof Ms,” Proteomics, 2009, 9:3047-3057.
Constantine et al., “Use of genechip high-density oligonucleotide arrays for gene expression monitoring,” Life Sceience News, Amersham Life Science; 11-14, 1998.
Copeland et al., “Mitochondrial DNA Alterations in Cancer,” Cancer Invest., 2002, 557-569.
Cujec et al. “Selection of v-abl tyrosine kinase substate sequences from randomnized peptide and cellular proteomic libraries using mRNA display,” Chemistry and Biology, 2002, 9:253-264.
Dahl et al., “Circle-to-circle amplification for precise and sensitive DNA analysis,” Proc. Natl. Acad. Sci., 2004, 101:4548-4553.
Darmanis, et al., “ProteinSeq: High-Performance Proteomic Analyses by Proximity, Ligation and Next Generation Sequencing,” PLos One, 2011, 6(9):e25583.
Daubendiek et al., “Rolling-Circle RNA Synthesis: Circular Oligonucleotides as Efficient Substrates for T7 RNA Polymerase,” J. Am. Chem. Soc., 1995, 117:77818-7819.
Dean et al., “Comprehensive human genome amplification using multiple displacement amplification,” Proc Natl. Acad. Sci. USA 99:5261-66 (2002.
Dhindsa et al., “Virtual Electrowetting Channels: Electronic Liquid Transport with Continuous Channel Functionality,” Lab Chip, 2010, 10:832-836.
Dressman et al., “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations,” Proc. Natl. Acad. Sci. USA, 2003, 100:8817-8822.
Drmanac et al., “Accurate sequencing by hybridization for DNA diagnostics and individual genomics,” Nature Biotechnology, 16:54-58, 1998.
Druley et al., “Quantification of rare allelic variants from pooled genomic DNA,” Nat. Methods 6: 263-65, 2009.
Duncan et al., “Affinity chromatography of a sequence-specific DNA binding protein using teflon-linked oligonucleotides”, Anal. Biochem. 169: 104-108, 1988.
Eagen, “Principles of Chromosome Architecture Revealed by Hi-C”, Trends in Biochemical Sciences, vol. 43, No. 6, 10 pages, 2018.
Eberwine et al., “Analysis of gene expression in single live neurons,” Proc. Natl. Acad. Sci., USA 89, 3010-3014, 1992.
Eberwine, “Amplification of mRNA Populations Using aRNA Generated from Immobi-lized Oligo(dT)-T7 Primed cDNA,” BioTechniques 20 (4), 584, 1996.
Eguiluz et al., “Multitissue array review: A chronological description of tissue array techniques, applications and procedures,” Pathology Research and Practice, : 8: 561-568, 2002.
Eldridge et al. “An in vitro selection strategy for conferring protease resistance to ligand binding peptides,” Protein Eng Des Sel., 22(11): 691-698, 2009.
Ellington et al., “Antibody-based protein multiplex platforms: technical and operational challenges,” Clin Chem 56(2): 186-193, 2010.
Examination Search Report for Canadian Appln. No. 2,794,522, dated Apr. 28, 2015, 3 pages.
Examination Search Report issued in Australian Appln. No. 2010278710, dated Feb. 11, 2014, 4 pages.
Examination Search Report issued in Australian Appln. No. 2010328226, dated May 9, 2013, 4 pages.
Examination Search Report issued in Australian Appln. No. 2011237729, dated Jul. 9, 2013, 3 pages.
Extended European Search Report issued in European Appln. No. 10836568.5, dated Feb. 13, 2013, 6 pages.
Extended European Search Report issued in European Appln. No. 11766613.1, dated Jan. 15, 2014, 4 pages.
Extended European Search Report issued in European Appln. No. 12767937, dated Nov. 18, 2014, 5 pages.
Extended European Search Report issued in European Appln. No. 14765026.1, dated Sep. 26, 2016, 9 pages.
Extended European Search Report issued in European Appln. No. 14816674.7, dated Feb. 3, 2017, 8 pages.
Extended European Search Report issued in European Appln. No. 14818012.8, dated Feb. 3, 2017, 8 pages.
Extended European Search Report issued in European Appln. No. 16183356.1, dated Apr. 24, 2017, 12 pages.
Fan et al., “Highly parallel SNP genotyping,” Cold Spring Symp. Quant. Biol., 68: 69-78, 2003.
Fire and Xu, “Rolling replication of short DNA circles,” Proc. Natl. Acad. Sci., 92: 4641-4645, 1995.
Flanigon et al., “Multiplex protein detection with DNA readout via mass spectrometry,” N. Biotechnol., 30(2): 153-158, 2013.
Fodor et al., “Light-Directed, Spatially Addressable Parallel Chemical Synthesis,” Science, 251(4995), 767-773, 1995.
Fredriksson et al., “Multiplexed protein detection by proximity ligation for cancer detection,” Nature Methods, 4(4): 327-29, 2007.
Fredriksson et al., “Multiplexed proximity ligation assays to profile putative plasma biomarkers relevant to pancreatic and ovarian cancer,” Clin. Chem., 5(3): 582-89, 2008.
Fredriksson et al., “Protein detection using proximity-dependent DNA ligation assays,” Nature Biotech., 20: 473-77, 2002.
Frese et al., “Formylglycine Aldehyde Tag-Protein Engineering through a Novel Posttranslational Modification,” ChemBioChem., 10: 425-27, 2009.
Fu et al., “Counting individual DNA molecules by the stochastic attachment of diverse labels,” PNAS, 108: 9026-9031, 2011.
Fullwood et al., “Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses,” Genome Res., 19: 521-532, 2009.
Gao et al., “High density peptide microarrays. In situ synthesis and applications,” Molecular Diversity, 8, 177-187, 2004.
Gnanapragasam, “Unlocking the molecular archive: the emerging use of formalin-fixed paraffin-embedded tissue for biomarker research in urological cancer,” BJU International, 105, 274-278, 2009.
Goldkom and Prockop, “A simple and efficient enzymatic method for covalent attachment of DNA to cellulose. Application for hybridization-restriction analysis and for in vitro synthesis of DNA probes.”, Nucleic Acids Res. 14: 9171-9191, 1986.
Gu et al., “Protein tag-mediated conjugation of oligonucleotides to recombinant affinity binders for proximity ligation,” N Biotechnol., 30(2): 144-152, 2013.
Gunderson et al., “Decoding Randomly Ordered DNA Arrays,” Genome Research 14: 870-877, 2004.
Hammond et al., “Profiling cellular protein complexes by proximity ligation with dual tag microarray readout,” 7(7): e40405, 2012.
He et al., “In situ synthesis of protein arrays,” Current Opinion in Biotechnology, 19: 4-9, 2008.
He et al., “Printing protein arrays from DNA arrays,” Nature Methods, 5: 175-77, 2008.
He, “Cell-free protein synthesis: applications in proteomics and biotechnology,” New Biotechnology 25: 126-132, 2008.
Hedskog et al., “Dynamics of HIV-1 Quasispecies during Antiviral Treatment Dissected using Ultra-Deep Pyrosequencing,” PLoS One, 5(7): e11345, 2010.
Hein et al., “Click Chemistry, A Powerful Tool for Pharmaceutical Sciences”, Pharm Res., 25(10): 2216-2230, 2008.
Hiatt et al., “Parallel, tag-directed assembly of locally-derived short sequence reads,” Nature Methods, 7(2): 119-25, 2010.
Inoue and Wittbrodt, “One for All—A Highly Efficient and Versatile Method for Fluorescent Immunostaining in Fish Embryos,” PLoS One 6, e19713, 2011.
Jabara et al., Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. PNAS 108(50); 20166-20171, 2011.
Jamur and Oliver, “Permeabilization of cell membranes.,” Method Mal. Biol., 588: 63-66, 2010.
Jones et al., Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl. Acad. Sci. USA 105(11): 4283-4288, 2008.
Kanehisa, “Use of statistical criteria for screening potential homologies in nucleic acid sequences”, Nucleic Acids Res. 12: 203-213, 1984.
Kap et al., “Histological Assessment of PAXgene Tissue Fixation and Stabilization Reagents,” PLoS One 6, e27704, 10 pages, 2011.
Kolb et al., “Click Chemistry: Diverse Chemical Function from a Few Good Reactions.”, Angew. Chem. Int. Ed., 40(11): 2004-2021, 2001.
Korbel et al., “Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome,” Science, 318(5849): 420-426, 2007.
Korlach et al., “Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures,” Proc. Natl. Acad. Sci. USA 105, 1176-1181, 2008.
Kozlov et al., “A High-Complexity Multiplexed Solution-Phase Assay for Profiling Protease Activity on Microarrays,” Comb. Chem. And Hiah Throuahout, 11: 24-35, 2008.
Kozlov et al., “A Highly Scalable Peptide-Based Assay System for Proteomics,” Plos One, 7(6): e37441, 2012.
Kozlov et al., “A Method for Rapid Protease Substrate Evaluation and Optimization,” Comb. Chem. and Hiah Throuahout, 9: 481-87, 2006.
Kurz et al., “eDNA-Protein Fusions: Covalent Protein-Gene Conjugates for the In Vitro Selection of Peptides and Proteins,” ChemBioChem., 2: 666-72, 2001.
Lage et al., “Whole Genome Analysis of Genetic Alterations in Small DNA Samples Using Hyperbranched Strand Displacement Amplification and Array—CGH,” Genome Research 13: 294-307, 2003.
Langdale et al., “A rapid method of gene detection using DNA bound to Sephacryl”, Gene 36: 201-210, 1985.
Larman et al., “Autoantigen discovery with a synthetic human peptidome,” Nature Biotechnology, doi:10.1038/nbt.1856, vol. 29, No. 6, pp. 535-541, 2011.
Lassmann et al., A Novel Approach For Reliable Microarray Analysis of Microdissected Tumor Cells From Formalin-Fixed and Paraffin-Embedded Colorectal Cancer Resection Specimens, J Mol Med, 87, 211-224, 2009.
Leriche et al., “Cleavable linkers in chemical biology.”, Bioorganic & Medicinal Chemistry, 20: 571-582, 2012.
Levene et al., “Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations,” Science 299, 682-686, 2003.
Li et al., “A photocleavable fluorescent nucleotide for DNA sequencing and analysis,” Proc. Natl. Acad. Sci., 100: 414-419, 2003.
Linnarsson, “Recent advances in DNA sequencing methods—general principles of sample preparation,” Experimental Cell Research, 316: 1339-1343, 2010.
Lizardi et al., “Mutation detection and single-molecule counting using isothermal rolling-circle amplification,” Nat. Genet. 19: 225-232, 1998.
Lund et al., “Assessment of methods for covalent binding of nucleic acids to magnetic beads, Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions.”, Nucleic Acids Res., 16: 10861-80, 1988.
Lundberg et al., “High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus.,” Gene., 108(1): 1-6, 1991.
Lundberg et al., “Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood,” Nucleic Acids Res., 39(15): e102, 2011.
Lundberg et al., “Multiplexed homogeneous proximity ligation assays for high-throughput protein biomarker research in serological material, ” Mol Cell Proteomics, 10(4): M110.004978, 2011.
Lundquist et al., “Parallel confocal detection of single molecules in real time,” Opt. Lett. 33, 1026-1028, 2008.
Lyck, et al., “Immunohistochemical Markers for Quantitative Studies of Neurons and Glia in Human Neocortex,” J Histochem Cytochem 56, 201-21, 2008.
MacIntyre, “Unmasking antigens for immunohistochemistry.,” Br J Biomed Sci. 58, 190-6, 2001.
McCloskey et al., “Encoding PCR Products with Batch-stamps and Barcodes.,” Biochem. Genet. 45: 761-767, 2007.
Mcgee, “Structure and Analysis of Affymetrix Arrays,” UTSW Microarray Analysis Course, Oct. 28, 2005.
McKernan et al., “Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding,” Genome Res., 19: 1527-41, 2009.
Metzker “Sequencing technologies—the next generation,” Nature Reviews Genetics, 11: 31-46, 2010.
Miller et al., “Basic Concepts of Microarrays and Potential Applications in Clinical Microbiology,” Clinical Microbiology Reviews, vol. 22, No. 4, pp. 611-633, 2009.
Mir et al., “Sequencing by cyclic ligation and cleavage (CycliC) directly on a microarray captured template,” Nucleic Acids Research, 37(1 ): e5-1, 2009.
Mitsuhashi et al., “Gene manipulation on plastic plates,” Nature 357: 519-520, 1992.
Mizusawa et al., “A bacteriophage lambda vector for cloning with BamHI and Sau3A,” Gene, 20: 317-322, 1982.
Mortazavi et al., “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, 5(7): 621-8, 2008.
Ng et al., “Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation,” Nature Methods, 2(2): 105-111, 2005.
Ng et al., “Massively parallel sequencing and rare disease,” Human Malec. Genetics, 19(2): R119-R124, 2010.
Ng et al., “Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes,” Nucleic Acids Research, Jul. 2006, 34(12): e84, 10 pages.
Niemeyer, “The developments of semisynthetic DNA-protein conjugates,” TrendsBiotechnol, Sep. 2002, 20(9): 395-401.
Nuovo, “In situ PCR: protocols and applications.,” Genome Res, Feb. 1995, 4 (4):151-167.
Oleinikov et al., “Self-assembling protein arrays using electronic semiconductor microchips and in vitro translation,” J Proteome Res, May-Jun. 2003, 2(3): 313-319.
Osada et al., “Epitope mapping using ribosome display in a resconstituted cell-free protein synthesis system,” J Biochem, May 2009, 145(5): 693-700.
O-Shannessy et al., “Detection and quantitation of hexa-histidine-tagged recombinant proteins on western blots and by a surface plasmon resonance biosensor technique,” Anal Biochem, 229(1): 119-124, 1995.
PCT International Preliminary Report on Patentability issued in International Appln. No. PCT/US2010/033064, dated Nov. 1, 2011, 6 pages.
PCT International Preliminary Report on Patentability issued in International Appln. No. PCT/US2010/044134, dated Jan. 31, 2012, 20 pages.
PCT International Preliminary Report on Patentability issued in International Appln. No. PCT/US2010/059327, dated Jun. 12, 2012, 12 pages.
PCT International Preliminary Report on Patentability issued in International Appln. No. PCT/US2011/031163, dated Oct. 9, 2012, 7 pages.
PCT International Preliminary Report on Patentability issued in International Appln. No. PCT/US2011/031308, dated Oct. 9, 2012, 7 pages.
PCT International Preliminary Report on Patentability issued in International Appln. No. PCT/US2012/032759, dated Oct. 8, 2013, 17 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/EP2013/071645, dated Dec. 11, 2013, 10 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/EP2016/057355, dated Aug. 5, 2016, 8 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US14/29691, dated Aug. 19, 2014, 10 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US14/44196, dated Nov. 7, 2014, 15 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US14/64588, dated Mar. 11, 2015, 20 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US2010/033064, dated Jul. 30, 2010, 8 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US2010/044134, dated Mar. 18, 2011, 16 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US2010/059327, dated Mar. 29, 2011, 12 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US2011/031163, dated May 23, 2011, 8 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US2011/031308, dated Jun. 7, 2011, 8 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US2012/032759, dated Sep. 28, 2012, 14 pages.
PCT International Search Report and Written Opinion issued in International Appln. No. PCT/US2014/044191, dated Nov. 7, 2014, 10 pages.
Perler et al., “Intervening sequences in an Archaea DNA polymerase gene,” PNAS USA, Jun. 1992, 89(12): 5577-5581.
Petterson et al., “Generations of sequencing technologies,” Genomics, 2009, 105-111.
Polsky-Cynkin et al., “Use of DNA Immobilizedon Plastic and Agarose Supports to DetectDNA by SandwichHybridization”, Clin. Chem. 31: 1438-1443, 1985.
Rajeswari et al., “Multiple pathogen biomarker detection using an encoded bead array in droplet PCR,” J. Microbial Methods, Aug. 2017, 139:22-28.
Ramachandran et al., “Next-generation high-density self-assembling functional protein arrays,” Nature Methods, Jun. 2008, 5(6):535-538.
Ranki et al., “Sandwich hybridization as a convenient method for the detection of nucleic acids in crude samples”, Gene 21: 77-85, cellulose, 1983.
Roberts et al., “RNA-peptide fusions for the in vitro selection of peptides and proteins,” PNAS USA, Nov. 1997, 94: 12297-122302.
Ronaghi et al., “A sequencing method based on real-time pyrophosphate,” Science, Jul. 1998, 281(5375): 363-365.
Ronaghi et al., “Real-time DNA sequencing using detection of pyrophosphate release,” Analytical Biochemistry, Nov. 1996, 242(1): 84-89.
Ronaghi, “Pyrosequencing sheds light on DNA sequencing,” Genome Res, Jan. 2001, 11(1):3-11.
Rouillard et al., “OligoArray 2.0: design of oligonucleotide probes for DNA microarrays usina a thermodynamic approach,” Nuc. Acid Research, Jun. 2003, 31(12): 3057-3062.
Rountenberg et al., “Microfluidic probe: a new tool for integrating microfluidic environments and electronic wafer-orobina,” Lab Chip, Oct. 2009, 10: 123-127.
Rubin et al., “Whole-genome resequencing reveals loci under selection during chicken domestication.,” Nature, Mar. 2010, 464: 587-591.
Rush et al., “New Aldehyde Tag Sequences Identified by Screening Formylglycine Generating Enzymes in Vitro and in Vivo,” J. of American Chemical Society, Aug. 2008, 130(37): 12240-12241.
Schena et al., “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, Oct. 1995, 270(5235): 467-470.
Schena et al., “Entering the Postgenome Era,” Science, 1995, 270:368-9, 371.
Schlapak et al., “Glass surfaces grafted with high-density poly (ethylene glycol) as substrates for DNA oligonucleotide microarrays,” Langinuir, Jan. 2006, 22: 277-285.
Schmitt et al., “Detection of ultra-rare mutations by next-generation sequencing,” PNAS (2012) 109:14508-14523.
Search Report issued in Application No. GB1106254.4, dated Mar. 29, 2012, in 1 page.
Sergeeva et al., “Display technologies: Application for the discovery of drug and gene delivery aaents,” Advanced Drua Delivery Reviews (2006) 58(15):1622-1654.
Seurynck-Servoss et al., “Evaluation of Surface Chemistries for Antibody Microarrays”, Anal Biochem., 371(1): 105-115, 2007.
Shelbourne et al., “Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction.”, Chem. Commun., 47: 6257-6259, 2011.
Shendure et al., “Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome,” Science, 2005, 309:1728-1732.
Shi et al., “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nature Biotechnology, 2006, 24(9):1151-61.
Shirai et al., “Novel Tools for Analyzing Gene Expressions in Single Cells,” The 5th International Workshop on Approaches to Single-Cell Analysis, The University of Tokyo, Mar. 3-4, 2011, 1 page.
Shoemaker et al., “Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy,” Nature genetics (1996) 14:450-456.
Shults et al., “A multiplexed protein kinase assay,” Chem Bio Chem (2007) 8:933-942.
Sievertzon et al., “Transcriptome analysis in primary neural stem cells using a tag cDNA amplification method,” BMC Neuroscience, Dec. 2005, 6: 28.
Slonim and Yanai, “Getting started in gene expression microarray analysis,” Plos Computational Biology, 2009, 5(10):e1000543.
Soni and Meller, “Progress toward ultrafast DNA sequencing using solid-state nanopores,” Clin Chem., 2007, 53: 1996-2001.
Spurgeon et al., “High Throughput Gene Expression Measurement with Real Time PCR in a Microfluidic Dynamic Array,” PlosONE, 2008, 3(2):e1662.
Summersgill et al., “Fluorescence In Situ Hybridization Analysis of Formalin Fixed Paraffin Embedded Tissues, Including Tissue Microarrays,” Chapter 4, Bridger, J. Ed., Methods in Molecular Biology 659, 2010, 51-70, 2010.
Sun et al., “Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay,” Anal. Bio. Chem., 402: 741-748, 2012.
Takahashi et al., “In Vitro Selection of Protein and Peptide Libraries Using mRNA Display,” Nucleic Acid and Peptide Aptamers: Methods and Protocols (2009) 535:293-314 (Ch. 17).
Tang et al., “RNA-Seq analysis to capture the transcriptome landscape of a single cell.,” Nat Protoc., 5: 516-35, 2010.
Taniguchi et al., “Quantitative analysis of gene expression in a single cell by qPCR,” Nature Methods, 6, pp. 503-506, 2009.
Taylor et al., “Mitochondrial DNA mutations in human disease.” Nature Reviews Genetics. May 2005, 6(5):389-402.
Thornton, “High rate thick film growth.” Annual review of materials science, Aug. 1977, 7(1):239-60.
Tian et al., “Antigen peptide-based immunosensors for rapid detection of antibodies and antigens,” Anal Chem May 26, 2009, 81 (13):5218-5225.
Tijssen, “Overview of principles of hybridization and the strategy of nucleic acid assays” in Techniques in 5 Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes 1993.
Tolbert et al., “New Methods for Proteomic Research: Preparation of Proteins with N-Terminal Cysteines for Labeling and Conjugation” Angewandte Chemie International Edition, Jun. 17, 2002, 41(12):2171-4.
Valencia et al., “mRNA-Display-Based Selections for Proteins with Desired Functions: A Protease-Substrate Case Study.” Biotechnology progress, May 2008, 24(3):561-9.
Van Gelder et al., “Amplified RNA synthesized from limited quantities of heterogeneous cDNA,” Proc. Natl. Acad. Sci. USA 87, 1663-1667, 1990.
Van Ness et al., “A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays”, Nucleic Acids Res. 19: 3345-3350, 1991.
Velculescu et al., “Serial analysis of gene expression.” Science, Oct. 20, 1995, 270(5235):484-7.
Vogelstein et al., “Digital PCR,” Proceedings of the National Academy of Sciences, Aug. 3, 1999, 96:9236-9241.
Wade et al., “Genome sequence, comparative analysis, and population genetics of the domestic horse.,” Science., 326: 865-7, 2009.
Waichman et al., “Functional immobilization and patterning of proteins by an enzymatic transfer reaction.” Analytical chemistry, Jan. 21, 2010, 82(4): 1478-85.
Walker et al., “Strand displacement amplification—an isothermal, in vitro DNA amplification technique.” Nucleic acids research. Apr. 11, 1992, 1992, 20(7): 1691-1696.
Wang et al., “Single cell analysis: the new frontier in ‘omics’., ” Trends Biotechnol., 28: 281-90, 2010.
Wang et al., “High-fidelity mRNA amplification for gene profiling.” Nature biotechnology. Apr. 2000, 18(4):457-459.
Weichhart et al., “Functional selection of vaccine candidate peptides from Staphylococcus aureus whole-genome expression libraries in vitro,” Infection and Immunity, 2003, 71 (8):4333-4641.
Willi-Monnerat et al., “Comprehensive spatiotemporal transcriptomic analyses of the ganglionic eminences demonstrate the uniqueness of its caudal subdivision,” Molecular and Cellular Nueorsciences 37: 845-856, 2008.
Wolf et al., “Rapid hybridization kinetics of DNA attached to submicron latex particles”, Nucleic Acids Res. 15: 2911-2926, 1987.
Wong et al., “Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase,” J. Am. Chem Soc., 2008, 130:12456-64.
Woo et al., “A Comparison of cDNA, Oligonucleotide, and Affymetrix GeneChip Gene Expression Microarray Platforms,” Journal of Biomolecular Techniques, 2004, 15(4), 276-284.
Worthington et al., “Cloning of random oligonucleotides to create single-insert plasmid libraries,” Analyt. Biochem, 2001, 294:169-175.
Xiao et al., “Direct determination of haplotypes from single DNA molecules,” Nature Methods, 2009, 6(3): 199-01.
Yin et al., “Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase,” PNAS, 2005, 102(44):15815-20.
Yonezawa et al., “DNA display for in vitro selection of diverse peptide libraries,” Nucleic Acids Research, 2003, 31 (19):e118.
Zhang et al., “Assembling DNA through Affinity Binding to Achieve Ultrasensitive Protein Detection,” Anaew Chem Int Ed (2013) 52:2-10.
Zhang et al., “Binding-induced DNA assembly and its application to yoctomole detection of proteins,” Anal Chem (2012) 84(2):877-884.
Zheng et al., Origins of human mitochondrial point mutations as DNA polymerase mediated errors. Mutat. Res. 599(1-2): 11-20 (2006.
Zhou et al., “Genetically Encoded Short Peptide Tags for Orthogonal Protein Labeling by Sfp and Ac S Phos ho entethein I Transferases,” ACS Chemical Biolo 2007 2 5 : 337-346.
Zilberman et al., “Genome-wide analysis of DNA methylation patterns,” Development (2007) 134: 3959-3965.
Zlobec et al., “Next-generation tissue microarray (ngTMA) increases the quality of biomarker studies: an example using CD3, CD8, and CD45RO in the tumor microenvironment of six different solid tumor t es,” Journal of Translational Medicine 2013 11:104.
Chung et al., “Structural and molecular interrogation of intact biological systems,” Nature, May 16, 2013, 497:332-337.
Schwartz et al., “Capturing native long-range contiguity by in situ library construction and optical sequencing,” PNAS, Nov. 13, 2012, 109(46): 18749-18754.
Thiery et al., “Multiplex target protein imaging in tissue sections by mass spectrometry—Tamsim,” Rapid Commun. Mass Spectrom., 2007, 21:823-829.
Cornett et al., “Maldi imaging mass spectrometry: molecular snapshots of biochemical systems,” Nature Methods, 2007, 4(10):828-833.
Agasti et al., “Photocleavable DNA Barcode-Antibody Conjugates Allow Sensitive and Multiplexed Protein Analysis in Single Cells,” Journal of the American Chemical Society, Oct. 23, 2012, 134(45): 18499-18502.
Bos et al., “In Vitro Evaluation of DNA-DNA Hybridization as a Two-Step Approach in Radioimmunotherapy of Cancer,” Cancer Res., Jul. 1, 1994, 54(13):3479-3486.
Hendrickson et al., “High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction,” Nucleic Acid Research, Feb. 11, 1995, 23(3):522-529.
Kuijpers et al. “Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer.” Bioconjugate Chem., Jan. 1, 1993, 4(1):94-102.
Malkov et al., “Multiplexed measurements of gene signatures in different analytes using the Nanostring nCounter™ Assay System.” BMC research notes., 2009, 2:80.
Materna et al., “High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development,” Gene Expr Patterns., 2010, 10(4-5):177-184.
Nam et al., “Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins,” Science, Sep. 26, 2003, 301(5641): 1884-1886.
Palamanda et al., “Evaluation of CYPIA1 and CYP2B1/2 m-RNA Induction in Rat Liver Slices Using the NanoString® Technology: A Novel Tool for Drug Discovery Lead Optimization,” Drug metabolism letters, Nov. 3, 2009. 3(3):171-175.
Patton et al., “Rainbow's end: the quest for multiplexed fluorescence quantitative analysis in proteomics.” Current Opinion in Chemical Biology, Feb. 1, 2002, 6(1):63-69.
U.S. Appl. No. 61/267,363, filed Dec. 7, 2009 (Year: 2009).
Sano et al., “Immuno-PCR: Very Sensitive Antigen Detection by Means of Specific Antibody-DNA Conjugates,” Science, Oct. 2, 1992, 258(5079):120-122.
Soderberg et al. “Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay,” Methods, Jul. 2008, 45(3):227-232.
Soderberg et al., “Direct observation of individual endogenous protein complexes in situ by proximity ligation,” Nature Methods, 2006, 3:995-1000.
Son et al., “A platform for ultrasensitive and selective multiplexed marker protein assay toward early-stage cancer diagnosis,” Nanomedicine, Feb. 7, 2007, 2(1):79-82.
Akeroyd, “Click chemistry for the preparation of advanced macromolecular architectures,” Stellenbosch University, PhD Dissertation, Mar. 2010, 138 pages.
Grokhovsky, “Specificity of DNA cleavage by ultrasound,” Molecular Biology, 2006, 40(2):276-283.
Halova et al., “Mast cell chemotaxis—chemoattractants and signaling pathways,” Front Immunol., May 2012, 3:119, 20 pages.
Smejkal et al., “Microfluidic isotachophoresis: a review,” Electrophoresis, Jun. 2013, 34(11): 1493-1509.
Hahnke et al., “Striptease on glass: validation of an improved stripping procedure for in situ microarrays,” J Biotechnol., Jan. 2007, 128(1): 1-13.
Hu et al., “High reproducibility using sodium hydroxide-stripped long oligonucleotide DNA microarrays.” Biotechniques, Jan. 2005, 38(1): 121-4.
Zhang et al., “Stripping custom microRNA microarrays and the lessons learned about probe-slide interactions,” Anal Biochem., Mar. 2009, 386(2):222-7.
Scholz et al., “The Molecular Chaperone Hsp90 Is Required for Signal Transduction by Wild-Type Hck and Maintenance of Its Constitutively Active Counterpart1,” Cell Growth Differ., Aug. 2001, 12(8):409-417.
Blanchard et al., “High-density oligonucleotide arrays,” Biosensors & Bioelectronics, 1996, 11(6-7):687-690.
Brow, “35—The Cleavase I enzyme for mutation and polymorphism scanning,” PCR Applications Protocols for Functional Genomics, 1999, pp. 537-550.
Hober et al., “Human protein atlas and the use of microarray technologies,” Curr Opin Biotechnol., Feb. 2008, 19(1):30-35.
Hytönen et al., “Design and construction of highly stable, protease-resistant chimeric avidins,” J Biol Chem., Mar. 2005, 280(11):10228-33.
Punwaney et al., “Human papillomavirus may be common within nasopharyngeal carcinoma of Caucasian Americans: investigation of Epstein-Barr virus and human papillomavirus in eastern and western nasopharyngeal carcinoma using ligation-dependent polymerase chain reaction,” Head & Neck, Jan. 1999, 21(1):21-29.
Zieba et al., “Bright-field microscopy visualization of proteins and protein complexes by in situ proximity ligation with peroxidase detection,” Clin Chem, Jan. 2010, 56(1):99-110.
U.S. Appl. No. 13/080,616, filed Oct. 6, 2011, Chee.
U.S. Appl. No. 16/984,034.
U.S. Appl. No. 61/839,313, filed Jun. 25, 2013, Chee et al.
U.S. Appl. No. 61/839,320, filed Jun. 25, 2013, Chee et al.
U.S. Appl. No. 61/902,105, filed Nov. 8, 2013, Kozlov et al.
U.S. Appl. No. 62/839,575, filed Apr. 26, 2019, Bent et al.
[No Author Listed], “Microarray technologies have excellent possibilities in genomics-related researches,” Science Tools From Amersham Pharmacia Biotech, 1998, 3(4): 8 pages (with English Translation).
Abaan et al., “The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology,” Cancer Res., Jul. 2013, 73(14):4372-82.
Adessi et al., “Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms,” Nucl. Acids Res., Oct. 2000, 28(20):E87, 8 pages.
Adiconis et al., “Comparative analysis of RNA sequencing methods for degraded or low-input samples,” Nat Methods, Jul. 2013, 10(7):623-9.
Agbavwe et al., “Efficiency, error and yield in light-directed maskless synthesis of DNA microarrays,” Journal of Nanobiotechnology, Dec. 2011, 9:57, 17 pages.
Andresen et al., “Helicase-dependent amplification: use in OnChip amplification and potential for point-of-care diagnostics,” Expert Rev Mol Diagn., Oct. 2009, 9(7):645-650.
Beattie et al., “Advances in genosensor research,” Clin Chem., May 1995, 41(5):700-6.
Bechara et al., “Cell-penetrating peptides: 20 years later, where do we stand?,” FEBS Lett., Jun. 2013, 587(12):1693-702.
Beier et al., “Versatile derivatisation of solid support media for covalent bonding on DNA-microchips,” Nucleic Acids Res., May 1999, 27(9):1970-7.
Boeke et al., “Transcription and reverse transcription of retrotransposons,” Annu Rev Microbiol, 1989, 43:403-34.
Brown et al., “Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein,” Proc Natl Acad Sci USA, Apr. 1989, 86(8):2525-9.
Chial, “DNA Sequencing Technologies Key to the Human Genome Project,” Nature Education, 2008, 1(1):219, 7 pages.
Chiang et al., “NFkappaB translocation in human microvessel endothelial cells using a four-compartment subcellular protein redistribution assay,” J Biochem Biophys Methods, Nov. 2000, 46(1-2):53-68.
Chrisey et al., “Covalent attachment of synthetic DNA to self-assembled monolayer films,” Nucleic Acids Res., Aug. 1996, 24(15):3031-9.
Cockroft et al., “A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution,” J Am Chem Soc., Jan. 2008, 130(3):818-20.
Colegio et al., “In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni,” J Bacteriol., Apr. 2001, 183(7):2384-8.
Cook et al., “The effects of secondary structure and O2 on the formation of direct strand breaks upon UV irradiation of 5-bromodeoxyuridine-containing oligonucleotides,” Chem Biol., Jul. 1999, 6(7):451-9.
Cox et al., “Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics,” Nat Protoc., 2006, 1(4):1872-8.
Craig, “Transposon Tn7” Curr Top Microbiol Immunol., 1996, 204:27-48.
Craig, “V(D)J recombination and transposition: closer than expected,” Science, Mar. 1996, 271(5255):1512, 1 page.
Deamer et al., “Characterization of nucleic acids by nanopore analysis,” Acc Chem Res., Oct. 2002, 35(10):817-25.
Deamer et al., “Nanopores and nucleic acids: prospects for ultrarapid sequencing,” Trends Biotechnol., Apr. 2000, 18(4):147-51.
Deibel et al., “Biochemical properties of purified human terminal deoxynucleotidyltransferase,” J Biol Chem., May 1980, 255(9):4206-12.
Devine et al., “Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis,” Nucleic Acids Res., Sep. 1994, 22(18):3765-72.
Doddridge et al., “UV-induced strand break damage in single stranded bromodeoxyuridine-containing DNA oligonucleotides,” Chem Commun., 1998, p. 1997-1998.
Duhr et al., “Why molecules move along a temperature gradient,” Proc Natl Acad Sci USA, Dec. 2006, 103(52):19678-19682.
Fahy et al., “Design and synthesis of polyacrylamide-based oligonucleotide supports for use in nucleic acid diagnostics,” Nucleic Acids Res., Apr. 1993, 21(8):1819-26.
Fang et al., “Fluoride-cleavable biotinylation phosphoramidite for 5′-end-labeling and affinity purification of synthetic oligonucleotides,” Nucleic Acids Res., Jan. 2003, 31(2):708-715.
Ferreira et al., “Photocrosslinkable Polymers for Biomedical Applications,” Biomedical Engineering—Frontiers and Challenges, Prof. Reza, 2011, 22 pages.
Gans et al., “Inkjet Printing of Polymers: State of the Art and Future Developments,” Advanced Materials, Feb. 2004, 16(3):203-213.
Genome.ucsc.edu, [online], “Genome Browser Gateway,” 2000, retrieved on Jun. 11, 2021, retrieved from URL<https://genome.ucsc.edu/cgi-bin/hgGateway>, 3 pages.
Gill et al., “Nucleic acid isothermal amplification technologies: a review,” Nucleosides Nucleotides Nucleic Acids, Mar. 2008, 27(3):224-43.
Gilles et al., “Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips,” Nat Biotechnol, Apr. 1999, 17(4):365-70.
Glass et al., “Simple: a sequential immunoperoxidase labeling and erasing method,” J. Histochem. Cytochem., Oct. 2009, 57(10):899-905.
Gloor, “Gene targeting in Drosophila,” Methods Mol Biol., 2004, 260:97-114.
Goryshin et al., “Tn5 in vitro transposition,” J Biol Chem., Mar. 1998, 273(13):7367-74.
Gudjonsson et al., “Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia,” J Mammary Gland Biol Neoplasia, Jul. 2005, 10(3):261-72.
Guo et al., “Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports,” Nucleic Acids Res., Dec. 1994, 22(24):5456-65.
Hardenbol et al., “Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay,” Genome Res., Feb. 2005, 15(2):269-75.
Hardenbol et al., “Multiplexed genotyping with sequence-tagged molecular inversion probes,” Nature Biotechnol., Jun. 2003, 21(6):673-678.
Healy, “Nanopore-based single-molecule DNA analysis,” Nanomedicine (Lond), Aug. 2007, 2(4):459-81.
Hlubek et al., “Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer,” Int J Cancer., Nov. 2007, 121(9):1941-8.
Ho et al., “Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains,” PNAS, Oct. 2002, 99(20):12709-14.
Holmstrøm et al., “A highly sensitive and fast nonradioactive method for detection of polymerase chain reaction products,” Anal Biochem, Mar. 1993, 209(2):278-83.
Hoyer et al., “Electrostatic spraying: a novel technique for preparation of polymer coatings on electrodes,” Anal Chem, Nov. 1996, 68(21):3840-4.
Hycultbiotech.com, [online], “Immunohistochemistry, Paraffin” Apr. 2010, retrieved on Apr. 16, 2020, retrieved from URL<https://www.hycultbiotech.com/media/wysiwyg/Protocol_Immunohistochemistry_Paraffin_2.pdf>, 3 pages.
Ichikawa et al., “In vitro transposition of transposon Tn3,” J Biol. Chem., Nov. 1990, 265(31):18829-32, Abstract.
Jain, “Transport of molecules, particles, and cells in solid tumors,” Annu. Rev. Biomed. Eng., 1999, 1:241-263.
Jawhar et al., “Tissue Microarray: A rapidly evolving diagnostic and research tool,” Annals of Saudi Medicine, Mar. 2009, 29(2):123-7.
Joos et al., “Covalent attachment of hybridizable oligonucleotides to glass supports,” Anal Biochem., Apr. 1997, 247(1):96-101.
Kirby et al., “Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue,” Mol Microbiol., Jan. 2002, 43(1):173-86.
Kleckner et al., “Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro,” Curr Top Microbiol Immunol., 1996, 204:49-82.
Koch et al., “Photochemical immobilization of anthraquinone conjugated oligonucleotides and PCR amplicons on solid surfaces,” Bioconjugate Chem., Jul. 2000, 11(4):474-483.
Kolbert et al., “Ribosomal DNA sequencing as a tool for identification of bacterial pathogens,” Curr Opin Microbiol, Jun. 1999, 2(3):299-305.
Kristensen et al., “High-Throughput Methods for Detection of Genetic Variation,” BioTechniques, Feb. 2001, 30(2):318-332.
Kwok, “High-throughput genotyping assay approaches,” Pharmocogenomics, Feb. 2000, 1(1):95-100.
Lampe et al., “A purified mariner transposase is sufficient to mediate transposition in vitro,” Embo J., Oct. 1996, 15(19):5470-9.
Lamture et al., “Direct detection of nucleic acid hybridization on the surface of a charge coupled device,” Nucleic Acid Res., Jun. 1994, 22(11):2121-5.
Landegren et al., “Reading bits of genetic information: methods for single-nucleotide polymorphism analysis,” Genome Res., Aug. 1998, 8(8):769-76.
Li et al., “DNA molecules and configurations in a solid-state nanopore microscope,” Nat Mater., Sep. 2003, 2(9):611-5.
Li et al., “RASL-seq for Massively Parallel and Quantitative Analysis of Gene Expression,” Curr Protoc Mol Biol., Apr. 2012, 4(13):1-10.
Liu et al., “Surface and interface control on photochemically initiated immobilization,” J Am Chem Soc., Nov. 2006, 128(43):14067-72.
Lu et al., “A microfluidic electroporation device for cell lysis,” Lab Chip., Jan. 2005, 5(1):23-29.
Lundin et al., “Increased throughput by parallelization of library preparation for massive sequencing,” PLoS One, Apr. 2010, 5(4): e10029, 7 pages.
Miele et al., “Mapping cis- and trans-chromatin interaction networks using chromosome conformation capture (3C),” Methods Mol Biol., 2009, 464:105-21.
Mitra et al., “Digital genotyping and haplotyping with polymerase colonies,” Proc. Natl. Acad. Sci. USA, May 2003, 100(10):5926-5931.
Mitra et al., “Fluorescent in situ sequencing on polymerase colonies,” Anal Biochem, Sep. 2003, 320(1):55-65.
Mitra et al., “In situ localized amplification and contact replication of many individual DNA molecules,” Nucleic Acids Res., Dec. 1999, 27(24):e34, 6 pages.
Moshrefzadeh et al., “Nonuniform photobleaching of dyed polymers for optical waveguides,” Applied Physics Letters, 1993, 62:16-18.
Motea et al., “Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase,” Biochim Biophys Acta., May 2010, 1804(5):1151-66.
Nandakumar et al., “How an RNA Ligase Discriminates RNA versus DNA Damage,” Molecular Cell, 2004, 16(2):211-221.
Nichols et al., “RNA Ligases,” Curr Protoc Mol Biol., Oct. 2008, 84(1):3.15.1-3.15.4.
Nicholson, “Diffusion and related transport mechanisms in brain tissue,” Rep. Prog. Phys., Jun. 2001, 64(7):815-884.
Nikiforov et al., “The use of 96-well polystyrene plates for DNA hybridization-based assays: an evaluation of different approaches to oligonucleotide immobilization,” Anal Biochem, May 1995, 227(1):201-9.
Niklas et al., “Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells,” Anal Biochem, Sep. 2011, 416(2):218-27.
Ohtsubo et al., “Bacterial insertion sequences,” Curr Top Microbiol Immunol., 1996, 204:1-26.
Oren et al., “Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study,” Biochemistry, Feb. 1997, 36(7):1826-35.
Pandey et al., “Inhibition of terminal deoxynucleotidyl transferase by adenine dinucleotides. Unique inhibitory action of Ap5A,” FEBS Lett., Mar. 1987, 213(1):204-8.
Park et al., “The Estimation of Breast Cancer Disease-Probability by Difference of Individual Susceptibility,” Cancer Res. Treat., Feb. 2003, 35(1):35-51, Abstract.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/EP2012/056823, dated Oct. 15, 2013, 7 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/EP2013/071645, dated Apr. 21, 2015, 6 pages.
PCT International Search Report and Written Opinion in International Appln. No. PCT/EP2012/056823, dated Jun. 29, 2012, 12 pages.
Pemov et al., “DNA analysis with multiplex microarray-enhanced PCR,” Nucl. Acids Res., Jan. 2005, 33(2):e11, 9 pages.
Pipenburg et al., “DNA detection using recombination proteins,” PLoS Biol., Jul. 2006, 4(7):e204, 7 pages.
Pirici et al., “Antibody elution method for multiple immunohistochemistry on primary antibodies raised in the same species and of the same subtypem,” J. Histochem. Cytochem., Jun. 2009, 57(6):567-75.
Plasterk, “The Tc1/mariner transposon family,” Curr Top Microbiol Immunol., 1996, 204:125-43.
Pluen et al., “Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations,” Biophys J., Jul. 1999, 77(1):542-552.
Raab et al., “Human tRNA genes function as chromatin insulators,” Embo J., Jan. 2012, 31(2):330-50.
Ramanujan et al., “Diffusion and convection in collagen gels: implications for transport in the tumor interstitium,” Biophys. J., Sep. 2002, 83(3):1650-1660.
Raouane et al., “Lipid conjugated oligonucleotides: a useful strategy for delivery,” Bioconjug Chem., Jun. 2012, 23(6):1091-104.
Reinartz et al., “Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms,” Brief Funct Genomic Proteomic, Feb. 2002, 1(1):95-104.
Reznikoff, “Tn5 as a model for understanding DNA transposition,” Mol Microbiol., Mar. 2003, 47(5):1199-206.
Rogers et al., “Immobilization of oligonucleotides onto a glass support via disulfide bonds: A method for preparation of DNA microarrays,” Anal Biochem., Jan. 1999, 266(1):23-30.
Rogers et al., “Use of a novel cross-linking method to modify adenovirus tropism,” Gene Ther., Dec. 1997, 4(12):1387-92.
Rubina et al., “Hydrogel-based protein microchips: manufacturing, properties, and applications,” Biotechniques, May 2003, 34(5):1008-14.
Running et al., “A procedure for productive coupling of synthetic oligonucleotides to polystyrene microtiter wells for hybridization capture,” Biotechniques, Mar. 1990, 8(3):276-279.
Shalon et al., “A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization,” Genome Res., Jul. 1996, 6(7):639-45.
Shi, “Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies,” Clin. Chem., Feb. 2001, 47(2):164-172.
Simonis et al., “Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C),” Nat Genet., Nov. 2006, 38(11):1348-54.
Stevens Jr. et al., “Enhancement of phosphoprotein analysis using a fluorescent affinity tag and mass spectrometry,” Rapid Commun Mass Spectrom, 2005, 19(15):2157-62.
Stimpson et al., “Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides,” Proc Natl Acad Sci USA, Jul. 1995, 92(14):6379-83.
Stoddart et al., “Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore,” PNAS U S A., May 2009, 106(19):7702-7707.
Stroh et al., “Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo,” Nat Med., Jun. 2005, 11(6):678-82.
Surzhik et al., “Template-dependent biosynthesis of poly(G) x poly (C) and its antiviral activity in vitro and in vivo,” Antiviral Res., May 1988, 38(2):131-40.
Swartz et al., “Interstitial flow and its effects in soft tissues,” Annu Rev Biomed Eng., 2007, 9:229-56.
Syková et al., “Diffusion in brain extracellular space,” Physiol Rev., Oct. 2008, 88(4):1277-340.
Thorne et al., “In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space,” Proc Natl Acad Sci USA, Apr. 2006, 103(14):5567-5572.
Timofeev et al., “Regioselective immobilization of short oligonucleotides to acrylic copolymer gels,” Nucleic Acids Res., Aug. 1996, 24(16):3142-8.
Twyman et al., “Techniques Patents for SNP Genotyping,” Pharmacogenomics, Jan. 2003, 4(1):67-79.
Vandernoot et al., “cDNA normalization by hydroxyapatite chromatography to enrich transcriptome diversity in RNA-seq applications,” Biotechniques, Dec. 2012, 53(6):373-80.
Vasiliskov et al., “Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization,” Biotechniques, Sep. 1999, 27(3):592-606.
Vincent et al., “Helicase-dependent isothermal DNA amplification,” Embo Rep., Aug. 2004, 5(8):795-800.
Viollet et al., “T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis,” BMC Biotechnol., Jul. 2011, 11:72, 14 pages.
Weinreich et al., “Evidence that the cis Preference of the Tn5 Transposase is Caused by Nonproductive Multimerization,” Genes and Development, Oct. 1994, 8(19):2363-2374.
Wilson et al., “New transposon delivery plasmids for insertional mutagenesis in Bacillus anthracis,” J Microbiol Methods, Dec. 2007, 71(3):332-5.
Xie et al., “CryoFish: Fluorescence In Situ Hybridization on Ultrathin Cryosections,” Fluorescence in situ Hybridization (FISH), Jul. 2010, pp. 221-230.
Yeakley et al., “Profiling alternative splicing on fiber-optic arrays,” Nature Biotechnology, Apr. 2002, 20(4):353-358.
Yershov et al., “DNA analysis and diagnostics on oligonucleotide microchips,” Proc. Natl. Acad. Sci. USA, May 1996, 93(10):4913-4918.
Zhang et al., “A novel mechanism of transposon-mediated gene activation,” PLoS Genet., Oct. 2009, 5(10):e1000689, 10 pages.
Zhang et al., “Single-base mutational analysis of cancer and genetic diseases using membrane bound modified oligonucleotides,” Nucleic Acids Res., Jul. 1991, 19(14):3929-33.
U.S. Appl. No. 16/402,098, US-2019-0271030-A1, U.S. Pat. No. 10,472,669, filed May 2, 2019, Mark S. Chee.
U.S. Appl. No. 16/437,726, US-2011-0245111-A1, filed Jun. 1, 2019, Mark S. Chee.
U.S. Appl. No. 16/669,246, US-2020-0063195-A1, U.S. Pat. No. 10,982,568, filed Oct. 30, 2019, Mark S. Chee.
U.S. Appl. No. 17/030,230, US-2011-0002713-A1, filed Sep. 23, 2020, Mark S. Chee.
U.S. Appl. No. 17/032,317, US-2021-0017586-A1, filed Sep. 25, 2020, Mark S. Chee.
U.S. Appl. No. 17/144,971, US-2021-0130883-A1, U.S. Pat. No. 11,001,879, filed Jan. 8, 2021, Mark S. Chee.
U.S. Appl. No. 16/986,922, 2021-0010068-A1, U.S. Pat. No. 10,927,403, filed Aug. 6, 2020, Mark S. Chee.
U.S. Appl. No. 17/180,356, US-2021-0172007-A1, U.S. Pat. No. 11,046,996, filed Feb. 19, 2021, Mark S. Chee.
Fu et al., “Repeat subtraction-mediated sequence capture from a complex genome,” Plant J., Jun. 2010. 62(5):898-909.
Lee et al., “Improving the efficiency of genomic loci capture using oligonucleotide arrays for high throughput resequencing,” BMC Genomics, Dec. 2009, 10:646, 12 pages.
[No Author Listed], “HuSNP Mapping Assay User's Manual,” Affymetrix Part No. 90094 (Affymetrix, Santa Clara, Calif.), GeneChip, 2000, 104 pages.
Blandini et al., “Animal models of Parkinson's disease,” Febs J., Apr. 2012, 279(7):1156-66.
Dawson et al., “Genetic animal models of Parkinson's disease,” Neuron, Jun. 2010, 66(5):646-661.
Extended European Search Report in European Appln. No. 18208823.7, dated May 6, 2019, 12 pages.
Genbank Accession No. AC037198.2, “Homo sapiens chromosome 15 clone CTD-2033D15 map 15q14. *** Sequencing in Progress *** , 62 unordered pieces,” Apr. 25, 2000, 39 pages.
Genbank Accession No. AC087379.2, “Homo sapiens chromosome 11 clone RP11-396O20 map 11, *** Sequencing in Progress *** , 5 ordered pieces,” Jul. 6, 2002, 47 pages.
Genbank Accession No. AC087741.1, “Homo sapiens chromosome 17 clone RP11-334C17 map 17, Low-Pass Sequence Sampling,” Jan. 22, 2001, 18 pages.
Genbank Accession No. AC100826.1, “Homo sapiens chromosome 15 clone RP11-279F6 map 15, Low-Pass Sequence Sampling,” Nov. 22, 2001, 21 pages.
Genbank Accession No. AL445524.1, “Homo sapiens chromosome 1 clone RP11-295G20, Working Draft Sequence, 19 unordered pieces,” Oct. 14, 2000, 47 pages.
Gotz et al., “Animal models of Alzheimer's disease and frontotemporal dementia,” Nat Rev Neurosci., Jul. 2008, 9(7):532-44.
LaFerla et al., “Animal models of Alzheimer disease,” Cold Spring Harb Perspect Med., Nov. 2012, 2(11):a006320, 14 pages.
Nagahara et al., “Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease,” Nat Med., Mar. 2009, 15(3):331-337.
Robinson et al., “Small-sample estimation of negative binomial dispersion, with applications to Sage data,” Biostatistics, Apr. 2008, 9(2):321-332.
Schmidt et al., “Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in Alzheimer's disease,” PloS one, May 2013, 8(5):e63136, 6 pages.
Wang, “RNA amplification for successful gene profiling analysis,” J Transl Med., Jul. 2005, 3:28, 11 pages.
Yu et al., “Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size,” Bioinformatics, May 2013, 29(10):1275-1282.
Schweitzer et al., “Multiplexed protein profiling on microarrays by rolling-circle amplification,” Nature Biotechnology, Apr. 2002, 20(4):359-365.
Albretsen et al., “Optimal conditions for hybridization with oligonucleotides: a study with myc-oncogene DNA probes,” Anal Biochem., Apr. 1988, 170(1):193-202.
Altaras et al., “Production and formulation of adenovirus vectors,” Adv Biochem Eng Biotechnol., Nov. 2005, 99:193-260.
Balakrishnan et al., “Flap endonuclease 1,” Annu Rev Biochem., Jun. 2013, 82:119-138.
Barbie et al., “Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1,” Nature, Nov. 2009, 462(7269):108-12.
Berger et al., “Universal bases for hybridization, replication and chain termination,” Nucleic Acid Res., Aug. 2000, 28(15):2911-2914.
Biol.wwu.edu [online], “Principles of Di-Base Sequencing and the Advantages of Color Space Analysis in the SOLiD System,” 2008, retrieved on Mar. 11, 2022, retrieved from URL<https://biol.wwu.edu//young/470/stuff/abi-solid.pdf>, 4 pages.
Blair et al., “Microarray temperature optimization using hybridization kinetics,” Methods Mol Biol., 2009, 529:171-96.
Blanco et al., “A practical approach to FRET-based PNA fluorescence in situ hybridization,” Methods, Dec. 2010, 52(4):343-51.
Bootman et al., “Loading fluorescent Ca2+ indicators into living cells,” Cold Spring Harb Protoc., Feb. 2013, 2013(2):122-5.
Cerritelli et al., “Ribonuclease H: the enzymes in eukaryotes,” FEBS Journal, Mar. 2009, 276(6):1494-505.
Chen et al., “Parallel single nucleotide polymorphism genotyping by surface invasive cleavage with universal detection,” Anal Chem., Apr. 2005, 77(8):2400-5.
Cheng, “The Contrast Formation in Optical Microscopy,” Handbook Of Biological Confocal Microscopy, 2006, Chapter 8, pp. 162-206.
Chester et al., “Dimethyl sulfoxide-mediated primer Tm reduction: a method for analyzing the role of renaturation temperature in the polymerase chain reaction,” Anal Biochem, Mar. 1993, 209(2):284-90.
Ciaccio et al., “Systems analysis of EGF receptor signaling dynamics with microwestern arrays,” Nat Methods, Feb. 2010, 7(2):148-55.
Curtis et al., “Adhesion of cells to polystyrene surfaces,” J Cell Biol., Nov. 1983, 97(5):1500-1506.
Czarnik, “Encoding methods for combinatorial chemistry,” Curr Opin Chem Biol., Jun. 1997, 1(1):60-6.
De Clercq, “A 40-year journey in search of selective antiviral chemotherapy,” Annu Rev Pharmacol Toxicol., 2011, 51:1-24.
Diez-Roux et al., “A high-resolution anatomical atlas of the transcriptome in the mouse embryo,” PLoS Biol., Jan. 2011, 9(1):e1000582, 14 pages.
Ekins et al., “Microarrays: their origins and applications,” Trends in Biotechnology, Jun. 1999, 17(6):217-218.
Espina et al., “Laser-capture microdissection,” Nat Protoc, 2006, 1(2):586-603.
Extended European Search Report in European Appln. No. 21163827.5, dated Sep. 24, 2021, 12 pages.
Galon et al., “The immune score as a new possible approach for the classification of cancer,” J Transl Med., Jan. 2012, 10:1, 4 pages.
Genbank Accession No. AC009495.1, “Homo sapiens clone NH0490102, *** Sequencing in Progress *** , 12 unordered pieces,” Aug. 24, 1999, 53 pages.
Genbank Accession No. AC009495.5, “Homo sapiens BAC clone RP11-49012 from 2, complete sequence,” Apr. 21, 2005, 32 pages.
Genbank Accession No. AL445433.14, “Human DNA sequence from clone RP11-234N17 on chromosome 1, complete sequence,” Jan. 24, 2013, 32 pages.
Gerard et al., “Excess dNTPs minimize RNA hydrolysis during reverse transcription,” Biotechniques, Nov. 2002, 33(5):984, 986, 988, 990.
Gibson et al., “Enzymatic assembly of DNA molecules up to several hundred kilobases,” Nat Methods., May 2009, 6(5):343-5.
Gibson-Corley et al., “Principles for valid histopathologic scoring in research,” Vet Pathol., Nov. 2013, 50(6):1007-15.
Goebl et al., “Development of a sensitive and specific in situ hybridization technique for the cellular localization of antisense oligodeoxynucleotide drugs in tissue sections,” Toxicologie Pathology, Jun. 2007, 35(4):541-548.
Hayes et al., “Electrophoresis of proteins and nucleic acids: I-Theory,” BMJ, Sep. 1989, 299(6703):843-6.
Hessner et al., “Genotyping of factor V G1691A (Leiden) without the use of PCR by invasive cleavage of oligonucleotide probes,” Clin Chem., Aug. 2000, 46(8 Pt 1): 1051-6.
Hughes et al., “Microfluidic Western blotting,” PNAS, Dec. 2012, 109(52):21450-21455.
Illumina.com [online], “Array-Based Gene Expression Analysis,” 2011, retrieved on Dec. 13, 2021, retrieved from URL<https://www.illumina.com/documents/products/datasheets/datasheet_gene_exp_analysis.pdf>, 5 pages.
Imbeaud et al., “Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces,” Nucleic Acids Res., Mar. 2005, 33(6):e56, 12 pages.
Jucá et al., “Effect of dimethyl sulfoxide on reverse transcriptase activity,” Braz. J. Med. Biol. Res., Mar. 1995, 28(3):285-90.
Ke et al., “In situ sequencing for RNA analysis in preserved tissue and cells,” Nat Methods., Sep. 2013, 10(9):857-60.
Ke et al., “In situ sequencing for RNA analysis in preserved tissue and cells,” Nat Methods., Sep. 2013, Supplementary Materials, 29 pages.
Kibbe, “OligoCalc: an online oligonucleotide properties calculator,” Nucleic Acids Res., Jul. 2007, 35:W43-6.
Lakhin et al., “Aptamers: problems, solutions and prospects,” Acta Naturae, Oct. 2013, 5(4):34-43.
Larsen et al., “Characterization of a recombinantly expressed proteinase K-like enzyme from a psychrotrophic Serratia sp,” Febs J., Jan. 2006, 273(1):47-60.
Larsson et al., “In situ detection and genotyping of individual mRNA molecules,” Nat Methods, May 2010, 7(5):395-7.
Larsson et al., “In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes,” Nat Methods, Dec. 2004, 1(3):227-32.
Le Reste et al., “Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET,” Biophysical Journal, Jun. 2012, 102(11):2658-2668.
Lee et al., “Cytokines in cancer immunotherapy,” Cancers (Basel), Oct. 2011, 3(4):3856-3893.
Lyamichev et al., “Invader assay for SNP genotyping,” Methods Mol Biol., 2003, 212:229-40.
Lyamichev et al., “Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes,” Nat Biotechnol., Mar. 1999, 17(3):292-6.
MacBeath et al., “Printing proteins as microarrays for high-throughput function determination,” Science, Sep. 2000, 289(5485):1760-1763.
Marras, “Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes,” Methods Mol Biol., 2006, 335:3-16.
Martin, “Cutadapt removes adapter sequences from high-throughput sequencing reads,” EMBnet Journal, 2011, 17(1):10-12.
Massey et al., “Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Förster distances for various dye-DNA conjugates,” Anal Chim Acta., May 2006, 568(1-2):181-9.
Masuda et al., “Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples,” Nucleic Acids Research, Nov. 1999, 27(22):4436-4443.
Mattheyses et al., “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J Cell Sci., Nov. 2010, 123(Pt 21):3621-3628.
Mauleon et al., “Precise Spatial and Temporal Control of Oxygen within In Vitro Brain Slices via Microfluidic Gas Channels,” PLoS One, Aug. 2012, 7(8):e43309, 9 pages.
Meyer et al., “Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity,” BMC Evol. Biol., Mar. 2010, 10:70, 12 pages.
Micke et al., “Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens,” Lab Invest., Feb. 2006, 86(2):202-11.
Mlecinik et al., “Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction,” J Clin Oncol., Feb. 2011, 29(6):610-8.
Morlan et al., “Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue,” PLoS One, Aug. 2012, 7(8): e42882, 8 pages.
Mueller et al., “RNA Integrity Number (RIN)—Standardization of RNA Quality Control,” Agilent Technologies, 2004, 8 pages.
Niedringhaus et al., “Landscape of next-generation sequencing technologies,” Anal Chem., Jun. 2011, 83(12):4327-41.
Nilsson et al., “RNA-templated DNA ligation for transcript analysis,” Nucleic Acids Res., Jan. 2001, 29(2):578-81.
Olivier, “The Invader assay for SNP genotyping,” Mutat. Res., Jun. 2005, 573(1-2):103-110.
Park et al., “Cancer gene therapy using adeno-associated virus vectors,” Front Biosci., Jan. 2008, 13:2653-59.
Patil et al., “DNA-based therapeutics and DNA delivery systems: a comprehensive review,” AAPS J, Apr. 2005, 7(1):E61-77.
Pellestor et al., “The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics,” Eur J Hum Genet., Sep. 2004, 12(9):694-700.
Penland et al., “RNA expression analysis of formalin-fixed paraffin-embedded tumors,” Laboratory Investigation, Apr. 2007, 87(4):383-391.
Perocchi et al., “Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D,” Nucleic Acids Res., 2007, 35(19):e128, 7 pages.
Piston et al., “Fluorescent protein FRET: the good, the bad and the ugly,” Trends Biochem Sci., Sep. 2007, 32(9):407-14.
Porreca et al., “Polony DNA sequencing,” Curr Protoc Mol Biol., Nov. 2006, Chapter 7, Unit 7.8, pp. 7.8.1-7.8.22.
Razonable, “Antiviral drugs for viruses other than human immunodeficiency virus,” Mayo Clinic Proceedings, Oct. 2011, 86(10):1009-26.
Ristova et al., “Study of hydrogenated amorphous silicon thin films as a potential sensor for He—Ne laser light detection,” Applied Surface Science, Sep. 2003, 218(1-4):44-53.
San Paulo et al., “High-resolution imaging of antibodies by tapping-mode atomic force microscopy; attractive and repulsive tip-sample interaction regimes,” Biophys J., Mar. 2000, 78(3):1599-1605.
Schouten et al., “Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification,” Nucleic Acids Res., Jun. 2002, 30(12):e57, 13 pages.
Schroeder et al., “The RIN: an RNA integrity number for assigning integrity values to RNA measurements,” BMC Molecular Biology, Jan. 2006, 7:3, 14 pages.
Schwers et al., “A high-sensitivity, medium-density, and target amplification-free planar waveguide microarray system for gene expression analysis of formalin-fixed and paraffin-embedded tissue,” Clin. Chem., Nov. 2009, 55(11):1995-2003.
ScienceDirect.com [online], “Plant Fibers,” Definition, 2011, retrieved on Apr. 13, 2022, retrieved from URL<https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/plant-fibers>, 9 pages.
Sekar et al., “Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations,” J Cell Biol., Mar. 2003, 160(5):629-33.
Spiess et al., “A highly efficient method for long-chain cDNA synthesis using trehalose and betaine,” Anal. Biochem., Feb. 2002, 301(2):168-74.
Subramanian et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” PNAS, Oct. 2005, 102(43): 15545-15550.
Sutherland et al., “Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions,” J. Mass Spectrom., Jun. 2008, 43(6):699-715.
Tai et al., “Replication-competent retrovirus vectors for cancer gene therapy,” Front Biosci., Jan. 2008, 13:3083-95.
Tawfik et al., “Man-made cell-like compartments for molecular evolution,” Nat Biotechnol., Jul. 1998, 16(7):652-6.
Thacker et al., “Alkaline Hydrolysis—Carcass Disposal: A Comprehensive Review,” National Agriculture Biosecurity Center, Aug. 2004, Chapter 6, pp. 1-12.
Toseland, “Fluorescent labeling and modification of proteins,” J Chem Biol., Apr. 2013, 6(3):85-95.
Toubanaki et al., “Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis,” Hum Mutat., Aug. 2008, 29(8):1071-8.
Valley et al., “Optoelectronic tweezers as a tool for parallel single-cell manipulation and stimulation,” IEEE Trans Biomed Circuits Syst., Dec. 2009, 3(6):424-31.
Wang et al., “Tagmentation-based whole-genome bisulfite sequencing,” Nature Protocols, Oct. 2013, 8(10):2022-2032.
Williams, “RAC reviews serious adverse event associated with AAV therapy trial,” Mol Ther., Dec. 2007, 15(12):2053-54.
Yasukawa et al., “Effects of organic solvents on the reverse transcription reaction catalyzed by reverse transcriptases from avian myeloblastosis virus and Moloney murine leukemia virus,” Biosci Biotechnol Biochem., 2010, 74(9):1925-30.
Zheng, “Spectroscopy-based quantitative fluorescence resonance energy transfer analysis,” Methods Mol Biol., 2006, 337:65-77.
Zuker. “Mfold web server for nucleic acid folding and hybridization prediction,” Nucleic Acids Res., Jul. 2003, 31(13):3406-15.
Chen et al., “Gray-scale photolithography using microfluidic photomasks,” PNAS, Feb. 2003, 100(4):1499-1504.
Dalma-Weiszhausz et al., “The affymetrix GeneChip platform: an overview,” Methods Enzymol., 2006, 410:3-28.
Ebihara et al., “Molecular detection of dermatophytes and nondermatophytes in onychomycosis by nested polymerase chain reaction based on 28S ribosomal RNA gene sequences,” Br J Dermatol., Nov. 2009, 161(5):1038-44.
Escholarship.org [online], “Methods and devices for fabricating and assembling DNA and protein arrays for high-throughput analyses [electronic resource],” 2010, retrieved on Jun. 8, 2022, retrieved from URL<https://escholarship.org/uc/item/6tf7p46s>, 155 pages.
Fischer et al., “Hematoxylin and eosin staining of tissue and cell sections,” CSH Protoc., May 2008, 3(5):1-3.
Jennane et al., “Photolithography of self-assembled monolayers: optimization of protecting groups by an electroanalytical method,” Can. J Chem., Dec. 1996, 74(12):2509-2517.
Jensen et al., “Zinc fixation preserves flow cytometry scatter and fluorescence parameters and allows simultaneous analysis of DNA content and synthesis, and intracellular and surface epitopes,” Cytometry A., Aug. 2010, 77(8):798-804.
Lykidis et al., “Novel zinc-based fixative for high quality DNA, RNA and protein analysis,” Nucleic Acids Res., Jun. 2007, 35(12):e85, 10 pages.
Nadji et al., “Immunohistochemistry of tissue prepared by a molecular-friendly fixation and processing system,” Appl Immunohistochem Mol Morphol., Sep. 2005, 13(3):277-82.
Totet et al., “Immunocompetent infants as a human reservoir for Pneumocystis jirovecii: rapid screening by non-invasive sampling and real-time PCR at the mitochondrial large subunit rRNA gene,” J Eukaryot Microbiol., 2003, pp. 668-669.
Hamaguchi et al., “Direct reverse transcription-PCR on oligo(dT)-immobilized polypropylene microplates after capturing total mRNA from crude cell lysates,” Clin Chem., Nov. 1998, 44(11):2256-63.
König et al., “iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution,” Nat Struct Mol Biol., Jul. 2010, 17(7):909-915.
Miner et al., “Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR,” Nucleic Acids Res., Sep. 2004, 32(17):e135, 4 pages.
Rusk, “Spatial transcriptomics,” Nature Methods, Sep. 2016, 13(9):710-711.
Wikipedia.org [online], “Random hexamer,” Jan. 2012, Retrieved on Jan. 21, 2022, retrieved from URL<https://en.wikipedia.org/w/index.php?title=Random_hexamer&oldid=473042236>, 1 page.
Appella, “Non-natural nucleic acids for synthetic biology,” Current Opinion in Chemical Biology, Dec. 2009, 13(5-6): 687-696.
Dundas et al., “Reference genes for measuring mRNA expression,” Theory Biosci., May 17, 2012, 131:215-223.
Grünweller et al., “Locked Nucleic Acid Oligonucleotides,” BioDrugs, Jul. 2007, 21(4): 235-243.
Gu et al., “Multiplex single-molecule interaction profiling of DNA-barcoded proteins,” Nature, Sep. 21, 2014, 515:554-557.
Harris et al., “Chloroplast ribosomes and protein synthesis,” Microbiol. Mol. Biol. Rev., Dec. 1, 1994, 58(4): 700-754.
Ma et al., “Isothermal amplification method for next-generation sequencing,” PNAS, Aug. 12, 2013, 110(35):14320-14323.
Nilsson et al., “Padlock Probes: Circularizing Oligonucleotides for Localized DNA Detection,” Science, Sep. 30, 1994, 265(5181):2085-2088.
Grant et al., “Pathways and mechanisms of endocytic recycling,” Nat. Rev. Mol. Cell Biol., Sep. 2009, 10(9):597-608.
Lenard, “Viral Membranes,” Encyclopedia of Virology, Jul. 2008, pp. 308-314.
Russell et al., “Molecular mechanisms of late endosome morphology, identity and sorting,” Curr. Opin. Cell Bio., Aug. 2006, 18(4):422-428.
Watanabe et al., “Cellular networks involved in the influenza virus life cycle,” Cell Host & Microbe, Jun. 2010, 7(6):427-39.
Wiedmann et al., “Ligase chain reaction (LCR)—overview and applications,” PCR Methods Appl., Feb. 1994, 3(4):S51-64.
Chen et al., “High PLTP activity is associated with depressed left ventricular systolic function,” Atherosclerosis, Jun. 2013, 228(2):438-42.
Lee et al., “A novel COL3A1 gene mutation in patient with aortic dissected aneurysm and cervical artery dissections,” Heart Vessels, Mar. 2008, 23(2):144-8.
Nakao et al., “Myosin heavy chain gene expression in human heart failure,” J Clin Invest., Nov. 1997, 100(9):2362-70.
Schellings et al., “Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction,” J Exp Med., Jan. 2009, 206(1):113-23.
Smolock et al., “Ribosomal Protein L17, RpL 17, is an Inhibitor of Vascular Smooth Muscle Growth and Carotid Intima Formation,” Circulation, Nov. 2012, 126(20):2418-2427.
Wang et al., “Mutations in NEXN, a Z-disc gene, are associated with hypertrophic cardiomyopathy,” Am J Hum Genet., Nov. 2010, 87(5):687-93.
Wheeler et al., “Microfluidic device for single-cell analysis,” Analytical Chemistry, Jul. 2003, 75(14):3581-3586.
Yan et al., “Decorin gene delivery inhibits cardiac fibrosis in spontaneously hypertensive rats by modulation of transforming growth factor-beta/Smad and p38 mitogen-activated protein kinase signaling pathways,” Hum Gene Ther., Oct. 2009, 20(10):1190-200.
Yet et al., “Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice,” Circ Res., Jul. 2001, 89(2):168-73.
Azioune et al., “Simple and rapid process for single cell micro-patterning,” Lab Chip, Jun. 2009, 9(11):1640-1642.
Calvert, “Materials science. Printing cells,” Science, Oct. 2007, 318(5848):208-209.
Chen et al., “Geometric control of cell life and death,” Science, May 1997, 276(5317):1425-1428.
Chung et al., “Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array,” Anal Chem, Sep. 2011, 83(18):7044-7052.
Ding et al., “On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves,” PNAS, Jul. 2012, 109(28):11105-11109.
Falconnet et al., “Surface engineering approaches to micropattern surfaces for cell-based assays,” Biomaterials, Jun. 2006, 27(16):3044-3063.
Folch et al., “Microfabricated elastomeric stencils for micropatterning cell cultures,” J Biomed Mater Res. Nov. 2000, 52(2):346-353.
Giam et al., “Scanning probe-enabled nanocombinatorics define the relationship between fibronectin feature size and stem cell fate,” PNAS, Mar. 2012, 109(12):4377-4382.
Laurell et al., “Chip integrated strategies for acoustic separation and manipulation of cells and particles,” Chem. Soc. Rev., Mar. 2007, 36(3):492-506.
Lee et al., “Protein nanoarrays generated by dip-pen nanolithography,” Science, Mar. 2002, 295(5560):1702-1705.
Lin et al., “Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns,” Lab Chip, Feb. 2013, 13(4):714-721.
Nakamura et al., “Biocompatible inkjet printing technique for designed seeding of individual living cells,” Tissue Eng, Nov. 2005, 11(11-12):1658-1666.
Ostuni et al., “Patterning Mammalian Cells Using Elastomeric Membranes,” Langmuir, Aug. 2000, 16(20):7811-7819.
Rettig et al., “Large-scale single-cell trapping and imaging using microwell arrays,” Anal Chem, Sep. 2005, 77(17):5628-5634.
Rosenthal et al., “Cell patterning chip for controlling the stem cell microenvironment,” Biomaterials, Jul. 2007, 28(21):3208-3216.
Suh et al., “A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning,” Biomaterials, Feb. 2004, 25(3):557-563.
Tan et al., “Parylene peel-off arrays to probe the role of cell-cell interactions in tumour angiogenesis,” Integr Biol (Camb), Oct. 2009, 1(10):587-594.
Tseng et al., “Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior,” Nat Methods, Nov. 2012, 9(11):1113-1119.
Vermesh et al., “High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications,” Angew Chem Int Ed Engl, Aug. 2011, 50(32):7378-7380.
Wood et al., “Single cell trapping and DNA damage analysis using microwell arrays,” PNAS, Jun. 2010, 107(22):10008-10013.
Wright et al., “Reusable, reversibly sealable parylene membranes for cell and protein patterning,” J Biomed Mater Res A., May 2008, 85(2):530-538.
Yusof et al., “Inkjet-like printing of single-cells,” Lab Chip, Jul. 2011, 11(14):2447-2454.
Boutros et al., “The art and design of genetic screens: RNA interference,” Nat Rev Genet., Jul. 2008, 9(7):554-66.
Dandapani et al., “Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening,” Curr Protoc Chem Biol., Sep. 2012, 4:177-191.
Hajduk et al., “Drug discovery: A question of library design,” Nature, Feb. 2011, 470(7332):42-43.
Harris et al., “The design and application of target-focused compound libraries,” Comb Chem High Throughput Screen, Jul. 2011, 14(6):521-531.
Kainkaryam et al., “Pooling in high-throughput drug screening” Curr Opin Drug Discov Devel., May 2009, 12(3):339-50.
Nagai et al., “Site-specific DNA cleavage by antisense oligonucleotides covalently linked to phenazine di-N-oxide,” J Biol. Chem., Dec. 1991, 266(35):23994-4002.
U.S. Appl. No. 17/707,189, filed Mar. 29, 2022, Chell et al.
Ahern, “Biochemical, Reagents Kits Offer Scientists Good Return On Investment,” The Scientist, Jul. 1995, 9(15):20, 7 pages.
Ahlfen et al., “Determinants of RNA quality from FFPE samples,” PLoS One, Dec. 2007, 2(12):e1261, 7 pages.
Altschul et al., “Basic local alignment search tool,” J. Mol. Biol., Oct. 5, 1990, 215(3):403-410.
Baner et al., “Signal amplification of padlock probes by rolling circle replication,” Nucleic Acids Res., 1998, 26(22):5073-5078.
Boulé et al., “Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides,” J Biol Chem., Aug. 2001, 276(33):31388-93.
Cardona et al., “TrakEM2 0.9a User Manual,” Sep. 8, 2011, retrieved on Jul. 29, 2022, retrieved from URL <https://www.ini.uzh.ch/˜acardona/trakem2_manual.html>, 38 pages.
Darnell, Jr., “Reflections on the history of pre-mRNA processing and highlights of current knowledge: A unified picture,” RNA, Feb. 2013, 19:443-460, 19 pages.
Dean et al., “Rapid Amplification Of Plasmid And Phage DNA Using Phi29 DNA Polymerase And Multiply-Primed Rolling Circle Amplification,” Genome Research, Jun. 2001, 11:1095-1099.
Deo et al., “Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides,” Dev Dyn., Sep. 2006, 235(9):2538-48.
Ergin et al., “Proteomic Analysis of PAXgene-Fixed Tissues,” J Proteome Res., 2010, 9(10):5188-96.
Evers et al., “The effect of formaldehyde fixation on RNA: optimization of formaldehyde adduct removal,” J Mol Diagn., May 2011, 13(3):282-8.
Faruqi et al., “High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification,” BMC Genomics, Aug. 2001, 2:4, 10 pages.
Gamper et al., “Gene expression profile of bladder tissue of patients with ulcerative interstitial cystitis,” BMC Genomics, Apr. 28, 2009, 10(199):1-17.
Gilar et al., “Study of phosphorothioate-modified oligonucleotide resistance to 3′-exonuclease using capillary electrophoresis,” J Chromatogr B Biomed Sci Appl., Aug. 28, 1998, 714(1):13-20.
Goransson et al., “A single molecule array for digital targeted molecular analyses,” Nucleic Acids Res., Nov. 25, 2009, 37(1):e7, 9 pages.
Hafner et al., “Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing,” Methods, Jan. 2008, 44(1):3-12.
Hanauer et al., “Separation of nanoparticles by gel electrophoresis according to size and shape,” Nano Lett., Sep. 2007, 7(9):2881-5.
Harrow et al., “Gencode: The reference human genome annotation for The Encode Project,” Genome Res., Sep. 2012, 22(9):1760-1774.
Hattersley et al., “Development of a microfluidic device for the maintenance and interrogation of viable tissue biopsies,” Lab Chip., Nov. 2008, 8(11):1842-6.
Ho et al., “Characterization of an ATP-Dependent DNA Ligase Encoded by Chlorella Virus PBCV-1,” Journal of Virology, Mar. 1997, 71(3): 1931-1937.
Hsuih et al., “Novel, Ligation-Dependent PCR Assay for Detection of Hepatitis C Virus in Serum,” Journal of Clinical Microbiology, Mar. 1996, 34(3):501-507.
Im et al., “An Introduction to Performing Immunofluorescence Staining,” Biobanking: Methods and Protocols, Method in Molecular Biology, Yong (ed.), 2019, 1897, Chapter 26, 299-311.
Kandoth et al., “Mutational landscape and significance across 12 major cancer types,” Nature, Oct. 2013, 502(7471):333-339, 20 pages.
Karlin et al., “Applications and statistics for multiple high-scoring segments in molecular sequences,” Proc. Natl. Acad. Sci., Jun. 15, 1993, 90:5873-7.
Kokkat et al., “Archived formalin-fixed paraffin-embedded (FFPE) blocks: A valuable underexploited resource for extraction of DNA, RNA, and protein,” Apr. 2013, 11(2):101-6.
Kumar et al., “Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry,” J Am Chem Soc., May 2007, 129(21):6859-64.
Kwon, “Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules,” Department of Biomedical Engineering, Oregon Health & Science University, Feb. 2013, 46:65-72.
Liu et al. “Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses,” Nucleic Acids Res., Mar. 8, 2021, 49(10):e58, 15 pages.
Lopez-Otín et al., “Protease degradomics: a new challenge for proteomics,” Nat Rev Mol Cell Biol., Jul. 2002, 3(7):509-19.
Lubeck et al., “Single cell systems biology by super-resolution imaging and combinatorial labeling,” Nature Methods, Jan. 2013, 9(7):743-748, 18 pages.
Magaki et al., “An introduction to Performance of Immunohistochemistry,” Biobanking: Methods and Protocols, Method in Molecular Biology, Yong (ed.), 2019, 1897, Chapter 25, 289-298.
Megason et al., “Imaging in Systems Biology,” Cell 130, Sep. 7, 2007, pp. 784-795.
Nallur et al., “Signal amplification by rolling circle amplification on DNA microarrays,” Nucleic Acids Res., Dec. 1, 2001, 29(23):e118, 9 pages.
Nandakumar et al., “RNA Substrate Specificity and Structure-guided Mutational Analysis of Bacteriophage T4 RNA Ligase 2,” Journal of Biological Chemistry, Jul. 2004, 279(30):31337-31347.
Ozsolak et al., “Digital transcriptome profiling from attomole-level RNA samples,” Genome Res., Apr. 2010, 20(4):519-25.
Pearson et al., “Improved tools for biological sequence comparison,” Proc. Natl. Acad. Sci., May 1988, 85:2444-2448.
Promega, “GoScript™ Reverse Transcription System—Technical Manual,” promega.com, revised Dec. 2012, 24 pages.
Raj et al., “Imaging individual mRNA molecules using multiple singly labeled probes,” Nature Methods, Oct. 2008, 5(10):877-879, 9 pages.
Sambrook and Russell, “Chapter 5, Gel Electrophoresis of DNA and Pulsed-field Agarose Gel Electrophoresis: Protocol 13, Preparation of DNA for Pulsed-field Gel Electrophoresis: Isolation of DNA from Mammalian Cells and Tissues,” Molecular Cloning: A Laboratory Manual, 2001, 5 pages.
Schweitzer et al., “Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection,” Proc. Natl Acad. Sci. USA, May 22, 2000, 97:10113-119.
Shibata et al., “Detection of human papilloma virus in paraffin-embedded tissue using the polymerase chain reaction,” J Exp Med., Jan. 1988, 167(1):225-30.
Slomovic et al., “Addition of poly(A) and poly(A)-rich tails during RNA degradation in the cytoplasm of human cells,” Proc Natl Acad Sci USA, Apr. 2010, 107(16):7407-12.
Taylor et al., “Microfluidic local perfusion chambers for the visualization and manipulation of synapses,” Neuron., Apr. 2010, 66(1):57-68, 25 pages.
Thomas et al., “A chamber for the perfusion of in vitro tissue with multiple solutions,” J. Neurophysiol., Jul. 2013, 110:269-277.
Toy et al., “A Simple Plastic Perfusion Chamber for Continuous Maintenance and Cinematography of Tissue Cultures,” Experimental Cell Research, 1958, 14:97-103.
Ueno et al., “cDNA Display: Rapid Stabilitzation of mRNA Display,” Antibody-Drug Conjugates, Methods in Molecular Biology, Jan. 2012, pp. 113-135.
Ulery et al., “Biomedical Applications of Biodegradable Polymers,” J Polym Sci B Polym Phys., Jun. 2011, 49(12):832-864.
Vandenbroucke et al., “Quantification of splice variants using real-time PCR,” Nucleic Acids Research, 2001, 29(13):e68, 7 pages.
Walker et al., Ed., “Chapter 1: Basic Techniques in Molecular Biology,” Medical Biomethods Handbook, Humana Press, Totowa, New Jersey, 2005, 19 pages.
Wang et al., “Paramagnetic microspheres with core-shell-ed structures,” Journal of Materials Science, Apr. 2012, 47(16):5946-54.
AJCC, “25 Lungs and 26 Pleural Mesothelioma,” AJCC Cancer Staging Manual 7th Ed., Springer, 2010, pp. 253-278, 38 pages.
Berent et al., “Comparison of oligonucleotide and long DNA fragments as probes in DNA and RNA dot, Southern, Northern, colony and plaque hybridizations,” Biotechniques, 1985, 3(3):208-220 (Abstract Only).
Cardullo et al., “Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer,” PNAS, Dec. 1, 1988, 85:8790-8794.
Crisalli et al., “Multi-Path Quenchers: Efficient Quenching of Common Fluorophores,” Bioconjug Chem., Oct. 28, 2011, 22(11): 2345-2354.
Friedman et al., “The synthesis of high yields of full-length reverse transcripts of globin mRNA,” Nucleic Acids Res., Oct. 1, 1977, 4(10):3455-3471.
Howell et al., “iFRET: An Improved Fluorescence System for DNA-Melting Analysis,” Genome Research, 2002, 12:1401-1407.
Kurtulus, “Assessment of CD4(+) and CD8 (+) T cell responses using MHC class I and II tetramers,” Methods Mol Biol, 2013, 979:71-79, 10 pages.
Lin et al., “Replication of DNA microarrays from zip code masters,” J. Am. Chem. Soc., 2006, 128(10):3268-3272.
Nuovo, “In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets,” Methods, 2010, 52(4):307-315.
Stougaard et al., “In situ detection of non-polyadenylated RNA molecules using Turtle Probes and target primed rolling circle Prins,” BMC Biotechnology, Dec. 18, 2007, 7(69):1-10.
Tang et al., “mRNA-Seq whole-transcriptome analysis of a single cell,” Nat Methods, 2009, 6:377-382.
Yang et al., “Nucleoside alpha-Thiotriphosphates, Polymerases and the Exonuclease III Analysis of Oligonucleotides Containing Phosphorothioate Linkages,” Nucleic Acids Research, Apr. 22, 2007, 35(9):3118-3127.
Yao et al., “Influence of laser parameters on nanoparticle-induced membrane permeabilization,” Journal of Biomedical Optics, 2009, 14(5):054034, 7 pages.
Affymetrix, “HG-U133 Plus2.0 Annotation File (filtered excerpt),” affymetrix.com, dated Mar. 18, 2013, retrieved from <http://www.affymetrix.com/Auth/analysis/downloads/na26/ivt/HG-U133_Plus_2.na26.annot.csv.zip>, 1 page.
Landegren et al., “A Ligase-Mediated Gene Detection Technique,” Science, 1988, 241(4869):1077-1080.
Makaryus et al., “Coronary venous angioplasty and stenting for biventricular pacemaker left ventricular lead implantation,” Journal of Invasive Cardiology, 2008, 19(5), 3 pages.
Stanton et al., “Altered patterns of gene expression in response to myocardial infarction,” Circulation research, May 12, 2000, 86(9), 939-945.
Akatsuka et al., “Rapid screening of T-cell receptor (TCR) variable gene usage by multiplex PCR: Application for assessment of clonal composition,” Tissue Antigens, Jan. 5, 1999, 53:122-134.
Akatsuka et al., “T cell receptor clonal diversity following allogeneic marrow grafting,” Human Immunology, Jun.-Jul. 1996, 48:125-134.
Almog et al., “The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state,” Proteins, Feb. 1, 2009, 74(2): 489-496.
Altman et al., “Phenotypic Analysis of Antigen-Specific T Lymphocytes,” Science, Oct. 4, 1996, 274(5284):94-96.
Andersen et al., “Parallel Detection of Antigen-Specific T Cell Responses by Combinatorial Encoding of MHC Multimers,” Nature Protocols, Apr. 12, 2012, 7(5):891-902.
Bakker et al., “Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, −A3, −A11, and −B7,” Proc Natl Acad Sci USA, Mar. 11, 2008, 105(10):3825-3830.
Belton et al., “Hi-C: A comprehensive technique to capture the conformation of genomes,” Methods, Nov. 2012, 58(3):268-276, 16 pages.
Bessmertnykh et al., “Efficient Palladium-Catalyzed Synthesis of Aminopyridyl Phosphonates from Bromopyridines and Diethyl Phosphite,” Synthesis, 2008, 10:1575-1579.
Bibikova et al., “Quantitative gene expression profiling in formalin-fixed paraffin-embedded tissues using universal bead arrays,” The American Journal of Pathology, Nov. 1, 2004, 165(5):1799-1807.
Bowen et al., “Concurrent V(D)J recombination and DNA end instability increase interchromosomal trans-rearrangements in ATM-deficient thymocytes,” Nucleic Acids Research, Apr. 1, 2013, 41(8):4535-4548.
Cai et al., “Glutathione-mediated shedding of PEG layers based on disulfide-linked catiomers for DNA delivery,” J. Mater. Chem., Sep. 20, 2011, 21(38):14639-14645.
Chen et al. “Arrayed profiling of multiple glycans on whole living cell surfaces.” Analytical chemistry, Oct. 15, 2013, 85(22):11153-11158.
Choi et al., “Multiplexed detection of mRNA using porosity-tuned hydrogel microparticles,” Analytical chemistry, Sep. 28, 2012, 84(21):9370-9378.
Chu et al., “SV40 DNA transfection of cells in suspension: analysis of the efficiency of transcription and translation of T-antigen,” Gene, Mar. 1981, 13(2): 197-202, 1 page (Abstract Only).
Crisalli et al., “Importance of ortho Proton Donors in Catalysis of Hydrazone Formation,” Org. Lett., 2013, 15(7):1646-1649.
Daley et al., “Predicting the molecular complexity of sequencing libraries,” Nature Methods, Apr. 2013, 10:325-327.
Deininger et al., “Allograft inflammatory factor-1 defines a distinct subset of infiltrating macrophages/microglial cells in rat and human gliomas,” Acta Neuropathol, Dec. 2000, 100(6):673-680.
Desfarges et al., “Viral Integration and Consequences on Host Gene Expression,” Viruses: Essential Agents of Life, Sep. 25, 2012, 147-175.
Eastburn et al., “Ultrahigh-throughput Mammalian Single Cell Reverse-transcriptase Polymerase Chain Reaction in Microfluiding Drops,” Analytical Chemistry, American Chemical Society, Aug. 20, 2013, 85(16):8016-8021.
Eisenberg et al., “Human housekeeping genes, revisited,” Trends in Genetics, Oct. 2013, 29(10):569-574.
Fan et al., “A versatile assay for high-throughput gene expression profiling on universal array matrices,” Genome Research, May 1, 2004, 14(5):878-885.
Fan et al., “Illumina Universal Bead Arrays,” Methods in Enzymology, 2006, 410:57-73.
Glorioso et al., “Development and Application of Herpes Simplex Virus Vectors for Human Gene Therapy,” Annu. Rev. Microbiol., 1995; 49:675-710, 1 page (Abstract Only).
Goldmeyer et al., “Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection,” Journal of Molecular Diagnostics, American Society for Investigative Pathology and the Association for Molecular Pathology, Nov. 1, 2007, 9(5):639-644.
Graham et al., “A new technique for the assay of infectivity of human adenovirus 5 DNA,” Virology, Apr. 1973, 52(2):456-467, 3 pages (Abstract Only).
Ha et al., “Self-assembly hollow nanosphere for enzyme encapsulation,” Soft Matter, Feb. 11, 2010, 6, 1405-1408, 10 pages.
Hadrup et al., “Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers,” Nat. Methods., Jul. 2009, 6(7), 520-526.
Holscher et al., “Application of Laser-Assisted Microdissection for Tissue and Cell-Specific Analysis of RNA,” Progress in Botany, Jan. 2008, 69(3):141-167.
Jeffers, “A Basic Subroutine for Geary's Contiguity Ratio,” J. Royal Stat. Society, Series D, Dec. 1973, 22(4):299-302.
Ju et al., “Supramolecular dendrimer capsules by cooperative binding,” Chem. Commun., Jan. 7, 2011, 47(1):268-270, 8 pages.
Kim, “Development of Microdevices for Applications to Bioanalysis,” Dissertation for the degree of Doctor of Philosophy, University of Texas at Austin, Aug. 2007, 176 pages.
Kuiper et al., “Enzymes containing porous polymersomes as nano reaction vessels for cascade reactions,” Org. Biomol, Chem, Oct. 15, 2008, 6(23):4315-4318.
Kung et al., “Long Noncoding RNAs: Past, Present, and Future,” Genetics, Mar. 1, 2013, 193(3):651-669.
Kwon et al., Polyelectrolyte Gels—Fundamentals and Applications, Nov. 10, 2006, Polymer Journal, 38, pp. 1211-1219.
Li et al., “Beyond Moran's I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model,” Geographical Analysis, Sep. 18, 2007, 39(4):357-375.
Liu et al., “Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-b-poly(d,1-lactide) Microspheres for Protein Delivery,” Biomacromolecules, 2003, 4(6):1784-1793.
Mabruk et al., “In situ hybridization: detecting viral nucleic acid in formalin-fixed, paraffin-embedded tissue samples,” Expert Rev. Mol. Diagn., 2004, 4(5):653-661.
Manz et al., “Phylogenetic Composition, Spatial Structure, and Dynamics of Lotic Bacterial Biofilms Investigated by Fluorescent in situ Hybridization and Confocal Laser Scanning Microscopy,” Microb Ecol, May 1999, 37(4):225-237.
Miller et al., “Rapid and Efficient Enzyme Encapsulation in a Dendrimer Silica Nanocomposite,” Macromolecular Bioscience, Oct. 25, 2006, 6(10):839-845.
Rahimi et al., “Synthesis and Characterization of Thermo-Sensitive Nanoparticles for Drug Delivery Applications,” J. Biomed. Nanotechnol. Dec. 2008, 4(4):482-490, 19 pages.
Robins et al., “Comprehensive assessment of T-cell receptor ß-chain diversity in αß T cells,” Blood, Nov. 5, 2009, 114(19):4099-4107.
Soen et al., “Detection and Characterization of Cellular Immune Responses Using Peptide-MHC Microarrays,” PLOS Biology, Dec. 22, 2003, 1(3):429-438.
Villa et al., “Partial V(D)J Recombination Activity Leads to Omenn Syndrome,” Cell, May 29, 1998, 93:885-896.
Williams et al., “Disc electrophoresis in polyacrylamide gels: extension to new conditions of pH and buffer,” Annals of the New York Academy of Sciences, Dec. 1964, 121(2):373-381.
Zhou et al., “Analysis of the expression profile of Dickkopf-1 gene in human glioma and the associate with tumor malignancy,” Journal of Experimental & Clinical Cancer Research, Oct. 28, 2010, 29(138):1-7.
Chen et al., “Fusion protein linkers: Property, design and functionality,” Advanced Drug Delivery Reviews, Oct. 15, 2013, 65(10):1357-1369, 32 pages.
Kelleher et al., “Characterization of RNA Strand Displacement Synthesis by Moloney Murine Leukemia Virus Reverse Transcriptase,” J Biol Chem, Apr. 1998, 273(16):9976-86.
Reijenga et. al., “Buffer Capacity, Ionic Strength and Heat Dissipation in Capillary Electrophoresis,” Journal of Chromatography A, Sep. 13, 1996, 744(1-2):147-153.
Tzanetakis et al., “The use of reverse transcriptase for efficient first- and second-strand cDNA synthesis from single-and double-stranded RNA templates,” J Virol Methods, Mar. 2005, 24(1-2):73-7.
Verma et al., “Modified Oligonucleotides: Synthesis and Strategy for Users,” Annual Review of Biochemistry, 1998, 67(1):99-134.
U.S. Appl. No. 13/080,616, US-2011-0245111-A1, U.S. Pat. No. 9,371,598, filed Apr. 5, 2011, Mark S. Chee.
U.S. Appl. No. 15/187,661, US-2016-0298180-A1, U.S. Pat. No. 10,308,982, filed Jun. 20, 2016, Mark S. Chee.
U.S. Appl. No. 16/276,235, US-2019-0177777-A1, U.S. Pat. No. 10,480,022, filed Feb. 14, 2019, Mark S. Chee.
U.S. Appl. No. 16/276,260, US-2019-0177778-A1, U.S. Pat. No. 10,662,467, filed Feb. 14, 2019, Mark S. Chee.
U.S. Appl. No. 16/402,098, US-2019-0271031-A1, U.S. Pat. No. 10,472,669, filed May 2, 2019, Mark S. Chee.
U.S. Appl. No. 16/414,213, US-2019-0271031-A1, U.S. Pat. No. 10,787,701, filed May 16, 2019, Mark S. Chee.
U.S. Appl. No. 16/430,109, US-2019-0300944-A1, filed Jun. 3, 2019, Mark S. Chee.
U.S. Appl. No. 16/430,015, US-2019-0300943-A1, filed Jun. 3, 2019, Mark S. Chee.
U.S. Appl. No. 16/435,176, US-2019-0323071-A1, filed Jun. 7, 2019, Mark S. Chee.
U.S. Appl. No. 16/435,295, US-2019-0309353-A1, U.S. Pat. No. 10,996,219, filed Jun. 7, 2019, Mark S. Chee.
U.S. Appl. No. 16/437,637, US-2019-0309354-A1, U.S. Pat. No. 10,494,667, filed Jun. 11, 2019, Mark S. Chee.
U.S. Appl. No. 16/437,726, US-2019-0300945-A1, filed Jun. 11, 2019, Mark S. Chee.
U.S. Appl. No. 16/443,771, US-2019-0309355-A1, filed Jun. 17, 2019, Mark S. Chee.
U.S. Appl. No. 16/660,234, US-2020-0048690-A1, U.S. Pat. No. 10,662,468, filed Oct. 22, 2019, Mark S. Chee.
U.S. Appl. No. 16/669,246, US-2020-0063195-A1, U.S. Pat. No. 10,982,268, filed Oct. 30, 2019, Mark S. Chee.
U.S. Appl. No. 16/670,603, US-2020-0063196-A1, U.S. Pat. No. 10,612,079, filed Oct. 31, 2019, Mark S. Chee.
U.S. Appl. No. 16/734,216, US-2020-0140934-A1, U.S. Pat. No. 10,619,196, filed Jan. 3, 2020, Mark S. Chee.
U.S. Appl. No. 16/734,237, US-2020-0140935-A1, filed Jan. 3, 2020, Mark S. Chee.
U.S. Appl. No. 16/816,177, US-2020-0208205-A1, U.S. Pat. No. 10,914,730, filed Mar. 11, 2020, Mark S. Chee.
U.S. Appl. No. 16/816,192, US-2020-0208206-A1, U.S. Pat. No. 10,962,532, filed Mar. 11, 2020, Mark S. Chee.
U.S. Appl. No. 16/837,924, US-2020-0224256-A1, U.S. Pat. No. 10,983,113, filed Apr. 1, 2020, Mark S. Chee.
U.S. Appl. No. 16/913,672, US-2020-0325531-A1, filed Jun. 26, 2020, Mark S. Chee.
U.S. Appl. No. 16/894,369, US-2020-0299757-A1, filed Jun. 5, 2020, Mark S. Chee.
U.S. Appl. No. 16/988,284, US-2020-0370106-A1, U.S. Pat. No. 10,961,566, filed Aug. 7, 2020, Mark S. Chee.
U.S. Appl. No. 17/030,230, US-2021-0002713-A1, filed Sep. 23, 2020, Mark S. Chee.
U.S. Appl. No. 17/032,317, US-2011-0017586-A1, filed Sep. 25, 2020, Mark S. Chee.
U.S. Appl. No. 17/097,824, US-2021-0062249-A1, U.S. Pat. No. 11,008,607, filed Nov. 13, 2020, Mark S. Chee.
U.S. Appl. No. 17/145,210, US-2021-0130884-A1, filed Jan. 8, 2021, Mark S. Chee.
U.S. Appl. No. 17/144,965, US-2021-0123095-A1, U.S. Pat. No. 11,001,878, filed Jan. 8, 2021, Mark S. Chee.
U.S. Appl. No. 17/144,971, US-2011-0130883-A1, U.S. Pat. No. 11,001,879, filed Jan. 8, 2021, Mark S. Chee.
U.S. Appl. No. 17/211,231 filed Mar. 24, 2021, Mark S. Chee.
U.S. Appl. No. 17/223,669, US-2021-0207202-A1, U.S. Pat. No. 11,067,567, filed Apr. 6, 2021, Mark S. Chee.
U.S. Appl. No. 17/306,510, filed May 3, 2021, Mark S. Chee.
U.S. Appl. No. 17/321,090, filed May 14, 2021, Mark S. Chee.
U.S. Appl. No. 17/322,654, filed May 17, 2021, Mark S. Chee.
U.S. Appl. No. 14/900,602, US-2016-0145677-A1, U.S. Pat. No. 9,868,979, filed Dec. 21, 2015, Mark S. Chee.
U.S. Appl. No. 14/900,604, US-2016-0138091-A1, U.S. Pat. No. 9,879,313, filed Dec. 21, 2015, Mark S. Chee.
U.S. Appl. No. 15/831,158, US-2018-0201980-A1, filed Dec. 4, 2017, Mark S. Chee.
U.S. Appl. No. 16/596,200, US-2020-0109443-A1, U.S. Pat. No. 10,774,372, filed Oct. 8, 2019, Mark S. Chee.
U.S. Appl. No. 16/945,345, US-2021-0017583-A1, filed Jul. 31, 2020, Mark S. Chee.
U.S. Appl. No. 16/986,922, US-2021-0010068-A1, U.S. Pat. No. 10,927,403, filed Aug. 6, 2020, Mark S. Chee.
U.S. Appl. No. 17/180,356, US-2011-0172007-A1, U.S. Pat. No. 11,046,996, filed Feb. 19, 2021, Mark S. Chee.
U.S. Appl. No. 17/358,280, filed Jun. 25, 2021, Mark S. Chee.
U.S. Appl. No. 15/565,637, US-2019-0203275-A1, U.S. Pat. No. 10,774,374, filed Nov. 15, 2018, Jonas Frisen.
U.S. Appl. No. 17/011,923, US-2020-0399687-A1, filed Sep. 3, 2020, Jonas Frisen.
U.S. Appl. No. 17/237,652, filed Apr. 22, 2021, Jonas Frisen.
U.S. Appl. No. 17/237,670, filed Apr. 22, 2021, Jonas Frisen.
U.S. Appl. No. 15/565,637, filed Oct. 10, 2017, Jonas Frisen.
U.S. Appl. No. 14/111,482, US-2014-0066318-A1, U.S. Pat. No. 10,030,261, filed Oct. 11, 2013, Jonas Frisen.
U.S. Appl. No. 16/013,654, US-2019-0017106-A1, filed Jun. 20, 2018, Jonas Frisen.
U.S. Appl. No. 16/042,950, US-2019-0024153-A1, filed Jul. 23, 2018, Jonas Frisen.
U.S. Appl. No. 16/043,038, US-2019-0024154-A1, filed Jul. 23, 2018, Jonas Frisen.
U.S. Appl. No. 16/254,443, US-2019-0264268-A1, filed Jan. 22, 2019, Jonas Frisen.
U.S. Appl. No. 14/434,274, US-2015-0344942-A1, U.S. Pat. No. 9,593,365, filed Apr. 8, 2015, Jonas Frisen.
Hlubek et al. Heterogeneous expression of Wnt/b-catenin target genes within colorectal cancer, 2007. Int. J. Cancer: 2017, 1941-1948.
Yeakley et al, Profiling alternative splicing on fiber-optic arrays, 2002, Nature biotechnology, 20, 353-358 (Year: 2002).
Liu et al., “Method for Quantitative Proteomics Research by Using Metal Element Chelated Tags Coupled with Mass Spectrometry,” Analytical Chemistry, 2006, 78:6614-6621.
Waxman et al., “De-regulation of common housekeeping genes in hepatocellular carcinoma,” BMC Genomics, 2007, 1-9.
GB1218654.0, filed Oct. 17, 2012, Search Report dated May 29, 2013, 2 pages.
Shirai et al.; “Novel Tools for Analyzing Gene Expressions in Single Cells”; Nature Methods; 6; pp. 503-506; (2009)_Abstract only.
Tang et al.; “RNA-Seq Analysis to Capture the Transcriptome Landscape of a Single Cell”; Nat Protoc. 5(3); pp. 1-34; (2010); Author Manuscript in Europ PMC Funders Group, Nat Protoc. Author Manuscript, available in PMC Dec. 3, 2013.
International Search Report and Written Opinion; International Application No. PCT/EP2013/071645; International Filing Date Oct. 16, 2013; Date of Mailing Dec. 11, 2013; 12 pages.
EP Aplication 13780111.4 Office Action of Jul. 7, 2016; 6 pages.
Reissues (1)
Number Date Country
Parent 14434274 Oct 2013 US
Child 16353937 US