Methods and reforming systems for re-dispersing platinum on reforming catalyst

Information

  • Patent Grant
  • 11975316
  • Patent Number
    11,975,316
  • Date Filed
    Thursday, May 7, 2020
    5 years ago
  • Date Issued
    Tuesday, May 7, 2024
    a year ago
Abstract
Methods and systems for re-dispersing platinum on catalysts used in continuous catalyst regeneration reformer systems are disclosed. Some aspects of the disclosure provide, for example, methods of evaluating the platinum re-dispersion of a reforming catalyst in a small-scale reactor for use in a continuous catalyst regeneration reformer system and methods of improving the activity and selectivity of reforming catalysts for use in a continuous catalyst regeneration reformer system by selection of appropriate reaction parameters in a small-scale reactor for use in a continuous catalyst regeneration reformer system.
Description
FIELD OF THE DISCLOSURE

The disclosure herein relates to methods and systems for evaluating or controlling the platinum re-dispersion on reforming catalysts used in a continuous catalyst regeneration (CCR) reformer system.


BACKGROUND

Catalytic processes for the conversion of hydrocarbons using platinum group metals and a catalyst support are well known and extensively used. For example, metal-containing reforming catalysts can be used in continuous catalyst regeneration (CCR) reforming processes as understood by those skilled in the art, and such catalysts are commonly referred to as CCR reforming catalysts. CCR reforming processes may generally be referred to as “catalytic reforming” processes. One CCR reforming process is the catalytic reforming of naphtha. In such a process, the naphtha is co-processed with hydrogen over platinum-containing reforming catalysts, for example, as described in more detail in U.S. Pat. No. 8,778,823 to Oyekan et al. During naphtha (and other types of) reforming, the catalyst becomes deactivated, attributed at least in part to the accumulation of coke deposits. Reconditioning of the catalyst to remove coke deposits is necessary to restore the activity of the catalyst. Coke is normally removed from deactivated catalyst by contacting the coke-containing catalyst at high temperature with an oxygen-containing gas to combust and to essentially convert the coke to carbon dioxide and water in a regeneration process. Cycling the catalyst particles between the reducing conditions of the reactor and the oxidizing conditions of the regenerator can lead to platinum agglomeration and can degrade catalyst activity.


In a commercial setting, CCR reforming processes are commonly conducted within an integrated processing unit which contains equipment, catalyst(s), sorbent(s) and chemical(s) used in the reaction. The equipment can include, e.g., reactors, reactor internals for distributing feed and containing catalyst, other vessels, heaters, heat exchangers, conduits, valves, pumps, compressors and associated components known to those of skilled in the art. For example, a catalytic-reforming system may have various sections, including a reaction section (wherein the desired reaction occurs, catalyzed by the CCR reforming catalyst) and a regeneration section (wherein spent CCR reforming catalyst is regenerated). The regeneration section typically includes various zones, including, e.g., a burn zone, a halogenation zone, and a drying zone. Typically, these separate zones are contained within a single regeneration vessel and may be in serial progression, for example. Equipment and technology for continuously or semi-continuously removing catalyst particles from reaction sections and for coke removal in regeneration sections of such systems are generally known.


In order to combust coke buildup on catalyst particles, such spent catalyst particles are generally passed from the reaction section into the regeneration section. A regeneration gas, having a low concentration of oxygen, is continuously circulated within the regeneration section. The first zone of the regeneration section, into which the particles are passed, is a burn zone wherein coke combustion is carefully controlled by limiting the oxygen concentration. From the burn zone, a flue gas containing oxygen, water, and the byproducts of coke combustion is continually withdrawn. Coke combustion is controlled by contacting the coke-containing catalyst particles passing through the regeneration section with the regeneration gas that is continuously recirculated within the regeneration section. The controlled burn limits the temperature exotherm experienced by the catalyst. A small stream of combustion gas is added to the regeneration gas so as to replace the oxygen consumed in the combustion of coke and a small amount of the flue gas is vented off from the regeneration gas to allow for the addition of the combustion gas. The addition of combustion gas and the venting of flue gas establish a steady state condition that produces a nearly constant average concentration of water and oxygen in the regeneration gas. Despite the controlled conditions, platinum atoms slowly agglomerate and a re-dispersion step is necessary.


After the burn zone, the spent metal-containing catalyst particles are passed to a halogenation zone. In this zone, chlorine and/or another halogen circulates through the zone in a halogenation loop. Spent catalyst that has passed through the burn zone as referenced above commonly exhibit platinum agglomeration. Platinum agglomeration is a major factor contributing to poor performance of commercial CCR catalyst and may affect the activity, selectivity, and stability of reforming catalysts. To renew the reforming activity, therefore, the coke-free catalyst exiting the burn zone is passed to the halogenation zone where the platinum atoms are re-dispersed on the reforming catalyst. The halogenation zone of the regeneration section is designed to control halogen levels, oxygen levels, moisture content, and temperature to re-disperse the platinum (or other metal) associated with the catalyst. Contacting the catalyst with the halogenation gas re-disperses platinum group metals on the catalyst particles and adds some halogen to replace halogen lost from the catalyst during naphtha processing. The halogen gas added to the halogenation loop may enter the loop in admixture with air or other oxygen-containing gas. The process that occurs in the halogenation zone re-disperses the platinum group metals on the catalyst and is referred to as “white burn” when employed after the regenerator burn zone, as described previously.


From the halogenation zone, the catalyst particles are passed into a drying zone. A heated gas contacts the catalyst particles and drives moisture from the particles. Typically, the heated gas is air or an oxygen-containing gas that is introduced to the drying zone as the drying medium and passes upward through the halogenation zone to the burn zone to also provide the combustion gas therein. Following the drying zone, regenerated catalysts particles are cycled back to the reaction section to complete the continuous flow through the reaction and regeneration sections.


Conditions for such regeneration processes (and, in particular, conditions in the halogenation zone of the regenerator section) have not been extensively studied to allow for testing and/or evaluation of various reforming catalysts (e.g., commercially available catalysts) and/or various process conditions prior to commercial use.


SUMMARY OF THE DISCLOSURE

Applicant has recognized that it would be advantageous to develop methods and systems for evaluating the platinum re-dispersion of various CCR catalysts in CCR reformer systems, controlling and/or simulating the oxychlorination conditions present in commercial halogenation zones in small-scale reactors, easily comparing the re-dispersion of various commercial catalysts, and improving the selectivity and activity of such catalysts via selection of appropriate regeneration conditions.


Accordingly, the disclosure herein provides one or more embodiments of methods of evaluating platinum re-dispersion in the context of reformer operation. The disclosure also provides one or more embodiments of methods of controlling platinum re-dispersion in the context of reformer operation. In some embodiments, the disclosure provides a method of evaluating the characteristics of various reforming catalysts used in CCR reformer systems. Such processes and methods advantageously provide for the control of one or more oxychlorination conditions (e.g., catalyst chloride level, time, temperature, and/or oxygen level) in a small-scale reactor. This may occur, for example, by providing the ability to directly compare the re-dispersion of different CCR catalysts under varying conditions and reaction atmospheres. The parameters of these methods may be controlled or adjusted, for example, to improve the activity or selectivity of the reforming catalysts used therein. In some embodiments, such parameters may then be applied on a larger scale, e.g., to provide enhanced reaction efficiency.


Some aspects of the disclosure provide methods of evaluating the platinum re-dispersion of a reforming catalyst in a small-scale reactor for use in a continuous regeneration system for a reforming process. The small, lab-scale re-dispersion process can be used to identify or rule out problems with the commercial regenerator. For example, a poorly dispersed catalyst sample can be subjected to the small-scale re-dispersion process; if the platinum dispersion is restored in the small-scale re-dispersion process, the commercial regeneration conditions can be adjusted accordingly, or if the platinum dispersion is not restored in the small-scale re-dispersion process, this may indicate that the catalyst has been poisoned.


Another aspect of the disclosure provides methods of evaluating platinum re-dispersion of a reforming catalyst in a small-scale reactor for use in a CCR reformer system (e.g., prior to implementation on a larger scale). For example, such methods may comprise providing an agglomerated reforming catalyst, subjecting the agglomerated reforming catalyst to one or more oxychlorination conditions to provide a re-dispersed reforming catalyst, wherein the subjecting step is configured to simulate a halogenation zone in a continuous catalyst regeneration reformer system, and controlling the one or more oxychlorination conditions to evaluate platinum dispersion on the re-dispersed reforming catalyst. The oxychlorination conditions may be selected from the group consisting of a time, a temperature, a catalyst chloride level, and an oxygen level, for example. In some embodiments, the method additionally may include measuring the platinum dispersion on the re-dispersed reforming catalyst.


In some embodiments, the step of subjecting the agglomerated reforming catalyst may be at least partially conducted in a small-scale reactor to simulate a halogenation zone in a continuous catalyst regeneration reformer system. For example, in some embodiments, the agglomerated reforming catalyst may be subjected to each of the oxychlorination conditions in the small-scale reactor. In such embodiments, one or more, or all, of the oxychlorination conditions may be controlled in the small-scale reactor. In other embodiments, the agglomerated reforming catalyst may be treated with a chloride source as a part of the subjecting step, and subsequently the agglomerated reforming catalyst may be loaded into the small-scale reactor. In such embodiments, the agglomerated reforming catalyst may be loaded into the small-scale reactor and then subjected to the remaining oxychlorination conditions while in the small scale reactor.


In some embodiments, such methods may further comprise subjecting a reforming catalyst to a steam deactivation process to provide the agglomerated reforming catalyst in the first method step. In some embodiments, such methods further may comprise adjusting the one or more oxychlorination conditions to provide a re-dispersed reforming catalyst with higher platinum dispersion. In some embodiments, the one or more oxychlorination conditions may be adjusted to provide a re-dispersed reforming catalyst with one or both of a higher activity and a higher selectivity. In some embodiments, the one or more oxychlorination conditions may be adjusted to provide a re-dispersed reforming catalyst capable of producing a higher unit yield. In some embodiments, the agglomerated reforming catalyst may be in particulate form and comprises a platinum component and a halogen component on a porous carrier. In some embodiments, the halogen component may be chlorine. In some embodiments, the agglomerated reforming catalyst further may comprise a promoter or a stabilizer.


Some embodiments of the disclosure also provide methods of improving the platinum dispersion on a re-dispersed reforming catalyst by adjusting the catalyst chloride level to a level of about 0.5 to about 1.5 wt. % Cl. In some embodiments, the platinum dispersion on a re-dispersed reforming catalyst may be improved by adjusting the catalyst chloride level to a level of about 1.0 wt. % Cl or higher. In some embodiments, the platinum dispersion on a re-dispersed refining catalyst may be improved by adjusting the temperature in the small-scale reactor to a temperature of about 400° C. to about 600° C. In some embodiments, the platinum dispersion on a re-dispersed reforming catalyst may be improved by adjusting the oxygen content in the small-scale reactor to a value of about 5% to about 30%. In some embodiments, the platinum dispersion on a re-dispersed reforming catalyst may be improved by adjusting the time in the small-scale reactor to a value of about 1 hour to about 4 hours. In further embodiments, the method may include evaluating two or more sets of oxychlorination conditions. The method also may include selecting the set of oxychlorination conditions associated with the highest catalyst platinum dispersion for use on a CCR reformer system and, optionally, implementing such set of oxychlorination conditions within the CCR reformer system.


Other aspects of the disclosure may provide a method of selecting a re-dispersed reforming catalyst for use in a CCR reformer system. For example, such selecting may comprise performing one or more of the methods disclosed herein on two or more different agglomerated reforming catalysts and selecting the re-dispersed reforming catalyst demonstrating the highest platinum dispersion for use within a CCR reformer system. The method may, in some embodiments, further comprise implementing the selected re-dispersed reforming catalyst in a CCR reformer system for reforming. In some embodiments, at least one of the agglomerated reforming catalysts evaluated may comprise a promoter and/or a stabilizer.


In yet other embodiments, methods of operating a CCR reformer system for reforming are disclosed, wherein a regeneration section includes a burn zone, a halogenation zone, and a drying zone in serial progression. In some embodiments, the method may include transfer of catalyst particles, containing a platinum group metal and having coke deposited thereon, to the burn zone and contacting the catalyst particles with an oxygen-containing regeneration gas to combust coke from the particles, passing catalyst particles from the burn zone to halogenation zone, contacting the catalyst particles with a halogen-containing gas in the halogenation zone, re-dispersing the platinum group metal on the catalyst particles, continuously circulating the halogen-containing gas from halogenation gas outlet to a halogenation gas inlet in the halogenation zone, maintaining a halogen concentration on the surface of the catalyst particles of at least about 1.0 weight percent in the halogenation zone, passing catalyst particles from the halogenation zone to a drying zone, and contacting the catalyst particles with a drying gas in the drying zone. In some embodiments, the halogen concentration on the surface of the catalyst particles in the halogenation zone is maintained above 1.2 weight percent. In some embodiments, the halogen concentration on the surface of the catalyst particles in the halogenation zone is maintained in the range of about 1.0 weight percent to about 1.5 weight percent.


The disclosure includes any combination of two, three, four, or more features or elements set forth in this disclosure or recited in any one or more of the claims, regardless of whether such features or elements are expressly combined or otherwise recited in a specific embodiment description or claim herein. This disclosure is intended to be read holistically such that any separable features or elements of the disclosure, in any of its aspects and embodiments, should be viewed as intended to be combinable, unless the context of the disclosure clearly dictates otherwise.





BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described the disclosure in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:



FIG. 1 illustrates a method of evaluating the platinum re-dispersion of a reforming catalyst in a small-scale reactor for use in a CCR reformer system for reforming, according to an embodiment of the disclosure;



FIG. 2 illustrates a large-scale CCR reformer system for reforming, according to an embodiment of the disclosure.





DETAILED DESCRIPTION OF THE DISCLOSURE

The disclosure now will be described more fully hereinafter with reference to specific embodiments and particularly to the various drawings provided herewith. Indeed, the disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification, and in the appended claims, the singular forms “a,” “an,” “the,” include plural referents unless the context clearly dictates otherwise.


The disclosure generally provides methods for re-dispersing platinum atoms on reforming catalysts used in a CCR reformer system as will be understood by one skilled in the art. In particular, and provided in further detail herein below, the disclosure includes embodiments of methods of evaluating platinum re-dispersion of reforming catalysts that have been re-dispersed in a small-scale reactor by controlling key oxychlorination conditions or parameters (e.g., the catalyst chloride level, temperature, time, and oxygen level) to simulate a halogenation zone, e.g., such as would be understood by those skilled in the art to be used in commercial CCR reforming processes/within a large-scale CCR reformer system. It should be noted that such methods of evaluating the reforming catalyst do not require the typical reaction section and regeneration section (e.g., as would be present in a commercial CCR unit). Instead, an already agglomerated reforming catalyst (e.g., that has been used in a commercial CCR unit previously) or a reforming catalyst that has been steam deactivated to create platinum agglomeration (e.g., to simulate the aging effects of using the catalyst in a commercial CCR unit) is subjected to one or more oxychlorination conditions at least partially in a small-scale reactor to simulate the halogenation zone. Generally, a “small-scale reactor” as described herein, refers to any reactor vessel that is small enough to be used in a laboratory setting and which allows for control and/or adjustment of the one or more oxychlorination conditions therein. In some embodiments, the small-scale reactor may contain about 1 to about 1,000 grams of reforming catalyst, or about 2.5 to about 500 grams of reforming catalyst, or about 5 to about 100 grams of reforming catalyst. In some embodiments, a micro-reactor may be used. For example, certain micro-reactor technology uses devices with dimensions in the sub-millimeter range to perform chemical transformations. These micro-reactor systems may, in some embodiments, be designed to take advantage of micro-flow phenomena, which enhances mass and heat transfer properties due to the high area-to-volume ratios.


Advantageously, such methods may provide comparative re-dispersion data of different reforming catalysts under controlled conditions (e.g., allowing the user to determine the best catalyst of those tested for implementation in the large scale CCR reformer system), and the conditions may be adjusted so as to predict improvement in the selectivity, activity, and stability of an individual catalyst on a larger scale (such that these conditions may subsequently be implemented on the large-scale CCR reformer system when using such catalyst). As noted above, such small-scale evaluation and control of these oxychlorination conditions, and their effect on the platinum re-dispersion of various catalysts and CCR reforming systems, has not been previously achieved in the industry.


In addition, the methods provided herein can be used to identify or rule out problems with the commercial CCR reformer systems. For example, commercial reforming catalysts that are currently in use may be evaluated using the methods provided herein to troubleshoot issues with inefficient reforming systems. In such embodiments, a catalyst sample exhibiting poor performance on a commercial CCR unit can be subjected to the small-scale re-dispersion processes described herein to determine the cause of the poor performance. For example, if the platinum dispersion is restored on the commercial catalyst in the small-scale re-dispersion processes described herein, this indicates that the commercial regeneration conditions being used in the commercial CCR unit are inefficient and can be adjusted accordingly, or if the platinum dispersion is not restored on the commercial catalyst in the small-scale re-dispersion process, this may indicate that the catalyst has been poisoned and is no longer suitable for use in CCR reformer systems.


Catalysts used for reforming reactions (“reforming catalysts” and/or “catalyst systems” and/or “catalysts” as referred to herein) are comprised of one or more metals and a halogen supported on a porous carrier. Generally, the “one or more metals” may be a Group VIII noble metal, e.g., such as platinum, iridium, rhodium, palladium, and the like. The particular metal or combinations of metals present in the reforming catalyst may vary; however, typically the reforming catalyst contains at least some amount of platinum. A “halogen” as used herein, refers to a Group XVII halogen or halogen-containing component, e.g., such as fluorine, chlorine, bromine, iodine, and astatine. The particular halogen used may vary; however, typically the halogen is a chloride containing compound. A “porous carrier” as used herein, refers to a refractory metal inorganic oxide, e.g., such as alumina, silica, silica-alumina, and the like. The particular refractory metal inorganic oxide forming the porous carrier may vary; however, typically the porous carrier is an alumina support.


In some embodiments, the catalysts used herein may be referred to as a “multi-metallic catalyst system”, e.g., such as bi-metallic catalyst systems, tri-metallic catalyst systems, and the like. Generally, “multi-metallic catalyst systems” as used herein, refer to reforming catalysts that comprise a porous carrier having two or more metallic components supported thereon. In some embodiments, a reforming catalyst further may have a promoter and/or a stabilizer supported thereon. For example, a “promoter” may refer to a substance added to a reforming catalyst to improve its performance in a chemical reaction. By itself, the substance may have little or no catalytic effect. Such promoters may comprise one or more metallic ions that are supported on the catalyst system. In some embodiments, adding a promoter metal to the reforming catalyst, for example, may result in better yield, but such advantages may be offset by making it more difficult to maintain high platinum (Pt) dispersion in the reforming catalyst.


Catalyst vendors in the industry continually work to improve the efficiency and other characteristics of reforming catalysts. Such improvements may be achieved by creating new catalyst systems or adding different promoters or stabilizers to already known catalysts. Catalysts and catalyst systems may be referred to herein as “old generation” or “new generation catalysts”; each referring to how recently the catalyst was discovered/developed. For example, old generation catalysts typically refer to catalysts that have been commercially available and used in commercial CCR units historically for many years as would be understood by those skilled in the art, whereas new generation catalysts typically refer to catalysts that are relatively new developments that may or may not have been used in commercial CCR units previously. The effectiveness of a particular catalyst, however, does not necessarily correlate to the particular generation of that catalyst. For example, in some embodiments, newer generation catalysts may not be as effective as older generation catalysts, and in other embodiments, the newer generation catalysts may perform better. Generally, the performance of the catalyst or catalyst system can be evaluated by a number of factors, e.g., such as the platinum dispersion on the surface of the reforming catalyst, the selectivity of the reforming catalyst, the activity of the reforming catalyst, and the like. Thus, a reforming catalyst exhibiting better performance may have a higher platinum dispersion thereon and/or higher selectivity and/or higher activity than a comparable catalyst, whereas a catalyst exhibiting lesser performance may have a lower platinum dispersion thereon and/or lower selectivity and/or lower activity.


Generally, the catalyst is provided in particulate form, and such particles may vary in size and/or shape. Since CCR units circulate catalyst from the reaction section to the regeneration section, they may be cylindrical or spheroidal in shape with diameters from about 1/16th to about ⅛th inch (1.5-3.1 mm) in size. One or more of the methods and systems described herein may also applicable for evaluating fixed bed reforming catalysts. Fixed bed reforming catalysts may be in the form of an extrudated material having a diameter of from about 1/16th to about ⅛th inch (1.5-3.1 mm), though they may be as large as ¼ inch (6.35 mm) in diameter. It should be noted that any type of reforming catalyst generally suitable for use in commercial CCR processes generally is meant to be suitable for use in the methods described more specifically herein.


As depicted in FIG. 1, one embodiment of the disclosure provides a method of evaluating the platinum re-dispersion on a reforming catalyst in a small-scale reactor for use in a CCR reformer system (e.g., a large scale system). Such methods may comprise, for example, the steps of: (i) providing an agglomerated reforming catalyst (e.g., as shown at operation 2); (ii) subjecting the agglomerated reforming catalyst to one or more oxychlorination conditions at least partially in a small-scale reactor to provide a re-dispersed reforming catalyst, wherein the subjecting step is configured to simulate a halogenation zone in a continuous catalyst regeneration reformer system (e.g., as shown at operation 4); and (iii) controlling the one or more oxychlorination conditions to evaluate platinum dispersion on the re-dispersed reforming catalyst. The oxychlorination conditions, for example, may be selected from the group consisting of a time, a temperature, a catalyst chloride level, and an oxygen level (e.g., as shown at operation 6). The method also may include measuring the platinum dispersion on the re-dispersed reforming catalyst (e.g., as shown at operation 8).


Applicant advantageously has discovered that repeatable platinum dispersion values may be obtained by controlling key parameters during a simulated re-dispersion process in a small-scale reactor, e.g., by controlling one or more oxychlorination conditions in the small-scale reactor according to embodiments of methods provided herein. Thus, under controlled oxychlorination conditions in a small-scale reactor, the platinum re-dispersion on individual reforming catalysts may be measured, evaluated, adjusted, and/or compared to the platinum re-dispersion exhibited on other reforming catalysts. Generally, it is desirable to understand how platinum dispersion will be maintained throughout the life of the reforming catalyst during use in a commercial CCR unit. Using the methods described herein, it should be noted that the platinum re-dispersion of various reforming catalyst samples can advantageously be evaluated before being loaded into a commercial CCR unit.


The terms “platinum re-dispersion” and “platinum dispersion” may be used interchangeably herein, and generally refer to the dispersion and/or distribution of platinum atoms on the surface of the reforming catalyst after the reforming catalyst has been subjected to the one or more oxychlorination conditions to re-disperse the platinum thereon. The dispersion of platinum atoms on the surface of the reforming catalyst is measured as a percentage, wherein the “platinum dispersion percentage” is equal to the number of active platinum sites (e.g., availability to catalytic reactions and/or providing at least some catalytic reactivity) divided by the total amount of platinum present on the reforming catalyst. Generally, it should be noted that lower platinum dispersion percentages indicate uneven distribution and/or some degree of agglomeration of platinum atoms on the surface of the reforming catalyst, whereas higher platinum dispersion percentages indicate more even distribution and/or minimal to no agglomeration of platinum atoms on the surface of the reforming catalyst. For example, a 100% platinum dispersion value can indicate that the platinum atoms are substantially evenly distributed on the surface of the reforming catalyst, such that all platinum atoms provide active reaction sites. In some embodiments, the platinum re-dispersion on the catalyst may be measured using chemisorption techniques to compare platinum dispersion values before and after the lab re-dispersion process. Other techniques, such as scanning electron microscopy (SEM) and/or x-ray diffraction analyses can be used to monitor platinum dispersion and clustering, for example. Generally, re-dispersed catalyst samples are removed from the small-scale reactor prior to measurement of the platinum dispersion.


In addition, the effect of a promoter or a stabilizer added to a catalyst system may be evaluated to determine the effect of the added promoter or stabilizer on the overall re-dispersion on the reforming catalyst when subjected to oxychlorination conditions. Advantageously, such methods also allow for efficient testing of the platinum re-dispersion of multiple, different reforming catalysts on a small-scale prior to using such catalysts on large-scale, e.g., such as commercially available CCR reforming processes. It should be noted that catalysts showing a low platinum re-dispersion when evaluated according to the methods provided herein may struggle to maintain high platinum dispersion values in a commercial CCR unit, which may translate into lower reforming activity of the overall CCR unit. Meanwhile, catalysts showing high platinum re-dispersion when evaluated according to the methods provided herein advantageously may maintain high platinum dispersion values in a commercial CCR unit, which may translate into higher reforming activity, higher catalyst selectivity, and improved yield.


As noted above, the methods and systems described herein require providing an agglomerated reforming catalyst, e.g., as noted at operation 2. Generally, a deactivation process is used to provide an agglomerated reforming catalyst. During the deactivation process, chlorides are stripped from the catalyst and the platinum atoms (or other metals) contained thereon are agglomerated. In some embodiments, for example, steam deactivation processes are used to artificially age the catalyst samples to provide an agglomerated catalyst sample. The steam deactivation process reduces the catalyst surface and mimics the aging that occurs in a commercial CCR unit. The particular processes used for deactivating the catalyst samples to simulate aging (and agglomerate the platinum atoms) and/or the conditions used during such processes may generally vary. For example, the agglomerated catalyst samples may be obtained directly from a commercial CCR unit (e.g., such that artificial aging of the catalyst is not necessary), or a lab agglomerated catalyst (e.g., that has been steam deactivated to simulate aging of the catalyst) may be used. When preparing a lab agglomerated catalyst, it should be noted that, by controlling the steam deactivation process conditions (e.g., such as temperature, time, and percent steam), the aging process can mimic 1-10 years of operation in a commercial CCR unit. For example, a lab agglomerated catalyst sample can be generated by treating the reforming catalyst with steam using temperatures between about 1000° F. and about 1300° F. In some embodiments, the reforming catalyst may be treated with steam using a temperature of at least about 1000° F., at least about 1050° F., at least about 1100° F., at least about 1150° F., at least about 1200° F., at least about 1250° F., at least about 1300° F., or higher.


After providing the agglomerated reforming catalyst, it is subjected to one or more oxychlorination conditions at least partially in a small-scale reactor to simulate the halogenation zone in a commercial CCR unit. As noted above, for example, the methods and systems described herein allow for control of one or more oxychlorination conditions, optionally in the small-scale reactor, to determine the effect of those particular conditions on the platinum dispersion on a re-dispersed reforming catalyst. In particular, the catalyst chloride level in the reactor, the temperature in the reactor, the oxygen level in the reactor, and the time of the reaction may be controlled to determine the difference in platinum dispersion between multiple reforming catalysts at various conditions (e.g., which reforming catalyst performs best using set conditions) and may be controlled to determine which combinations of conditions provide the desired re-dispersion for a particular reforming catalyst (e.g., which conditions provide the best platinum dispersion for a particular catalyst).


In some embodiments, the platinum re-dispersion on a reforming catalyst may be improved by controlling the halide (e.g., chloride) level on the catalyst surface before and/or during its residence within the small-scale reactor during the re-dispersion process. “Catalyst chloride level” as used herein, refers to the chloride level on the surface of the reforming catalyst and is typically measured when the catalyst is removed from the small-scale reactor, after being subjected to the one or more oxychlorination conditions during the re-dispersion process. Generally, the amount of chloride ions on the catalysts surface can be controlled to maintain peak activity of the reforming catalyst. Advantageously, the presence of chloride ions in the reforming catalyst may help maintain a high platinum dispersion during processing, for example, because the chloride ions react with the oxidized platinum ions which helps redistribute platinum over the catalyst support. In addition, the chloride ions may interact with the porous carrier (e.g., alumina support) to create the acidity needed for reforming reactions.


It should be noted that reforming catalysts are typically pre-chlorided prior to use in commercial CCR units. However, some of this chloride is lost during the reaction in the reaction section and in the burn zone of the regeneration section, reducing the chloride content below desired levels. Thus, subjecting the reforming catalysts to a chloride-containing gas, for example, in the halogenation zone of a commercial regeneration process, allows the lost chloride to be replenished on the reforming catalyst. Generally, the chloride component in commercial CCR units may be injected or sprayed into the halogenation zone. For example, the chloride component in commercial units may include an organic chloride, e.g., such as perchloroethane. However, in the processes and methods described herein, the agglomerated reforming catalyst is treated with a chloride source (e.g., such as hydrochloric acid (“HCl”)) and subsequently the agglomerated reforming catalyst is loaded into the small-scale reactor to impart the desired catalyst chloride level on the reforming catalyst while in the small-scale reactor. Generally, addition of this chloride source prior to loading the agglomerated reforming catalyst into the small-scale reactor can create the effect of re-chloriding the agglomerated reforming catalyst, such as would occur when the catalyst comes into contact with the halogen-containing gas in the halogenation zone of a commercial CCR unit. The amount of HCl treated onto the agglomerated reforming catalyst may vary and typically HCl is treated onto the agglomerated reforming catalyst in an amount sufficient to provide the desired catalyst chloride level in the small-scale reactor. For example, the catalyst chloride level may be adjusted to be in the range of about 0.5 to about 1.5 weight percent Cl, about 0.7 to about 1.3 weight percent Cl, or about 1.0 to about 1.2 weight percent Cl. In some embodiments, the catalyst chloride level may be maintained at above 0.7 weight percent Cl, above 1.0 weight percent Cl, above 1.2 weight percent Cl, or above 1.3 weight percent Cl. In particular embodiments, the catalyst chloride level is about 1.0 weight percent Cl or greater. In some embodiments, the moisture content and/or the temperature within the small-scale reactor may also influence the catalyst chloride level.


In some embodiments, the platinum re-dispersion of the reforming catalyst may be improved by controlling the temperature in the small-scale reactor during the re-dispersion process. For example, the temperature in the small-scale reactor may be adjusted to be in the range of about 400° C. to about 600° C., about 450° C. to about 575° C., or about 500° C. to about 550° C. In some embodiments, the temperature in the small-scale reactor may be adjusted to be above about 450° C., above about 475° C., above about 500° C., above about 525° C., above about 550° C., or higher. In some embodiments, the temperature in the small-scale reactor may be adjusted to be about 400° C. or greater, about 450° C. or greater, about 475° C. or greater, about 500° C. or greater, about 525° C. or greater, or about 550° C. or greater.


In some embodiments, the platinum re-dispersion of the reforming catalyst may be improved by controlling the oxygen content in the small-scale reactor during the re-dispersion process. For example, the oxygen content in the small-scale reactor may be adjusted to be in the range of about 5% to about 50% oxygen, about 10% to about 30%, or about 20% to about 25%. In some embodiments, the oxygen content in the small-scale reactor may be adjusted to be above about 10%, above about 15%, above about 20%, above about 25%, above about 30%, and higher. In some embodiments, the oxygen content in the small-scale reactor may be adjusted to be about 5% or greater, 10% or greater, 15% or greater, 20% or greater, 25% or greater, or 30% or greater.


In some embodiments, the platinum re-dispersion of the reforming catalyst may be improved by controlling the time of the re-dispersion process within the small-scale reactor. For example, the time of the re-dispersion reaction may be adjusted to be in the range of about 0.1 hours to about 5 hours, about 1 hour to about 4 hours, or about 2 hours to about 3 hours. I some embodiments, the time of the re-dispersion reaction may be adjusted to be about 4 hours or less, about 3.5 hours or less, about 3 hours or less, about 2 hours or less, or about 1 hour or less.


As noted herein above, any of the above mentioned oxychlorination conditions may be adjusted, in particular, to provide enhanced platinum dispersion on the re-dispersed reforming catalyst, enhanced activity of the re-dispersed reforming catalyst, and/or enhanced selectivity of the re-dispersed reforming catalyst, and/or an increase in unit yield when using the re-dispersed reforming catalyst in a CCR reformer system for reforming as described herein. Such enhancement is understood to be described in comparison to activity under other tested conditions. In other embodiments, the oxychlorination conditions may be controlled and/or fixed at a desired level in the small-scale reactor so as to evaluate and compare the platinum dispersion on various reforming catalysts when subjected to those particular conditions.


As noted above, some aspects of the disclosure provide methods of operating a CCR reformer system for reforming. In some embodiments, the CCR reformer system may comprise a reaction section, a regeneration section, and a halogen recovery section. In some embodiments, each of these individual sections may comprise one or more zones. For example, in some embodiments, the regeneration section includes a burn zone, a halogenation zone, and a drying zone in serial progression. In other embodiments, the burn zone, the halogenation zone, and the drying zone may be in a stacked arrangement, for example, with the burn zone on top such that the catalyst progresses through each of the individual beds under gravity flow.



FIG. 2 illustrates a CCR reformer system for reforming. The process is generally designed for regeneration of a reforming catalyst that is used in a reaction section, e.g., at operation 10. Following the reaction section, the reforming catalyst is passed to a regeneration section 20. Generally, the regeneration section 20 may include one or more regeneration towers 22. The regeneration towers may vary in size and shape and/or in material construction. Typically, any type of regeneration tower typically used in the art may be suitable. As noted above and as depicted in FIG. 2, the regeneration section 20 may include a burn zone 24, halogenation (oxychlorination) zone 26, and drying zone 28. Generally, the catalyst particles, containing a platinum group metal and having coke deposited thereon, are transferred to the burn zone 24 and the catalyst particles are contacted with an oxygen-containing regeneration gas to combust coke from the particles.


Next, the catalyst particles are passed from the burn zone 24 to halogenation zone 26 and the catalyst particles are contacted with a halogen-containing gas in the halogenation zone, re-dispersing the platinum group metal on said reforming catalyst. The halogen-containing gas may vary, however, it typically comprises at least a chloride component. The halogen-containing gas may be added to any of the zones via line 32 to increase the chloride content on the catalyst. While in the halogenation zone 26, the halogen-containing gas from halogenation gas outlet 38 is continuously circulated to a halogenation gas inlet 32 in the halogenation zone 26 via a halogen recovery system 30 and a halogen is added to the halogenation zone 26 in an excess amount to maintain an excess halogen concentration on the surface of the catalyst in the halogenation zone 26. For example, halogen is added to the halogenation zone in an excess amount via line 34, in addition to line 32, to maintain an excess halogen concentration in the halogenation zone 26. In some embodiments, the halogen concentration on the surface of the catalyst in the halogenation zone may be maintained between about 0.5 weight percent to about 1.5 weight percent, about 0.7 weight percent to about 1.3 weight percent, or about 1.0 weight percent to about 1.2 weight percent. In some embodiments, the halogen concentration on the surface of the catalyst in the halogenation zone may be maintained above 0.7 weight percent, above 1.0 weight percent, above 1.2 weight percent, or above 1.3 weight percent. Preferably, the halogen concentration on the surface of the catalyst may be maintained in the range of about 1.0 weight percent to about 1.5 weight percent.


It should be noted that the introduction of the halogen-containing gas in an excess amount advantageously increases the halogen concentration on the surface of the reforming catalyst and thereby, the platinum re-dispersion on the reforming catalyst, which may lead to higher activity and/or selectivity as well as providing a longer lifetime for the CCR catalyst within the system. Generally, the amount of halogen (e.g., chloride) on the catalyst surface and in the gas phase (e.g., the halogen concentration in the halogen-containing gas) can be controlled to maintain peak activity of the reforming catalyst. In some embodiments, the halogen levels on the surface of the reforming catalyst may be controlled by controlling the concentration of halogen in the halogen-containing gas that is continuously circulated within the halogenation zone of the regenerator. In some embodiments, the moisture content and/or the temperature of the halogen-containing gas circulated may also affect the halogen concentration on the surface of the catalyst.


Finally, the catalyst particles may be passed from the halogenation zone 26 to a drying zone 28 and the catalyst particles may be contacted with a drying gas in the drying zone 28. Generally, the drying gas is a heated gas that contacts the catalyst particles and drives moisture from the reforming catalyst. Typically, air or an oxygen-containing gas enters the drying zone as the drying medium and passes upward through the halogenation zone 26 to the burn zone 24 to provide combustion gas. Following the drying zone 28, the catalyst particles are recycled back to reaction section 10 via line 36 and reused in the process.


Having the benefit of the teachings presented in the foregoing descriptions and the examples to follow, many modifications and other embodiments of the disclosure set forth herein will come to mind to those skilled in the art to which these disclosures pertain. Therefore, it is to be understood that the disclosure is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.


EXPERIMENTAL

Experiments were conducted with commercial reforming catalysts in a small-scale reactor. The oxychlorination conditions within the small-scale reactor were controlled to evaluate platinum dispersion on the re-dispersed reforming catalysts. The first catalyst evaluated for platinum re-dispersion (referred to herein as “Catalyst A”) is an older generation reforming catalyst. Catalyst A is a spherical, platinum/tin containing reforming catalyst promoted on a low density alumina support, which is commercially available from Axens SA®, for example, as the PS-40™ reforming catalyst. Two newer generation reforming catalysts were also evaluated for platinum re-dispersion (referred to herein as “Catalyst B” and “Catalyst C” respectively). Catalyst B is a multi-metallic, platinum/tin containing reforming catalyst promoted on a low density alumina support, which is commercially available from Axens SA®, for example, as the Symphony® PS-100 reforming catalyst. Catalyst C is a spherical, multi-metallic, platinum/tin containing reforming catalyst promoted on a high purity alumina support, which is commercially available from Axens SA®, for example, as the Symphony® PS-110. It should be noted that the particular catalyst samples tested, and the subsequent data and analysis provided herein, is merely presented by way of example and generally any CCR reforming catalyst suitable for use in a CCR reformer system may be evaluated according to the methods and systems described herein.


Initially, each of the catalysts were subjected to a steam deactivation process, resulting in agglomeration of the platinum contained on the catalysts. Each agglomerated catalyst sample was then treated with a chloride source (HCl) and subjected to a re-dispersion process conducted under controlled oxychlorination conditions in a small-scale reactor. Various oxychlorination conditions were controlled and evaluated during the re-dispersion process to determine their effect on the platinum dispersion on the re-dispersed catalysts. The following parameters were found to affect the platinum re-dispersion of the reforming catalysts tested: catalyst chloride level, temperature, oxygen level, and time. Data regarding the effect of these parameters on the platinum re-dispersion of the tested catalysts is provided in the examples herein below. All platinum dispersion values presented therein are in reference to the platinum dispersion percentage, for example, as defined herein above.


Example 1

Re-dispersion experiments were conducted on Catalyst A and Catalyst B in a small-scale reactor at 550° C. with 21% oxygen for 4 hours. Catalyst chloride levels were varied between 0.7 and 1.2 wt. % Cl to determine the effect of catalyst chloride level on platinum dispersion in the tested catalysts. As demonstrated in Table 1 below, platinum dispersion improved when catalyst chloride levels were increased to 1.0 wt. % Cl and further improved significantly when catalyst chloride levels were increased to 1.2 wt. % Cl. Similar improvements were observed for both Catalyst A and Catalyst B. However, Catalyst A displayed higher platinum dispersion after treatment than Catalyst B.











TABLE 1






A
B



















0.7 wt. % Cl

20%



1.0 wt. % Cl
59%
32%



1.2 wt. % Cl
98%
79%









Example 2

Re-dispersion experiments were conducted on Catalysts A, B and C in a small-scale reactor for 4 hours with 21% oxygen with a catalyst chloride level of 1.2 wt. % Cl. Temperature was varied between 468° C. to 550° C. within the reactor to determine the effect of temperature on platinum dispersion in the tested catalysts. As demonstrated in Table 2, all catalyst systems generally displayed improved platinum dispersion values when higher temperatures were used. In fact, Catalyst A experienced 100% platinum dispersion when subjected to a temperature of 550° C.












TABLE 2






A
B
C




















468° C. (875° F.)
73%
64%
45%



510° C. (950° F.)
83%
81%
69%



550° C. (1022° F.)
100% 
79%
82%









Example 3

Re-dispersion experiments were conducted on Catalyst A in a small-scale reactor at 550° C. for 4 hours with a catalyst chloride level of 1.2 wt. % Cl. The oxygen level was varied to between 7% and 21% within the reactor to determine the effect of oxygen level on platinum dispersion in the tested catalysts. As demonstrated in Table 3, platinum dispersion remained low until the oxygen content was increased to 21% oxygen; for example, the platinum dispersion increased from 25% to 98% when the oxygen level was increased from 18% to 21% oxygen.










TABLE 3






A


















 7% oxygen
22%



18% oxygen
25%



21% oxygen
98%









Example 4

Re-dispersion experiments were conducted on Catalysts A, B, and C in a small scale reactor at 550° C. with an oxygen content of 21% and a catalyst chloride level of 1.2 wt. % Cl. To evaluate how time affects platinum re-dispersion, the re-dispersion procedure was conducted using regeneration times between 1 and 4 hours. In a commercial CCR unit, it takes approximately 4 hours for the reforming catalyst to pass through the regenerator. Therefore, it is desirable to complete the dispersion in less than 4 hours. As demonstrated in Table 4, all three catalysts tested displayed reasonable platinum dispersion values after a re-dispersion time of 1 hour (e.g., all having platinum dispersion of at least 67%). In addition, platinum dispersion values displayed a further increase as the time was extended to 2 hours and 4 hours in both Catalyst A and C. Catalyst B showed a decrease in platinum dispersion from 1 hour to 2 hours (likely due to error). Generally, as demonstrated in Table 4, Catalyst A achieved 98% platinum dispersion, while Catalyst B and Catalyst C showed slightly lower platinum dispersion values (79% for Catalyst B and 82% for Catalyst C) after four hours.












TABLE 4






A
B
C




















1 hr
79%
72%
67%



2 hr
86%
56%
67%



4 hr
98%
79%
82%









Although only a few exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims.

Claims
  • 1. A method of analyzing platinum re-dispersion for an activated continuous catalyst regeneration (CCR) reformer system, the method comprising: simulating a halogenation zone in a small-scale reactor for use by a CCR reformer system, the simulation comprising:(a) subjecting an activated catalyst, including platinum, to steam deactivation, thereby to agglomerate the platinum and provide an agglomerated reforming catalyst,(b) treating the agglomerated reforming catalyst with a chloride source, and(c) subjecting the treated agglomerated reforming catalyst to one or more oxychlorination conditions at least partially in the small-scale reactor, thereby to disperse the platinum agglomerate and provide a re-dispersed reforming catalyst;measuring an amount of platinum dispersion on a surface of the re-dispersed reforming catalyst;altering at least one of the one or more oxychlorination conditions within the small-scale reactor, the one or more oxychlorination conditions selected from the group consisting of time, temperature, catalyst chloride level and oxygen content, thereby to subject the re-dispersed reforming catalyst to the altering of at least one of the one or more oxychlorination conditions at least partially in the small-scale reactor;measuring change in the amount of platinum dispersion due to the altering of at least one of the one or more oxychlorination conditions;predicting an amount of platinum re-dispersion for a CCR reformer system responsive to the change in measurements of the amount of platinum dispersion from the small-scale reactor; andselecting a catalyst for use in the CCR reformer system responsive to the predicted amount of platinum re-dispersion.
  • 2. The method of claim 1, wherein the measured change in the amount of platinum dispersion due to the altering of at least one of the one or more oxychlorination conditions indicates that the altered oxychlorination conditions increases the dispersion of platinum.
  • 3. The method of claim 1, wherein the simulation further comprises the altering of at least one of the one or more oxychlorination conditions in the small-scale reactor, thereby to provide higher catalyst activity or higher catalyst selectivity.
  • 4. The method of claim 1, wherein the simulation further comprises the altering of at least one of the one or more oxychlorination conditions in the small-scale reactor, thereby to provide higher unit yield.
  • 5. The method of claim 1, wherein the agglomerated reforming catalyst comprises a particulate form and a platinum component supported on a porous carrier.
  • 6. The method of claim 5, wherein the agglomerated reforming catalyst further comprises a chlorine component supported on the porous carrier.
  • 7. The method of claim 5, wherein the agglomerated reforming catalyst further comprises one or more of a promoter or a stabilizer.
  • 8. The method of claim 1, wherein the altering of at least one of the one or more oxychlorination conditions comprises adjusting the catalyst chloride level to a range of about 0.5 to about 1.5 wt. % Cl.
  • 9. The method of claim 1, wherein the chloride source comprises an acid.
  • 10. The method of claim 1, wherein the altering of at least one of the one or more oxychlorination conditions comprises adjusting the temperature in the small-scale reactor to a range of about 400° C. to about 600° C.
  • 11. The method of claim 1, wherein the altering of at least one of the one or more oxychlorination conditions comprises adjusting the oxygen content in the small-scale reactor.
  • 12. The method of claim 1, wherein the altering of at least one of the one or more oxychlorination conditions comprises adjusting an amount of time that the agglomerated reforming catalyst is subjected to the at least one of the one or more oxychlorination conditions in the small-scale reactor to a range of about 1 hour to about 4 hours.
  • 13. The method of claim 1, further comprising selecting at least one of the one or more oxychlorination conditions associated with the highest platinum dispersion for use in the CCR reformer system.
  • 14. A method of selecting a platinum continuous catalyst regeneration (CCR) reformer system, the method comprising; (a) performing the simulating steps (a)-(c) of the method of claim 1 on two or more different agglomerated reforming catalysts; and(b) further selecting the re-dispersed reforming catalyst exhibiting the highest amount of platinum dispersion to be used in the CCR reformer system.
  • 15. The method of claim 14, further comprising: (c) implementing the re-dispersed reforming catalyst exhibiting the highest amount of platinum dispersion in the CCR reformer system.
  • 16. The method of claim 14, wherein at least one of the two or more different agglomerated reforming catalysts comprises one or more of a promoter or a stabilizer.
  • 17. A method of analyzing platinum re-dispersion for an activated continuous catalyst regeneration (CCR) reformer system, the method comprising: providing an agglomerated reforming catalyst, the agglomerated reforming catalyst comprising platinum agglomerate;treating the agglomerated reforming catalyst with a chloride source;subjecting the treated agglomerated reforming catalyst to one or more oxychlorination conditions at least partially in a small-scale reactor, thereby to disperse the platinum agglomerate and provide a re-dispersed reforming catalyst, the small-scale reactor configured to simulate a halogenation zone in a CCR reformer system;measuring an amount of platinum dispersion on a surface of the re-dispersed reforming catalyst;adjusting at least one of the one or more oxychlorination conditions within the small-scale reactor, the one or more oxychlorination conditions selected from the group consisting of time at a range of about 1 to about 4 hours, temperature at a range of about 400° C. to about 600° C., catalyst chloride level at a range of about 0.5 to about 1.5 wt. % Cl, and;subjecting the re-dispersed reforming catalyst to the adjusted at least one of the one or more oxychlorination conditions at least partially in the small-scale reactor; andmeasuring change in the amount of platinum dispersion due to the subjecting of the re-dispersed reforming catalyst to the adjusted at least one of the one or more oxychlorination conditions.
  • 18. The method of claim 17, wherein the adjusting of at least one of the one or more oxychlorination conditions comprises adjusting at least the oxygen content and the catalyst chloride level.
  • 19. The method of claim 17, wherein the adjusting of at least one of the one or more oxychlorination conditions results in a platinum dispersion of up to 100%.
  • 20. The method of claim 1, wherein the adjusting of at least one of the one or more oxychlorination conditions results in an amount of platinum dispersion of up to 100%.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Provisional Application No. 62/845,485 filed May 9, 2019, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (800)
Number Name Date Kind
981434 Lander Jan 1911 A
1526301 Stevens Feb 1925 A
1572922 Govers et al. Feb 1926 A
1867143 Fohl Jul 1932 A
2401570 Koehler Jun 1946 A
2498442 Morey Feb 1950 A
2516097 Woodham et al. Jul 1950 A
2686728 Wallace Aug 1954 A
2691621 Gagle Oct 1954 A
2691773 Lichtenberger Oct 1954 A
2731282 Mcmanus et al. Jan 1956 A
2740616 Walden Apr 1956 A
2792908 Glanzer May 1957 A
2804165 Blomgren Aug 1957 A
2867913 Faucher Jan 1959 A
2888239 Slemmons May 1959 A
2909482 Williams et al. Oct 1959 A
2925144 Kroll Feb 1960 A
2963423 Birchfield Dec 1960 A
3063681 Duguid Nov 1962 A
3070990 Stanley Jan 1963 A
3109481 Yahnke Nov 1963 A
3167305 Backx et al. Jan 1965 A
3188184 Rice et al. Jun 1965 A
3199876 Magos et al. Aug 1965 A
3203460 Kuhne Aug 1965 A
3279441 Lippert et al. Oct 1966 A
3307574 Anderson Mar 1967 A
3364134 Hamblin Jan 1968 A
3400049 Wolfe Sep 1968 A
3545411 Vollradt Dec 1970 A
3660057 Ilnyckyj May 1972 A
3719027 Salka Mar 1973 A
3720601 Coonradt Mar 1973 A
3771638 Schneider et al. Nov 1973 A
3775294 Peterson Nov 1973 A
3795607 Adams Mar 1974 A
3838036 Stine et al. Sep 1974 A
3839484 Zimmerman, Jr. Oct 1974 A
3840209 James Oct 1974 A
3841144 Baldwin Oct 1974 A
3854843 Penny Dec 1974 A
3874399 Ishihara Apr 1975 A
3901951 Nishizaki Aug 1975 A
3906780 Baldwin Sep 1975 A
3912307 Totman Oct 1975 A
3928172 Davis et al. Dec 1975 A
3937660 Yates Feb 1976 A
4006075 Luckenbach Feb 1977 A
4017214 Smith Apr 1977 A
4066425 Nett Jan 1978 A
4085078 McDonald Apr 1978 A
4144759 Slowik Mar 1979 A
4149756 Tackett Apr 1979 A
4151003 Smith et al. Apr 1979 A
4167492 Varady Sep 1979 A
4176052 Bruce et al. Nov 1979 A
4217116 Seever Aug 1980 A
4260068 McCarthy et al. Apr 1981 A
4299687 Myers et al. Nov 1981 A
4302324 Chen et al. Nov 1981 A
4308968 Thiltgen et al. Jan 1982 A
4328947 Reimpell et al. May 1982 A
4332671 Boyer Jun 1982 A
4340204 Heard Jul 1982 A
4353812 Lomas et al. Oct 1982 A
4357603 Roach et al. Nov 1982 A
4392870 Chieffo et al. Jul 1983 A
4404095 Haddad et al. Sep 1983 A
4422925 Williams et al. Dec 1983 A
4434044 Busch et al. Feb 1984 A
4439533 Lomas et al. Mar 1984 A
4468975 Sayles et al. Sep 1984 A
4482451 Kemp Nov 1984 A
4495063 Walters et al. Jan 1985 A
4539012 Ohzeki et al. Sep 1985 A
4554313 Hagenbach et al. Nov 1985 A
4554799 Pallanch Nov 1985 A
4570942 Diehl et al. Feb 1986 A
4601303 Jensen Jul 1986 A
4615792 Greenwood Oct 1986 A
4621062 Stewart et al. Nov 1986 A
4622210 Hirschberg et al. Nov 1986 A
4624771 Lane et al. Nov 1986 A
4647313 Clementoni Mar 1987 A
4654748 Rees Mar 1987 A
4661241 Dabkowski et al. Apr 1987 A
4673490 Subramanian et al. Jun 1987 A
4674337 Jonas Jun 1987 A
4684759 Lam Aug 1987 A
4686027 Bonilla et al. Aug 1987 A
4728348 Nelson et al. Mar 1988 A
4733888 Toelke Mar 1988 A
4741819 Robinson et al. May 1988 A
4764347 Milligan Aug 1988 A
4765631 Kohnen et al. Aug 1988 A
4771176 Scheifer et al. Sep 1988 A
4816137 Swint et al. Mar 1989 A
4820404 Owen Apr 1989 A
4824016 Cody et al. Apr 1989 A
4844133 von Meyerinck et al. Jul 1989 A
4844927 Morris et al. Jul 1989 A
4849182 Luetzelschwab Jul 1989 A
4854855 Rajewski Aug 1989 A
4875994 Haddad et al. Oct 1989 A
4877513 Haire et al. Oct 1989 A
4798463 Koshi Nov 1989 A
4901751 Story et al. Feb 1990 A
4914249 Benedict Apr 1990 A
4916938 Aikin et al. Apr 1990 A
4917790 Owen Apr 1990 A
4923834 Lomas May 1990 A
4940900 Lambert Jul 1990 A
4957511 Ljusberg-Wahren Sep 1990 A
4960503 Haun et al. Oct 1990 A
4963745 Maggard Oct 1990 A
4972867 Ruesch Nov 1990 A
5000841 Owen Mar 1991 A
5002459 Swearingen et al. Mar 1991 A
5008653 Kidd et al. Apr 1991 A
5009768 Galiasso et al. Apr 1991 A
5013537 Patarin et al. May 1991 A
5022266 Cody et al. Jun 1991 A
5032154 Wright Jul 1991 A
5034115 Avidan Jul 1991 A
5045177 Cooper et al. Sep 1991 A
5050603 Stokes et al. Sep 1991 A
5053371 Williamson Oct 1991 A
5056758 Bramblet Oct 1991 A
5059305 Sapre Oct 1991 A
5061467 Johnson et al. Oct 1991 A
5066049 Staples Nov 1991 A
5076910 Rush Dec 1991 A
5082985 Crouzet et al. Jan 1992 A
5096566 Dawson et al. Mar 1992 A
5097677 Holtzapple Mar 1992 A
5111882 Tang et al. May 1992 A
5112357 Bjerklund May 1992 A
5114562 Haun et al. May 1992 A
5115686 Walker et al. May 1992 A
5121337 Brown Jun 1992 A
5128109 Owen Jul 1992 A
5128292 Lomas Jul 1992 A
5129624 Icenhower et al. Jul 1992 A
5138891 Johnson Aug 1992 A
5139649 Owen et al. Aug 1992 A
5145785 Maggard et al. Sep 1992 A
5149261 Suwa et al. Sep 1992 A
5154558 McCallion Oct 1992 A
5160426 Avidan Nov 1992 A
5170911 Della Riva Dec 1992 A
5174250 Lane Dec 1992 A
5174345 Kesterman et al. Dec 1992 A
5178363 Icenhower et al. Jan 1993 A
5196110 Swart et al. Mar 1993 A
5201850 Lenhardt et al. Apr 1993 A
5203370 Block et al. Apr 1993 A
5211838 Staubs et al. May 1993 A
5212129 Lomas May 1993 A
5221463 Kamienski et al. Jun 1993 A
5223714 Maggard Jun 1993 A
5225679 Clark et al. Jul 1993 A
5230498 Wood et al. Jul 1993 A
5235999 Lindquist et al. Aug 1993 A
5236765 Cordia et al. Aug 1993 A
5243546 Maggard Sep 1993 A
5246860 Hutchins et al. Sep 1993 A
5246868 Busch et al. Sep 1993 A
5248408 Owen Sep 1993 A
5250807 Sontvedt Oct 1993 A
5257530 Beattie et al. Nov 1993 A
5258115 Heck et al. Nov 1993 A
5258117 Kolstad et al. Nov 1993 A
5262645 Lambert et al. Nov 1993 A
5263682 Covert et al. Nov 1993 A
5301560 Anderson et al. Apr 1994 A
5302294 Schubert Apr 1994 A
5316448 Ziegler et al. May 1994 A
5320671 Schilling Jun 1994 A
5326074 Spock et al. Jul 1994 A
5328505 Schilling Jul 1994 A
5328591 Raterman Jul 1994 A
5332492 Maurer et al. Jul 1994 A
5338439 Owen et al. Aug 1994 A
5348645 Maggard et al. Sep 1994 A
5349188 Maggard Sep 1994 A
5349189 Maggard Sep 1994 A
5354451 Goldstein et al. Oct 1994 A
5354453 Bhatia Oct 1994 A
5361643 Boyd et al. Nov 1994 A
5362965 Maggard Nov 1994 A
5370146 King et al. Dec 1994 A
5370790 Maggard et al. Dec 1994 A
5372270 Rosenkrantz Dec 1994 A
5372352 Smith et al. Dec 1994 A
5381002 Morrow et al. Jan 1995 A
5388805 Bathrick et al. Feb 1995 A
5389232 Adewuyi et al. Feb 1995 A
5404015 Chimenti et al. Apr 1995 A
5415025 Bartman et al. May 1995 A
5416323 Hoots et al. May 1995 A
5417843 Swart et al. May 1995 A
5417846 Renard May 1995 A
5423446 Johnson Jun 1995 A
5431067 Anderson et al. Jul 1995 A
5433120 Boyd et al. Jul 1995 A
5435436 Manley et al. Jul 1995 A
5443716 Anderson et al. Aug 1995 A
5446681 Gethner et al. Aug 1995 A
5452232 Espinosa et al. Sep 1995 A
RE35046 Hettinger et al. Oct 1995 E
5459677 Kowalski et al. Oct 1995 A
5472875 Monticello Dec 1995 A
5474607 Holleran Dec 1995 A
5475612 Espinosa et al. Dec 1995 A
5476117 Pakula Dec 1995 A
5490085 Lambert et al. Feb 1996 A
5492617 Trimble et al. Feb 1996 A
5494079 Tiedemann Feb 1996 A
5507326 Cadman et al. Apr 1996 A
5510265 Monticello Apr 1996 A
5516969 Krasznai et al. May 1996 A
5532487 Brearley et al. Jul 1996 A
5540893 English Jul 1996 A
5549814 Zinke Aug 1996 A
5556222 Chen Sep 1996 A
5559295 Sheryll Sep 1996 A
5560509 Laverman et al. Oct 1996 A
5569808 Cansell et al. Oct 1996 A
5573032 Lenz et al. Nov 1996 A
5584985 Lomas Dec 1996 A
5596196 Cooper et al. Jan 1997 A
5600134 Ashe et al. Feb 1997 A
5647961 Lofland Jul 1997 A
5652145 Cody et al. Jul 1997 A
5675071 Cody et al. Oct 1997 A
5684580 Cooper et al. Nov 1997 A
5699269 Ashe et al. Dec 1997 A
5699270 Ashe et al. Dec 1997 A
5712481 Welch et al. Jan 1998 A
5712797 Descales et al. Jan 1998 A
5713401 Weeks Feb 1998 A
5716055 Wilkinson et al. Feb 1998 A
5717209 Bigman et al. Feb 1998 A
5740073 Bages et al. Apr 1998 A
5744024 Sullivan, III et al. Apr 1998 A
5744702 Roussis et al. Apr 1998 A
5746906 McHenry et al. May 1998 A
5758514 Genung et al. Jun 1998 A
5763883 Descales et al. Jun 1998 A
5800697 Lengemann Sep 1998 A
5817517 Perry et al. Oct 1998 A
5822058 Adler-Golden et al. Oct 1998 A
5834539 Krivohlavek Nov 1998 A
5837130 Crossland Nov 1998 A
5853455 Gibson Dec 1998 A
5856869 Cooper et al. Jan 1999 A
5858207 Lomas Jan 1999 A
5858210 Richardson Jan 1999 A
5858212 Darcy Jan 1999 A
5861228 Descales et al. Jan 1999 A
5862060 Murray, Jr. Jan 1999 A
5865441 Orlowski Feb 1999 A
5883363 Motoyoshi et al. Mar 1999 A
5885439 Glover Mar 1999 A
5892228 Cooper et al. Apr 1999 A
5895506 Cook et al. Apr 1999 A
5916433 Tejada et al. Jun 1999 A
5919354 Bartek Jul 1999 A
5935415 Haizmann et al. Aug 1999 A
5940176 Knapp Aug 1999 A
5972171 Ross et al. Oct 1999 A
5979491 Gonsior Nov 1999 A
5997723 Wiehe et al. Dec 1999 A
6015440 Noureddini Jan 2000 A
6025305 Aldrich et al. Feb 2000 A
6026841 Kozik Feb 2000 A
6047602 Lynnworth Apr 2000 A
6056005 Piotrowski et al. May 2000 A
6062274 Pettesch May 2000 A
6063263 Palmas May 2000 A
6063265 Chiyoda et al. May 2000 A
6070128 Descales et al. May 2000 A
6072576 McDonald et al. Jun 2000 A
6076864 Levivier et al. Jun 2000 A
6087662 Wilt et al. Jul 2000 A
6093867 Ladwig et al. Jul 2000 A
6099607 Haslebacher Aug 2000 A
6099616 Jenne et al. Aug 2000 A
6102655 Kreitmeier Aug 2000 A
6105441 Conner et al. Aug 2000 A
6107631 He Aug 2000 A
6117812 Gao et al. Sep 2000 A
6130095 Shearer Oct 2000 A
6140647 Welch et al. Oct 2000 A
6153091 Sechrist et al. Nov 2000 A
6155294 Cornford et al. Dec 2000 A
6162644 Choi et al. Dec 2000 A
6165350 Lokhandwala et al. Dec 2000 A
6169218 Hearn Jan 2001 B1
6171052 Aschenbruck et al. Jan 2001 B1
6174501 Noureddini Jan 2001 B1
6190535 Kalnes et al. Feb 2001 B1
6203585 Majerczak Mar 2001 B1
6235104 Chattopadhyay et al. May 2001 B1
6258987 Schmidt et al. Jul 2001 B1
6271518 Boehm et al. Aug 2001 B1
6274785 Gore Aug 2001 B1
6284128 Glover et al. Sep 2001 B1
6296812 Gauthier et al. Oct 2001 B1
6312586 Kalnes et al. Nov 2001 B1
6315815 Spadaccini Nov 2001 B1
6324895 Chitnis et al. Dec 2001 B1
6328348 Cornford et al. Dec 2001 B1
6331436 Richardson et al. Dec 2001 B1
6348074 Wenzel Feb 2002 B2
6350371 Lokhandwala et al. Feb 2002 B1
6368495 Kocal et al. Apr 2002 B1
6382633 Hashiguchi et al. May 2002 B1
6390673 Camburn May 2002 B1
6395228 Maggard et al. May 2002 B1
6398518 Ingistov Jun 2002 B1
6399800 Haas et al. Jun 2002 B1
6420181 Novak Jul 2002 B1
6422035 Phillippe Jul 2002 B1
6435279 Howe et al. Aug 2002 B1
6446446 Cowans Sep 2002 B1
6446729 Bixenman et al. Sep 2002 B1
6451197 Kalnes Sep 2002 B1
6454935 Lesieur et al. Sep 2002 B1
6467303 Ross Oct 2002 B2
6482762 Ruffin et al. Nov 2002 B1
6503460 Miller et al. Jan 2003 B1
6528047 Arif et al. Mar 2003 B2
6540797 Scott et al. Apr 2003 B1
6558531 Steffens et al. May 2003 B2
6589323 Korin Jul 2003 B1
6609888 Ingistov Aug 2003 B1
6622490 Ingistov Sep 2003 B2
6644935 Ingistov Nov 2003 B2
6660895 Brunet et al. Dec 2003 B1
6672858 Benson et al. Jan 2004 B1
6733232 Ingistov et al. May 2004 B2
6733237 Ingistov May 2004 B2
6736961 Plummer et al. May 2004 B2
6740226 Mehra et al. May 2004 B2
6772581 Ojiro et al. Aug 2004 B2
6772741 Pittel et al. Aug 2004 B1
6814941 Naunheimer et al. Nov 2004 B1
6824673 Ellis et al. Nov 2004 B1
6827841 Kiser et al. Dec 2004 B2
6835223 Walker et al. Dec 2004 B2
6841133 Niewiedzial et al. Jan 2005 B2
6842702 Haaland et al. Jan 2005 B2
6854346 Nimberger Feb 2005 B2
6858128 Hoehn et al. Feb 2005 B1
6866771 Lomas et al. Mar 2005 B2
6869521 Lomas Mar 2005 B2
6897071 Sonbul May 2005 B2
6962484 Brandl et al. Nov 2005 B2
7013718 Ingistov et al. Mar 2006 B2
7035767 Archer et al. Apr 2006 B2
7048254 Laurent et al. May 2006 B2
7074321 Kalnes Jul 2006 B1
7078005 Smith et al. Jul 2006 B2
7087153 Kalnes Aug 2006 B1
7156123 Welker et al. Jan 2007 B2
7172686 Ji et al. Feb 2007 B1
7174715 Armitage et al. Feb 2007 B2
7194369 Lundstedt et al. Mar 2007 B2
7213413 Battiste et al. May 2007 B2
7225840 Craig et al. Jun 2007 B1
7228250 Naiman et al. Jun 2007 B2
7244350 Kar et al. Jul 2007 B2
7252755 Kiser et al. Aug 2007 B2
7255531 Ingistov Aug 2007 B2
7260499 Watzke et al. Aug 2007 B2
7291257 Ackerson et al. Nov 2007 B2
7332132 Hedrick et al. Feb 2008 B2
7404411 Welch et al. Jul 2008 B2
7419583 Nieskens et al. Sep 2008 B2
7445936 O'Connor et al. Nov 2008 B2
7459081 Koenig Dec 2008 B2
7485801 Pulter et al. Feb 2009 B1
7487955 Buercklin Feb 2009 B1
7501285 Triche et al. Mar 2009 B1
7551420 Cerqueira et al. Jun 2009 B2
7571765 Themig Aug 2009 B2
7637970 Fox et al. Dec 2009 B1
7669653 Craster et al. Mar 2010 B2
7682501 Soni et al. Mar 2010 B2
7686280 Lowery Mar 2010 B2
7857964 Mashiko et al. Dec 2010 B2
7866346 Walters Jan 2011 B1
7895011 Youssefi et al. Feb 2011 B2
7914601 Farr et al. Mar 2011 B2
7931803 Buchanan Apr 2011 B2
7932424 Fujimoto et al. Apr 2011 B2
7939335 Triche et al. May 2011 B1
7981361 Bacik Jul 2011 B2
7988753 Fox et al. Aug 2011 B1
7993514 Schlueter Aug 2011 B2
8007662 Lomas et al. Aug 2011 B2
8017910 Sharpe Sep 2011 B2
8029662 Varma et al. Oct 2011 B2
8037938 Jardim De Azevedo et al. Oct 2011 B2
8038774 Peng Oct 2011 B2
8064052 Feitisch et al. Nov 2011 B2
8066867 Dziabala Nov 2011 B2
8080426 Moore et al. Dec 2011 B1
8127845 Assal Mar 2012 B2
8193401 McGehee et al. Jun 2012 B2
8236566 Carpenter et al. Aug 2012 B2
8286673 Recker et al. Oct 2012 B1
8354065 Sexton Jan 2013 B1
8360118 Fleischer et al. Jan 2013 B2
8370082 De Peinder et al. Feb 2013 B2
8388830 Sohn et al. Mar 2013 B2
8389285 Carpenter et al. Mar 2013 B2
8397803 Crabb et al. Mar 2013 B2
8397820 Fehr et al. Mar 2013 B2
8404103 Dziabala Mar 2013 B2
8434800 LeBlanc May 2013 B1
8481942 Mertens Jul 2013 B2
8506656 Turocy Aug 2013 B1
8518131 Mattingly et al. Aug 2013 B2
8524180 Canari et al. Sep 2013 B2
8569068 Carpenter et al. Oct 2013 B2
8579139 Sablak Nov 2013 B1
8591814 Hodges Nov 2013 B2
8609048 Beadle Dec 2013 B1
8647415 De Haan et al. Feb 2014 B1
8670945 van Schie Mar 2014 B2
8685232 Mandal et al. Apr 2014 B2
8735820 Mertens May 2014 B2
8753502 Sexton et al. Jun 2014 B1
8764970 Moore et al. Jul 2014 B1
8778823 Oyekan et al. Jul 2014 B1
8781757 Farquharson et al. Jul 2014 B2
8829258 Gong et al. Sep 2014 B2
8916041 Van Den Berg et al. Dec 2014 B2
8932458 Gianzon et al. Jan 2015 B1
8986402 Kelly Mar 2015 B2
8987537 Droubi et al. Mar 2015 B1
8999011 Stern et al. Apr 2015 B2
8999012 Kelly et al. Apr 2015 B2
9011674 Milam et al. Apr 2015 B2
9057035 Kraus et al. Jun 2015 B1
9097423 Kraus et al. Aug 2015 B2
9109176 Stern et al. Aug 2015 B2
9109177 Freel et al. Aug 2015 B2
9138738 Glover et al. Sep 2015 B1
9216376 Liu et al. Dec 2015 B2
9272241 Königsson Mar 2016 B2
9273867 Buzinski et al. Mar 2016 B2
9279748 Hughes et al. Mar 2016 B1
9289715 Høy-Petersen et al. Mar 2016 B2
9315403 Laur et al. Apr 2016 B1
9371493 Oyekan Jun 2016 B1
9371494 Oyekan et al. Jun 2016 B2
9377340 Hägg Jun 2016 B2
9393520 Gomez Jul 2016 B2
9410102 Eaton et al. Aug 2016 B2
9428695 Narayanaswamy et al. Aug 2016 B2
9458396 Weiss et al. Oct 2016 B2
9487718 Kraus et al. Nov 2016 B2
9499758 Droubi et al. Nov 2016 B2
9500300 Daigle Nov 2016 B2
9506649 Rennie et al. Nov 2016 B2
9580662 Moore Feb 2017 B1
9624448 Joo et al. Apr 2017 B2
9650580 Merdrignac et al. May 2017 B2
9657241 Craig et al. May 2017 B2
9662597 Formoso May 2017 B1
9663729 Baird et al. May 2017 B2
9665693 Saeger et al. May 2017 B2
9709545 Mertens Jul 2017 B2
9757686 Peng Sep 2017 B2
9789290 Forsell Oct 2017 B2
9803152 Kar et al. Oct 2017 B2
9834731 Weiss et al. Dec 2017 B2
9840674 Weiss et al. Dec 2017 B2
9873080 Richardson Jan 2018 B2
9878300 Norling Jan 2018 B2
9890907 Highfield et al. Feb 2018 B1
9891198 Sutan Feb 2018 B2
9895649 Brown et al. Feb 2018 B2
9896630 Weiss et al. Feb 2018 B2
9914094 Jenkins et al. Mar 2018 B2
9920270 Robinson et al. Mar 2018 B2
9925486 Botti Mar 2018 B1
9982788 Maron May 2018 B1
10047299 Rubin-Pitel et al. Aug 2018 B2
10087397 Phillips et al. Oct 2018 B2
10099175 Takashashi et al. Oct 2018 B2
10150078 Komatsu et al. Dec 2018 B2
10228708 Lambert et al. Mar 2019 B2
10239034 Sexton Mar 2019 B1
10253269 Cantley et al. Apr 2019 B2
10266779 Weiss et al. Apr 2019 B2
10295521 Mertens May 2019 B2
10308884 Klussman Jun 2019 B2
10316263 Rubin-Pitel et al. Jun 2019 B2
10384157 Balcik Aug 2019 B2
10435339 Larsen et al. Oct 2019 B2
10435636 Johnson et al. Oct 2019 B2
10443000 Lomas Oct 2019 B2
10443006 Fruchey et al. Oct 2019 B1
10457881 Droubi et al. Oct 2019 B2
10479943 Liu et al. Nov 2019 B1
10494579 Wrigley et al. Dec 2019 B2
10495570 Owen et al. Dec 2019 B2
10501699 Robinson et al. Dec 2019 B2
10526547 Larsen et al. Jan 2020 B2
10533141 Moore et al. Jan 2020 B2
10563130 Narayanaswamy et al. Feb 2020 B2
10563132 Moore et al. Feb 2020 B2
10563133 Moore et al. Feb 2020 B2
10570078 Larsen et al. Feb 2020 B2
10577551 Kraus et al. Mar 2020 B2
10584287 Klussman et al. Mar 2020 B2
10604709 Moore et al. Mar 2020 B2
10640719 Freel et al. May 2020 B2
10655074 Moore et al. May 2020 B2
10696906 Cantley et al. Jun 2020 B2
10808184 Moore Oct 2020 B1
10836966 Moore et al. Nov 2020 B2
10876053 Klussman et al. Dec 2020 B2
10954456 Moore et al. Mar 2021 B2
10961468 Moore et al. Mar 2021 B2
10962259 Shah et al. Mar 2021 B2
10968403 Moore Apr 2021 B2
11021662 Moore et al. Jun 2021 B2
11098255 Larsen et al. Aug 2021 B2
11124714 Eller et al. Sep 2021 B2
11136513 Moore et al. Oct 2021 B2
11164406 Meroux et al. Nov 2021 B2
11168270 Moore Nov 2021 B1
11175039 Lochschmied et al. Nov 2021 B2
11203719 Cantley et al. Dec 2021 B2
11203722 Moore et al. Dec 2021 B2
11214741 Davdov et al. Jan 2022 B2
11306253 Timken et al. Apr 2022 B2
11319262 Wu et al. May 2022 B2
11352577 Woodchick et al. Jun 2022 B2
11352578 Eller et al. Jun 2022 B2
11384301 Eller et al. Jul 2022 B2
11421162 Pradeep et al. Aug 2022 B2
11460478 Sugiyama et al. Oct 2022 B2
11467172 Mitzel et al. Oct 2022 B1
11542441 Larsen et al. Jan 2023 B2
11578638 Thobe Feb 2023 B2
11634647 Cantley et al. Apr 2023 B2
11667858 Eller et al. Jun 2023 B2
11692141 Larsen et al. Jul 2023 B2
11702600 Sexton et al. Jul 2023 B2
11715950 Miller et al. Aug 2023 B2
11720526 Miller et al. Aug 2023 B2
11802257 Short et al. Oct 2023 B2
11835450 Bledsoe, Jr. et al. Dec 2023 B2
11860069 Bledsoe, Jr. Jan 2024 B2
11891581 Cantley et al. Feb 2024 B2
11898109 Sexton et al. Feb 2024 B2
11905468 Sexton et al. Feb 2024 B2
11905479 Eller et al. Feb 2024 B2
11906423 Bledsoe, Jr. et al. Feb 2024 B2
11920096 Woodchick et al. Mar 2024 B2
11921035 Bledsoe, Jr. et al. Mar 2024 B2
20020014068 Mittricker et al. Feb 2002 A1
20020061633 Marsh May 2002 A1
20020170431 Chang et al. Nov 2002 A1
20030041518 Wallace et al. Mar 2003 A1
20030113598 Chow et al. Jun 2003 A1
20030188536 Mittricker Oct 2003 A1
20030194322 Brandl et al. Oct 2003 A1
20040010170 Vickers Jan 2004 A1
20040033617 Sonbul Feb 2004 A1
20040040201 Roos et al. Mar 2004 A1
20040079431 Kissell Apr 2004 A1
20040121472 Nemana et al. Jun 2004 A1
20040129605 Goldstein et al. Jul 2004 A1
20040139858 Entezarian Jul 2004 A1
20040154610 Hopp et al. Aug 2004 A1
20040232050 Martin et al. Nov 2004 A1
20040251170 Chiyoda et al. Dec 2004 A1
20050042151 Alward et al. Feb 2005 A1
20050088653 Coates et al. Apr 2005 A1
20050123466 Sullivan Jun 2005 A1
20050139516 Nieskens et al. Jun 2005 A1
20050143609 Wolf et al. Jun 2005 A1
20050150820 Guo Jul 2005 A1
20050229777 Brown Oct 2005 A1
20060037237 Copeland et al. Feb 2006 A1
20060042701 Jansen Mar 2006 A1
20060049082 Niccum et al. Mar 2006 A1
20060091059 Barbaro May 2006 A1
20060162243 Wolf Jul 2006 A1
20060169305 Jansen et al. Aug 2006 A1
20060210456 Bruggendick Sep 2006 A1
20060169064 Anschutz et al. Oct 2006 A1
20060220383 Erickson Oct 2006 A1
20070003450 Burdett et al. Jan 2007 A1
20070082407 Little, III Apr 2007 A1
20070112258 Soyemi et al. May 2007 A1
20070202027 Walker et al. Aug 2007 A1
20070212271 Kennedy et al. Sep 2007 A1
20070212790 Welch et al. Sep 2007 A1
20070215521 Havlik et al. Sep 2007 A1
20070243556 Wachs Oct 2007 A1
20070283812 Liu et al. Dec 2007 A1
20080078693 Sexton et al. Apr 2008 A1
20080078694 Sexton et al. Apr 2008 A1
20080078695 Sexton et al. Apr 2008 A1
20080081844 Shires et al. Apr 2008 A1
20080087592 Buchanan Apr 2008 A1
20080092436 Seames et al. Apr 2008 A1
20080109107 Stefani et al. May 2008 A1
20080149486 Greaney et al. Jun 2008 A1
20080156696 Niccum et al. Jul 2008 A1
20080207974 McCoy et al. Aug 2008 A1
20080211505 Trygstad et al. Sep 2008 A1
20080247942 Kandziora et al. Oct 2008 A1
20080253936 Abhari Oct 2008 A1
20090151250 Agrawal Jun 2009 A1
20090152454 Nelson et al. Jun 2009 A1
20090158824 Brown et al. Jun 2009 A1
20100127217 Lightowlers et al. May 2010 A1
20100131247 Carpenter et al. May 2010 A1
20100166602 Bacik Jul 2010 A1
20100243235 Caldwell et al. Sep 2010 A1
20100301044 Sprecher Dec 2010 A1
20100318118 Forsell Dec 2010 A1
20110147267 Kaul et al. Jun 2011 A1
20110155646 Karas et al. Jun 2011 A1
20110175032 Günther Jul 2011 A1
20110186307 Derby Aug 2011 A1
20110237856 Mak Sep 2011 A1
20110247835 Crabb Oct 2011 A1
20110277377 Novak et al. Nov 2011 A1
20110299076 Feitisch et al. Dec 2011 A1
20110319698 Sohn et al. Dec 2011 A1
20120012342 Wilkin et al. Jan 2012 A1
20120125813 Bridges et al. May 2012 A1
20120125814 Sanchez et al. May 2012 A1
20120131853 Thacker et al. May 2012 A1
20120222550 Ellis Sep 2012 A1
20120272715 Kriel et al. Nov 2012 A1
20130014431 Jin et al. Jan 2013 A1
20130109895 Novak et al. May 2013 A1
20130112313 Donnelly et al. May 2013 A1
20130125619 Wang May 2013 A1
20130186739 Trompiz Jul 2013 A1
20130192339 Kriel et al. Aug 2013 A1
20130225897 Candelon et al. Aug 2013 A1
20130288355 DeWitte et al. Oct 2013 A1
20130334027 Winter et al. Dec 2013 A1
20130342203 Trygstad et al. Dec 2013 A1
20140019052 Zaeper et al. Jan 2014 A1
20140024873 De Haan et al. Jan 2014 A1
20140041150 Sjoberg Feb 2014 A1
20140121428 Wang et al. May 2014 A1
20140229010 Farquharson et al. Aug 2014 A1
20140296057 Ho et al. Oct 2014 A1
20140299515 Weiss et al. Oct 2014 A1
20140311953 Chimenti et al. Oct 2014 A1
20140316176 Fjare et al. Oct 2014 A1
20140332444 Weiss et al. Nov 2014 A1
20140353138 Amale et al. Dec 2014 A1
20140374322 Venkatesh Dec 2014 A1
20150005547 Freel et al. Jan 2015 A1
20150005548 Freel et al. Jan 2015 A1
20150034570 Andreussi Feb 2015 A1
20150034599 Hunger et al. Feb 2015 A1
20150057477 Ellig et al. Feb 2015 A1
20150071028 Glanville Mar 2015 A1
20150122704 Kumar et al. May 2015 A1
20150166426 Wegerer et al. Jun 2015 A1
20150240167 Kulprathipanja et al. Aug 2015 A1
20150240174 Bru et al. Aug 2015 A1
20150337207 Chen et al. Nov 2015 A1
20150337225 Droubi et al. Nov 2015 A1
20150337226 Tardif et al. Nov 2015 A1
20150353851 Buchanan Dec 2015 A1
20160090539 Frey et al. Mar 2016 A1
20160122662 Weiss et al. May 2016 A1
20160122666 Weiss et al. May 2016 A1
20160160139 Dawe et al. Jun 2016 A1
20160168481 Ray et al. Jun 2016 A1
20160244677 Froehle Aug 2016 A1
20160298851 Brickwood et al. Oct 2016 A1
20160312127 Frey et al. Oct 2016 A1
20160312130 Majcher et al. Oct 2016 A1
20170009163 Kraus et al. Jan 2017 A1
20170115190 Hall et al. Apr 2017 A1
20170131728 Lambert et al. May 2017 A1
20170151526 Cole Jun 2017 A1
20170183575 Rubin-Pitel et al. Jun 2017 A1
20170198910 Garg Jul 2017 A1
20170226434 Zimmerman Aug 2017 A1
20170233670 Feustel et al. Aug 2017 A1
20170269559 Trygstad Sep 2017 A1
20180017469 English et al. Jan 2018 A1
20180037308 Lee et al. Feb 2018 A1
20180080958 Marchese et al. Mar 2018 A1
20180119039 Tanaka et al. May 2018 A1
20180134974 Weiss et al. May 2018 A1
20180163144 Weiss et al. Jun 2018 A1
20180179457 Mukherjee et al. Jun 2018 A1
20180202607 McBride Jul 2018 A1
20180230389 Moore et al. Aug 2018 A1
20180246142 Glover Aug 2018 A1
20180355263 Moore et al. Dec 2018 A1
20180361312 Dutra e Mello et al. Dec 2018 A1
20180371325 Streiff et al. Dec 2018 A1
20190002772 Moore et al. Jan 2019 A1
20190010405 Moore et al. Jan 2019 A1
20190010408 Moore et al. Jan 2019 A1
20190016980 Kar et al. Jan 2019 A1
20190093026 Wohaibi et al. Mar 2019 A1
20190099706 Sampath Apr 2019 A1
20190100702 Cantley et al. Apr 2019 A1
20190127651 Kar et al. May 2019 A1
20190128160 Peng May 2019 A1
20190136144 Wohaibi et al. May 2019 A1
20190153340 Weiss et al. May 2019 A1
20190153942 Wohaibi et al. May 2019 A1
20190169509 Cantley et al. Jun 2019 A1
20190185772 Berkhous et al. Jun 2019 A1
20190201841 McClelland Jul 2019 A1
20190203130 Mukherjee Jul 2019 A1
20190218466 Slade et al. Jul 2019 A1
20190233741 Moore et al. Aug 2019 A1
20190292465 McBride Sep 2019 A1
20190338205 Ackerson et al. Nov 2019 A1
20190382668 Klussman et al. Dec 2019 A1
20190382672 Sorensen Dec 2019 A1
20200041481 Burgess Feb 2020 A1
20200049675 Ramirez Feb 2020 A1
20200080881 Langlois et al. Mar 2020 A1
20200095509 Moore et al. Mar 2020 A1
20200123458 Moore et al. Apr 2020 A1
20200181502 Paasikallio et al. Jun 2020 A1
20200199462 Klussman et al. Jun 2020 A1
20200208068 Hossain et al. Jul 2020 A1
20200246743 Sorensen Aug 2020 A1
20200291316 Robbins et al. Sep 2020 A1
20200312470 Craig et al. Oct 2020 A1
20200316513 Zhao Oct 2020 A1
20200332198 Yang et al. Oct 2020 A1
20200378600 Craig et al. Dec 2020 A1
20200385644 Rogel et al. Dec 2020 A1
20210002559 Larsen et al. Jan 2021 A1
20210003502 Kirchmann et al. Jan 2021 A1
20210033631 Field et al. Feb 2021 A1
20210103304 Fogarty et al. Apr 2021 A1
20210115344 Perkins et al. Apr 2021 A1
20210181164 Shirkhan et al. Jun 2021 A1
20210213382 Cole Jul 2021 A1
20210238487 Moore et al. Aug 2021 A1
20210253964 Eller et al. Aug 2021 A1
20210253965 Woodchick et al. Aug 2021 A1
20210261874 Eller et al. Aug 2021 A1
20210284919 Moore et al. Sep 2021 A1
20210292661 Klussman et al. Sep 2021 A1
20210301210 Timken et al. Sep 2021 A1
20210396660 Zarrabian Dec 2021 A1
20210403819 Moore et al. Dec 2021 A1
20220040629 Edmoundson et al. Feb 2022 A1
20220041940 Pradeep et al. Feb 2022 A1
20220048019 Zalewski et al. Feb 2022 A1
20220268694 Bledsoe et al. Aug 2022 A1
20220298440 Woodchick et al. Sep 2022 A1
20220299170 Raynor et al. Sep 2022 A1
20220343229 Gruber et al. Oct 2022 A1
20220357303 Zhu et al. Nov 2022 A1
20230015077 Kim Jan 2023 A1
20230078852 Campbell et al. Mar 2023 A1
20230080192 Bledsoe et al. Mar 2023 A1
20230082189 Bledsoe et al. Mar 2023 A1
20230084329 Bledsoe et al. Mar 2023 A1
20230087063 Mitzel et al. Mar 2023 A1
20230089935 Bledsoe et al. Mar 2023 A1
20230093452 Sexton et al. Mar 2023 A1
20230111609 Sexton et al. Apr 2023 A1
20230113140 Larsen et al. Apr 2023 A1
20230118319 Sexton et al. Apr 2023 A1
20230220286 Cantley et al. Jul 2023 A1
20230241548 Holland et al. Aug 2023 A1
20230242837 Short et al. Aug 2023 A1
20230259080 Whikehart et al. Aug 2023 A1
20230259088 Borup et al. Aug 2023 A1
20230272290 Larsen et al. Aug 2023 A1
20230295528 Eller et al. Sep 2023 A1
20230332056 Larsen et al. Oct 2023 A1
20230332058 Larsen et al. Oct 2023 A1
20230357649 Sexton et al. Nov 2023 A1
20230400184 Craig Dec 2023 A1
20230416615 Larsen Dec 2023 A1
20230416638 Short Dec 2023 A1
20240011898 Bledsoe, Jr. et al. Jan 2024 A1
Foreign Referenced Citations (158)
Number Date Country
11772 Apr 2011 AT
PI0701518 Nov 2008 BR
2949201 Nov 2015 CA
2822742 Dec 2016 CA
3009808 Jul 2017 CA
2904903 Aug 2020 CA
3077045 Sep 2020 CA
2947431 Mar 2021 CA
3004712 Jun 2021 CA
2980055 Dec 2021 CA
2879783 Jan 2022 CA
2991614 Jan 2022 CA
2980069 Nov 2022 CA
3109606 Dec 2022 CA
432129 Mar 1967 CH
2128346 Mar 1993 CN
201264907 Jul 2009 CN
201306736 Sep 2009 CN
201940168 Aug 2011 CN
102120138 Dec 2012 CN
203453713 Feb 2014 CN
203629938 Jun 2014 CN
203816490 Sep 2014 CN
104353357 Feb 2015 CN
204170623 Feb 2015 CN
103331093 Apr 2015 CN
204253221 Apr 2015 CN
204265565 Apr 2015 CN
105148728 Dec 2015 CN
204824775 Dec 2015 CN
103933845 Jan 2016 CN
105289241 Feb 2016 CN
105536486 May 2016 CN
105804900 Jul 2016 CN
103573430 Aug 2016 CN
205655095 Oct 2016 CN
104326604 Nov 2016 CN
104358627 Nov 2016 CN
106237802 Dec 2016 CN
205779365 Dec 2016 CN
106407648 Feb 2017 CN
105778987 Aug 2017 CN
207179722 Apr 2018 CN
207395575 May 2018 CN
108179022 Jun 2018 CN
108704478 Oct 2018 CN
109126458 Jan 2019 CN
109423345 Mar 2019 CN
109499365 Mar 2019 CN
109705939 May 2019 CN
109722303 May 2019 CN
110129103 Aug 2019 CN
110229686 Sep 2019 CN
209451617 Oct 2019 CN
110987862 Apr 2020 CN
111336612 Jun 2020 CN
213824075 Jul 2021 CN
215263512 Dec 2021 CN
215288592 Dec 2021 CN
113963818 Jan 2022 CN
114001278 Feb 2022 CN
217431673 Sep 2022 CN
218565442 Mar 2023 CN
10179 Jun 1912 DE
3721725 Jan 1989 DE
19619722 Nov 1997 DE
102010017563 Dec 2011 DE
102014009231 Jan 2016 DE
0142352 May 1985 EP
0527000 Feb 1993 EP
0783910 Jul 1997 EP
0949318 Oct 1999 EP
0783910 Dec 2000 EP
0801299 Mar 2004 EP
1413712 Apr 2004 EP
1600491 Nov 2005 EP
1870153 Dec 2007 EP
2047905 Apr 2009 EP
2955345 Dec 2015 EP
3130773 Feb 2017 EP
3139009 Mar 2017 EP
3239483 Nov 2017 EP
3085910 Aug 2018 EP
3355056 Aug 2018 EP
2998529 Feb 2019 EP
3441442 Feb 2019 EP
3569988 Nov 2019 EP
3878926 Sep 2021 EP
2357630 Feb 1978 FR
3004722 Mar 2016 FR
3027909 May 2016 FR
3067036 Dec 2018 FR
3067037 Dec 2018 FR
3072684 Apr 2019 FR
3075808 Jun 2019 FR
775273 May 1957 GB
933618 Aug 1963 GB
1207719 Oct 1970 GB
2144526 Mar 1985 GB
202111016535 Jul 2021 IN
59220609 Dec 1984 JP
2003129067 May 2003 JP
3160405 Jun 2010 JP
2015059220 Mar 2015 JP
2019014275 Jan 2019 JP
101751923 Jul 2017 KR
101823897 Mar 2018 KR
20180095303 Aug 2018 KR
20190004474 Jan 2019 KR
20190004475 Jan 2019 KR
2673558 Nov 2018 RU
2700705 Sep 2019 RU
2760879 Dec 2021 RU
320682 Nov 1997 TW
9408225 Apr 1994 WO
199640436 Dec 1996 WO
1997033678 Sep 1997 WO
199803249 Jan 1998 WO
1999041591 Aug 1999 WO
2001051588 Jul 2001 WO
2002038295 May 2002 WO
2006126978 Nov 2006 WO
2008088294 Jul 2008 WO
2010144191 Dec 2010 WO
2012026302 Mar 2012 WO
2012062924 May 2012 WO
2012089776 Jul 2012 WO
2012108584 Aug 2012 WO
2014053431 Apr 2014 WO
2014096703 Jun 2014 WO
2014096704 Jun 2014 WO
2014191004 Jul 2014 WO
2014177424 Nov 2014 WO
2014202815 Dec 2014 WO
2016167708 Oct 2016 WO
2017067088 Apr 2017 WO
2017207976 Dec 2017 WO
2018017664 Jan 2018 WO
2018073018 Apr 2018 WO
2018122274 Jul 2018 WO
2018148675 Aug 2018 WO
2018148681 Aug 2018 WO
2018231105 Dec 2018 WO
2019053323 Mar 2019 WO
2019104243 May 2019 WO
2019155183 Aug 2019 WO
2019178701 Sep 2019 WO
2020160004 Aug 2020 WO
2021058289 Apr 2021 WO
2022133359 Jun 2022 WO
2022144495 Jul 2022 WO
2022149501 Jul 2022 WO
2022219234 Oct 2022 WO
2022220991 Oct 2022 WO
2023038579 Mar 2023 WO
2023137304 Jul 2023 WO
2023164683 Aug 2023 WO
2023242308 Dec 2023 WO
Non-Patent Literature Citations (65)
Entry
Ebner et al., Deactivation and durability of the catalyst for HotspotTM natural gas processing, OSTI, 2000, https://www.osti.gov/etdeweb/servlets/purl/20064378 (Year: 2000).
Pashikanti et al., Predictive modeling of large-scale integrated refinery reaction and fractionation systems from plant data. Part 3: Continuous Catalyst Regeneration (CCR) Reforming Process, 2011, 25, 5320-5344 (Year: 2011).
1 Lloyd's Register, Using technology to trace the carbon intensity of sustainable marine fuels, Feb. 15, 2023.
Platvoet et al., Process Burners 101, American Institute of Chemical Engineers, Aug. 2013.
Luyben, W. L., Process Modeling, Simulation, and Control for Chemical Engineers, Feedforward Control, pp. 431-433.
Cooper et al., Calibration transfer of near-IR partial least squares property models of fuels using standards, Wiley Online Library, Jul. 19, 2011.
ABB Measurement & Analytics, Using FT-NIR as a Multi-Stream Method for CDU Optimization, Nov. 8, 2018.
Modcon Systems Ltd., On-Line NIR Analysis of Crude Distillation Unit, Jun. 2008.
ABB Measurement & Analytics, Crude distillation unit (CDU) optimization, 2017.
Guided Wave Inc., The Role of NIR Process Analyzers in Refineries to Process Crude Oil into Useable Petrochemical Products, 2021.
ABB Measurement & Analytics, Optimizing Refinery Catalytic Reforming Units with the use of Simple Robust On-Line Analyzer Technology, Nov. 27, 2017, https://www.azom.com/article.aspx?ArticleID=14840.
Bueno, Alexis et al., Characterization of Catalytic Reforming Streams by NIR Spectroscopy, Energy & Fuels 2009, 23, 3172-3177, Apr. 29, 2009.
Caricato, Enrico et al., Catalytic Naphtha Reforming—a Novel Control System for the Bench-Scale Evaluation of Commerical Continuous Catalytic Regeneration Catalysts, Industrial of Engineering Chemistry Research, ACS Publications, May 18, 2017.
Alves, J. C. L., et al., Diesel Oil Quality Parameter Determinations Using Support Vector Regression and Near Infrared Spectroscopy for Hydrotreationg Feedstock Monitoring, Journal of Near Infrared Spectroscopy, 20, 419-425 (2012), Jul. 23, 2012.
Rodriguez, Elena et al., Coke deposition and product distribution in the co-cracking of waste polyolefin derived streams and vacuum gas oil under FCC unit conditions, Fuel Processing Technology 192 (2019), 130-139.
Passamonti, Francisco J. et al., Recycling of waste plastics into fuels, PDPE conversion in FCC, Applied Catalysis B: Environmental 125 (2012), 499-506.
De Rezende Pinho, Andrea et al., Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production, Fuel 188 (2017), 462-473.
Niaei et al., Computational Study of Pyrolysis Reactions and Coke Deposition in Industrial Naphtha Cracking, P.M.A. Sloot et al., Eds.: ICCS 2002, LNCS 2329, pp. 723-732, 2002.
Hanson et al., An atmospheric crude tower revamp, Digital Refining, Article, Jul. 2005.
Lopiccolo, Philip, Coke trap reduces FCC slurry exchanger fouling for Texas refiner, Oil & Gas Journal, Sep. 8, 2003.
Martino, Germain, Catalytic Reforming, Petroleum Refining Conversion Processes, vol. 3, Chapter 4, pp. 101-168, 2001.
Baukal et al., Natural-Draft Burners, Industrial Burners Handbook, CRC Press 2003.
Spekuljak et al., Fluid Distributors for Structured Packing Colums, AICHE, Nov. 1998.
Hemler et al., UOP Fluid Catalytic Cracking Process, Handbook of Petroleum Refining Processes, 3rd ed., McGraw Hill, 2004.
United States Department of Agriculture, NIR helps Turn Vegetable Oil into High-Quality Biofuel, Agricultural Research Service, Jun. 15, 1999.
NPRA, 2006 Cat Cracker Seminar Transcript, National Petrochemical & Refiners Association, Aug. 1-2, 2006.
Niccum, Phillip K. et al. KBR, CatCracking.com, More Production—Less Risk!, Twenty Questions: Identify Probably Cuase of High FCC Catalyst Loss, May 3-6, 2011.
NPRA, Cat-10-105 Troubleshooting FCC Catalyst Losses, National Petrochemical & Refiners Association, Aug. 24-25, 2010.
Fraser, Stuart, Distillation in Refining, Distillation Operation and Applications (2014), pp. 155-190 (Year: 2014).
Yasin et al., Quality and chemistry of crude oils, Journal of Petroleum Technology and Alternative Fuels, vol. 4(3), pp. 53-63, Mar. 2013.
Penn State, Cut Points, https://www.e-education.psu.edu/fsc432/content/cut-points, 2018.
The American Petroleum Institute, Petroleum HPV Testing Group, Heavy Fuel Oils Category Analysis and Hazard Characterization, Dec. 7, 2012.
Increase Gasoline Octane and Light Olefin Yeilds with ZSM-5, vol. 5, Issue 5, http://www.refiningonline.com/engelhardkb/crep/TCR4_35.htm.
Fluid Catalytic Cracking and Light Olefins Production, Hydrocarbon Publishing Company, 2011, http://www.hydrocarbonpublishing.com/store10/product.php?productid+b21104.
Zhang et al., Multifunctional two-stage riser fluid catalytic cracking process, Springer Applied Petrocchemical Research, Sep. 3, 2014.
Reid, William, Recent trends in fluid catalytic cracking patents, part V: reactor section, Dilworth IP, Sep. 3, 2014.
Akah et al., Maximizing propylene production via FCC technology, SpringerLink, Mar. 22, 2015.
Vogt et al., Fluid Catalytic Cracking: Recent Developments on the Grand Old Lady of Zeolite Catalysis, Royal Society of Chemistry, Sep. 18, 2015.
Zhou et al., Study on the Integration of Flue Gas Waste He Desulfuization and Dust Removal in Civilian Coalfired Heating Furnance, 2020 IOP Conf. Ser.: Earth Environ. Sci. 603 012018.
Vivek et al., Assessment of crude oil blends, refiner's assessment of the compatibility of opportunity crudes in blends aims to avoid the processing problems introduced by lower-quality feedstocks, www.digitalrefining.com/article/10000381, 2011.
International Standard, ISO 8217, Petroleum products—Fuels (class F)—Specifications of marine fuels, Sixth Edition, 2017.
International Standard, ISO 10307-1, Petroleum products—Total sediment in residual fuel oils—, Part 1: Determination by hot filtration, Second Edition, 2009.
International Standard, ISO 10307-2, Petroleum products—Total sediment in residual fuel oils—, Part 2: Determination using standard procedures for aging, Second Edition, 2009.
Zulkefi et al., Overview of H2S Removal Technologies from Biogas Production, International Journal of Applied Engineering Research ISSN 0973-4562, vol. 11, No. 20, pp. 10060-10066, © Research India Publications, 2016.
Morozov et al., Best Practices When Operating a Unit for Removing Hydrogen Sulfide from Residual Fuel Oil, Chemistry and Technology of Fuels and Oils, vol. 57, No. 4, Sep. 2001.
Calbry-Muzyka et al., Deep removal of sulfur and trace organic compounds from biogas to protect a catalytic methananation reactor, Chemical Engineering Joural 360, pp. 577-590, 2019.
Cheah et al., Review of Mid- to High-Tempearture Sulfur Sorbents for Desulfurization of Biomass- and Coal-derived Syngas, Energy Fuels 2009, 23, pp. 5291-5307, Oct. 16, 2019.
Mandal et al., Simultaneous absorption of carbon dioxide of hydrogen sulfide into aqueous blends of 2-amino-2-methyl-1 propanol and diethanolamine, Chemical Engineering Science 60, pp. 6438-6451, 2005.
Meng et al., In bed and downstream hot gas desulphurization during solid fuel gasification: A review, Fuel Processing Technology 91, pp. 964-981, 2010.
Okonkwo et al., Role of Amine Structure on Hydrogen Sulfide Capture from Dilute Gas Streams Using Solid Adsorbents, Energy Fuels, 32, pp. 6926-6933, 2018.
Okonkwo et al., Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents, Chemical Engineering Journal 379, pp. 122-349, 2020.
Seo et al., Methanol absorption characteristics for the removal of H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in a pilot-scale biomass-to-liquid process, Energy 66, pp. 56-62, 2014.
“Development of Model Equations for Predicting Gasoline Blending Properties”, Odula et al., American Journal of Chemical Engineering, vol. 3, No. 2-1, 2015, pp. 9-17.
Lerh et al., Feature: IMO 2020 draws more participants into Singapore's bunkering pool., S&P Global Platts, www.spglobal.com, Sep. 3, 2019.
Cremer et al., Model Based Assessment of the Novel Use of Sour Water Stripper Vapor for NOx Control in CO Boilers, Industrial Combustion Symposium, American Flame Research Committee 2021, Nov. 19, 2021.
Frederick et al., Alternative Technology for Sour Water Stripping, University of Pennsylvania, Penn Libraries, Scholarly Commons, Apr. 20, 2018.
Da Vinci Laboratory Solutions B. V., DVLS Liquefied Gas Injector, Sampling and analysis of liquefied gases, https://www.davinci-ls.com/en/products/dvls-products/dvls-liquefied-gas-injector.
Wasson ECE Instrumentation, LPG Pressurization Station, https://wasson-ece.com/products/small-devices/lpg-pressurization-station.
Mechatest B. V., Gas & Liquefied Gas Sampling Systems, https://www.mechatest.com/products/gas-sampling-system/.
La Rivista dei Combustibili, The Fuel Magazine, vol. 66, File 2, 2012.
Bollas et al., “Modeling Small-Diameter FCC Riser Reactors. A Hydrodynamic and Kinetic Approach”, Industrial and Engineering Chemistry Research, 41(22), 5410-5419, 2002.
Voutetakis et al., “Computer Application and Software Development for the Automation of a Fluid Catalytic Cracking Pilot Plant—Experimental Results”, Computers & Chemical Engineering, vol. 20 Suppl., S1601-S1606, 1996.
Doolin, et al., Catalyst Regeneration and Continuous Reforming Issues, Catalytic Naptha Reforming, 2004.
Swagelok, Grab Sampling Systems Application Guide, 53 pages.
Frank et al., “Fuel Tank and Charcoal Canister Fire Hazards during EVAP System Leak Testing”, SAE International, 2007 World Congress, Detroit, Michigan, Apr. 16-19, 2007, 11 pages.
Related Publications (1)
Number Date Country
20200353456 A1 Nov 2020 US
Provisional Applications (1)
Number Date Country
62845485 May 2019 US