A trader is a market participant who places or manages one or more orders to buy and/or sell a number of stocks, bonds, futures, securities, commodities, options, currencies, swaps, and other financial instruments or derivatives thereof. A modern trader may use computer software (e.g., “trading software”) to search for and analyze financial instruments that exhibit specific characteristics or patterns. Current trading software inefficiently occupies a computer screen's space by, for example, displaying a portion of market data without prioritizing data of importance to a trader. Lack of knowledge of the current market activities and/or inefficient display of market data obscures pertinent trading information that can result in a potential loss of value to the trader.
The need exists for a system that overcomes the above problems, as well as one that provides additional benefits. Overall, the examples herein of some prior or related systems and their associated limitations are intended to be illustrative and not exclusive. Other limitations of existing or prior systems will become apparent to those of skill in the art upon reading the following Detailed Description.
One or more embodiments of the present invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements.
a is a graphical user interface implemented by the software and/or hardware facilities to show groups of orders disaggregated from market data.
b is a graphical user interface of various graphical indicators emphasizing important market data.
The inventors have recognized that existing trading software does not efficiently deemphasize non-priority data while emphasizing more important data to enable the trader to quickly place orders based on real- or near real-time market data. Accordingly, the inventors developed software and/or hardware facilities for minimizing less important market data while generating and presenting a disaggregated view of market data that emphasizes important information (e.g., trading patterns, the number of orders or traders in the market at a given time or at a given price, the sequence of the orders at a given price, the trader's respective number of order entries, and/or user-defined characteristics associated with individual or groups of market orders.)
In some embodiments, the software and/or hardware facilities disaggregate into one or more orders portions of market data from raw market data for display as information that emphasizes one or more groups of orders at one or more prices, for example. In other embodiments, the software and/or hardware facilities display market data which has been partially processed (e.g. partially disaggregated), for example, based on one or more algorithms designed to approximate real market data and/or a market data having partial or full order details, such as data received from InterContinentalExchange (ICE). Disaggregating and or displaying orders from raw and/or partially processed aggregated data (“market data”) is important to a trader because it can provide a rich “microscopic” perspective of other traders' market activities, such as their “resting orders” (i.e., orders that have been in the market for a period of time), order sequencing across the same or different prices, and various trading patterns or user-defined identifiers, for example.
In various embodiments, the software and/or hardware facilities' method of interpolation is adjustable to control how granular or “aggressive” it recognizes an order or a user-defined order pattern. For example, instead of interpreting a total quantity to buy 5 items at a specific price as a single order, the software and/or hardware facilities can interpret that the 5 items are each from 5 separate orders, for example. Additionally and/or alternatively, the software and/or hardware facilities are configured to filter from display orders with item numbers above, below, or at a defined number (e.g., do not show any order for a quantity of less than 5 items). In some embodiments, the software and/or hardware facilities disaggregate orders by interpolating coalesced market data.
The software and/or hardware facilities emphasize disaggregated groups of market data using one or more of a variety of emphasis techniques. In some embodiments, visual indicators (e.g., color, color changes, highlighting, flashing, graphics, changing font size/color, icons, 2D or pseudo 3D shapes, a heat map, augmented reality, etc.) are used to emphasize orders, patterns, or other aspects within the disaggregated market data. In some embodiments, audible-based indicators (e.g., tones, music, etc.), electronic communication-based indicators (e.g., sending an email, SMS, or other messaging technique), and/or electro-mechanical indicators (e.g., an external alert system) are used by the software and/or hardware facilities to emphasize to a trader important information in the disaggregated market data. The software and/or hardware facilities are user configurable, e.g. a trader can adjust the software and/or hardware facilities to use any one or more of the above mentioned emphasis techniques to emphasize any one or more orders, patterns, user-defined identifiers, or other features within the disaggregated market data.
In some embodiments, the software and/or hardware facilities associate orders with one or more traders, brokerage firms, or user-defined analytics (e.g., trading software-based algorithms) by grouping orders based on their price, respective entry times, and/or quantity for example. In various embodiments, a trader or firm can be tracked based on a unique identifier in an order. Once identified, the software and/or hardware facilities can display and track the individual's or groups' activities (e.g., trades, cancellations, reduction, movement, etc.) within a real-time market environment (e.g., commodities trading). In various embodiments, order movement is tracked within a single price (e.g., a group of 10 orders at $100); however, in some embodiments, order movement is tracked from one price (e.g., 10 orders at $100) to another price (e.g., 10 orders at $110). Order activity is emphasized to a trader based on one or more of the above-mentioned variety of emphasis techniques.
For example, an aggregated market view of selling oil may be 500 items (e.g., contracts) at a specific price of $97.08. The disaggregated view of orders provided by the software and/or hardware facilities may consist of the sum (i.e., the overall quantity) of a first order of 100 items, a second order of 100 items, a third order of 100 items, a fourth order of 25 items, a fifth order of 75 items, and a sixth order of 100 items, for example. The software and/or hardware facilities can display the disaggregated groups of orders and indicate via one or more of the above-mentioned emphasis techniques that the first, second, third, and sixth orders are similar (i.e., each order is for 100 contracts) for example. For example, each of the first, second, third, and sixth order may be represented by flashing green shapes and/or icons, etc. This is useful to a trader because this pattern may be indicative of “auto-trading” (e.g., software that automatically enters orders based on an algorithm, etc.) or some other pattern that enables the trader a more educated view of the market. Isolating market order patterns allows a trader to “see” that the first order, for example, is a resting order that has been in the market for a lengthy period of time. In another example, the software and/or hardware technology can visually display temporal changes to market data. For example, disaggregated orders can be displayed as a heat-map that shows, for example, changes to an order over time. An order can fade between a gradient of colors based on when the order was placed, for example. Multiple orders spread across the same or a variety of prices are visually depicted as “hot” to “cold” indicators, such as fading from bright green to black as an order ages in the queue of orders. The rate at which an order fades is configured by a trader or predetermined by the software and/or hardware facilities. For example, a trader may select that orders older than 3 minutes begin to fade from green to black. Other scenarios have been considered by the inventors, such as choosing the heat map color scheme, using graphical indicators other than coloring (e.g., fading out an icon), and displaying price-specific heat maps (e.g., one price's heat map fades from blue-to-black for orders over 10 m minutes and second price's heat map fades from green-to-black for order over 3 minutes.)
The software and/or hardware facilities, in some embodiments, are used for creating and/or executing orders based on disaggregated market data. For example, order algorithms for executing a trade are, in a variety of embodiments, depicted as graphical indicia (e.g., shapes, icons, pictures, graphics, etc.) on a user-interface provided by the software and/or hardware facilities. In some embodiments, the graphical indicia are arranged relative to a holding “pen” containing representations of other algorithms. The graphical indicia can be configured to cause the software and/or hardware facilities to execute an algorithm for one or more orders based on one or more aspects of the disaggregated market data. For example, an icon representing an algorithm to purchase “X” numbers of contracts can be moved (e.g., slid across the screen via a finger or stylus, voice controlled, or dragged-and-dropped via a mouse, etc.) on top of or near a portion of the disaggregated data. The software and/or hardware facilities detects the proximity of the icon, for example, and can execute an order at the same price as the price represented by the disaggregated data. In some embodiments, an algorithm whose icon, for example, was placed on a portion of the disaggregated data delays execution based on the occurrence of an event. For example, the software and/or hardware facilities can follow the activity of an order selected from the disaggregated orders. If the selected order is traded, cancelled, or reduced, for example, the software and/or hardware facilities can automatically create a new order, modify an order, or cancel an order, for example.
Furthermore, the software and/or hardware facilities, in some embodiments, may include additional features and employ aspects of the assignee' US Patent Application entitled, “METHODS AND SYSTEMS FOR SHOWING PERSPECTIVE IN MARKET DATA,” (Ser. No. 13/463,753), filed on May 3, 2012, which is incorporated by reference herein in its entirety.
Various embodiments of the software and/or hardware facilities are described below. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand that the software and/or hardware facilities may be practiced without many of these details. Additionally, some well-known structures or functions may not be shown or described in detail, so as to avoid unnecessarily obscuring of the relevant description of the various embodiments.
The terminology used in the description presented is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the software and/or hardware facilities. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section.
The techniques introduced below can be implemented by programmable circuitry programmed or configured by software and/or firmware, or entirely by special-purpose circuitry, or in a combination of such forms. Such special-purpose circuitry (if any) can be in the form of, for example, one or more application-specific integrated circuits (ASICs), programmable logic devices (PLDs), field-programmable gate arrays (FPGAs), etc.
The software and/or hardware facilities can also be practiced in distributed computing environments where tasks or modules are performed by remote processing devices, which are linked through a communications network, such as a Local Area Network (LAN), Wide Area Network (WAN), or the Internet. In a distributed computing environment, program modules or sub-routines may be located in both local and remote memory storage devices. Those skilled in the relevant art will recognize that portions of the software and/or hardware facilities may reside on a server computer, while corresponding portions reside on a client computer (e.g., PC, mobile computer hybrid, tablet, visual aid, or smart phone). Data structures and transmission of data particular to aspects of the software and/or hardware facilities are also encompassed within the scope of the software and/or hardware facilities.
Referring to
The input devices 102 may include a keyboard and/or a pointing device such as a mouse. Other input devices are possible, such as a microphone, joystick, pen, game pad, scanner, digital camera, video camera, and the like. The data storage devices 104 may include any type of computer-readable media that can store data accessible by the computer 100, such as magnetic hard and floppy disk drives, optical disk drives, magnetic cassettes, tape drives, flash memory cards, digital video discs (DVDs), Bernoulli cartridges, RAMs, ROMs, smart cards, etc. Indeed, any medium for storing or transmitting computer-readable instructions and data may be employed, including a connection port or node on a network, such as a LAN, WAN, or the Internet (not shown in
Each of the above-mentioned features of the software and/or hardware facilities are further described below.
Process flow 200 is described in more detail in reference to
Returning to
The software and/or hardware facilities, in some embodiments, emphasize the display of one or more disaggregated groups 501 based on one or more of the variety of emphasis techniques mentioned above. For example,
In various embodiments, the software and/or hardware facilities determine when a disaggregated group 501 is displayed and how it is emphasized. For example, one or more disaggregated groups 501 can be selectively displayed or filtered based on each orders 502a-502n respective entry times 506a-506n. For instance, orders entry times 506a-506b that exceed a configurable threshold time (e.g., 24 hours) can be filtered by the software and/or hardware facilities from display. In various embodiments, the software and/or hardware facilities are configured to allow a trader/user to adjust how orders are emphasized. For example, the user-interface 500 can be configured to emphasize, using one or more of the variety of emphasis techniques, that all order quantities 504a-504n over 10 are displayed in one color, all orders under 10 are removed from displays, orders having a quantity 504d of 50 items flashed, or similar orders are highlighted, indicated as being part of an order detected in a pattern, among others.
The software and/or hardware facilities, in some embodiments, generate and/or display synthetically generated information (e.g., implied orders, virtual orders, or orders that are not routed to an exchange) concurrently with (e.g., with the information overlays) a portion of the disaggregated orders 501. For example, a virtual order is placed and displayed in a position on user interface 500 similar to a position as if the virtual order was actually entered into the market. The virtual order can be tracked in real or near-real time with the disaggregated orders 501. In another example, disaggregated data 501 is illustrated as a graphical matrix of information (e.g., a heat map or fractal map) that can be displayed along with coalesced data and/or other representations of disaggregated data 501. In some embodiments, the software and/or hardware facilities present the user interface 500 as a non-linear and or linear object. The object is configurable to have a shape of a 2D or pseudo 3D object, such as a bar, an arc, curve, parabola, sphere, wheel, or other geometrical shape. For example, the user interface can be depicted as a wheel having one or more graphical representations of orders placed in a non-linear position (i.e., about the curve of a 2D or pseudo 3D wheel). The wheel of orders appears to rotate about a static axis, based at least on an indication that a datum of the market data has changed.
At time t1 610b, the overall quantity 630a changes to 35 630b. The software and/or hardware facilities, in some embodiments, will determine and indicate that a new order of 5 items was added. At time t2 610c, the overall quantity 630b decreases to 25 610c. The software and/or hardware facilities, in various embodiments, determines that 10 items from unknown aggregated market data 620 were removed, based on the presence of an order of 5 622. In response, the user interface 600 is updated by removing 10 items from aggregated order 620. At time t3, the overall quantity 610c changes from 25 to 40 610d; therefore, it's likely that new order 624 of 15 items were added. At time t4 610e, the overall quantity 408a decreases by 10 to 30 630e. The software and/or hardware facilities, in some embodiments, decreases the aggregated market data 620 by 10 items because neither of the last two orders 622 or 624 had quantities of 10 items, for example. At time t5 610f, the overall quantity 408 changes by 5 to 25 630f. In various embodiments, the software and/or hardware facilities will remove order 622 because it corresponds to the order for 5 items that was removed from order 620 and because the software and/or hardware may not have sufficient details to determine that the decrease corresponds to aggregated market data 620. At time t6, the overall quantity 408e to 15 680g. This indicates a likelihood that order 614, previously entered at time t3, is a single order for 15 items.
Returning to
In some embodiments, one or more of patterns 702-706 are emphasized using one or more of the above-mentioned emphasis techniques. For example, the software and/or hardware facilities can color-code, flash, highlight, animate, and/or display icons to indicate each of the orders 702a-702c represented by pattern 1 702. Similarly, the software and/or hardware facilities can emphasize pattern 2's 704 orders 704a-704c based on changing colors, fonts, or positions (e.g., appear to “wiggle” or animate) of the pattern 2 704. In some embodiments, the software and/or hardware facilities can alert the trader that a pattern is detected. For example, detection of pattern 3 706 can trigger an event, such as using any of the above-mentioned emphasis techniques and/or initiate an audible tone, send one or more email/SMS, and/or send a message to another trader using the software and/or hardware facilities. In some embodiments, a pattern 702-706 is emphasized using a combination of the above-mentioned emphasis techniques. For example, the software and/or hardware facilities can detect pattern 1 702, color code each of its orders 702a-702c, initiate an audible alert (e.g., a bell), and send an SMS message to the trader. In some embodiments, the software and/or hardware facilities is user configurable. A trader can adjust the software and/or hardware facilities to use any one or more of the above-mentioned techniques (e.g., adjust colors, rate at which an order flashes) to emphasize any one or more orders 702a-706e in the patterns 702-706.
The software and/or hardware facilities, in some embodiments, executes an order (e.g., 802a) when its graphical representation 810a-810n is dragged and dropped onto or near a price 308a. For example, an order (e.g., 802a) of 20 items 804b of oil is placed at $93 (e.g., price 308a) when its rectangle 810a is dragged 804a to price 308a, at time to 810a. Order algorithm 802n indicates that an order 802a-802n, in some embodiments, is based on the satisfaction of a condition (e.g., “Do Y, if X”). Algorithm B 802c is configured to place an order that “follows” another order 812 (e.g., an order of 10 items) if Algorithm B's (802b) graphical representation 810b is dragged to order 812. Following an order allows a trader to position his or her position in response to the followed. For example, at time 1 810b, algorithm B 802c associates order 804b for 20 items with order 812 at t1 810b. The software and/or hardware facilities can modify order 804b based on a status of order 812. At time 3 810c, order 812 is canceled, fulfilled, or modified. In some embodiments, the software and/or hardware facilities trigger algorithm 802b to execute by, for example, cancelling order 804b, as shown at time 3 810c. In some embodiments, an order is made and or an algorithm is triggered at quantity based on the total quantity 410 and a selected portion of the disaggregated data 501. For example, at time 810b, the total quantity is 50, disaggregated into orders of 5, 10, 2, 13, and 20 items. Selecting (e.g., by a mouse, finger, gesture, eye/hand movement, etc.) any position along these disaggregated orders indicates a quantity of items for a new order or a trigger for an algorithm 802. A position half way along the disaggregated data (e.g., within the 13 item order) selects a quantity of 25 items because 25 is half of the overall quantity 50. Still referring to t1 801b, selecting a position at the end of the disaggregated (e.g., at the end of order 20) selects a quantity of 50 items because 50 is the overall quantity at time t1 801b. Selecting a position at the beginning of the disaggregated (e.g., at start of order 5) selects a quantity of 1, for example, because this is the start of the overall quantity of 50 items. The selected position along the disaggregated data 501 is indicated (e.g., by a graphical indicator) as a reference to the trader. In various embodiments, the indicator is used to trigger an initiation of an algorithm 802. For example, the system and/or hardware facilities is configured to cancel, update, or modify a trader's order based on an overall quantity (e.g., 50) reaching a threshold (e.g., cancel my order for 25 items if the overall quantity drops below 30.)
In general, the detailed description of embodiments of the software and/or hardware facilities is not intended to be exhaustive or to limit the technology to the precise form disclosed above. While specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the software and/or hardware facilities, as those skilled in the relevant art will recognize. For example, while processes or blocks are presented in a given order, alternative embodiments may perform routines having steps, or employ systems having blocks, in a different order, and some processes or blocks may be deleted, moved, added, subdivided, combined, and/or modified. Each of these processes or blocks may be implemented in a variety of different ways. Also, while processes or blocks are at times shown as being performed in series, these processes or blocks may instead be performed in parallel, or may be performed at different times.
The teachings of the software and/or hardware facilities provided herein can be applied to other systems, not necessarily the system described herein. The elements and acts of the various embodiments described herein can be combined to provide further embodiments.
These and other changes can be made to the software and/or hardware facilities in light of the above Detailed Description. While the above description details certain embodiments of the technology and describes the best mode contemplated, no matter how detailed the above appears in text, the software and/or hardware facilities can be practiced in many ways. The software and/or hardware facilities may vary considerably in its implementation details, while still being encompassed by the technology disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the software and/or hardware facilities should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features, or aspects of the technology with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the software and/or hardware facilities to the specific embodiments disclosed in the specification, unless the above Detailed Description section explicitly defines such terms. Accordingly, the actual scope of the software and/or hardware facilities encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the software and/or hardware facilities.
To reduce the number of claims, certain aspects of the invention are presented below in certain claim forms, but the applicant contemplates the various aspects of the invention in any number of claim forms. For example, while only one aspect of the invention is recited as a means-plus-function claim under 35 U.S.C. sec. 112, sixth paragraph, other aspects may likewise be embodied as a means-plus-function claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims intended to be treated under 35 U.S.C. §112, ¶6 will begin with the words “means for”, but use of the term “for” in any other context is not intended to invoke treatment under 35 U.S.C. §112, ¶6.) Accordingly, the applicant reserves the right to pursue additional claims after filing this application to pursue such additional claim forms, in either this application or in a continuing application.