Embodiments of the subject matter disclosed herein relate to skip-firing cylinders of an internal combustion engine, and reducing pumping losses from skipped cylinders.
Smoke and emissions may be reduced during engine idling by skip-firing one or more engine cylinders. Skip-firing involves stopping fuel injection to some of the cylinders so that combustion does not occur in those cylinders. An engine cylinder may be “skipped” for a given engine cycle by not injecting fuel into the cylinder during that engine cycle. Hence, when skip-firing, only some of the cylinders undergo a normal combustion cycle, while the remaining “skipped” cylinders continue to reciprocate, but without any fuel. However, because valve actuation is driven mechanically by the crankshaft, valve timing remains the same regardless of whether or not a cylinder undergoes combustion. Thus, the intake valve of a skipped cylinder remains closed during most of the compression stroke and all of the power stroke, just as it would have if fuel had been injected. With the intake valve closed during the compression stroke, the piston must work to compress the air in the cylinder, resulting in increased pumping losses and reduced engine efficiency.
Further, even when the engine is not idling, such as during a low torque output condition, the fueling demands can drop sufficiently low such that each fuel injector injects the desired amount of fuel before fully opening. At such minimal fuel injection volumes, the injectors may be more inaccurate, leading to larger relative fuel metering errors and percentage variance in injection amounts from injection to injection, and injector to injector. As a result of the injection variability at low fueling levels, regulated emissions may increase. In addition, at low fueling levels the engine speed may fluctuate beyond the specified or acceptable range which could result in unstable engine operation. However, modern day engines mitigate unstable operation at low fueling through engine speed control strategies built into the engine controller. Yet, the capability of the engine controller may be limited. For example, typical engine controllers may be incapable of compensating for or mitigating large fluctuations in fueling quantity.
In one embodiment, a method for an engine (e.g., a method for controlling an engine system) includes skip-firing the engine when fueling demands are less than a threshold; and holding open intake valves of skipped cylinders for a greater duration than intake valves of firing cylinders.
The following description relates to embodiments of skip-firing an engine based on fueling demands and/or engine speed, and adjusting a timing of intake valve closure for skipped cylinders. As one embodiment, a method for an engine may include skip-firing the engine when fueling demands are less than a threshold; and holding open intake valves of skipped cylinders for a greater duration than intake valves of firing cylinders. The engine may include a plurality of cylinders, each cylinder including a fuel injector and at least one intake valve and one exhaust valve. Actuation (e.g., opening and closing) of the intake and exhaust valves may be driven by rotation of a crankshaft via a cam system, such as camshaft and associated cam lobes. A controller of the engine may receive a signal from an input device, such as a hand lever, for a desired engine speed. The controller may responsively determine an amount of fuel to be injected by the fuel injectors to deliver the desired engine speed.
When the engine speed and load drops sufficiently low, such as during deceleration and/or engine idle, the commanded amount of fuel to be injected by the fuel injectors may drop to a point where the injector needle no longer reaches maximum lift. This region of operation is called the ballistic region of the injectors and is a mode of operation where the relative accuracy of the fuel injectors is reduced. Responsively, the controller may skip-fire the engine by commanding some of the fuel injectors to not inject fuel during an engine cycle to distribute the torque output demands amongst fewer “firing” cylinders, thus raising the amount of fuel to be injected by each active injector. In one example, the controller may determine when to initiate skip-fire based on fueling demands. In another example, the controller may additionally or alternatively determine when to initiate skip-fire based on engine speed. In yet another example, the controller may additionally or alternatively determine when to initiate skip-fire based on driver demanded torque. In still a further example, the controller may additionally or alternatively determine when to initiate skip-fire based on fuel rail pressure and/or the pulse-width (e.g., the magnitude of the pulse-width) of the pulse width modulated (PWM) injector (i.e. the PWM of the electromagnetic actuator used to control the injector needle and thus the fuel injection event).
The controller may further monitor torque imbalances amongst the cylinders and may use the measured torque imbalances to infer fuel metering errors (caused by fuel injector or injectors operating in the ballistic region) which may then determine when to initiate skip-fire. For example, if the cylinder-to-cylinder torque output variance is relatively high, fuel injection variance, and therefore fuel injector error may be relatively high as well, and the controller may switch to skip-firing the engine. Thus, the controller may adjust when skip-fire is initiated based on measured torque imbalances.
Further, while skip-firing the engine, the intake valves of firing cylinders may continue to be actuated via the cam system. However, the controller may vary the closing timing of the intake valves of non-firing cylinders via a second set of actuators that are not driven by the crankshaft. In particular, the second set of actuators may be electromagnetic actuators that open and close the intake valves in response to signals received from the controller, independently of the crankshaft driven cam system. The controller may hold open the intake valve or valves of non-firing cylinders during the compression stroke and at least a portion or all of the power stroke.
The approach described herein may be employed in a variety of engine types, and a variety of engine-driven systems. Some of these systems may be stationary, while others may be on semi-mobile or mobile platforms. Semi-mobile platforms may be relocated between operational periods, such as mounted on flatbed trailers. Mobile platforms include self-propelled vehicles. Such vehicles can include on-road transportation vehicles, as well as mining equipment, marine vessels, rail vehicles, and other off-highway vehicles (OHV). For clarity of illustration, a locomotive is provided as an example of a mobile platform supporting a system incorporating an embodiment of the invention.
Before further discussion of the approach for skip-firing an engine, an example platform is disclosed in which the engine may be installed in a vehicle, such as a rail vehicle. For example,
The engine receives intake air for combustion from an intake passage 114. The intake passage receives ambient air from an air filter 160 that filters air from outside of the rail vehicle. Exhaust gas resulting from combustion in the engine is supplied to an exhaust passage 116. Exhaust gas flows through the exhaust passage, and out of an exhaust stack of the rail vehicle. In one example, the engine is a diesel engine that combusts air and diesel fuel through compression ignition. In other non-limiting embodiments, the engine may additionally combust fuel including gasoline, kerosene, natural gas, biodiesel, or other petroleum distillates of similar density through compression ignition (and/or spark ignition, and/or other forms of ignition such as laser, plasma, or the like).
In some embodiments, the vehicle system may include a turbocharger 120 that is arranged between the intake passage and the exhaust passage. The turbocharger increases pressure of the ambient air drawn into the intake passage in order to provide greater charge air density to increase the mass of air available for combustion to increase power output and/or engine-operating efficiency. The turbocharger may include a compressor (not shown) which is at least partially driven by a turbine (not shown). While in this case a single turbocharger is included, the system may include multiple turbine and/or compressor stages. In another embodiment, the engine system may include a supercharger wherein a compressor or blower is driven mechanically by the engine to compress ambient air in order to provide greater charge density for/during combustion to increase power output and/or engine-operating efficiency. In other embodiments, the engine system may be naturally aspirated receiving fresh air charge for in-cylinder combustion and not include a turbocharger or a supercharger or a blower.
The vehicle system further includes an exhaust treatment system 130 coupled in the exhaust passage downstream of the turbocharger. The exhaust treatment system may include one or more components. In one example embodiment, the exhaust treatment system may include a diesel particulate filter (DPF) 132. In other embodiments, the exhaust treatment system may additionally or alternatively include a diesel oxidation catalyst (DOC), a selective catalytic reduction (SCR) catalyst, a three-way catalyst, a NOx trap, various other emission control devices or combinations thereof. The DPF may be cleaned via regeneration, which may be employed by increasing the temperature for burning particulate matter that has collected in the filter. Passive regeneration may occur when a temperature of the exhaust gas is high enough to burn the particulate matter in the filter. During active regeneration, air-fuel ratio or other operating parameters may be adjusted and/or fuel may be injected and burned in the exhaust passage upstream of the DPF in order to drive the temperature of the DPF up to a temperature where the particulate matter will burn and oxidize more completely.
Further, in some embodiments, a burner may be included in the exhaust passage such that the exhaust stream flowing through the exhaust passage upstream of the exhaust gas treatment device may be heated. In this manner, the temperature of the exhaust stream may be increased to facilitate active regeneration of the exhaust gas treatment device. In other embodiments, a burner may not be included in the exhaust gas stream.
The exhaust treatment system may further include a temperature sensor 133 for indicating a temperature of the exhaust treatment system. Thus, the temperature sensor may be positioned within the exhaust treatment system and configured to measure a temperature of the exhaust treatment system. Outputs from the temperature sensor may be communicated to a controller 148 (e.g., electronic controller having one or more processors) via an electrical connection (e.g., wired or wireless) and the controller may estimate a temperature of the exhaust treatment system based on the outputs received from the temperature sensor. Further, the controller may adjust one or more engine operating parameters such as fuel injection amounts, injection timing, skip-firing patterns, etc., based on the measured exhaust treatment system temperature to maintain the exhaust treatment system to a desired temperature. For example, when regeneration of the DPF is desired, the controller may adjust a skip-firing pattern and/or number of cylinders undergoing skip-fire to increase the exhaust treatment system temperature to facilitate regeneration of the DPF.
The controller may be employed to control various components related to the vehicle system. In one example, the controller includes a computer control system. The controller further includes computer readable storage media (e.g., memory) including code for enabling on-board monitoring and control of rail vehicle operation. The controller, while overseeing control and management of the vehicle system, may receive signals from a variety of sensors 151, as further elaborated herein, to determine operating parameters and operating conditions, and correspondingly adjust various engine actuators 152 to control operation of the vehicle. For example, the controller may receive signals from various engine sensors including, but not limited to, engine speed, engine torque output, engine load, boost pressure, exhaust pressure, ambient pressure, exhaust temperature, knock, misfire, fuel rail pressure, and the like. Correspondingly, the controller may control aspects and operations of the vehicle system by sending commands to various components such as fuel injectors, cylinder valves and cylinder valve actuators, fuel pump, air and/or fuel throttle, and the like.
As shown in
As shown by the dotted lines in
In one example, the controller may adjust the fuel injector to either a fully closed first position or a fully open second position. In the fully closed first position, the fuel injector does not inject fuel. However, in the fully open second position, the fuel injector injects fuel. Thus, the controller may inject fuel by adjusting the fuel injector from the fully closed first position to the fully open second position. The controller may adjust the fuel injector to the fully open second position by adjusting a command signal, such as the pulse width of a pulse width modulated signal, sent to the fuel injector. Adjusting of the injector from the first position to the second position may be referred to herein as opening of the injector. Opening of the injector does not include the holding open of the injector, where the injector is held in the fully open second position. Thus, opening of the injector is used to refer to movement of the injector from when it first begins to move away from the first position, until it reaches the second position.
The controller may then hold open the fuel injector in the second position, until the desired fuel injection amount has been injected. Once the desired fuel injection amount has been injected, the controller may then adjust the fuel injector back to the fully closed first position and stop injecting fuel. The desired fuel injection amount may thus comprise a unit fueling, which is the desired amount of fuel (e.g., fuel volume) to be injected during a single injection or single power stroke of the associated engine cylinder. In the description herein “fueling demand” may also be used to refer to the desired fuel injection amount and/or pulse width of a pulse width modulated signal (PWM) of the injector.
However, there may be a delay from when the injector begins to open (begins to move away from the first position towards the second position) until the injector reaches the open second position. Thus, it may take the injector a duration of time to adjust from the first position to the second position and completely open. Fuel may be injected by the injector while it opens, before it reaches the fully open second position. That is, the injector does not need to be in the fully open second position to inject fuel; it may also inject fuel when in a position between the first and second positions.
In some examples, when the injector is commanded to the fully open second position, the desired fuel injection amount may be injected before the injector reaches the fully open second position. In such examples, the injector may operate in what is commonly referred to as the “ballistic region.” Thus, when the desired injection amount is less than what would be injected by the injector before the injector reaches the fully open second position, the injector is said to operate in the ballistic region. That is, the ballistic region may represent an amount of fuel that is delivered by the injector while the injector opens (transitions from the first to the second position). Thus, when fueling demand decreases sufficiently, such that the commanded fuel injection amount decreases into the ballistic region of the injector, the fuel injector may only need to partially open to inject the desired amount of fuel.
However, since the injector may only be adjustable to either the first position or the second position, fuel injection accuracy and control is severely reduced when operating in the ballistic region. Further, the amount of fuel injected by the injector while it opens, and therefore in the ballistic region, may depend on fuel rail pressure, the pulse-width of the injector, PWM, and in-cylinder pressure. In particular, the amount of fuel injected while the injector opens may increase for increases in fuel rail pressure and/or the pulse-width of the injector, PWM. As such, fuel metering errors may be exacerbated at higher fuel rail pressures and/or shorter PWMs where the effect of the ballistic region is larger and more profound.
In another example, the controller may adjust the fuel injector to one or more positions between the fully closed first position and the fully open second position. The controller may increase the amount of fuel injected by adjusting the injector closer towards the fully open second position and away from the fully closed first position. The command signal may be in the form of a pulse width modulated signal. By adjusting the pulse width of the signal, the controller may adjust the size of the opening of the fuel injector and/or the duration for which the injector is open.
As explained in greater detail below with reference to
For example, when all cylinders are firing, the controller may decide to enter the skip-fire mode and skip combustion for some of the cylinders when the commanded fuel injection amount (e.g., command signal sent to each fuel injector, such as the PWM signal) decreases below a threshold. The threshold may represent the switch from the non-ballistic to ballistic region of the injector. For example, the threshold for a given fuel rail pressure may correspond to a commanded injection volume of approximately 200 mm3 to 500 mm3 per injection event, below which the injector operates in the ballistic region, and above which the injector operates in the non-ballistic region. In the non-ballistic region, the desired injection amount is achieved when the injector reaches the fully open second position, or after the injector reaches the fully open second position and is held in the second position. As such, the amount of fuel injected by the injector may be linear with respect to the duration the injector is open in the non-ballistic region. By reducing the number of firing cylinders, the desired torque output (and therefore fuel injection amount) may be distributed amongst fewer cylinders, thus increasing the amount of fuel to be injected by each firing cylinder. As such, the injectors of firing cylinders can be operated in their non-ballistic regions even at lower engine fueling demand levels where they would have operated in their ballistic regions had all of the cylinders been fired.
In some examples, the controller may be independently electrically coupled to each of the fuel injectors. Said another way, the controller may be electrically coupled to each fuel injector individually, through distinct wired or wireless connections. For example, the controller may be coupled to each fuel injector via separate wires. As such, the controller may send individual fuel injection command signals to each of the fuel injectors. In this way, the controller may individually adjust the amount of fuel injected to each cylinder by adjusting the command signal sent to each of the injectors. However, in other examples, the controller may be independently electrically coupled to various subsets of fuel injectors and may vary the amount of fuel injected by the injectors of different sub sets.
The controller may command for different amounts of fuel to be injected to different cylinders. For example, when skip-firing, the controller may command for one or more fuel injectors to not inject fuel during a given engine cycle. The controller may initiate skip-fire when fueling demands and/or engine speed decrease below respective thresholds. Thus, the controller may determine when to initiate skip-fire based on fueling demands. When fueling demands decrease to sufficiently low levels, such as during engine idling, relative fuel metering errors (e.g., the difference between the actual amount of fuel injected and the desired amount of fuel to be injected, compared to the desired amount of fuel to be injected) increase. To reduce such metering errors, skip-firing may be initiated so that fewer cylinders are firing during a given engine cycle, thus increasing the amount of fuel injected to each of the firing cylinders. By increasing the amount of fuel injected to the firing cylinders, fuel metering errors may be reduced, as the metering errors for the injectors is inversely proportional to injection quantity, such that the metering errors increase for decreases in fuel injection quantity.
In some embodiments, as shown in
As one example, the controller may infer fuel metering errors in one or more of the cylinders by comparing the cylinder-to-cylinder torque contributions and thereby measuring torque imbalances amongst the cylinders. For example, the torque imbalances may increase for increases in fuel metering errors, as the injector-to-injector variation in fueling, and therefore torque output, increases when there is greater variability in the fuel injections (higher fuel metering errors). The controller may adjust the threshold at which it switches to operating in the skip-fire mode based on the torque imbalances. For example, the controller may increase the fuel threshold at which it initiates skip-fire in response to increased torque imbalance amongst the cylinders. Thus, the fuel demand level at which the controller switches to skip-firing the engine may depend on the torque imbalances amongst the cylinders. In this way, the controller may initiate skip-firing at a higher fuel demand level when the measured torque imbalances are higher than it would at lower torque imbalance levels. For example, when fuel demands are monotonically decreasing, the controller may switch to skip-firing sooner when the measured torque imbalances are higher than it would when the torque imbalances are lower.
Further, the controller may receive an indication of a driver demanded torque and/or engine speed from an input device 150 to which the controller may be electrically coupled via a wired and/or wireless connection. The input device may comprise an electric/electronic controller such as an Engine Control Unit (ECU) which can be used to adjust the fueling level to achieve the desired engine speed and/or engine torque. However, in other examples, the input device may comprise a foot actuated accelerator pedal, or other type of manual input device. In this way, a vehicle operator may set or adjust a desired engine speed and/or engine torque by adjusting the position of the input device. In still further examples, the input device may be an electronic device such as a touch screen through which a vehicle operator may adjust the desired engine speed and/or engine torque. The controller may adjust one or more engine operating conditions based on input received from the input device. For example, the controller may adjust an amount of fuel injected to the engine cylinders based on the driver requested engine speed and/or engine torque.
The engine may be controlled at least partially by a control system including controller 148 which may be in further communication with a vehicle system, such as the vehicle system 100 described above with reference to
As shown in
The cylinder (i.e., combustion chamber) may include combustion chamber walls 204 with a piston 206 positioned therein. The piston may include a piston ring and/or liner disposed between an outer wall of the piston and the inner wall of the cylinder. The piston may be coupled to a crankshaft 208 so that reciprocating motion of the piston is translated into rotational motion of the crankshaft. In some embodiments, the engine may be a four-stroke engine in which each of the cylinders fires (e.g., fuel is injected into each cylinder) in accordance with a firing order during two revolutions of the crankshaft. In other embodiments, the engine may be a two-stroke engine in which each of the cylinders fires in a firing order during one revolution of the crankshaft.
The cylinder receives intake air for combustion from an intake including an intake runner (or manifold) 210. The intake runner receives intake air via an intake manifold. The intake runner may be configured such that there is one runner per cylinder or such that a single intake runner communicates with multiple cylinders (e.g. one runner per bank of a V-engine which communicates with all cylinders on a bank, wherein the V-engine consists of two runners) of the engine in addition to the one cylinder, for example, or the intake runner may communicate exclusively with that one cylinder.
Exhaust gas resulting from combustion in the engine is supplied to an exhaust system including an exhaust runner 212. Exhaust gas flows through the exhaust runner, to a turbocharger in some embodiments (turbocharger not shown in
Each cylinder of the engine may include one or more intake valves and one or more exhaust valves. For example, the cylinder in
The position of the intake valve 214 may be adjusted by a first actuator 218. Similarly, the position of the exhaust valve 216 may be adjusted by a second actuator 220. In some examples, the first and second actuators may be cam lobes that are mechanically driven by the crankshaft. For example, the actuators may be physically coupled to respective camshafts, such that the actuators rotate with their respective camshafts. The camshafts may in turn be driven by the crankshaft via a mechanical coupling with the crankshaft, such as via a gear or belt or chain. In this way, the opening and closing of the intake and exhaust valves may be determined by crankshaft rotation (e.g., crankshaft speed) and may be the same from engine cycle to engine cycle. For example, the intake valve may be driven open by rotation of the crankshaft via a cam lobe at a predetermined instance during piston reciprocation position within the combustion chamber. Similarly the intake valve may close at a different predetermined instance during piston reciprocation position within the combustion chamber. For example, the intake valve may open during the exhaust stroke when the piston is approximately 30 degrees below top dead center (e.g., where top dead center refers to a position where the piston reaches the point of closest approach to the cylinder head) and may close during the compression stroke when the piston is approximately 40 degrees above bottom dead center (e.g., where bottom dead center refers to a position where the piston reaches the point of further approach from the cylinder head).
In such examples where the valve timing is fixed by the crankshaft, a third actuator 240 may be included that actuates the intake valve independently of the first actuator (e.g., cam lobe). The third actuator 240 may be electrically coupled to the controller via a wired or wireless connection, and the controller may send signals to the third actuator to adjust the position of the intake valve independently of the crankshaft position. The actuator may comprise one or more of an electric, electromagnetic, mechanical, pneumatic, or hydraulic actuator. In the example of
As depicted in the example of
In this way, the controller may send signals to the actuator to adjust the position of the intake valve independently of the rotation or position of the crankshaft. As such, the controller may adjust the timing of the intake valve opening and closing as desired via the third actuator. For example, the controller may adjust intake valve timing when the cylinder is skipped during skip-fire operation. Specifically, the controller may hold the intake valve open during the intake, compression, and power strokes. As one example, the controller may close the intake valve during the power stroke between 0 and 50 degrees from bottom dead center piston position. By maintaining the intake valve open during the entire compression and a portion or all of the power stroke, pumping losses may be reduced and engine efficiency may therefore be increased. In another example, the controller may hold the intake valve open during the intake, compression, power, and a portion of the exhaust stroke. Thus, the controller may close the intake valve during the exhaust stroke. As such, the intake valve may only be closed for a portion of the exhaust stroke.
In yet further examples, the opening and closing of the intake and/or exhaust valves may be varied cycle to cycle via a variable cam timing system. For example, the engine may utilize engine oil or other fluid to fill an advance or retard chamber of a variable cam timing system, which advances or retards the camshaft relative to the crankshaft, thereby changing the relative timing of intake valve actuation to the crankshaft. Thus, advancing or retarding the opening and closing of the intake and exhaust valves.
The intake and exhaust valve timing may be controlled concurrently or any of a possibility of variable intake cam timing, variable exhaust cam timing, dual independent variable cam timing or fixed cam timing may be used. In other embodiments, the intake and exhaust valves may be controlled by a common valve actuator or actuation system, or an independently variable valve timing actuator or actuation system. Further, the intake and exhaust valves may by controlled to have independently variable lift by the controller based on operating conditions.
In yet further examples, the intake and exhaust valves may be actively driven by the controller and may not be mechanically driven by the crankshaft. In such examples, the first and second actuators may comprise electromagnetic actuators and the controller may vary the signals provided to the first and second actuators to control the opening and closing of the respective intake and exhaust valves. In such examples, the third actuator may not be included, as the controller may vary the position of the intake valve as desired. The position of the intake valve and the exhaust valve may be determined by respective valve position sensors 222 and 224, respectively.
In some embodiments, each cylinder of the engine may be configured with one or more fuel injectors for providing fuel thereto (as shown in
As explained above, the engine may include one or more engine speed sensors (e.g., such as crankshaft speed sensor 209 shown in
For example, the controller may adjust one or more engine operating parameters (e.g., an amount of fuel being injected into engine cylinders via one or more fuel injectors) based on the sensed engine speed (which is unstable or fluctuating) in order to maintain the engine speed at a desired engine speed. As explained above with reference to
Turning to
The first actuator is shown configured as a cam lobe in two positions offset by 180 degrees with the third actuator OFF and ON. As shown with the third actuator OFF and the cam lobe in a first position (e.g., 0°), the intake valve is in a fully closed first position. When the cam lobe rotates 180° to a second position (e.g., 180°) the intake valve is in a fully open second position. The degree markings in
In the example of
The first actuator may thus be a cam lobe that is mechanically coupled to a camshaft such that it co-rotates with the camshaft. Thus, the cam lobe and camshaft are locked in rotation with one another. The camshaft and cam lobe may be mechanically driven by the crankshaft via a suitable coupling such as a gear, belt, or chain. The camshaft and cam lobe may rotate only once (360° of rotation) for every two rotations (720°) of the crankshaft. Thus, the cam lobe opens the intake valve for a duration dictated by the shape and geometric profile of the cam lobe and the speed of rotation of the crankshaft, only once (for each engine cylinder) during a four-stroke combustion cycle where the crankshaft completes two full rotations.
As described in greater detail below with reference to
The desired fuel rail pressure and the pulse-width of the injector, PWM, may depend on one or more of the engine load, desired torque output, desired engine speed, etc. Thus, the desired fuel rail pressure and the pulse-width of the injector, PWM, may be set to achieve the desired torque output. For example, the controller may increase the desired fuel rail pressure and/or the injector pulse-width command for increases in engine load and desired torque output. The desired fuel rail pressure and the injector pulse-width, PWM, may be set to decreased levels by the controller during, for example, engine idle and/or low engine loads.
In this way, the controller may infer the injection amount based on the fuel rail pressure and the corresponding PWM command. As such, the controller may determine when to initiate skip-fire, and how many cylinders to skip-fire during the skip-fire operation, based on the fuel rail pressure and the injector PWM command. For example, the controller may initiate skip-fire operation when the injector PWM pulse-width for a given fuel rail pressure decreases below a threshold. The controller may then increase the number of cylinders to skip-fire for continued decreases in the injector PWM pulse-width below the threshold for a given fuel rail pressure.
Turning to
Thus as shown for a first engine cycle 410, odd number cylinders 1, 3, 5, 7, 9, and 11 may fire, while even number cylinders 2, 4, 6, 8, 10, and 12 may be skipped. Then, during a second engine cycle 420, which immediately follows the first engine cycle, the odd number cylinders are skipped while the even number cylinders fire. Similarly, during a third engine cycle 430 which immediately follows the second engine cycle, odd number cylinders go back to firing, while the even number cylinders are skipped. During a fourth engine cycle 440, which immediately follows the third engine cycle, the odd number cylinders are skipped as in the second engine cycle, and the even number cylinders fire.
As used herein, a “firing” cylinder is used to describe a cylinder in which fuel is injected and combustion occurs during the four stroke combustion cycle of the cylinder. Thus, when a cylinder “fires” it is injected with fuel via a fuel injector, and undergoes combustion. Further, the term “skip” is used to describe a cylinder in which fuel is not injected and combustion does not occur during the four stroke combustion cycle of the cylinder.
Thus in the example firing pattern depicted in
However, it should be appreciated that the firing pattern depicted in
Moving on to
Instructions for carrying out method 500 and the rest of the methods included herein may be executed by a controller (such as controller 148 shown in
At 502, the method includes estimating and/or measuring engine operating conditions. Engine operating conditions may include one or more of engine speed, engine torque output, driver demanded torque, driver demanded speed, fuel rail pressure, estimated fuel quantity, temperature of an exhaust after-treatment system (e.g., exhaust treatment system 130 described above in
At 503, the method includes determining whether it is desired to initiate skip-fire. In particular, the method 500 at 503 comprises determining whether one or more fuel injectors are operating, or will operate, in their ballistic region. That is, the method 500 at 503 comprises determining whether the desired fuel injection amount is, or will be less than the amount of fuel actually injected by the injector while the injector opens, before it reaches a fully open second position. Thus, the method 500 at 503, comprises comparing the desired injection amount to the ballistic region of the injector. When the desired injection amount is within the ballistic region (less than the actual amount of fuel that will be, or has been, injected while the injector opens fully to the second position), the controller may determine that it is desired to skip-fire one or more engine cylinders. However, if the desired injection amount is above the ballistic region, then the controller may determine that skip-firing is not desired.
The desired fuel injection amount may comprise a desired unit fueling, which is a desired amount of fuel to be injected during a single injection or during a single power stroke of an associated engine cylinder in which the injector is positioned for injecting fuel. The desired fuel injection amount or PWM command may be determined by the controller based on one or more engine operating conditions, such as engine speed and fuel rail pressure, and a desired torque, such as a driver demanded torque. As described above in
In particular, the desired fuel injection amount may increase for decreases in engine speed, assuming relatively constant power output, and vice versa. That is, the desired fuel injection amount may be directly proportional to the desired torque output, where the actual torque output may change depending on changes in engine speed.
The controller may additionally determine the ballistic region, and therefore when to initiate skip-fire operation, based on fuel rail pressure and the injector pulse-width (PWM). For example, as described above with reference to
As explained above with reference to
In another example, the controller may initiate skip-fire in response to engine speed decreasing below a threshold. Additionally or alternatively, the controller may determine when to initiate skip-fire based on engine load. Engine load may include auxiliary loads from an alternator and other electrical devices. The controller may initiate skip-fire in response to engine loads decreasing below a threshold. In yet further examples, the controller may determine whether skip-fire is desired based on one or more of driver demanded engine speed, and cylinder-to-cylinder fuel injection variations (e.g., cylinder-to-cylinder torque output variation). The controller may initiate skip-fire responsive to the engine load decreasing below a load threshold, engine idling, braking, dynamic braking and/or abnormal conditions such as faulty (e.g., degraded) injector or injectors, faulty engine cylinder or cylinders, and such others. Thus, the skip-fire technique as described in this disclosure can be used to “temporarily” correct or remedy or compensate for unstable engine operation caused by certain hardware and/or software failures or defects or faults in the engine system. The ECU (engine controller) is programmed to recognize that skip-fire has been activated to compensate for an engine hardware and/or software problem. The ECU then calls for a service interruption to implement a “permanent” corrective action or fix. The “temporary” skip-fire remedy/correction is continued until the engine can be serviced at the earliest possible opportunity.
The method described below in
If skip-fire operation is not desired (e.g., fueling demands are greater than the threshold), then the method continues to 504. At 504, the method includes maintaining secondary intake valve actuators (e.g., third actuator 240 described above in
Alternatively at 503, if skip-fire is desired, then the method continues to 506 which comprises determining a number of cylinders to skip for each engine cycle. Thus, the controller may determine how many cylinders to skip when skip-fire is desired based on one or more engine operating conditions. For example, the controller may skip more cylinders for decreases in fueling demands, driver demanded torque, etc. Thus, the controller may determine how many cylinders to skip based on the total amount of fuel to be injected during a given engine cycle by all of the cylinders collectively. In one example, the controller may skip sufficiently many cylinders so that all of the firing cylinders inject more than a threshold amount of fuel. The threshold amount of fuel may comprise an amount of fuel sufficient to maintain the fuel injectors in their non-ballistic region. For example the non-ballistic region may comprise single injections by the fuel injectors that are greater than approximately 500 mm3. However, in other examples, for a given fuel rail pressure, the non-ballistic region may represent a range of unit fueling amounts in a range between 200 and 800 mm3. Thus, given the total amount of fuel to be injected during a given engine cycle, the controller may determine how many cylinders should be skipped to ensure that, for the fuel injectors that are injecting fuel during the engine cycle (e.g., non-skipped cylinders), the injectors operate in their non-ballistic regions. In this way, fuel metering errors may be reduced since fuel injectors are more inaccurate when operating in their ballistic region than their non-ballistic region. That is, fuel injectors may have more percentage variability from injection to injection and injector to injector when operating in their ballistic region (lower fuel injection quantities) than their non-ballistic region. By maintaining the fuel injectors in their non-ballistic regions and thereby reducing fuel metering errors, injection consistency and repeatability may be increased, and thus emissions and unstable engine operation may be reduced.
After determining how many cylinders to skip, the method may then continue from 506 to 508 which comprises determining a firing pattern for each engine cycle. An example firing pattern for a twelve cylinder engine when skipping six of the cylinders is described above with reference to
The method may then continue from 508 to 510 which comprises determining an injection skipping frequency for each cylinder based on the number of cylinders to skip for each engine cycle and the firing pattern for each engine cycle. For example, as shown in the example of
However, it should be appreciated that in other examples, the controller may skip cylinders in a non-regular manner, such that the firing pattern for each engine cycle may be different. In yet further examples, the controller may determine the number of cylinders to skip and/or the firing pattern for each engine cycle individually based on the engine operating conditions leading up to and/or existent at the beginning of the next engine cycle. In this way, the controller may dynamically adjust one or more of the number of cylinders skipped and/or the firing pattern for each engine cycle based on changes in the engine operating conditions from the previous engine cycle. In other examples, the controller may update the firing pattern and/or number of cylinder to be skipped at a frequency less than every engine cycle (e.g., every five engine cycles).
The method may then continue from 510 to 512 which comprises injecting fuel into only the non-skipped cylinders and powering ON the secondary intake valve actuators of only the skipped cylinders to maintain the intake valves of the skipped cylinders open for longer than the intake valves of the non-skipped cylinders. Thus, when skip-firing the engine, the controller may send electric control signals (e.g., via pulse width modulation) to the secondary intake valve actuators of non-firing cylinders (e.g., cylinders which are not being injected with fuel during a given engine cycle) to remain open for longer than the intake valves are open when undergoing combustion. Thus, the closing timing of the intake valves for firing cylinders may be the same during the skip-fire mode as during normal combustion where all of the cylinders are firing. Thus, when not skip-firing the engine the closing timing of the intake valves is not retarded, and for firing cylinders during skip-fire mode, the closing timing of the intake valve is not retarded. That is, the intake valve closing timing of skip-fire cylinders is retarded relative to the closing timing of firing cylinders, such that the intake valve are held open for longer on skip-firing cylinders than for firing cylinders.
In particular, and as discussed in greater detail below with reference to
The method may then continue from 510 to 512 which comprises monitoring engine operating conditions. Thus, while skip-firing, the controller may continue to monitor engine operating conditions to determine if the skip-firing should be adjusted. Accordingly at 516, the method includes determining if engine operating conditions are stable. For example, the method at 516 may comprise determining if one or more of engine speed, exhaust temperature, power/torque output, torque imbalances, fuel rail pressure, and fuel injector PWM pulse-width are within respective desired/tolerable ranges. If one or more of the above engine operating conditions are outside of their desired/tolerable ranges, the controller may responsively adjust skip-firing operation. Thus, the method may continue from 516 to 518 which includes adjusting one or more of skip-firing, fuel injection, and engine speed to maintain stable operating conditions if it is determined that engine operating conditions are not stable at 516. For example, the controller may increase the exhaust temperature when it is desired to regenerate a particular filter (e.g., DPF 132 described above in
In another example, if activation of the exhaust after-treatment system is desired while the controller is skip-firing one or more engine cylinders, the controller may reduce the number of firing cylinders (increase the number of skip-fired cylinders) to increase the amount of fuel injected into each of the firing cylinders to run the firing cylinders at a richer air/fuel ratio and achieve a hotter exhaust temperature. The method then ends.
Alternatively if at 516 engine operating conditions are stable, the method may continue to 520 which includes maintaining skip-firing operation. The method then ends.
Turning to
At 604, the method includes determining the crankshaft speed accelerations (torque output) of individual engine-cylinders resulting from the injection of fuel into each cylinder. For example, every time fuel is injected into a cylinder, instantaneous engine speed may increase (and accordingly the acceleration of the engine speed increases proportional to injected fuel quantity). The controller may receive the engine speed signal from an engine speed sensor (e.g., speed sensor 209 described above in
At 606, the method includes comparing the individual engine speed accelerations or torque contributions for each fuel injector/cylinder. Differences in cylinder to cylinder torque output may be used to indicate an amount of fuel injected by each injector since torque output is directly proportional to fueling. Torque imbalances, or cylinder to cylinder variations in torque output, may therefore increase for increases in injector metering errors and injector to injector variation. Thus, fuel metering errors may be monitored by analyzing torque imbalances amongst the different cylinders.
Thus, at 608 the method comprises adjusting the threshold for initiating skip-fire operation based on the torque imbalances. For example, when torque imbalances increase, the threshold may be adjusted to a higher engine speed, such that if engine speed is decreasing, skip-fire is initiated sooner than it would have been if the threshold had been set at a lower engine speed.
At 610 the method comprises initiating skip-firing when the engine operating conditions reach the threshold for initiating skip-fire operation. In this way, the controller may initiate skip-fire at different engine speeds, fueling demands, etc., depending on the amount of variation in cylinder to cylinder injection quantity. The method then ends.
Moving on to
When the engine is not skip-firing and all cylinders undergo combustion during an engine cycle, the intake valve may be actuated by a cam lobe (e.g., first actuator 218 described above in
As depicted in the first graph, the intake valve may open during the exhaust stroke before the piston reaches top dead center (TDC). The intake valve may open at an angle of approximately 15 degrees from top dead center. However, in other examples, the intake valve may open at an angle within a range of angles between 0 and 30 degrees below/after top dead center. In the example of
However, in other examples, the intake valve may remain open during the intake stroke, and may then close during the compression stroke. For example, the intake valve may close at approximately 25 degrees above/after BDC during the compressions stroke. However, in other examples, the intake valve may close at an angle within a range of angles between 0 and 50 degrees above bottom dead center.
However, when the cylinder is skipped during skip-fire operation, and fuel is not injected into the cylinder, the intake valve may be closed later than it would be closed when undergoing combustion. For example, as shown in the second graph, the intake valve may be held open during the entire compression stroke, a portion or all of the power stroke, and in some examples, a portion of the exhaust stroke. The shaded area in the second graph depicts a range of piston positions at which the intake valve may be closed during skip-fire operation. For example, the intake valve may be closed at any piston position included within the range of piston positions defined in the example of
In some examples, a controller (e.g., controller 148 described above in
In this way, technical effects of reducing emissions and reducing fuel consumption are achieved by skip-firing the engine and holding the intake valves of skipped cylinders open further into their compressions strokes. In particular, by initiating skip-fire not just during engine idle, but also during low speed and/or low torque conditions, more consistent and more accurate fuel injection by fuel injectors is achieved. Thus, by reducing the number of cylinders firing, the amount of fuel injected by each firing cylinder may be increased to maintain the fuel injectors in their non-ballistic regions. In doing so, the accuracy of the firing fuel injectors may be maintained even at lower engine speeds, resulting in more consistent and reliable in-cylinder pressures and temperatures, along with stable engine speed. As a result, emissions may be reduced and fuel consumption may be reduced. Further, operating in the non-ballistic region of the fuel injectors increases engine reliability and durability. Further, skip-firing operation allows for more dynamic control of exhaust gas temperature, which in turn promotes more consistent control and consistent operation of exhaust after-treatment devices, increasing both performance and longevity of those devices.
Further, by holding the intake valves of non-firing cylinders open further into the compression and potentially into the power strokes when skip-firing the engine, power losses associated with the piston compressing and expanding a fixed mass of in-cylinder air are reduced. Thus, engine efficiency and fuel consumption may be improved by holding the intake valves of the non-firing cylinder open for longer than they would be during a normal combustion cycle where fuel is injected.
As one example, a method for an engine comprises: skip-firing the engine when fueling demands are less than a threshold; and holding open intake valves of skipped cylinders for a greater duration than intake valves of firing cylinders. The method may further comprise adjusting the threshold based on cylinder to cylinder torque imbalances, where the threshold is increased for increases in the cylinder to cylinder torque imbalances. In one example, the method may further comprise adjusting the threshold based on fuel rail pressure and/or fuel injector PWM pulse-width, where the threshold increases for increases in fuel rail pressure. In another example, the intake valves of the skipped cylinders are held open via actuators controlled by an engine controller and coupled to the intake valves, and where the actuators comprise one or more of electric, mechanical, pneumatic, hydraulic, and/or electromagnetic. Further, the actuators may adjust the position of the intake valves independently of a cam timing system that is driven mechanically by a crankshaft. Further still, the intake valves of firing cylinders may be opened by cam lobes of a camshaft, the camshaft mechanically driven by the crankshaft. In yet another example, the intake valves of skipped cylinders are held open for an entirety of intake and compression strokes, and at least a portion of a power stroke. The method may further comprise adjusting one or more of a firing pattern and a number of cylinders to be skipped while skip-firing the engine, based on a temperature of an exhaust after-treatment system. In another example, the method may further comprise adjusting one or more of a firing pattern and/or a number of cylinders to be skipped while skip-firing the engine, based on one or more of engine speed, fuel demand, exhaust gas temperature, and/or exhaust gas oxygen concentration. In yet another example, the method may further comprise adjusting one or more of a firing pattern and/or a number of cylinders to be skipped while skip-firing the engine, based on power output stability.
In another embodiment, a method for controlling an engine includes, with a controller (e.g., having one or more processors), skip-firing the engine when fueling demands are less than a threshold, such that when the engine is skip-fired, one or more cylinders of the engine are fired (firing cylinders) and one or more other cylinders of the engine are not fired (skipped cylinders), across plural combustion cycles of the engine. For example, there may be a skip-firing mode of operation as indicated, which is initiated based on the fueling demand threshold, and another, different mode of operation where all cylinders of the engine are fired in a given combustion cycle. The method further includes, with the controller, holding open intake valves of the skipped cylinders for a greater duration than intake valves of the firing cylinders. For example, the greater duration may be relative to one or more combustion cycles when the engine is operated in the skip-firing mode, such that: in the time period of one combustion cycle when the engine is operated in the skip-firing mode, the intake valves of the skipped cylinders are held open for a longer time than the intake valves of the firing cylinders; and/or in the time period of plural consecutive combustion cycles when the engine is operated in the skip-firing mode, the intake valves of the skipped cylinders are held open for a longer time than the intake valves of the firing cylinders.
As another example, a method for an engine comprises: determining when to initiate skip-fire mode based on engine operating conditions including one or more of engine speed, commanded fuel injection amount, engine load, fuel rail pressure, and/or commanded injector PWM pulse-width; initiating the skip-fire mode in response to the engine operating conditions decreasing below a threshold; and closing intake valves of non-firing cylinders during power or exhaust strokes of the non-firing cylinders. The method may further comprise adjusting the threshold based on one or more of cylinder-to-cylinder variance and/or injection-to-injection variance, where the variances are determined based on measured torque contributions from each firing cylinder via a crankshaft speed sensor, and where the threshold increases for increases in one or more of the variances. In another example, the method may further comprise determining a number of cylinders to skip during the skip-fire mode based on one or more of engine speed, fuel demand, exhaust gas temperature, and/or exhaust gas oxygen concentration. The method may further comprise determining which cylinders to skip based on the number of cylinders to be skipped and a pre-set pattern for controlling engine vibration and speed stability. Additionally, the method may further comprise determining a firing frequency for each firing cylinder over an upcoming threshold number of engine cycles based on the number of cylinders to be skipped during each engine cycle and a desired firing pattern for each engine cycle. In another example, the skip-fire mode is initiated in response to one or more of: the engine speed crossing a speed threshold, the commanded fuel injection amount decreasing below a fueling threshold, the engine load decreasing below a load threshold, engine idling, braking, and/or dynamic braking. In one example, initiating the skip-fire mode in response to the engine operating conditions decreasing below the threshold includes initiating the skip-fire mode in response to one or more of: the engine speed crossing a speed threshold, the commanded fuel injection amount decreasing below a fueling threshold, and/or the engine load decreasing below a load threshold. In another example, initiating the skip-fire mode in response to a determination that one or more fuel injectors or cylinders of the engine is degraded and, in response to initiating the skip-fire mode in response the determination that one or more fuel injectors or cylinders of the engine is degraded, calling for a service interruption to implement a corrective action to service the degraded fuel injector or cylinder.
In another embodiment, a method for controlling an engine includes, with a controller (e.g., having one or more processors), determining when to initiate a skip-fire mode based on engine operating conditions including one or more of engine speed, commanded fuel injection amount, engine load, fuel rail pressure, and/or fuel injector pulse-width. In the skip-fire mode, in a given combustion cycle (or across plural consecutive combustion cyclers), one or more cylinders of the engine are fired (firing cylinders) and one or more other, different cylinders of the engine are not fired (non-firing cylinders). The method further includes, with the controller, initiating the skip-fire mode in response to the engine operating conditions decreasing below a threshold, and while in the skip-fire mode, closing intake valves of the non-firing cylinders during power or exhaust strokes of the non-firing cylinders.
As yet another example, a system for an engine, comprises: a plurality of engine cylinders, each cylinder including: a first intake valve actuator mechanically driven by a crankshaft; and a second intake valve actuator not driven by the crankshaft. The system further comprises a controller with computer readable instructions stored in non-transitory memory for: not injecting fuel into all of the plurality of engine cylinders when fueling demands decrease below a threshold; adjusting intake valves of firing cylinders via the first intake valve actuator; and adjusting intake valves of non-firing cylinders via the second intake valve actuator. In one example of the system, the controller is electrically coupled to each second intake valve actuator for adjusting the position of the intake valves independently of the crankshaft by adjusting command signals sent to each second intake valve actuator. In another example of the system, the computer readable instructions further include instructions for maintaining the intake valves of non-firing cylinders open after the intake valves of firing cylinders are closed by the first intake valve actuator. In yet another example of the system, the computer readable instructions further include instructions for adjusting the closing timing of the intake valves of non-firing cylinders via the second intake valve actuator based on one or more of engine speed, fuel demand, exhaust gas temperature, and/or exhaust gas oxygen concentration.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the invention do not exclude the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property. The terms “including” and “in which” are used as the plain-language equivalents of the respective terms “comprising” and “wherein.” Moreover, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements or a particular positional order on their objects.
The control methods and routines disclosed herein may be stored as executable instructions in non-transitory memory and may be carried out by the control system including the controller in combination with the various sensors, actuators, and other engine hardware. The specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like. As such, various actions, operations, and/or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted. Likewise, the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description. One or more of the illustrated actions, operations and/or functions may be repeatedly performed depending on the particular strategy being used. Further, the described actions, operations and/or functions may graphically represent code to be programmed into non-transitory memory of the computer readable storage medium in the engine control system, where the described actions are carried out by executing the instructions in a system including the various engine hardware components in combination with the electronic controller.
This written description uses examples to disclose the invention, including the best mode, and also to enable a person of ordinary skill in the relevant art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application is a U.S. national phase of International Application No. PCT/US2018/018463 titled “METHODS AND SYSTEM FOR SKIP-FIRING OF AN ENGINE”, and filed on Feb. 16, 2018. International Application No. PCT/US2018/018463 claims priority to U.S. Provisional Patent Application No. 62/459,799, titled “METHODS AND SYSTEM FOR SKIP-FIRING OF AN ENGINE,” and filed on Feb. 16, 2017. The entire contents of each of the above-identified applications are hereby incorporated by reference for all purposes.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/018463 | 2/16/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/152384 | 8/23/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4188925 | Jordan | Feb 1980 | A |
5826563 | Patel | Oct 1998 | A |
6647947 | Boyer | Nov 2003 | B2 |
9399964 | Younkins et al. | Jul 2016 | B2 |
20100122688 | Sihler | May 2010 | A1 |
20110090938 | Akins | Apr 2011 | A1 |
20110239984 | Lee | Oct 2011 | A1 |
20110253113 | Roth et al. | Oct 2011 | A1 |
20120035833 | Melis | Feb 2012 | A1 |
20130305709 | Rollinger | Nov 2013 | A1 |
20150322869 | Shost et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
02259279 | Oct 1990 | JP |
Entry |
---|
ISA Korean Intellectual Property Office, International Search Report Issued in Application No. PCT/US2018/018463, dated May 18, 2018, WIPO, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20200232403 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62459799 | Feb 2017 | US |