The present disclosure variously relates to methods and apparatus, for installations including an in-building hot water supply system, that support reduced energy and water usage.
Worldwide, there is a shortage of potable water. Water shortages are now commonly reported around the world, and although it might be thought that such issues only affect “hot” countries and continents, that is no longer the case. The European Environment Agency reports that water shortages or water stress is a problem that affects millions of people around the world, including over 100 Million people in Europe. About 88.2% of Europe's freshwater use (drinking and other uses) comes from rivers and groundwater, while the rest comes from reservoirs (10.3%) and lakes (1.5%), which makes these sources extremely vulnerable to threats posed by over-exploitation, pollution and climate change.
Consequently, there is an urgent need reduce domestic water usage. In Europe, on average, 144 litres of freshwater per person per day is supplied for household consumption, but much of this water is “wasted” through carelessness and poor choices of taps, showers, and appliances.
Allied to the need to reduce water consumption is the need to reduce domestic energy consumption, particularly given that (at least in Europe) around 75% of heating and cooling is still generated from fossil fuels while only 22% is generated from renewable energy.
According to Directive 2012/27/EU, buildings represent 40% of the final energy consumption and 36% of the CO2 emissions of the European Union. The EU Commission report of 2016 “Mapping and analyses of the current and future (2020-2030) heating/cooling fuel deployment (fossil/renewables)” concluded that in EU households, heating and hot water alone account for 79% of total final energy use (192.5 Mtoe). The EU Commission also report that, “according to 2019 figures from Eurostat, approximately 75% of heating and cooling is still generated from fossil fuels while only 22% is generated from renewable energy. To fulfil the EU's climate and energy goals, the heating and cooling sector must sharply reduce its energy consumption and cut its use of fossil fuels. Heat pumps (with energy drawn from the air, the ground or water) have been identified as potentially significant contributors in addressing this problem.
In many countries, there are policies and pressures to reduce carbon footprint. For example, in the UK in 2020 the UK Government published a whitepaper on a Future Homes Standard, with proposals to reduce carbon emissions from new homes by 75 to 80% compared to existing levels by 2025. In addition, it was announced in early 2019 that there would be a ban on the fitment of gas boilers to new homes from 2025. It is reported that in the UK at the time of filing 78% of the total energy used for the heating of buildings comes from gas, while 12% comes from electricity.
The UK has a large number of small, 2-3 bedroom or less, properties with gas-fired central heating, and most of these properties use what are known as combination boilers, in which the boiler acts as an instantaneous hot water heater, and as a boiler for central heating (space heating). Combination boilers are popular because they combine a small form factor, provide a more or less immediate source of “unlimited” hot water (with 20 to 35 kW output), and do not require hot water storage. Such boilers can be purchased from reputable manufactures relatively inexpensively. The small form factor and the ability to do without a hot water storage tank mean that it is generally possible to accommodate such a boiler even in a small flat or house—often wall-mounted in the kitchen, and to install a new boiler with one man day's work. It is therefore possible to get a new combi gas boiler installed inexpensively. With the imminent ban on new gas boilers, alternative heat sources will need to be provided in place of gas combi boilers. In addition, previously fitted combi boilers will eventually need to be replaced with some alternative.
Although heat pumps have been proposed as a potential solution to the need to reduce reliance on fossil fuels and cut CO2 emissions, they are currently unsuited to the problem of replacing gas fired boilers in smaller domestic (and small commercial) premises for a number of technical, commercial and practical reasons. They are typically very large and need a substantial unit on the outside of the property. Thus, they cannot easily be retrofitted into a property with a typical combi boiler. A unit capable of providing equivalent output to a typical gas boiler would currently be expensive and may require significant electrical demand. Not only do the units themselves cost multiples of the equivalent gas fired equivalent, but also their size and complexity mean that installation is technically complex and therefore expensive. A storage tank for hot water is also required, and this is a further factor militating against the use of heat pumps in small domestic dwellings. A further technical problem is that heat pumps tend to require a significant time to start producing heat in response to demand, perhaps 30 seconds for self-checking then some time to heat up—so a delay of 1 minute or more between asking for hot water and its delivery. For this reason, attempted renewable solutions using heat pumps and/or solar are typically applicable to large properties with room for a hot water storage tank (with space demands, heat loss and legionella risk).
An important component of domestic energy consumption stems from use of domestic hot water, both in terms of the volume of hot water used, and in terms of energy wastage through overheating of domestic hot water. Hot water wastage is also, of course, a significant contributor to the more general problem of water wastage, which also needs to be addressed if mankind is going to have a sustainable future. Aspects of the present disclosure concern methods and installations that can help to reduce usage of hot water, and in this way contribute to a reduction in the usage of both energy and water.
According to a first aspect, there is provided a method of controlling a supply of heated water from a source including a heating appliance to a plurality of water outlets remote from the heating appliance, the method comprising: detecting a demand for water from a first water outlet, identifying the demand as likely to be associated with the first water outlet and setting to a first target water temperature value, associated with the first outlet, a target water temperature for the temperature at which water is supplied; detecting a demand for water from a second water outlet, identifying the demand as likely to be associated with the second water outlet, and resetting to a second target water temperature value, associated with the second outlet, the target water temperature at which water is supplied, wherein the demand is associated with an outlet based on a flow characteristic. A flow characteristic may be detected based on measured pressure changes and/or measured flow.
The method may further comprise controlling mixing of heated water from the heating appliance with water of a different temperature to provide the supply of water at the first or second target water temperature values.
The method may further comprise controlling the heating appliance to regulate the temperature at which heated water is supplied from the heating appliance.
The flow characteristic may comprise at least one of maximum flow rate and/or rate of change of flow to a predetermined flow rate.
Optionally, identifying the demand may include obtaining additional information associated with the outlet, for example electrical demand or occupancy signals associated with the outlet and/or a sensor or transducer associated with the outlet location.
The method may further comprise detecting a demand as likely to be associated with more than one outlet and setting the target water temperature to a third target water temperature value. The third target water temperature value may be the lowest target water temperature value associated the identified likely water outlets. The third target water temperature value may be a temperature intermediate the target water temperature values of the identified likely water outlets.
The heating appliance may be part of a domestic hot water supply system, and the heating appliance may include an energy storage arrangement containing a mass of phase change material to store energy in the form of latent heat and a heat exchanger that is coupled between the hot water system and a heat pump, and a system controller; the system controller being configured to receive information from a flow measurement device, and on the status of the energy storage arrangement; the system controller being configured to sense the opening of any of a plurality of controllable hot-water outlets and, based on a sensed hot water flow rate and the status of the energy storage arrangement, to determining whether to provide a start signal to the heat pump. The system controller may be configured to: receive status information from the heat pump; and use heat pump status information in determining whether to provide a start signal to the heat pump.
According to a second aspect, there is provided a domestic hot-water supply installation having a plurality of controllable hot-water outlets, the installation including: a source of hot-water with an outlet having a controllable outflow temperature; a flow measurement device to provide data on water flow between the source and the plurality of controllable hot-water outlets; a first temperature sensor to detect the outflow temperature; a memory storing parameters linking flow data to outlet identity, and associating each of the plurality of controllable hot-water outlets with a respective target temperature; a processor operatively connected to the memory, the flow measurement device, and the first temperature sensor; the processor being configured: in the event that one of the plurality of controllable hot-water outlets is opened, to determine based on a flow characteristic which of the plurality of controllable hot-water outlets has been opened, and then based on that determination to control the outflow temperature of the source of hot-water, in accordance with stored parameters for the determined one of the controllable hot-water outlets; and in the event that another of the plurality of controllable hot-water outlets is opened, to determine which another of the plurality of controllable hot-water outlets has been opened, and then based on that determination to control the outflow temperature of the source of hot-water, in accordance with stored parameters for the determined another of the controllable hot-water outlets. A flow characteristic may be detected based on measured pressure and/or measured flow.
The hot-water supply installation may include an energy storage arrangement containing a mass of phase change material and a heat exchanger that is coupled between the hot water system and a heat pump, and a system controller; the processor being configured to: receive information from the flow measurement device, and on the status of the energy storage arrangement; sense the opening of any of the plurality of controllable hot-water outlets and, based on a sensed hot water flow rate and the status of the energy storage arrangement, determine whether to provide a start signal to the heat pump. The processor may be configured to: receive status information from the heat pump; and use heat pump status information in determining whether to provide a start signal to the heat pump.
The hot-water supply installation may further comprise an instantaneous water heater in the flow path between the energy storage arrangement and the outlet of the source of hot water, the instantaneous water heater being controlled by the processor. The processor may be configured to activate the instantaneous water heater only when the energy storage arrangement and the heat pump are unable to provide sufficient hot water. The processor may be configured to control the instantaneous water heater based on information about the status of the phase-change material and of the heat pump. The processor may be provided with logic to manage the use of the instantaneous water heater, the heat pump, and energy from the phase change material to reduce energy consumption. The processor may also be configured to rely preferentially on the energy storage arrangement and then the heat pump to provide sufficient hot water.
According to a third aspect, there is provided a domestic water supply installation including an instantaneous water heating appliance, a plurality of controllable water outlet remote from the appliance, a water supply line arranged to feed the plurality of controllable water outlet with heated water from the appliance, and at least one sensor to sense a property or state of the water supply line, and a processor coupled to the at least one sensor; the processor being configured to: use the at least one sensor to monitor the water supply line that feeds the controllable water outlet; and to detect a demand for water from a first of the water outlets; identify the demand as likely to be associated with the first water outlet based on a detected flow characteristic, and set a target water temperature for the temperature at which water is supplied to a first target water temperature associated with the first water outlet; detecting a demand for water from a second of the plurality of water outlets; identify the demand as likely to be associated with the second water outlet based on a detected flow characteristic and set the target water temperature for the temperature at which water is supplied to a second target water temperature associated with the second outlet. A flow characteristic may be detected based on measured pressure and/or measured flow. The one or more sensors may include a pressure sensor to sense pressure in the water supply line, preferably located between the appliance and the plurality of controllable water outlets. The one or more sensors may include a flow sensor to measure flow in the water supply line, preferably located between the appliance and the plurality of controllable water outlets. The heating appliance may include a valve to mix heated water with a supply of cold water, the valve being controlled by the processor. The heating appliance may include an energy storage arrangement including a phase change material, and the energy storage arrangement is configured to store energy using latent heat of the phase change material. The heating appliance may include a renewable heat source, preferably a heat pump, coupled to the processor. The renewable heat source may be arranged to supply energy to the energy storage arrangement. The heating appliance may include an instantaneous water heater under the control of the processor, the instantaneous water heater being arranged to receive energy from a networked energy supply.
Embodiments of various aspects of the disclosure will now be described by way of example only, with reference to the accompanying drawings, in which:
In addressing domestic energy consumption, it is important to consider the energy used in providing hot water, and this means taking account not just of the temperature of the water that is supplied or stored, but also the volume of hot water used. In many countries and regions that are perceived to have ample fresh water, little attention was historically paid to the amount of water used by households, and that lack of attention was largely reflected in the configuration of water supply systems and the flow rates of water outlets. It was not uncommon for bath taps to flow more than 15 litres per minute, kitchen taps with flow rates or 12 litres per minute or more, and even basin taps with flow rates of 10 litres per minute or more. Shower outlets might flow more than 15 litres per minute, about ⅔ of which would typically come from the hot supply.
Attitudes have changed somewhat over the past two decades, as water scarcity has begun to be recognised, and as former publicly owned water suppliers have been privatised with the consequent introduction of household water meters and volume-based charging for water. Consequently, newer build dwellings tend to have taps and shower outlets with maximum flow rates about half to two thirds of those of their historical counterparts. Nevertheless, not only is it common for older dwellings still to have high flow rate taps and showers, but even more modern outlets also make it easy to use more water than is strictly necessary to wash hands, bathe, or shower. Consider a shower with a 15 litre per minute flow rate: a 12-minute shower will use 180 litres of water, and of this around 100 to 110 litres will come from the hot supply. Hot water supply temperatures will often be in the range of 50 to 60 Celsius—heated from no more than 10 Celsius, an often from a considerably colder temperature. It will be appreciated therefore that not only is a lot of water used, but also a lot of energy to heat that water.
In addition, although high hot water supply temperatures of 50 to 60 Celsius have the benefit of reducing the risk of Legionella infections, there is a considerable scalding risk with temperatures in this range.
Aspects of the present disclosure concern providing methods and installations in which the temperature of water that is supplied to outlets of a hot water system can be set by a system controller, so that a target water supply temperature can be set for each of a plurality of outlets of the hot water system—the target water temperature being the temperature at which hot water is supplied from a source of hot water. In addition, the methods and installations enable the temperature at which hot water is supplied from a source of hot water to be adjusted in the event that a second outlet is opened while hot water is already being supplied from another outlet for which the target water supply temperature is different from that for the second outlet. Aspects of the disclosure also deal with how a hot water supply system can be mapped, and how target water supply temperatures can be set for each of the plurality of outlets.
Later we will describe hot water systems which include PCM energy storage arrangements, which store energy as latent heat, generally in combination with a heat pump, and in such systems generally the hot water supply temperature may be adjusted by mixing in different proportions of cold water from a cold-water supply. Sometimes such systems may include an instantaneous heat source (such as an electrical heating element) downstream of the PCM energy storage arrangement, controlled by a processor of the system, and in such installations control of hot water supply temperature may involve controlling the amount of energy supplied to the instantaneous water heater, as well possibly by mixing in different proportions of cold water from a cold-water supply.
The master bathroom 121 is shown as including a shower outlet 135, a bath tap or faucet 136, and a tap 137 for a sink. The en-suite shower rooms 122 and 123 also include a shower outlet 135, and a tap 137 for a sink. Conversely, the cloakroom contains just a W.C. (not shown) and a hand basin with a tap 138. Finally, the kitchen has a sink with a tap 139.
A processor, or system controller, 140, with an associated memory 141, is coupled to the at least one flow measurement device 110 and the at least one flow regulator 115. It will be appreciated that each of the two circuits 130 and 131 is provided with a respective flow measurement device 110 and flow regulator 115 The processor is also optionally connected to one or more temperature sensors 143, one for each of the circuits 130 and 131. This processor may be associated with an energy bank as previously described.
The processor may also be coupled to an RF transceiver 142, which includes at least one RF transmitter and at least one RF receiver, for bidirectional communication via Wi-Fi, Bluetooth, or the like, and preferably also to the Internet 144 for connection to a server or central station 145, and optionally to a cellular radio network (such as LTE, UMTS, 4G, 5G, etc.). By means of the RF transceiver 142 and/or the connection to the Internet, the processor 140 is able to communicate with a mobile device 150, which may for example be a smart phone or tablet, for use by an installation engineer in configuring (and also optionally in mapping) the in-building water supply installation. The mobile device 150 includes software, such as a specific app, that co-operates with corresponding software in the system controller 140 and also potentially within server 145, to facilitate the configuring (and optionally mapping) methods according to embodiments of the invention, and in particular to synchronize actions taken by the engineer to a clock of the system controller 140/server 145. The memory 141 contains code to enable the processor to perform a method of configuring (and optionally mapping) an in-building water supply installation processor, for example during a process of commissioning a new installation.
During the commissioning process, in order to configure the hot-water supply installation 100, the engineer may be asked to setup a temperature sensor direct under a particular hot-water outlet, e.g., a specific tap or shower outlet, and to open the outlet fully at a specific moment. The system processor is configured to measure flow, the difference between both outflow and provided temperature, time delay and, preferably, outdoor temperature (data provided from an external temperature sensor). This will allow algorithms (e.g., MLAs) to calculate heat loss through the distribution system, distance between the outlet (tap or shower outlet) and the source of hot water, and finally, accurately adjust the outflow temperature at 107 to achieve the correct water temperature at the relevant controllable outlet (e.g., tap). For example, if the household includes children, then the maximum hot water temperature to every outlet other than, for example, the kitchen sink may be limited to 40 C or 41 C, whereas if there are infants in the house, the maximum temperature may be limited to 37 C. Even in the absence of children, the maximum temperature for all outlets other than the kitchen sink may be set at 43 C, and possibly 41 C for shower outlets.
The system may also be set up to restrict the flow of hot water to some classes of water outlets, such as handbasins and sinks, and possibly showers, with different maximum flow rates being set for each class of outlet, and/or maximum specific flow rates may be set for specific outlets—so lower flow rates set for bathrooms and cloakrooms used by children, for example. The determination of maximum temperatures and flow rates may be based on rules provided by the system supplier. Later we will discuss hot water supply systems which use heat pumps and PCM-based energy storage arrangements, and such systems benefit significantly from the imposition of temperature and flow rate control—since heat pumps sized according to the space heating need of a modestly sized 1 to 3-bedroom dwelling generally do not have the heating capacity to satisfy the instantaneous hot water demands of the household, without the provision of voluminous hot water storage tanks. By managing hot water flow and temperature, it may be possible to eliminate the need to provide hot water storage, while minimizing the size of the energy shortfall to be accommodated by other means. If the installation does include a PCM energy storage arrangement and a heat pump, the system supplier will typically pre-program the processor with suitable values for temperature and flow based on outlet type and household composition.
A database of temperatures and optionally flow rates, based on outlet type and household composition may also be made available to the system controller over the internet, and updated from time to time. A user interface for the system controller may provide a means for occupiers and or service engineers to adjust the various settings according to changes in the household composition—for addition the arrival of guests with infants, children or elderly or infirm persons, of for example to allow users to set lower maximum temperatures and/or flow rates.
An installer may have an app on a smart phone, for example, or some other wireless transmission/reception unit (WTRU) that is able to receive an instruction from the processor that tells the installer to open the relevant tap, and preferably to open it to its maximum opening as quickly as possible.
Thus, as shown in the plot of flow against time in
In either event, the processor also receives information from a temperature sensor 109 at the outlet 107 of the source of hot-water 105 with an outlet having a controllable outflow temperature. The portable temperature sensor 800 also preferably includes an internal clock (preferably synchronised to the system time of the processor) and an RF (e.g Wi-Fi, Bluetooth, or IMS) capability for communicating time and temperature information to the remote processor 140. The temperature against time plot of
It will be appreciated that the temperature sensor 800 may be configured in such a way that the data that it gathers (time vs temperature) is only provided to the system processor 140 after the event—i.e. by a wired download process or using NFC, but this will generally be less satisfactory than providing direct RF communication as already described.
Although in the foregoing we have described the possibility of regulating both flow rates and temperatures for each of a plurality of outlets of the hot water supply system, it will be appreciated that the system may be configured only to set target water supply temperatures and not to limit flow rates. We will now describe an arrangement in which target water supply temperatures have been set for a plurality of outlets, but where flow rates are not necessarily regulated by the system. And in particular, this system, which will be described with reference to
The instantaneous water heating appliance 301 will be described in greater detail later, with reference to
A water supply 307, which may be a mains cold water supply, is coupled to the heating appliance 301. Heated water emerging from the heating appliance 301 passes to a thermostatic mixing valve 309 through which it passes to reach the hot water supply installation exemplified by pipework 360 and controllable outlets 302 and 303 (in practice there will typically be multiple controllable water outlets, including bath taps, shower outlets, handbasin taps, and a kitchen tap, in multiple rooms, as shown in
The processor 311 is also coupled to a first temperature sensor 312 in the flow path from the heating appliance 301 to the mixing valve 309, another 315 at the outlet of the mixing valve 309, and another 315 may be provided to sense the temperature of the water from water supply 307. Also coupled to the processor 311 are a flow transducer or pressure sensor 314 and a flow controller (valve) 316, both in the flow path from the heating appliance 301 to the mixing valve 309. A further flow sensor or pressure sensor 317, coupled to the processor 311, may be provided in the hot water feeds to the outlets (e.g., tap) 302 and 303, for example close to each of the outlets 302 and 303.
Also shown in
The connections between the processor 311 and the various sensors and actuators may be wired or may be wireless using transceivers 310 (for example using allocated frequencies in the ISM radio bands), or both, and may use a CAN bus arrangement.
Although shown as a separate item, the valve 309 which is controlled by the processor to mix cold water with water heated by the appliance 301 may alternatively be integrated with the appliance 301, either internally or externally, to make a largely self-contained appliance (although the appliance preferably uses a renewable heat source which will generally be a separate entity), that can provide temperature-controlled heated water across a wide heat range.
Having described a hot water supply installation according to an aspect of the invention, we will now describe a method of controlling a hot water supply installation, and in particular a method of controlling a supply of heated water. This essentially involves detecting by a processor 311 of the installation a demand for water from a first water outlet 302, identifying the demand as likely to be associated with the first water outlet 302 and setting a target water temperature to a first target water temperature associated with the first outlet 302. This may involve the processor 311 adjusting a setting of the valve 309, and/or adjusting a setting of the heating appliance to change its output temperature. The method then involves detecting a demand for water from a second water outlet 303, identifying the demand as likely to be associated with the second water outlet 303 and setting a target water temperature to a second target water temperature, higher or lower than the first, associated with the second outlet 303. Again, this may involve the processor 311 adjusting a setting of the valve 309, and/or adjusting a setting of the heating appliance to change its output temperature, so that water at the second target water temperature is supplied from the valve 309. It will be appreciated that the point in the hot water supply system for which target supply temperatures are set may be chosen for convenience and efficiency, and an appropriate temperature sensor installed at the relevant location. In the arrangement illustrated in
If the system has been set up so that flow rates are regulated for one or more of the outlets, the method may also involve controlling the flow rates, for example by the processor controlling flow regulator 316 in accordance with setting stored for an outlet with identified as one for which a demand for water is likely to be associated.
We will now describe, with reference to
The instantaneous water heating appliance 301 includes an energy store 304, which preferably includes a phase change material to store energy as latent heat, and a renewable heat source 305 which may be a heat pump such as an air or ground source heat pump but could alternatively be a solar heating arrangement. The energy store 304 typically includes a heat exchanger coupled to the renewable heat source 305, so that energy from the latter can be transferred to material in the energy store 304. Thus, a heat transfer liquid may be heated by the renewable heat source 305, circulated through a heat exchanger circuit in the energy store 304, and returned to the renewable heat source 305 for reheating. The appliance 301 also includes an instantaneous water heater 306.
A water supply 307, which may be a mains cold water supply, is coupled to the energy store 304 where it passes through another circuit of the heat exchanger to extract energy from the energy storage material. The water supply 307 is also preferably, as shown, coupled to the instantaneous water heater 306 so that hot water can be produced without needing to pass through the energy store 304. Heated water emerging from the energy store passes at 308 to the instantaneous water heater 306, and then through a thermostatic mixing valve 309 on towards the hot water supply installation exemplified by pipework 310 and controllable outlet 302 (in practice there will typically be multiple controllable water outlets, including bath taps, shower outlets, handbasin taps, and a kitchen tap, but these are omitted here for ease of explanation). The mixing valve 309, which also receives a supply of cold water from supply 307, is coupled to, and electronically controlled by, a controller or processor 311 of the instantaneous water heating appliance 301.
The Figure also shows in broken lines a water feed from the supply 307 direct to the renewable heat source 305 and from the renewable heat source into the instantaneous water heater 106, but this arrangement is optional. In general, if the heat source 305 is a heat pump, energy from the heat pump may only be supplied to the energy store 304, and there is no feed of hot water direct from the energy source 305 to the instantaneous heater 306.
The processor 311 is also coupled to a first temperature sensor 312 in the flow path from the water heater 306 to the mixing valve 309, another 313 at the outlet of the mixing valve 309, and another 315 to sense the temperature of the water from water supply 307. Also coupled to the processor 311 are a flow or pressure sensor 314 and a flow controller (valve) 316, both in the flow path from the water heater 306 to the mixing valve 309. A further flow sensor or pressure sensor 317, coupled to the processor 311, may be provided in the hot water feed to the outlet (e.g., tap) 302, for example close to the outlet 302. Also, a further flow controller (valve) 318 may be provided on the cold-water feed to the energy store, controlled by the processor 311.
Also shown is a sensing arrangement 319 to provide the processor with information on the status of the energy store, in particular information to enable the processor to determine the energy storage status of the energy store. The sensing arrangement 319 may also measure the temperature of the energy storage medium, so that the processor 311 can determine the amount of energy stored as sensible heat. Various suitable sensing arrangements are described later in this application. The connections between the processor 311 and the various sensors and actuators may be wired, for example using a CAMBUS arrangement, or may be wireless using transceivers 310 (for example using allocated frequencies in the ISM radio bands), or both.
The renewable heat source is preferably a heat pump, such as an air source heat pump, and as such will generally be largely or wholly located outside the building in which the hot water supply system is installed. Typically, the heat pump will include a heat exchanger through which a fluid flows between the heat pump and the appliance 301, heat being taken up in the heat pump by the fluid and exchanged with the energy store 304, cooled fluid returning to the heat exchanger in the heat pump to extract more energy.
Although shown as a separate item, the valve 309 which is controlled by the processor to mix cold water with water heated by the appliance 301 may alternatively be integrated with the appliance 301, either internally or externally, to make a largely self-contained appliance (it being understood that the renewable heat source 305, although shown as part of the appliance 301, will generally be a separate entity), that can provide temperature-controlled heated water across a wide heat range.
We will now describe a hot water supply installation that includes a PCM energy storage arrangement (i.e. a PCM energy bank), and a heat pump. The foregoing description of the method of configuring a hot water supply system, and of controlling the temperature of water delivered from a hot water supply installation was deliberately kept simple for ease of application, but it should be appreciated that these methods apply equally to installations that include a PCM energy storage arrangement and a heat pump.
One of the many constraints on the applicability of heat pumps is their relatively limited ability to satisfy demand for hot water—at least when compared to instantaneous gas and electric water heaters, such as combi boilers, compared to their strengths as sources of heat for space heating. As noted earlier, for the typically modestly sized dwellings of the UK, space heating demands are commonly as low as 6 kW, whereas gas combi boilers even in modest one or two bed flats can typically provide 20 kW to 30 kW for instant water heating. The 6 kW space heating demand is readily achievable in Europe with even an air source heat pump, but a unit that could provide 20 to 30 kW would be unacceptably large and expensive. Heat pumps suffer from a further limitation in respect of their application to domestic hot water supplies, and that is the long lag between a heat pump receiving a start signal and hot water actually being supplied by the heat pump. Generally, this lag is well over a minute, and sometimes as much as two minutes or more. While that doesn't at first sight sound significant, when one realises that for things like handwashing—one of the most common uses of hot water in a domestic setting, the average time for which a hot tap runs is between 30 seconds and 1 minute—so it becomes clear that heat pumps have a significant hurdle to overcome. Typically, this problem is addressed by storing hot water—in a hot water storage tank, so that it is available on demand. But that solution is unattractive for smaller dwellings, such as the kinds of one, two and three bed properties in the UK that currently make use of gas combination boilers—and which are almost universally installed without an external hot water storage tank.
One technology which has potential to improve the applicability of heat pumps to the demands of, in particular, domestic hot demands, is thermal energy storage—but not in the guise of hot water storage.
Such an alternative form of thermal energy storage is the use of phase change materials (PCMs). As the name suggests, phase change materials are materials which exhibit a thermally induced phase change: heating the PCM to its phase transition temperature results in energy being stored as latent (rather than sensible) heat. Many different PCMs are known, the choice for any particular application being dictated by, among other things, the required operating temperature, cost constraints, health and safety restrictions (taking account of toxicity, reactivity, flammability, stability, etc. of the PCM, and the constraints that these impose on such as things as materials needed for containment of the PCM). With an appropriate choice of PCM, a thermal energy storage arrangement can be designed so that energy from a heat pump is available for instantaneous heating of water for a (domestic) hot water system, thereby helping address the slow start problem inherent with the use of a heat pump without the need for a bulky hot water tank.
We will now introduce and describe an energy storage arrangement based on the use of PCMs, and particularly suited for use in installations in which a heat pump is to be used to heat water in a hot water supply. Such an energy storage arrangement may include a heat exchanger comprising an enclosure, and within the enclosure: an input-side circuit for connection to an energy source such as a heat pump, an output-side circuit for connection to an energy sink such as a hot water supply installation, and a phase-change material for the storage of energy.
The input-side circuit receives liquid heated by the heat source, in our case a heat pump, and provided the liquid is hotter than the material inside the heat exchanger, energy is transferred from the liquid into the material within the heat exchanger. Likewise, energy from the material within the heat exchanger is transferred to liquid in the output-side circuit provided the liquid is cooler than the material within the heat exchanger. Of course, if there is no flow through the output-side circuit, the amount of energy transferred out of the heat exchanger is limited, so that most of the input energy remains within the heat exchanger. In our case, the heat exchanger contains a phase change material, for example, a paraffin wax or a salt-hydrate (examples of suitable materials are discussed later) so that the input energy is largely transferred to the PCM. With an appropriate choice of phase change material and heat pump operating temperature, it becomes possible to use energy from the heat pump to “charge” the energy “bank” represented by the PCM. Optionally, the energy supply from the heat pump may be supplemented by including one or more electrical heating elements in the heat exchanger, the heating elements being controlled by a processor of the system, and being used, for example, when a low-cost tariff applies to the electricity supply, or for example local or domestic electricity production such as from wind, hydraulic or photovoltaic generation, is able to provide “cheap” energy when there an anticipated or expected future need for hot water.
One characteristic of phase change materials which must be accommodated when designing systems that use them is the volume change which occurs on transition between phases, for example expansion on the phase change between liquid and solid, and contraction on the phase change between solid and liquid. Typically, the volume change is of the order of 10%. This volume change can be considered a disadvantage which must be accommodated with careful design of enclosures used to contain the phase change materials, but the volume change can also be used positively. By including one or more sensors to provide a measurement of pressure within the PCM enclosure it is possible to provide a processor with data from which the processor may determine a status of the phase change material. For example, the processor may be able to determine an energy storage value for the phase change material.
In addition to, or as an alternative to, the measurement of pressure within the enclosure as a means of determining an energy storage amount of the phase change material, it is possible to use changes in the optical or sonic properties that occur in the PCM on changes of phase. Examples of these alternative approaches will be described later, but first we will consider the use of pressure sensing as a means to gather information on the energy storage state of the PCM.
The energy bank 10 has an associated system controller 28 which includes a processor 30. The controller may be integrated into the energy bank 10 but is more typically mounted separately. The controller 28 may also be provided with a user interface module 31, as an integrated or separate unit, or as a unit that may be detachably mounted to a body containing the controller 28. The user interface module 31 typically includes a display panel and keypad, for example in the form of a touch-sensitive display. The user interface module 31, if separate or separable from the controller 28 preferably includes a wireless communication capability to enable the processor 30 of controller 28 and the user interface module to communicate with each other. The user interface module 31 is used to display system status information, messages, advice and warnings to the user, and to receive user input and user commands—such as start and stop instructions, temperature settings, system overrides, etc.
The status sensor(s) is/are coupled to the processor 30, as is/are the temperature sensor(s) 26 if present. The processor 30 is also coupled to a processor/controller 32 in the heat pump 16, either through a wired connection, or wirelessly using associated transceivers 34 and 36, or through both a wired and a wireless connection. In this way, the system controller 28 is able to send instructions, such as a start instruction and a stop instruction, to the controller 32 of the heat pump 16. In the same way, the processor 30 is also able to receive information from the controller 32 of the heat pump 16, such as status updates, temperature information, etc.
The hot water supply installation also includes one or more flow sensors 38 which measure flow in the hot water supply system. As shown, such a flow sensor may be provided on the cold-water feed 20 to the system, and or between the output of the output-side circuit 18 of the heat exchanger. Optionally, one or more pressure sensors may also be included in the hot water supply system, and again the pressure sensor(s) may be provided upstream of the heat exchanger/energy bank, and/or downstream of the heat exchanger/energy bank—for example alongside one or more of the one or more flow sensors 38. The or each flow sensor, the or each temperature sensor, and the or each pressure sensor is coupled to the processor 30 of the system controller 28 with either or both of a wired or wireless connection, for example using one or more wireless transmitters or transceivers 40. Depending upon the nature(s) of the various sensors 24, 26, and 38, they may also be interrogatable by the processor 30 of the system controller 28.
An electrically controlled thermostatic mixing valve 160 is preferably coupled between the outlet of the energy bank and the one or more outlets of the hot water supply system and includes a temperature sensor 162 at its outlet. An additional instantaneous water heater, 170, for example an electrical heater (inductive or resistive) controlled by the controller 28, is preferably positioned in the water flow path between the outlet of the energy bank and the mixing valve 160. A further temperature sensor may be provided to measure the temperature of water output by the instantaneous water heater 170, and the measurements provided to the controller 28. The thermostatic mixing valve 160 is also coupled to a cold-water supply 180 and is controllable by the controller 28 to mix hot and cold water to achieve a desired supply temperature.
Optionally, as shown, the energy bank 10 may include, within the enclosure 12, an electrical heating element 42 which is controlled by the processor 30 of the system controller 28, and which may on occasion be used as an alternative to the heat pump 16 to recharge the energy bank.
A method of controlling an installation according to an aspect of the invention will now be described with reference to
The method begins at 120 with generating a determination of the amount of energy stored as latent heat in the phase change material, based on information from one or more of the status sensors 24.
Then, at step 130, based at least in part on that determination, the processor decides whether to provide a start signal to the heat pump. Various factors which the processor may take into account in addition to the status of the PCM are introduced and discussed later in the specification.
The method begins at 300 with the processor receiving a signal indicating the opening of an outlet of the hot water supply system. The signal may for example come from a flow sensor 38 in the hot water supply system, or in the cold-water feed to the hot water system. At 302 the processor estimates a demand for hot water from the hot water supply system, based for example on an identity or type of the outlet that has been opened, or based on an instantaneous flow rate. The processor compares the estimated demand with a first threshold demand level. If the estimated demand is above the first threshold demand level, the processor generates at 304 a heat pump start message. If the estimated demand is below the first threshold demand level, the processor compares the estimated demand with a second threshold demand level, lower than the first. If the estimated demand is below the second threshold demand level, the processor determines at 306 to not to generate a heat pump start message.
If the estimated demand is between the first and the second threshold demand levels, the processor takes account to the energy storage level of the energy bank. This may involve the processor establishing afresh the energy storage level of the energy bank, or the processor may use recently generated information on the energy storage level of the energy bank.
If the determination of the energy storage level for the energy bank is greater than a first energy storage level threshold, the processor determines at 304 not to generate a heat pump start message. Conversely, if the determination of the energy storage level for the energy bank is less than the first energy storage level threshold, the processor determines
to generate a heat pump start message at 304
A method of controlling an installation according to an aspect of the invention will now be described with reference to
At step 202 the processor 30 determines whether the flow rate indicated by the data from the sensor(s) indicate a high or a low flow, for example above or below a particular threshold. The processor may use more than one threshold to categorize the flow rate as high, medium, or low, or the categories could include very high, high, medium, and low. There may also be a category of very low or de minimus flow. The processor 30 may also be provided with information (e.g. in the form of a database, model, or MLA) about flow rates and flow signatures for each of the outlets 22, or each of the outlet types, of the hot water supply system (for example using a technique such as that described later in this patent application), the processor then characterising the detected flow rate as associated with a particular one of the outlets 22 or a particular type (shower outlet, bath outlet, kitchen sink outlet, washbasin outlet, handbasin outlet, for example).
If the determination indicates that the demand for hot water is low 203, the processor then, in step 204, takes account of the status of the power bank 10, based on information from at least the status sensor 24. The processor 30 may interrogate the status sensor 24 (e.g., a pressure sensor) at this stage, or may check a recently updated energy bank status, in either case determining whether the energy bank is in a high energy state 205 (with a large proportion of the potential latent heat capacity of the energy bank available for use) or in a low energy state 206 (with a small proportion of the potential latent heat capacity of the energy bank available for use). The processor may also take account of information from the temperature sensor(s) 26, for example to take account of sensible energy stored in the energy bank 10. If the processor 30 determines a high energy state, the processor determines not to send a start instruction to the heat pump, and the process terminates at 207. If the processor 30 determines a low energy state, the processor may then determine at 206 to send 222 a start instruction to the heat pump.
If the determination indicates that the demand for hot water is high 208, the processor may then, in step 209, takes account of the status of the power bank 10, based on information from at least the status sensor 24. The processor 30 may interrogate the status sensor 24 at this stage, or may check a recently updated energy bank status, in either case determining whether the energy bank is in a high energy state 210 (with a large proportion of the potential latent heat capacity of the energy bank available for use) or in a low energy state 212 (with a small proportion of the potential latent heat capacity of the energy bank available for use).
The processor may also take account of information from the temperature sensor(s) 26, for example to take account of sensible energy stored in the energy bank 10. If the processor 30 determines a high energy state 210, the processor optionally determines a predicted hot water demand in step 214. But the processor may alternatively be configured to issue an instruction to start the heat pump at 222 based simply on the magnitude of the flow rate, and without predicting hot water demand (as indicated by the cross-hatched arrow 211).
In step 214, the processor 30 may take account of the determined identity (i.e., a particular outlet) or type of water outlet to predict hot water demand. For example, if the outlet is identified as a kitchen sink outlet, it is unlikely that the tap will be run for more than 30 seconds to a minute. Whereas, if the outlet is a bath tap, the tap is likely to remain open for several minutes with a demand for perhaps 120 to 150 litres of hot water.
In the first situation, the processor 30 will determine at 216 not to send a start signal to the heat pump, but will instead either end the process, or more preferably continue to monitor the flow rate at 218 to see how long the flow continues. If the flow stops within the predicted time, the process ends at 220, but if the flow of water continues for longer than predicted, the processor moves at 219 back to step 209. In the second situation, the processor 30 will determine at 221 to send 222 a start signal to the heat pump (and the arrow 211 indicates a decision to start the heat pump based simply on the instantaneous flow rate or the identification of the outlet (or outlet type) as being associated with the withdrawal of significant volumes of hot water from the hot water supply system.
After starting the heat pump at 222 (either from the determination at 206 or at 221), the processor 30 continues at 224 to monitor (periodically or continuously) the power bank status, until the status reaches some threshold level of charge 225, at which the processor sends a signal 226 to turn off the heat pump.
The method begins at step 500 with the processor 30 estimating the amount of energy stored in the phase change material of the energy bank 10 as latent heat. The amount of heat may be an absolute amount in kJoules but may equally well be simply a measure of the proportion of the potential latent heat capacity that is currently available. In other words, the processor may effectively determine the proportion of the phase change material that is still in the phase with the higher energy state. So, for example, if the phase change material is a paraffin wax, with a phase change from liquid to solid, the liquid phase is the higher energy phase, incorporating the latent heat of fusion, and the solid phase is the lower energy phase, the latent heat of fusion having been given up on solidification.
If the processor determines that the amount of energy stored as latent heat is sufficient 502, i.e., exceeds some predetermined threshold, the method moves to step 504 at which the process halts, and the processor awaits the next check 500.
If the processor determines that the amount of energy stored as latent heat is not sufficient 506, i.e., is at or below some predetermined threshold the method moves to step 508. At step 508, the processor determines the likelihood of significant hot water demand within a coming period of time (e.g., within the next half hour, hour, 2, 3, or 4 hours). The period of time considered is a factor of the heat capacity of the energy bank, the size of the energy shortfall determined, and the capacity of the heat pump to recharge the energy bank under those circumstances. It will be appreciated that the demand period considered should be great enough to enable the heat pump to recharge the energy bank sufficiently within the period so that the energy bank will be optimally charged (possibly fully charged) to be able to cope with the predicted or anticipated demand. Conversely, the heat pump should not be being used to recharge the energy bank so long in advance of the expected/predicted energy demand that the energy bank will lose a significant quantity of energy through radiation, conduction, or convection.
The processor may rely on a database, model, calendar or schedule, and any and all of these may include learned behaviours and patterns of behaviour, and scheduled events (such as scheduled absences or events scheduled for some other location). The processor may also have access to local weather reports, for example provided (pushed or received) over the Internet, or in a radio transmission, and/or an external thermometer.
If the processor determines 510 that there is a low likelihood of significant hot water demand within the period, the method moves to step 504 at which the process halts, and the processor awaits the next check 500.
If the processor determines 512 that there is a high likelihood of significant hot water demand within the period, the method moves to step 514 at which the heat pump is turned on: for example, the processor 30 sends an instruction to the heat pump 16, so that the processor 32 of the heat pump initiates the heat pump starting procedure, after which the heat pump starts to supply heat to the input side of the heat exchanger, thereby putting energy into the phase change material. The processor then, in step 516, repeatedly determines whether sufficient energy is now stored in the energy bank as latent heat of the phase change material. Once the processor has determined 518 that sufficient energy is now stored in the energy bank as latent heat of the phase change material, the method moves to step 520, and the heat pump is turned off, for example by the processor 30 sending an appropriate instruction. As long as the processor determines 522 that insufficient energy is stored, the method continues.
Referring back to
The energy bank may therefore further comprise one or more optical sources to launch light into the phase change material, and the one or more status sensors 24 may include an optical sensing arrangement to detect light launched from the optical source (s) after the light has passed through the phase change material. The change between phases in the phase change material gives rise to reversible changes in optical properties of the phase change material, and hence observing optical properties of the PCM can be used to glean information about the state of the PCM. Preferably, optical properties of the PCM are observed in several areas of the PCM, and preferably in different directions within the material. For example, optical sources and sensors may be arranged so that light from the source(s) passes lengthwise through the PCM at one or more positions, and other source(s) and sensor(s) may be arranged so that light from the source(s) passes width wise through the PCM at one or more positions and in one or more orientations (through the width and or through the thickness).
The optical source(s) may be controllable to produce light of different colours and the optical sensing arrangement(s) may be configured to detect at least some of different colours. By selecting appropriate colours of light, based on the particular PCM chosen for any application, it may be possible to determine more accurately the extent to which the phase of the PCM has changed.
Preferably the optical source comprises a plurality of separately activatable devices.
Coupling the optical sensing arrangement to a processor which is configured to estimate an amount of energy stored in the phase change material based on information received from the optical sensing arrangement provides a means of determining the amount of energy stored as latent heat within the PCM, and this information can be used in controlling the heat pump. In particular, such information may make possible more efficient and appropriate use of the heat pump in charging the PCM energy bank.
As a further option, the one or more status sensors 24 to provide measurement data indicative of the amount of energy stored as latent heat in the phase change material may include an acoustic source configured to launch sound into the phase change material, and an acoustic sensing arrangement to detect sound launched from the acoustic source after the sound has passed through the phase change material. The change between phases in the phase change material gives rise to reversible changes in sound absorbing properties of the phase change material, and hence observing sonic properties of the PCM can be used to glean information about the state of the PCM. The acoustic source may be configured to produce ultrasound.
During the commissioning process that was described with reference to
A method of mapping an in-building water supply installation according to a first aspect of the disclosure will now be described with reference to
The method comprises opening a first of the plurality of controllable water outlets and processing signals from the at least one flow measurement device 110 with the processor 140 at least until a first flow characteristic is determined, and then closing the first of the plurality of controllable water outlets. The opening of the first of the plurality of controllable water outlets is preferably instructed by the processor or system controller 140 sending a message to the mobile device 150 carried by the relevant engineer. For example, the instruction may be sent by Wi-Fi and tell the engineer to open the hot bath tap 136 in the master bathroom 121. The engineer, carrying the mobile device 150, then goes to the master bathroom and opens the hot bath tap 136 fully. The mobile device may provide the engineer with a prompt, preferably audible and with a countdown, to tell the engineer when precisely to open the tap. Alternatively, the app on the mobile device may be configured to accept an input from the engineer, such as the pressing or release of a button, at the moment that the tap 136 is opened. In either case, the app may capture a local time for the prompt or the moment, and then send this local time, along with the identity of the relevant controllable outlet, to the system controller 140 or server 145. In this way, delays in the prompt reaching the mobile device 150 or of the timing of the instruction reaching the controller 140 or server 145 can be accounted for (the mobile device 150 and the system controller 140 preferably go through some handshaking procedure, either before or after the mapping process, so that wither offsets between the clocks of the two devices can be eliminated or they can also be accounted for).
The engineer may then work her way around the premises selecting an outlet identity from a list or menu on the app, or entering an unambiguous identifier, opening each of the outlets in turn. Or the system controller may already have been provided with a list of all the taps, etc. (generally “controllable outlets”) and may prompt the engineer, by sending another message to the mobile device 150, to go to the relevant outlet. The app preferably includes the option for the engineer to send a message to the system controller 140/server 145, that she is in place and ready to receive an instruction to open the next controllable outlet. The process is then repeated for each of the other hot water outlets, until all the outlets and their flow characteristics—namely the lag before flow is detected, the rate of rise of flow, the maximum flow rate, and any other identifiable characteristics have been captured and stored in a database. By using the characteristics stored in the database, the processor 140 is then subsequently able to identify the opening of a particular one of the plurality of controllable water outlets based on the similarity of a detected flow characteristic to a respective flow characteristic.
The processor is also provided with some rules concerning preferred flow rates and, optionally, flow durations, based on the type of outlet (bath tap, kitchen tap, basin tap, cloakroom tap) and its location (main bathroom, en-suite, child's room, adult's room, cloakroom, kitchen, for example), and use these rules, along with the outlet identity recognised from the detected flow characteristics, to determine a target flow rate. The targeted flow rate is then imposed by the system controller 140 by controlling the relevant flow controller 115, and preferably monitored by the corresponding flow measurement device 110. In this way, by controlling at least one flow regulator, based on the identification of the relevant outlet, the processor 140 is able control a supply of water to the identified controllable water outlet.
Each of the respective flow characteristic may include a respective stable flow rate. The method may then further comprise configuring the processor 140 to control the at least one flow regulator 115 to impose at least a 10% cut in the flow rate to each of each of the plurality of controllable water outlets, based on the respective stable flow rate. Optionally, the method may further comprise configuring the processor 140 to control the at least one flow regulator 115 to impose at least a 10% cut in the flow rate, based on respective stable flow rate, to any of the plurality of controllable water outlets whose respective stable flow rate is greater than 7 litres per minute. This is of particular application for taps that serve basins in bathrooms, en suites, and most particularly cloakrooms, where taps are often largely used to provide water for handwashing—which can be achieved effectively with quite modest flow rates.
The above-described technique of mapping a hot water supply installation may be used to populate a database or train logic, such as a neural network or machine learning algorithm (MLA), which may be used by a processor associated with an energy bank as previously described, so that the processor is better able to identify a particular outlet or outlet type from detected flow behaviour and hence to more readily estimate a demand for hot water from a hot water supply. This in turn may improve the efficiency of controlling the heat pump and of using the energy bank.
Having described an energy bank and the installation and operation of an energy bank in a hot water supply installation, we will now consider how the energy bank and heat pump may be integrated into both a hot water supply system and a space heating arrangement.
Typically, the phase-change material in the heat exchanger has an energy storage capacity (in terms of the amount of energy stored by virtue of the latent heat of fusion) of between 2 and 5 MJoules, although more energy storage is possible and can be useful. And of course, less energy storage is also possible, but in general one wants to maximise (subject to practical constraints based on physical dimensions, weight, cost and safety) the potential for energy storage in the phase-change material of the interface unit 10. More will be said about suitable phase-change materials and their properties, and also about dimensions etc. later in this specification.
The input side circuit 14 is connected to a pipe or conduit 18 which is in turn fed from node 20, from pipe 22 which has a coupling 24 for connection to a feed from a heat pump. Node 20 also feeds fluid from the heat pump to pipe 26 which terminates in a coupling 28 which is intended for connection to a heating network of a house or flat—for example for plumbing into underfloor heating or a network of radiators or both. Thus, once the interface unit 10 is fully installed and operational, fluid heated by a heat pump (which is located outside the house or flat) passes through coupling 24 and along pipe 22 to node 20, from where, depending upon the setting of a three-port valve 32, the fluid flow passes along pipe 18 to the input-side circuit 14 of the heat exchanger, or along pipe 26 and out through coupling 28 to the heating infrastructure of the premises.
Heated fluid from the heat pump flows through the input-side circuit 14 of the heat exchanger and out of the heat exchanger 12 along pipe 30. In use, under some circumstance, heat carried by the heated fluid from the heat pump gives up some of its energy to the phase change material inside the heat exchanger and some to water in the output-side circuit 16. Under other circumstances, as will be explained later, fluid flowing through the input-side circuit 14 of the heat exchanger actually acquires heat from the phase change material.
Pipe 30 feeds fluid that leaves the input-side circuit 14 to a motorized 3-port valve 32 and then, depending upon the status of the valve out along pipe 34 to pump 36. Pump 36 serves to push the flow on to the external heat pump via coupling 38.
The motorized 3-port valve 32 also receives fluid from pipe 40 which receives, via coupling 42, fluid returning from the heating infrastructure (e.g., radiators) of the house or flat.
Between the motorized 3-port valve 32 and the pump 36 a trio of transducers are provided: a temperature transducer 44, a flow transducer 46, and a pressure transducer 48. In addition, a temperature transducer 49 is provided in the pipe 22 which brings in fluid from the output of the heat pump. These transducers, like all the others in the interface unit 10, are operatively connected to or addressable by a processor, not shown, which is typically provided as part of the interface unit—but which can be provided in a separate module.
Although not illustrated in
Also coupled to pipe 34 is an expansion vessel 50, to which is connected a valve 52 by means of which a filling loop may be connected to top up fluid in the heating circuit. Also shown as part of the heating circuit of the interface unit are a pressure relief valve 54, intermediate the node 20 and the input-side circuit 14, and optionally a strainer 56 (to capture particulate contaminants) intermediate coupling 42 and the 3-port valve 32.
The heat exchanger 12 is also provided with several transducers, including at least one temperature transducer 58, although more (e.g., up to 4 or more) are preferable provided, as shown, and a pressure transducer 60. In the example shown, the heat exchanger includes 4 temperature transducers uniformly distributed within the phase change material so that temperature variations can be determined (and hence knowledge obtained about the state of the phase change material throughout its bulk). Such an arrangement may be of particular benefit during the design/implementation phase as a means to optimise design of the heat exchanger—including in optimising addition heat transfer arrangements. But such an arrangement may also continue to be of benefit in deployed systems as having multiple sensors can provide useful information to the processor and machine learning algorithms employed by the processor (either of just the interface unit, and/or of a processor of a system including the interface unit.
The arrangement of the cold-water feed and the hot water circuit of the interface unit 10 will now be described. A coupling 62 is provided for connection to a cold feed from a water main. Typically, before water from the water main reaches the interface unit 10, the water will have passed through an anti-syphon non-return valve and may have had its pressure reduced. From coupling 62 cold water passes along pipe to the output-side circuit 16 of the heat exchanger 12. Given that we provide a processor that is monitoring numerous sensors in the interface unit, the same processor can optionally be given one more task to do. That is to monitor the pressure at which cold water is delivered from the mains water supply. To this end, a further pressure sensor can be introduced into the cold water supply line upstream of coupling 62, and in particular upstream of any pressure reducing arrangement within the premises. The processor can then continually or periodically monitor the supplied water pressure, and even prompt the owner/user to seek compensation from the water supply company if the water main supplies water at a pressure below the statutory minimum.
From the output-side circuit 16 water, which may have been heated by its passage through the heat exchanger, passes along a pipe 66 to an electrical heating unit 68. The electrical heating unit 68, which is under the control of the processor mentioned previously, may comprise a resistive or inductive heating arrangement whose heat output can be modulated in accordance with instructions from the processor.
The processor is configured to control the electrical heater, based on information about the status of the phase-change material and of the heat pump.
Typically, the electrical heating unit 68 has a power rating of no more than although under some circumstances a more powerful heater, e.g., 12 kW, may be provided.
From the electric heater 68, what will by now hot water passes along a pipe to a coupling 74 to which the hot water circuit, including controllable outlets such as taps and showers, of the house or flat will be connected.
A temperature transducer 76 is provided after the electric heater 68, for example at the outlet of the electric heater 68 to provide information on the water temperature at the outlet of the hot water system. A pressure relief valve 77 is also provided in the hot water supply, and while this is shown as being located between the electric heater 68 and the outlet temperature transducer 76, its precise location is unimportant—as indeed is the case for many of the components illustrated in
Also somewhere in the hot water supply line is a pressure transducer 79 and or a flow transducer 81 either of which can be used by the processor to detect a call for hot water—i.e., detect the opening of a controllable outlet such as a tap or shower. The flow transducer is preferably one which is free from moving parts, for example based on sonic flow detection or magnetic flow detection. The processor can then use information from one or both of these transducers, along with its stored logic, to decide whether to signal to the heat pump to start.
It will be appreciated that the processor can call on the heat pump to start either based on demand for space heating (e.g., based on a stored program either in the processor or in an external controller, and/or based on signals from one or more thermostats—e.g., room stats, external stats, underfloor heating stats) or demand for hot water. Control of the heat pump may be in the form of simple on/off commands but may also or alternatively be in the form of modulation (using, for example, a ModBus).
As is the case with the heating circuit of the interface unit, a trio of transducers are provided along the cold-water feed pipe 64: a temperature transducer 78, a flow transducer 80, and a pressure transducer 82. Another temperature transducer 84 is also provided in pipe 66 intermediate the outlet of the output-side circuit 16 of the heat exchanger 12 and the electric heater 68. These transducers are again all operatively connected to or addressable by the processor mentioned previously.
Also shown on the cold-water supply line 64 are a magnetic or electrical water conditioner 86, a motorised and modulatable valve 88 (which like all the motorised valves may be controlled by the processor mentioned previously), a non-return valve 90, and an expansion vessel 92. The modulatable valve 88 can be controlled to regulate the flow of cold water to maintain a desired temperature of hot water (measured for example by temperature transducer 76).
Valves 94 and 96 are also provided for connection to external storage tanks for the storage of cold and heated water respectively. Finally, a double check valve 98 connects cold feed pipe 64 to another valve 100 which can be used with a filling loop to connect to previously mentioned valve 52 for charging the heating circuit with more water or a mix of water and corrosion inhibiter.
It should be noted that
Although not shown in
It has long been the practice of energy supply companies to have tariffs where the cost of a unit of electricity varies according to the time of day, to take account of times of increased or reduced demand and to help shape customer behaviour to better balance demand to supply capacity. Historically, tariff plans were rather coarse reflecting the technology both of power generation and of consumption. But increasing incorporation of renewable energy sources of electrical power—such as solar power (e.g., from photovoltaic cells, panels, and farms) and wind power, into the power generation fabric of countries has spurred the development of a more dynamic pricing of energy. This approach reflects the variability inherent in such weather-dependent power generation. Initially such dynamic pricing was largely restricted to large scale users, increasingly dynamic pricing is being offered to domestic consumers.
The degree of dynamism of the pricing varies from country to country, and also between different producers within a given country. At one extreme, “dynamic” pricing is little more than the offering of different tariffs in different time windows over the day, and such tariffs may apply for weeks, months, or seasons without variation. But some dynamic pricing regimes enable the supplier to change prices with a day's notice or less—so for example, customers may be offered today prices for half-hour slots tomorrow. Time slots of as short as 6 minutes are offered in some countries, and conceivably the lead time for notifying consumers of forthcoming tariffs can be reduced further by including “intelligence” in energy-consuming equipment.
Because it is possible to use short and medium term weather predictions to predict both the amount of energy likely to be produced by solar and wind installations, and the likely scale of power demand for heating and cooling, it becomes possible to predict periods of extremes of demand. Some power generation companies with significant renewable generation capacity have even been known to offer negative charging for electricity—literally paying customers to use the excess power. More often, power may be offered at a small fraction of the usual rate.
By incorporating an electric heater into an energy storage unit, such as a heat exchanger of systems according to the disclosure, it becomes possible for consumers to take advantage of periods of low-cost supply and to reduce their reliance on electrical power at times of high energy prices. This not only benefits the individual consumer, but it is also beneficial more generally as it can reduce demand at times when excess demand must be met by burning fossil fuels.
The processor of the interface unit has a wired or wireless connection (or both) to a data network, such as the Internet, to enable the processor to receive dynamic pricing information from energy suppliers. The processor also preferably has a data link connection (e.g., a ModBus) to the heat pump, both to send instructions to the heat pump and to receive information (e.g., status information and temperature information) from the heat pump. The processor has logic which enables it* to learn the behaviour of the household, and with this and the dynamic pricing information, the processor is able to determine whether and when to use cheaper electricity to pre-charge the heating system. This may be by heating the energy storage medium using an electrical element inside the heat exchanger, but alternatively this can be by driving the heat pump to a higher-than-normal temperature—for example 60 Celsius rather than between 40 and 48 Celsius. The efficiency of the heat pump reduces when it operates at higher temperature, but this can be taken into account by the processor in deciding when and how best to use cheaper electricity.
*Because the system processor is connectable to a data network, such as the Internet and/or a provider's intranet, the local system processor can benefit from external computing power. So, for example the manufacturer of the interface unit is likely to have a cloud presence (or intranet) where computing power is provided for calculations of, for example, predicted: occupancy; activity; tariff (short/long); weather forecasts (which may be preferable to generally available weather forecasts because they can be pre-processed for easy use by the local processor, and they may also be tailored very specifically to the situation, location, exposure of the property within which the interface unit is installed); identification of false positives and/or false negatives.
To protect users from the risk of scalding by overheated water from the hot water supply system it is sensible to provide a scalding protection feature. This may take the form of providing an electrically controllable (modulatable) valve to mix cold water from the cold-water supply into hot water as it leaves the output circuit of the heat exchanger (the extra valve can be mounted between the nodes to which existing valves 94 and 96 previously mentioned).
One notable distinction of interface units according to the disclosure with respect to gas combi boilers is that while the containers of the latter generally have to be made of non-combustible materials—such as steel, due to the presence of a hot combustion chamber, the internal temperatures of an interface unit will generally be considerably less than 100 Celsius, typically less than 70 Celsius, and often less than 60 Celsius. So, it becomes practical to use flammable materials such a wood, bamboo, or even paper, in fabricating a container for the interface unit.
The lack of combustion also opens up the possibility to install interface units in locations that would generally never be considered as suitable for the installation of gas combi boilers—and of course, unlike a gas combi boiler, interface units according to the disclosure, do not require a flue for exhaust gases. So, for example, it becomes possible to configure an interface unit for installation beneath a kitchen worktop, and even to make use of the notorious dead spot represented by an under counter corner. For installation in such a location the interface unit could actually be integrated into an under counter cupboard—preferably through a collaboration with a manufacturer of kitchen cabinets. But greatest flexibility for deployment would be retained by having an interface unit that effectively sits behind some form of cabinet, the cabinet being configured to allow access to the interface unit. The interface unit would then preferably be configured to permit the circulation pump 36 to be slid out and away from the heat exchanger 12 before the circulation pump 36 is decoupled from the flow path of the input-side circuit.
Consideration can also be given to taking advantage of other space frequently wasted in fitted kitchens, namely the space beneath under-counter cupboards. There is often more a space with a height of more than 150 mm, and a depth of around 600 mm, with widths of 300, 400, 500, 600 mm or more (although allowance needs to be made for any legs supporting the cabinets). For new installations in particular, or where a combi boiler is being replaced along with a kitchen refit, it makes sense to use these spaces at least to accommodate the heat exchanger of the interface unit—or to use more than one heat exchanger unit for a given interface unit.
Particularly for interface units designed for wall mounting, although potentially beneficial whatever the application of the interface unit, it will often be desirable to design the interface unit as a plurality of modules. With such designs it can be convenient to have the heat exchanger as one of the of modules, because the presence of the phase-change material can result in the heat exchanger alone weighing more than 25 kg. For reasons of health and safety, and in order to facilitate one-person installation, it would be desirable to ensure that an interface unit can be delivered as a set of modules none of which weighs more than about 25 kg.
Such a weight constraint can be supported by making one of the modules a chassis for mounting the interface unit to a structure. For example, where an interface unit is to be wall mounted in place of an existing gas combi boiler, it can be convenient if a chassis, by which the other modules are supported, can first be fixed to the wall. Preferably the chassis is designed to work with the positions of existing fixing points used to support the combi boiler that is being replaced. This could potentially be done by providing a “universal” chassis that has fixing holes preformed according to the spacings and positions of popular gas combi boilers. Alternatively, it could be cost effective to produce a range of chassis each having hole positions/sizes/spacings to match those of particular manufacturer's boilers. Then one just needs to specify the right chassis to replace the relevant manufacturer's boiler. There are multiple benefits to this approach: it avoids the need to drill more holes for plugs to take fixing bolts—and not only does this eliminate the time needed to mark out, drill the holes and clean up, but it avoids the need to further weaken the structure of the dwelling where installation is taking place—which can be an important consideration given the low cost construction techniques and materials frequently used in “starter homes” and other low cost housing.
Preferably the heat exchanger module and the chassis module are configured to couple together. In this way it may be possible to avoid the need for separable fastenings, again saving installation time.
Preferably an additional module includes first interconnects, e.g., 62 and 74, to couple the output side circuit 16 of the heat exchanger 12 to the in-building hot water system. Preferably the additional module also includes second interconnects, e.g., 38 and 24, to couple the input side circuit 14 of the heat exchanger 12 to the heat pump. Preferably the additional module also includes third interconnects, e.g., 42 and 28, to couple the interface unit to the heat circuit of the premises where the interface unit is to be used. It will be appreciated that by mounting heat exchanger to the chassis, which is itself directly connected to the wall, rather than first mounting the connections to the chassis, the weight of the heat exchanger is kept closer to the wall, reducing the cantilever loading effect on the wall fixings that secure the interface unit to the wall.
Phase Change Materials
One suitable class of phase change materials are paraffin waxes which have a solid-liquid phase change at temperatures of interest for domestic hot water supplies and for use in combination with heat pumps. Of particular interest are paraffin waxes that melt at temperatures in the range 40 to 60 Celsius, and within this range waxes can be found that melt at different temperatures to suit specific applications. Typical latent heat capacity is between about 180 kJ/kg and 230 kJ/kg and a specific heat of perhaps 2.27 Jg−1K−1 in the liquid phase, and 2.1 Jg−1K−1 in the solid phase. It can be seen that very considerable amounts of energy can be stored taking using the latent heat of fusion. More energy can also be stored by heating the phase change liquid above its melting point. For example, when electricity costs are relatively low and it can be predicted that there will shortly be a need for hot water (at a time when electricity is likely to, or known to be going to, cost more perhaps), then it can make sense to run the heat pump at a higher-than-normal temperature to “overheat” the thermal energy store.
A suitable choice of wax may be one with a melting point at around 48 Celsius, such as n-tricosane C23, or paraffin C20-C33. Applying the standard 3K temperature difference across the heat exchanger (between the liquid supplied by the heat pump and the phase change material in the heat exchanger) gives a heat pump liquid temperature of around 51 Celsius. And similarly on the output side, allowing a 3K temperature drop, we arrive at a water temperature of 45 Celsius which is satisfactory for general domestic hot water—hot enough for kitchen taps, but potentially a little high for shower/bathroom taps—but obviously cold water can always be added to a flow to reduce water temperature. Of course, if the household are trained to accept lower hot water temperatures, or if they are acceptable for some other reason, then potentially a phase change material with a lower melting point may be considered, but generally a phase transition temperature in the range 45 to 50 is likely to be a good choice. Obviously, we will want to take into account the risk of Legionella from storing water at such a temperature.
Heat pumps (for example ground source or air source heat pumps) have operating temperatures of up to 60 Celsius (although by using propane as a refrigerant, operating temperatures of up to 72 Celsius are possible), but their efficiencies tend to be much higher when run at temperatures in the range of 45 to 50 Celsius. So, our 51 Celsius, from a phase transition temperature of 48 Celsius is likely to be satisfactory.
Consideration also needs to be given to the temperature performance of the heat pump. Generally, the maximum ΔT (the difference between the input and output temperature of the fluid heated by the heat pump) is preferably kept in the range of 5 to 7 Celsius, although it can be as high as 10 Celsius.
Although paraffin waxes are a preferred material for use as the energy storage medium, they are not the only suitable materials. Salt hydrates are also suitable for latent heat energy storage systems such as the present ones. Salt hydrates in this context are mixtures of inorganic salts and water, with the phase change involving the loss of all or much of their water. At the phase transition, the hydrate crystals are divided into anhydrous (or less aqueous) salt and water. Advantages of salt hydrates are that they have much higher thermal conductivities than paraffin waxes (between 2 to 5 times higher), and a much smaller volume change with phase transition. A suitable salt hydrate for the current application is Na2S2O3·5H2O, which has a melting point around 48 to 49 Celsius, and latent heat of 200/220 kJ/kg.
In terms simply of energy storage, consideration can also be given to using PCMs with phase transition temperatures that are significantly above the 40-50 Celsius range. For example, a paraffin wax, waxes being available with a wide range of melting points:
Alternatively, a salt hydrate such as CH3COONa·3H2O—which has a melting point around 58 Celsius, and latent heat of 226/265 kJ/kg may be used.
Thus far, the thermal energy store has largely been described as having a single mass of phase change material within a heat exchanger that has input and output circuits each in the form of one or more coils or loops. But it may also be beneficial in terms of rate of heat transfer for example, to encapsulate the phase change material in a plurality of sealed bodies—for example in metal (e.g. copper or copper alloy) cylinders (or other elongate forms)—which are surrounded by a heat transfer liquid from which the output circuit (which is preferably used to provide hot water for a (domestic) hot water system) extracts heat.
With such a configuration the heat transfer liquid may either be sealed in the heat exchanger or, more preferably, the heat transfer liquid may flow through the energy store and may be the heat transfer liquid that transfers heat from the green energy source (e.g. a heat pump) without the use of an input heat transfer coil in the energy store. In this way, the input circuit may be provided simply by one (or more generally multiple) inlets and one or more outlets, so that heat transfer liquid passes freely through the heat exchanger, without being confined by a coil or other regular conduit, the heat transfer liquid transferring heat to or from the encapsulated PCM and then on to the output circuit (and thus to water in the output circuit). In this way, the input circuit is defined by the one or more inlets and the one or more out for the heat transfer liquid, and the freeform path(s) past the encapsulated PCM and through the energy store.
Preferably the PCM is encapsulated in multiple elongate closed-ended pipes arranged in one or more spaced arrangements (such as staggered rows of pipes, each row comprising a plurality of spaced apart pipes) with the heat transfer fluid preferably arranged to flow laterally (or transverse to the length of the pipe or other encapsulating enclosure) over the pipes—either on route from the inlets to the outlets or, if an input coil is used, as directed by one or more impellers provided within the thermal energy store.
Optionally, the output circuit may be arranged to be at the top of the energy store and positioned over and above the encapsulated PCM—the containers of which may be disposed horizontally and either above an input loop or coil (so that convection supports energy transfer upwards through the energy store) or with inlets direction incoming heat transfer liquid against the encapsulated PCM and optionally towards the output circuit above. If one or more impellers is used, preferably the or each impeller is magnetically coupled to an externally mounted motor—so that the integrity of the enclosure of the energy store is not compromised.
Optionally the PCM may be encapsulated in elongate tubes, typically of circular cross section, with nominal external diameters in the range of 20 to 67 mm, for example 22 mm, 28 mm, 35 mm, 42 mm, 54 mm, or 67 mm, and typically these tubes will be formed of a copper suitable for plumbing use. Preferably, the pipes are between 22 mm and 54 mm, for example between 28 mm and 42 mm external diameter.
The heat transfer liquid is preferably water or a water-based liquid such as water mixed with one or more of a flow additive, a corrosion inhibitor, an anti-freeze, a biocide, —and may for example comprise an inhibitor of the type designed for use in central heating systems—such as Sentinel X100 or Fernox F1 (both RTM)—suitably diluted in water.
Thus, throughout the description and claims of the present application the expression input circuit should be construed, unless the context clearly requires otherwise, to include an arrangement as just described and in which the path of liquid flow from the input of the input circuit to its output is not defined by a regular conduit but rather involves the liquid flowing substantially freely within the enclosure of the energy store.
The PCM may be encapsulated in a plurality of elongate cylinders of circular or generally circular cross section, the cylinders preferably being arranged spaced apart in one or more rows. Preferably the cylinders in adjacent rows are offset with respect to each other to facilitate heat transfer from and to the heat transfer liquid. Optionally an input arrangement is provided in which heat transfer liquid is introduced to the space about the encapsulating bodies by one or more input ports which may be in the form of a plurality of input nozzles, that direct the input heat transfer liquid towards and onto the encapsulating bodies fed by an input manifold. The bores of the nozzles at their outputs may be generally circular in section or may be elongate to produce a jet or stream of liquid that more effectively transfers heat to the encapsulated PCM. The manifold may be fed from a single end or from opposed ends with a view to increasing the flow rate and reducing pressure loss.
The heat transfer liquid may be pumped into the energy store 12 as the result of action of a pump of the green energy source (e.g. a heat pump or solar hot water system), or of another system pump, or the thermal energy store may include its own pump. After emerging from the energy store at one or more outlets of the input circuit the heat transfer liquid may pass directly back to the energy source (e.g. the heat pump) or may be switchable, through the use of one or more valves, to pass first to a heating installation (e.g. underfloor heating, radiators, or some other form of space heating) before returning to the green energy source.
The encapsulating bodies may be disposed horizontally with the coil of the output circuit positioned above and over the encapsulating bodies. It will be appreciated that this is merely one of many possible arrangements and orientations. The same arrangement could equally well be positioned with the encapsulating bodies arranged vertically.
Alternatively an energy store using PCM encapsulation may again use cylindrical elongate encapsulation bodies such as those previously described, but in this case with an input circuit in the form of conduit for example in the form of a coil. The encapsulation bodies may be arranged with their long axes disposed vertically, and the input 14 and output 18 coils disposed to either side of the energy store 12. But again this arrangement could also be used in an alternative orientation, such as with the input circuit at the bottom and the output circuit at the top, and the encapsulation bodies with their long axes disposed horizontally. Preferably one or more impellers are arranged within the energy store 12 to propel energy transfer liquid from around the input coil 14 towards the encapsulation bodies. The or each impeller is preferably coupled via a magnetic drive system to an externally mounted drive unit (for example an electric motor) so that the enclosure of the energy store 12 does not need to be perforated to accept a drive shaft —thereby reducing the risk of leaks where such shafts enter the enclosure.
By virtue of the fact that the PCM is encapsulated it becomes readily possible to construct an energy store that uses more than one phase change material for energy storage, and in particular permits the creation of an energy storage unit in which PCMs with different transition (e.g. melting) temperatures can be combined thereby extending the operating temperature of the energy store.
It will be appreciated that in embodiments of the type just described the energy store 12 contains one or more phase change materials to store energy as latent heat in combination with a heat transfer liquid (such as water or a water/inhibitor solution).
A plurality of resilient bodies that are configured to reduce in volume in response to an increase in pressure caused by a phase change of the phase change material and to expand again in response to a reduction in pressure caused by a reverse phase change of the phase change material are preferably provided with the phase change material within the encapsulation bodies (they may also be used in energy banks using “bulk” PCMs as described elsewhere in this specification.
According to a further aspect, the present disclosure provides a method of configuring a hot-water supply installation having a plurality of controllable hot-water outlets, the installation including:
a source of hot-water with an outlet having a controllable outflow temperature; in a hot-water flow path between the outlet of the source of hot water and the plurality of controllable hot-water outlets, a flow measurement device and at least one flow regulator; a first temperature sensor to detect the outflow temperature; a processor operatively connected to the flow measurement device, the first temperature sensor, and the at least one flow regulator; the method comprising: placing an outlet temperature sensor in an outflow path for a first of the controllable hot-water outlets; opening the first of the controllable hot-water outlets, so that water from the first of the controllable hot-water outlets impinges on the outlet temperature sensor; generating data by monitoring, using the outlet temperature sensor, a variation with respect to time, of the temperature of water from the first of the controllable hot-water outlets; supplying the data to the processor; processing, using the processor, timing information about the time of the opening of the first of the controllable hot-water outlets, the data, and information from the first temperature sensor, to determine first parameters to control the outflow temperature of the source of hot-water, and optionally to control the at least one flow regulator, for use when the processor subsequently detects operation of the first of the controllable hot-water outlets.
This method may further comprise generating corresponding data for a second of the plurality of controllable hot-water outlets by placing an outlet temperature sensor in an outflow path for the second of the controllable hot-water outlets; opening the second of the controllable hot-water outlets so that water from the second of the controllable hot-water outlets falls on the outlet temperature sensor; generating second data by monitoring, using the outlet temperature sensor, a variation with respect to time, of the temperature of water from the second of the controllable hot-water outlets; supplying the second data to the processor; processing, using the processor, timing information about the time of the opening of the second of the controllable hot-water outlets, the second data, and information from the first temperature sensor, to determine second parameters to control the outflow temperature of the source of hot-water for use when the processor subsequently detects operation of the second of the controllable hot-water outlets.
The present application contains a number of self-evidently inter-related aspects and embodiments, generally based around a common set of problems, even if many aspects do have broader applicability. In particular the logic and control methods, whilst not necessarily limited to operating with the hardware disclosed and may be more broadly applied, are all particularly suited to working with the hardware of the various hardware aspects and the preferred variants thereof. It will be appreciated by the skilled person that certain aspects relate to specific instances of other features and the preferred features described or claimed in particular aspects may be applied to others. The disclosure would become unmanageably long if explicit mention were made at every point of the inter-operability and the skilled person is expected to appreciate, and is hereby explicitly instructed to appreciate, that preferred features of any aspect may be applied to any other unless otherwise explicitly stated otherwise or manifestly inappropriate from the context. Again, for the sake of avoiding repetition, many aspects and concepts may be described only in method form or in hardware form but the corresponding apparatus or computer program or logic is also to be taken as disclosed in the case of a method or the method of operating the hardware in the case of an apparatus discussion. For an example of what is meant by the above, there are a number of features of both hardware and software relating to the combination of a fluid based (typically air source) heat pump and a phase change material and an electric supplementary heating element and control by a processor (within the unit or remote or both). Although this is the preferred application, most methods and hardware are more generally applicable to other heat pumps (thermoelectric and ground source) and to other renewable energy sources (a pump for a solar array for example) and to alternative supplementary heating (including the less preferred arrangement of a combustion heater such as a gas boiler, or even a less efficient higher temperature lower COP heat pump) and alternative thermal storage, including multi-temperature thermal storage arrays. Moreover, aspects which give particular arrangements for any of the components, or their interaction can be used freely with aspects which focus on alternative elements of the system.
Number | Date | Country | Kind |
---|---|---|---|
2101678.7 | Feb 2021 | GB | national |
2109593.0 | Jul 2021 | GB | national |
2109594.8 | Jul 2021 | GB | national |
2109596.3 | Jul 2021 | GB | national |
2109597.1 | Jul 2021 | GB | national |
2109598.9 | Jul 2021 | GB | national |
2109599.7 | Jul 2021 | GB | national |
2109600.3 | Jul 2021 | GB | national |
2111087.9 | Aug 2021 | GB | national |
This application is a national phase application of International Application No. PCT/IB2022/051062, filed Feb. 7, 2022, which claims priority to Great Britain Application No. 2101678.7, filed Feb. 7, 2021, Great Britain Application No. 2109593.0, filed Jul. 2, 2021, Great Britain Application No. 2109594.8, filed Jul. 2, 2021, Great Britain Application No. 2109596.3, filed Jul. 2, 2021, Great Britain Application No. 2109597.1, filed Jul. 2, 2021, Great Britain Application No. 2109598.9, filed Jul. 2, 2021, Great Britain Application No. 2109599.7, filed Jul. 2, 2021, Great Britain Application No. 2109600.3, filed Jul. 2, 2021, and Great Britain Application No. 2111087.9, filed Aug. 2, 2021, all of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2022/051062 | 2/7/2022 | WO |