Examples of the present disclosure relate to systems and methods for a sub with internal components that are configured to shift, wherein a plurality of subs may be run in hole with the same or similar inner diameter. More specifically, embodiments disclose internal components that shift responsive to a shifting tool moving the components, wherein the shifting tool may be configured to shear at multiple locations. Responsive to the internal components shifting, an internal diameter within the sub is reduced, allowing for an object to land on the reduced inner diameter, forming a seal and isolating the zones below the sub from zones above the sub.
Hydraulic fracturing is the process of creating cracks or fractures in underground geological formations. After creating the cracks or fractures, a mixture of water, sand, and other chemical additives, is pumped into the cracks or fractures to protect the integrity of the geological formation preventing its closure and enhance production of the natural resources. The cracks or fractures are maintained opened by the mixture, allowing the natural resources within the geological formation to flow into a wellbore, where it is collected at the surface.
In order to isolate zones from fracturing, either conventional frac plugs or sliding sleeves are used.
Conventionally, when Frac Plugs are used, a frac plug is lowered to a required depth mounted below a perforating guns. At the required depth, the Frac plug is set and perforating guns are fired. A ball is then dropped to isolate the zone(s) below the frac plug from the newly perforated and untreated zones. This sequence is repeated throughout the well starting from toe to heel. This requires a multitude of Frac Plugs in the well bore after concluding the fracturing operation that would require milling to clean the wellbore
Conventionally when sliding sleeves are used, the sliding sleeves are run as part of the casing and are activated by dropping a specific size ball for each sliding sleeve. This limits a number of sleeves can be used.
Thus, conventional wellbores force fracturing to use Frac Plugs that causes obstructions to production flow and require cleaning post fracing operation or the frac sleeves that have to be installed with the casing and have entry point limitation.
Accordingly, needs exist for systems and methods utilizing a sub with internal components that are configured to shift, wherein a plurality of subs may be run in hole with the same inner diameter. Responsive to the internal components shifting, an internal diameter within the sub is reduced, allowing for an object to land on the reduced inner diameter, forming a seal and isolating the zones below the sub from zones above the sub.
Embodiments disclosed herein describe fracturing systems and methods for a sub with internal components that are configured to shift, wherein a plurality of subs may be run in hole with the same or similar inner diameter. The subs may be dummy subs with internal and embedded components, which are run in hole with the same inner diameters. The dummy subs may include an outer component, an activation sleeve, and seat. The dummy subs may be configured be activated via a shifting tool, which reduces the inner diameter across the dummy sub. This allows an object to be positioned on the reduced inner diameter, forming a seal, and isolating zones on opposite sides of the object
The outer component may be configured to be positioned adjacent to the activation sleeve and the expandable component. The outer component may include a first groove, recess, indentation, etc. that is configured to receive an expandable fastener to secure the activation sleeve in place.
The activation sleeve may be configured to move along a linear axis along an inner circumference of the outer component, and be positioned adjacent to the seat. The activation sleeve may include a second groove and a third groove.
The second groove may be positioned on an outer diameter of the activation sleeve, and may be configured to initially house the expandable fastener while the activation sleeve is in a first position. In the first position, the second groove may be configured to be misaligned with the first groove. Responsive to moving the activation sleeve to a second position, the first groove and the second groove may become aligned, and the expandable fastener may extend across the first and second grooves to lock the activation sleeve in place. Upon moving the activation sleeve from the first position to the second position, the activation sleeve may apply force against the seat to expand the seat and/or collapse the inner diameter across the seat.
The third groove may be positioned on an inner diameter of the activation sleeve and may be configured to interface with the shifting tool. The geometry of the third groove may allow the shifting tool to move downhole, but restrict the upward movement of the shifting tool. The restriction of the movement of the shifting tool may cause shear pins associated with the shifting tool to shear and/or allow the shifting tool to be pulled out of hole without shifting a second activation sleeve associated with a second dummy sub.
The seat may be positioned adjacent to the outer component of the activation sleeve. Responsive to the activation sleeve moving to the second position, the seat may collapse, causing the inner diameter across the seat to decrease from a first inner diameter to a second inner diameter, wherein the second inner diameter is smaller than the first inner diameter. This may enable a ball or other object to be positioned on the seat.
The shifting tool may be configured to move the activation sleeve from the first position to the second position. The shifting tool may include a first coupling mechanism, second coupling mechanism, outer projection, and inner projection. The shifting tool may be run in hole in a first mode, wherein the first coupling mechanism and the second coupling mechanism, such as shear pins, are coupled to an inner core.
The first coupling mechanism may be a shear screw, pin, etc., that is configured to temporarily couple the shifting tool to the inner body. The first coupling mechanism may be pre-loaded, wherein movement of the shifting tool may be configured to shear, break, etc. the first coupling mechanism.
The second coupling mechanism may be a shear screw, pin, etc. that is configured to temporarily couple the shifting tool the inner body. The second coupling mechanism may not be pre-loaded, and may become loaded when the first coupling mechanism is sheared Responsive to the second coupling mechanism being loaded, the second coupling mechanism may be sheared.
The outer projection may be positioned on an outer face of the shifting tool. The outer projection may have a profile that allows the shifting tool to move downhole, and interface with the activation sleeve and ball seat without shifting the activation sleeve while moving in the downhole direction. Responsive to aligning the outer projection with the third groove within the activation sleeve, the shifting tool may be configured to move the activation sleeve from the first position to the second position. This may allow the seat to collapse, and the first coupling mechanism to shear. After the seat collapse and the outer projection is positioned adjacent to the seat, the shifting tool may be moved in the first direction to load the second coupling mechanism. When the second coupling mechanism is loaded and the shifting tool receives a force in the first direction, the second coupling mechanism may shear. This may serve as an indicator that the seat has expanded when the shifting tool is retrieved back to surface.
The inner projection may be positioned on an inner circumference of the shifting tool. The inner projection may be configured to interface with a first ledge on the inner core when in the second mode, and with a second ledge on the inner core when in the third mode. When the inner projection is interfaced with the first ledge while the shifting tool is in the second mode, the inner diameter across the shifting tool may decrease from a first diameter to a second diameter. When the inner projection is interfaced with the second ledge and the shifting tool is in the third mode, the inner diameter across the shifting tool may decrease from the second diameter to a third diameter. Further, when the inner projection is interfaced with the first or second ledge, mechanical forces may be transferred between the inner body and the shifting tool. This may allow the inner body to be pulled to shear the first coupling mechanism, shear second coupling mechanism, and pulled out of hole.
These, and other, aspects of the invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. The following description, while indicating various embodiments of the invention and numerous specific details thereof, is given by way of illustration and not of limitation. Many substitutions, modifications, additions or rearrangements may be made within the scope of the invention, and the invention includes all such substitutions, modifications, additions or rearrangements.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of various embodiments of the present disclosure. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present disclosure.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific detail need not be employed to practice the present invention. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present invention.
Outer component 110 may have an inner circumference that is configured to be positioned adjacent to activation sleeve 120, expandable fastener 130, and seat 140 in a first mode. Outer component 110 may include a first groove 112, recess, slot, indentation, etc. (referred to hereinafter individually and collectively as “first groove 112”). First groove 112 may increase a first inner diameter across outer component 110, wherein first groove 112 may be configured to receive portions of expandable fastener 130 in a second mode.
Activation sleeve 120 may be configured to move along a linear axis along an inner circumference of outer component 110. Activation sleeve 120 may include a second groove 122, third groove 124, distal end 126, and proximal end 128.
Second groove 122 may be positioned on an outer circumference of activation sleeve 120, and may be a groove, recess, slot, indentation, etc. (referred to hereinafter individually and collectively as “second groove 122”). Second groove 122 may be configured to house expandable fastener 130 in the first mode and first groove 112 and second groove 122 may be misaligned from each other in the first mode. In the second mode, second groove 122 may be aligned with first groove 112 in the second mode, which may allow expandable fastener 130 to expand.
Third groove 124 may be positioned on an inner circumference of activation sleeve 120, and may have a profile that is configured to interface with an outer projection of a shifting tool. The profile of third groove 124 may include first end 150 and second end 152. First end 150 may have a sloped, tapered, angled sidewall that is slanted downward and towards a central axis of blank sub 100. This may enable the shifting tool to move downhole without engaging, shifting, interfacing with, etc. the activation sleeve 120 and without making the shifting sleeve shear. Second end 152 may have a flat sidewall or less tapered angle that extends in a direction perpendicular or steep to the central axis of blank sub 100. This may limit, restrict, etc. the shifting tool from moving up hole. This may enable the shifting tool to engage with third groove 124 to move activation sleeve 120 towards seat 140, and expand seat 140 and then shear.
Distal end 126 may be angled upward towards a central axis of blank sub 100, which may allow the shifting tool to move up hole without engaging or hanging on the activation sleeves 120 after the shifting tool shears.
Proximal end 128 may be angled upward away from the central axis of blank sub 100, and may be positioned adjacent to seat 140. This may enable activation sleeve 120 to apply forces against seat 140 to collapse seat 140.
Expandable fastener 130 may be a snap ring, retaining ring, etc. that is configured to expand based on a chamber housing expandable fastener 130. Expandable fastener 130 may be configured to be positioned within second groove 122 in the first mode, and having a first outer diameter. Responsive to moving activation sleeve 120 and aligning first groove 112 and second groove 122 in the second mode, expandable faster 130 may expand to have a second outer diameter. Further, in the second mode, expandable fastener 130 may be housed in both first groove 112 and second groove 122 in place. This may limit the movement of activation sleeve 120 in a first direction and second direction. By limiting the movement of activation sleeve 120, seat 140 may not be able to unset after activation sleeve 120 has moved to the second mode.
Seat 140 may be positioned adjacent of activation sleeve 120, and may be configured to collapse responsive to activation sleeve 120 applying pressure against seat 140. Responsive to seat 140 collapsing, an inner diameter of seat 140 may decrease from a first inner diameter to a second inner diameter. When seat 140 is sized to the first inner diameter, an object, such as a ball, may be positioned on seat 140. This may create a seal across the inner diameter of blank sub 100.
As depicted in
As depicted in
Furthermore, once activation sleeve 120 is activated into the second mode, first groove 112 may be aligned with second groove 122. This may enable expandable fastener 130 to expand into activation sleeve 120 and outer component 110 to limit the movement of activation sleeve 120. By limiting the movement of activation sleeve 120, activation sleeve 120 may be retained in the second mode and lock the ball seat in collapsed position.
At operation 410, a plurality of blank subs may be run in hole, wherein each of the blank subs may be associated with a different zone or stage. Each of the plurality of blank subs may have substantially the same and continuous inner diameter when run in hole.
At operation 420, an activation sleeve may be moved from a first position to a second position. When the activation sleeve moves towards the second position, a groove within the activation sleeve holding an expandable fastener may become aligned with a groove within an outer component. This may allow the expandable fastener to expand, and be positioned within both grooves securing the activation sleeve in place.
At operation 430, while the activation sleeve moves towards the second position, an end of the activation sleeve may interface with a ball seat forcing an inner diameter associated with the ball seat to decrease in size. Furthermore, because the activation sleeve may be secured in place via the expandable fastener, the ball seat may be maintained in a positioned with the smaller inner diameter.
At operation 430, perforating guns that may be run above the shifting tool may be fired. This may a conduit with the formation positioned above the blank sub.
At operation 460, an object, such as a ball, may be positioned on the ball seat with the smaller inner diameter.
At operation 470, pressure within the blank sub above the object may be increased. However, even when the pressure increases, the expandable fastener may secure the activation sleeve in a locked position, which in turn maintains the ball seat in a positioned with the smaller inner diameter. The increase in pressure may allow fracing operation to start at the zone above the blank sub.
At operation 480, after commencing fracing within all zones, the well may be put to production. This may allow the formation to flow back through the hollow chamber positioned within the blank sub, and all objects on positioned on the collapsed seats to be retrieved by flowing objects allowing with the flow back. In other embodiment, these objects may be dissolvable
As depicted in
As depicted in
As further depicted in
As depicted in
As depicted in
Furthermore, with the aid of the unbalanced piston and a mechanical force from a shifting tool, activation sleeve 620 may interface with a seat 640. This may cause seat 640 to collapse to have a smaller inner diameter.
As depicted in
In further embodiments, grooves 910 positioned on the inner sidewall of activation sleeve 620 may have different profiles based on the location of blank sub 600 within a well. For the upper most blank sub 600 within a zone of multi blank subs 600 activated in the same run, certain grooves, profiles, etc. 910 may have an upper ledge 912 that is perpendicular or at steep angle with respect to the central axis of blank sub 600. For example, the last blank sub within the hole may have a groove with a no-go. This may allow groove 910 to operate as a no-go, stopper, etc. allowing a projection on a shifting tool to be inserted into groove 910, shift the activation sleeve 910 and then travel up hole, and removed from the groove without shearing the shifting tool.
However, other grooves 910 within different blank subs 900 may have an upper ledge 912 that is slightly upwardly sloped. This may allow the projections on the shifting tool to interface with groove to apply the mechanical force to move activation sleeve, creating the unbalanced piston, expanding the expandable faster, decreasing the inner diameter across the seat, and locking the activation sleeve in place, all without shearing the shifting tool.
As depicted in
In further implementations, a seat 1040 may be positioned closer to a proximal end of sleeve 1000 than activation sleeve 1020 with first groove.
Shifting tool 1100 may be configured to be mounted below or above perforating guns, a pump down sub, or other elements. Shifting tool 1100 may be configured to run with a wireline, coiled tubing, slick line, pipe, etc. or any other conveyance method to activate a sleeve with a no-go ball seat, allowing the perforation guns to be fired in a single trip. However, shifting tool 1100 may be run with a slick line to perform the same job, and later run a wireline independently. Shifting tool 1100 may include an inner core 1110, shifting element 1120, first shearing pin 1130, second shearing pin 1140, and locking segment 1150. In other embodiments, the shifting tool may have spring-loaded segments that can collapse.
Inner core 1110 may be formed of a solid material or a dissolvable material or combination of both, and may be configured to be a structural support to secure shifting element 1120 in place. Inner core 1110 may include a first ledge 1112, and second ledge 1114.
Ledges 1112 and 1114 may be positioned proximate to a distal end of inner core 1110, and may be indentations extending from an outer sidewall of inner core 1110 towards a central axis of shifting tool 1100. First ledge 1112 and second ledge 1114 may be configured to extend in a direction that is perpendicular to the central axis of inner core 1110. Ledges 1112, 1114 may be configured to interface with an inner profile 1122 on shifting element 1120 to restrict the movement of an inner diameter across shifting element 1120. In other embodiments, the ledges can be positioned in any position proximate to closer end of inner core 1110.
First ledge 1112 may have a first outer diameter, and second ledge 1114 may have a second outer diameter, wherein the first outer diameter is larger than the second outer diameter. Further, first ledge 1112 may be positioned further from a distal end of inner core 1110 than second ledge 1114. First ledge 1112 may be configured to interface with inner profile 1122 responsive to first shearing pin 1130 shearing, and second ledge 1112 may be configured to interface with inner profile 1122 responsive to second shearing pin 1140 shearing.
Shifting element 1120 may be a tool that is comprised of solid materials, dissolvable materials, or any type of material or combination of material. Shifting element may include a proximal end 1128, shaft 1126, inner profile 1122, and outer profile 1124. In other embodiments, the shifting element 1120 may be spring loaded expandable segments.
Proximal end 1128 of shifting element 1120 may be configured to be selectively coupled to inner core 1110 via first shear pin 1130, second shear pin 1140, and locking segment 1150.
Shaft 1126 may be configured to extend from proximal end 1128 to inner profile 1122. Shaft 1126 may be configured to flex, bend, etc. to have a variable inner diameter based on the positioning of inner profile 1122 being positioned adjacent to a sidewall of inner core, within first ledge 1112 and outer profile 1124, or within second ledge 1114. In embodiments, shaft 1126 may have larger inner diameter when inner profile 1122 is positioned adjacent to a portion of inner core 1110 with a larger inner diameter.
Inner profile 1122 may be positioned on an inner sidewall of the distal end of shifting element 1120. Inner profile 1122 may have an upper surface that extends in a direction perpendicular to the central axis of shifting tool 1100. Inner profile 1122 may be configured to be adjacent to a sidewall of inner core 1110 when run in hole, be positioned adjacent to first ledge 1112 responsive to first shearing pin 1130 shearing, and adjacent to second ledge 1114 responsive to second shearing pin 1140 shearing. Inner profile 1122 may be configured to retain the distal end of shifting element 1120 in place to maintain the inner diameter across shaft 1126.
Outer profile 1124 may be positioned on an outer sidewall of shaft 1126, and may be configured to interface with a profile of an activation sleeve. An upper surface of outer profile 1124 may be positioned perpendicular or at steep angle to a central axis of shifting tool 1100. A lower surface of outer profile 1124 may be downwardly tapered with respect to a central axis of shifting tool 1100. This may restrict the movement of shifting element 1120 in a first direction, while allowing the movement of shifting element 1120 in a second direction. In further embodiments, the upper surface of outer profile 1124 may be tapered to allow movement in the first direction based on the profile of the activation sleeve. This may allow shifting element 1120 to interface with multiple sleeves in a single trip.
In embodiments, responsive to engaging outer profile 1124 with a profile of an activation sleeve and applying a force against the activation sleeve in a first direction, first shearing pin 1130 may shear and the activation sleeve may move to activate the ball seat within a sub. This may allow inner profile 1112 to interface with first ledge 1112 to decrease the diameter across shifting tool 1120. When the diameter across shifting tool 1120 is decreased, outer profile 1124 may move towards a central axis of shifting tool 1100 and no longer be engaged with the profile of the activation sleeve, allowing shifting element 1120 to move in the first direction. When further moving shifting element 1120 in the first direction, outer profile 1124 may engage with the ball seat, which when activated has a smaller inner diameter than that of the activation sleeve. Responsive to further moving shifting element 1120 in the first direction, second shearing pin 1140 may shear, which may indicate that the ball seat is activated and ready to accept an object.
First shear pin 1130 and second shearing pin 1140 may be configured to selectively couple shifting element 1120 to inner core 1110 at a first location and a second location, respectfully. First shearing pin 1130 may be configured to be pre-loaded when run in hole. Second shearing pin 1140 may not be pre-loaded when run in hole, and may be configured to be loaded based on the movement of shifting element 1120 and shearing of first shearing pin 1130. As such, first shearing pin 1130 may be configured to be sheared responsive to outer profile 1124 engaging with a profile on an activation sleeve, which may load second shearing pin 1140. This loading of second shearing pin 1140 may enable second shearing pin 1140 to be sheared, and validate the activation of a ball seat. In other embodiments, the shear pins may be any other temporary coupling mechanism, i.e.: shear ring, dissolvable pins, dissolvable material, etc.
Locking segment 1150 may be configured to secure and hold shifting element 1120 in a retracted position once shifting tool 1100 is activated. This may act as a retainer to keep the outer diameter of shifting element 1120 in a collapsed position post shearing of the shearing pins 1130, 1140.
As depicted in
As depicted in
As depicted in
As depicted in
Reference throughout this specification to “one embodiment”, “an embodiment”, “one example” or “an example” means that a particular feature, structure or characteristic described in connection with the embodiment or example is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment”, “in an embodiment”, “one example” or “an example” in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures or characteristics may be combined in any suitable combinations and/or sub-combinations in one or more embodiments or examples. In addition, it is appreciated that the figures provided herewith are for explanation purposes to persons ordinarily skilled in the art and that the drawings are not necessarily drawn to scale.
Although the present technology has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred implementations, it is to be understood that such detail is solely for that purpose and that the technology is not limited to the disclosed implementations, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present technology contemplates that, to the extent possible, one or more features of any implementation can be combined with one or more features of any other implementation.