Embodiments relate to air handling units and, more particularly, to methods and systems for active sound attenuation in an air handling unit.
Air-handling systems (also referred to as air handlers) have traditionally been used to condition buildings or rooms (hereinafter referred to as “structures”). An air-handling system may contain various components such as cooling coils, heating coils, filters, humidifiers, fans, sound attenuators, controls, and other devices functioning to at least meet a specified air capacity which may represent all or only a portion of a total air handling requirement of the structure. The air-handling system may be manufactured in a factory and brought to the structure to be installed or it may be built on site using the appropriate devices to meet the specified air capacity. The air-handling compartment of the air-handling system includes the fan inlet cone and the discharge plenum. Within the air-handling compartment is situated the fan unit including an inlet cone, a fan, a motor, fan frame, and any appurtenance associated with the function of the fan (e.g. dampers, controls, settling means, and associated cabinetry). The fan includes a fan wheel having at least one blade. The fan wheel has a fan wheel diameter that is measured from one side of the outer periphery of the fan wheel to the opposite side of the outer periphery of the fan wheel. The dimensions of the air handling compartment such as height, width, and airway length are determined by consulting fan manufacturers data for the type of fan selected.
During operation, each fan unit produces sounds at frequencies. In particular, smaller fan units typically emit sound power at higher audible frequencies, whereas larger fan units emit more sound power at lower audible frequencies. Devices have been proposed in the past that afford passive sound attenuation such as with acoustic tiles or sound barriers that block or reduce noise transmission. The acoustic tiles include a soft surface that deadens reflected sound waves and reverberation of the fan unit.
However, passive sound attenuation devices generally affect noise transmission in certain directions relative to the direction of air flow.
A need remains for improved systems and methods to provide sound attenuation in air handling systems.
In one embodiment, a method for controlling noise produced by an air handling system is provided. The method includes collecting sound measurements from the air handling system, wherein the sound measurements are defined by acoustic parameters. Values for the acoustic parameters are determined based on the sound measurements collected. Offset values for the acoustic parameters are calculated to define a cancellation signal that at least partially cancels out the sound measurements when the cancellation signal is generated. The acoustic parameters may include a frequency and amplitude of the sound measurements. Optionally, the cancellation signal includes an opposite phase and matching amplitude of the acoustic parameters. Optionally, response sound measurements are collected at a region of cancellation and the cancellation signal is tuned based on the response sound measurements.
In another embodiment, a system for controlling noise produced by an air handling system is provided. The system includes a source microphone to collect sound measurements from the air handling system and a processor to define a cancellation signal that at least partially cancels out the sound measurements. The system also includes a speaker to generate the cancellation signal. Optionally, the speaker generates the cancellation signal in a direction opposite the sound measurements. Optionally, the sound measurements are at least partially canceled out within a region of cancellation and the system further includes a response microphone to collect response sound measurements at the region of cancellation. Optionally, the processor tunes the cancellation signal based on the response sound measurements.
In another embodiment, a fan unit for an air handling system is provided. The fan unit includes a source microphone to collect sound measurements from the fan unit. A module defines a cancellation signal that at least partially cancels out the sound measurements. A speaker generates the cancellation signal.
The foregoing summary, as well as the following detailed description of certain embodiments will be better understood when read in conjunction with the appended drawings. To the extent that the figures illustrate diagrams of the functional blocks of various embodiments, the functional blocks are not necessarily indicative of the division between hardware circuitry. Thus, for example, one or more of the functional blocks (e.g., processors or memories) may be implemented in a single piece of hardware (e.g., a general purpose signal processor or random access memory, hard disk, or the like) or multiple pieces of hardware. Similarly, the programs may be stand alone programs, may be incorporated as subroutines in an operating system, may be functions in an installed software package, and the like. It should be understood that the various embodiments are not limited to the arrangements and instrumentality shown in the drawings.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
The air handling section 208 includes an inlet plenum 218 and a discharge plenum 220 that are separated from one another by a bulkhead wall 225 which forms part of a frame 224. Fan inlet cones 222 are located proximate to the bulkhead 225 of the frame 224 of the air handling section 208. The fan inlet cones 222 may be mounted to the bulkhead wall 225. Alternatively, the frame 224 may support the fan inlet cones 222 in a suspended location proximate to, or separated from, the bulkhead wall 225. Fans 226 are mounted to drive shafts on individual corresponding motors 228. The motors 228 are mounted on mounting blocks to the frame 224. Each fan 226 and the corresponding motor 228 form one of the individual fan units 232 that may be held in separate chambers 230. The chambers 230 are shown vertically stacked upon one another in a column. Optionally, more or fewer chambers 230 may be provided in each column. One or more columns of chambers 230 may be provided adjacent one another in a single air handling section 208.
The top, bottom and side panels 256, 258 and 254 have a height 255, a width 257 and a length 253 that are sized to form chambers 230 with predetermined volume and length.
During operation, the motor 228 rotates the fan 226 to draw air through the inlet cone 222 from an inlet plenum 261 toward the downstream region 262. It should be noted that with respect to airflow, “upstream” is defined as traveling from the fan 226 to the inlet cone 222 and “downstream” is defined as traveling from the inlet cone 222 to the fan 226. The motor controller 264 may adjust a speed of the fan 226 to reduce or increase an amount of air flow through the fan unit 232. Noise may travel both upstream 260 and downstream 262 from the fan unit 232. The noise may include fan noise generated by vibrations or friction in the fan 226 or motor 228 among other things. The noise may also include environmental noise generated outside the fan unit 232. Both the fan noise and the environmental noise have acoustic parameters including frequency, wavelength, period, amplitude, intensity, speed, and direction. The noise travels in a noise vector 266.
The fan unit 232 includes active sound attenuation to reduce the fan noise within a region of active cancellation 268. The region of active cancellation 268 is in the throat 269 of the inlet cone 222. Optionally, the region of active cancellation 268 may be upstream from the inlet cone 222. In the exemplary embodiment, the region of active cancellation 268 is located in the upstream region 260. Optionally, the region of active cancellation 268 may be located in the downstream region 262. The active sound attenuation may reduce any one of the acoustic parameters to approximately zero using destructive interference. Destructive interference is achieved by the superposition of a sound waveform onto a original sound waveform to eliminate the original sound waveform by reducing or eliminating one of the acoustic parameters of the original waveform. In an exemplary embodiment, the amplitude of the noise vector 266 is reduced or substantially eliminated. Optionally, any of the acoustic parameters of the noise vector 266 may be eliminated.
Active sound attenuation is enabled by a source microphone 270, a response microphone 272, a speaker 274, and an attenuation module 276. The source microphone 270 is positioned within the inlet cone 222. The source microphone 270 is configured to detect the noise vector 266. The step of detecting the noise vector 266 includes obtaining sound measurements having acoustic parameters. For example, a sound pressure of the noise vector 266 may be obtained to determine the acoustic parameters. The source microphone 270 may be positioned at the juncture 278 of the inlet cone 222 and the fan 226. Optionally, the source microphone 270 may be positioned along any portion of inlet cone 222 or upstream from the inlet cone 222. In the exemplary embodiment, the source microphone 270 is located flush with an inner surface 280 of the inlet cone 222 to reduce disturbances in air flow through the inlet cone 222. Optionally, the source microphone 270 may extend toward the center axis 263 on a boom or bracket.
In the exemplary embodiment, the source microphone 270 includes a pair of microphones configured to bias against environmental noise. Optionally, the source microphone may only include one microphone. The pair of microphones includes a downstream microphone 282 and an upstream microphone 284. Optionally, source microphone 270 may include a plurality of microphones configured to bias against environmental noise. In one embodiment, the upstream microphone 284 may be positioned approximately 50 mm from the downstream microphone 282. Optionally, microphones 282 and 284 may have any suitable spacing. Further, in the exemplary embodiment, microphone 282 is positioned in approximately the same circumferential location as microphone 284. Optionally, microphones 282 and 284 may be positioned within different circumferential locations of the inlet cone 222.
Microphones 282 and 284 bias against environmental noise so that only fan noise is attenuated. Environmental noise is detected by the upstream microphone 284 and the downstream microphone 282 at substantially the same time. However, a time delay exists between downstream microphone 282 sensing the fan noise and upstream microphone 284 sensing the fan noise. Accordingly, the fan noise can be distinguished from the environmental noise and the environmental noise is removable from the noise vector 266.
The speaker 274 is positioned upstream from the inlet cone 222. The speaker 274 may be fabricated from a perforated foam or metal. For example, the speaker 274 may be fabricated from acoustically transparent foam. In an embodiment, the speaker 274 has an aerodynamic shape that has a limited effect on the fan performance. For example, the speaker 274 may be domed-shaped. In the exemplary embodiment, the speaker 274 is mounted on a tripod or similar mount 286. Optionally, the speaker 274 may be coupled to one of panels 254, 256 and 258 or to frame 224. Additionally, the speaker 274 may be positioned upstream of the fan unit and configured to attenuate noise within the entire fan unit. The speaker 274 is aligned with the center axis 263 of the inlet cone 222. Optionally, the speaker 274 may be offset from the center axis 263. The speaker 274 may also be angled toward the center axis 263. The speaker 274 transmits an attenuation vector 288 downstream and opposite the noise vector 266. The attenuation vector 288 is an inverted noise vector 266 having an opposite phase and matching amplitude of the noise vector 266. The attenuation vector 288 destructively interferes with the noise vector 266 to generate an attenuated noise vector 290 having an amplitude of approximately zero. Optionally, the attenuating vector 288 reduces any of the noise vector acoustic parameters so that the attenuated noise vector 290 is inaudible.
The response microphone 272 is positioned upstream of the source microphone 270 and within the region of active cancellation 268. The response microphone 272 is located flush along the inner surface 280 of the inlet cone 222. Optionally, the response microphone 272 may extend toward the center axis 263 on a boom or bracket. Additionally, the response microphone 272 may be positioned in the inlet plenum 261 and/or upstream of the fan unit 232. The response microphone 272 is configured to detect the attenuated noise vector 266. Detecting the attenuated noise vector 290 includes obtaining sound measurements having acoustic parameters. For example, a sound pressure of the attenuated noise vector 290 may be obtained to determine the acoustic parameters. As described in more detail below, the attenuated noise vector 290 is compared to the noise vector 266 to determine whether the noise vector 266 has been reduced or eliminated.
Typically, the noise vector 266 remains dynamic throughout the operation of the fan unit 232. Accordingly, the attenuation vector 288 must be modified to adapt to changes in the noise vector 266. The attenuating module 276 is positioned within the fan unit 232 to modify the attenuation vector 288. Optionally, the attenuating module 276 may be positioned within the air processing system 200 or may be remote therefrom. The attenuating module 276 may be programmed internally or configured to operate software stored on a computer readable medium.
At 406, environmental noise is removed from the noise vector 266. The noise vector 266 is detected by both the downstream microphone 282 and the upstream microphone 284. The downstream microphone 282 is positioned closer to the fan 226 along the incoming air flow path than the upstream microphone 284. Thus, the downstream microphone 282 acquires the sound measurements from the fan unit 232 a predetermined time period before the same sound measurements are acquired by the upstream microphone 284. The downstream and upstream microphones 282 and 284 sense a common sound at slightly different points in time. The time period between when the downstream and upstream microphones 282 and 284 sense the common sound is determined by the spacing or distance between the downstream and upstream microphones 282 and 284 along the air flow path. A delay corresponding to the time period may be introduced into the signal from the downstream microphone 282. At 406, a difference is obtained between the signals from downstream and upstream microphones 282 and 284. By adjusting the delay, the source microphone 270 is tuned to be sensitive to sound originating from a particular direction.
As such, environmental noise, not generated by the fan unit 232, is filtered from the noise vector at 266 by setting a time delay between the downstream microphone 282 and the upstream microphone 284. Sound pressures received by the upstream microphone 284, not first received by the downstream microphone 282, are indicative of environmental noise that is not generated by the fan 226. Accordingly, the method 400 filters out non-fan unit noises acquired by the source microphone 270. Optionally, if the noise vector 266 is not within an audible range, the signal may be ignored by the attenuating module 276. Once the signals from the microphones 282 and 284 are combined (e.g., subtracted from one another), a filtered fan unit noise signal is produced.
At 410, the filtered fan unit noise is analyzed to obtain values for the acoustic parameters 411 of the sound measurements. The acoustic parameters 411 may be calculated using an algorithm, determined using a look-up table, and/or may be pre-determined and stored in the attenuation module 276. The acoustic parameters of interest may include the frequency, wavelength, period, amplitude, intensity, speed, and/or direction of the filtered fan unit noise. At 412, an attenuation signal 414 is generated. The attenuation signal 414 may be generated by inverting the waveform of the filtered fan unit noise 408. As shown in
At 416, the attenuation signal 414 is transmitted to the speaker 274 to generate the attenuation vector 288. The attenuation vector 288 is transmitted downstream in a direction opposite the noise vector 266. The attenuation vector 288 has a matching amplitude and opposite phase in relation to the noise vector 266. Thus, the attenuation vector 288 destructively interferes 417 with the noise vector 266 by reducing the amplitude of the noise vector 266 to approximately zero, as shown at 418 of
At 420, the response microphone 272 monitors the attenuation of the noise vector 266. In the exemplary embodiment, the response microphone 272 monitors the attenuation in real-time. As used herein real-time refers to actively monitoring the attenuation as the attenuation vector 288 is transmitted from the speaker 274.
At 422, the response microphone 272 detects the attenuated noise vector 290. At 424, the attenuated noise vector 290 is compared to the noise vector 266 to provide a dynamic feedback loop that adjusts and tunes the attenuation vector 288.
Noise generated by the fan 504 travels upstream. The noise is detected by the source microphone 510. In response to the detected noise, the speakers 512 transmit attenuating sound fields configured to destructively interfere with the noise. The result of the destructive interference is detected by the response microphone 514 to provide a feedback loop to the speakers 512.
Noise travels through the inlet cone 550. The noise is detected by the source microphone 552. The speakers then generate an attenuation sound field to destructively interfere with the noise.
Noise generated by the fan 604 travels upstream. The noise is detected by the source microphone 610. In response to the detected noise, the speakers 612 transmit attenuating sound fields configured to destructively interfere with the noise.
A source microphone 668 is positioned within each wall 656. Optionally, the source microphone 668 may be positioned in only one wall 656. Alternatively, the source microphone 668 may be positioned within the baffle 658. The source microphone 668 may be positioned upstream from the baffle 658 or, optionally, downstream from the baffle 658. Speakers 670 are positioned within the walls 656. Alternatively, only one speaker 670 may be positioned within the wall. The speaker 670 may also be positioned within the baffle 658. The speaker 670 is positioned downstream from the source microphone 668. In one embodiment, the speaker 670 may be positioned downstream from the baffle 658 and configured to direct attenuating noise in a counter-direction of the airflow 654.
Noise generated within the plenum 652 travels upstream with airflow 654. The baffle 658 provides passive sound attenuation. Additionally, the source microphone 668 detects the noise to provide active sound attenuation. The speakers 670 transmit a sound attenuating noise which destructively interferes with the noise propagating through the plenum 652.
BPF=(RPM*# of blades)/60
wherein BPF is the blade pass frequency, RPM is the rotations per minute of the fan, and # of blades is the number of fan blades. Typically, the blade pass frequency is approximately 250 Hz. This frequency travels at approximately 70-90 dB. Accordingly, an object of the invention is to attenuate noises within the range of 250 Hz. Although the embodiments are described with respect to attenuating noises having a peak frequency, it should be noted that the embodiments described herein are likewise capable of attenuating any frequency.
The intermediate portion 810 includes a plurality of apertures 812 formed therethrough. The apertures 812 are formed in an array around the intermediate portion. The apertures 812 are configured to retain speakers 814 (shown in
The microphone assembly 832 includes a cover 830 is positioned over the microphones 826. The cover 830 may be inserted into the hub 824 of the fan wheel 822. The cover 830 may abut the hub 824 of the fan wheel 822 in alternative embodiments. The cover 830 may be formed from a perforated material to allow sound waves to pass therethrough. The cover 830 may be formed from foam or the like in some embodiments. The cover 830 limits air flow to the microphones 826 while allowing sound waves to propagate to the microphones 826. The microphones 826 are configured to collect sound measurements from the fan unit 820. In response to the sound measurements, the array of speakers 814 generates a cancellation signal.
In the illustrated embodiment, the microphone assembly 832 is supported by a boom 834. The boom 834 retains the microphone assembly 832 within the hub 824 of the fan wheel 822. The boom 834 enables the fan wheel 822 to rotate with disturbing a position of the microphone assembly 832. The boom 834 is joined to a support beam 836 that retains a position of the boom 834 and the microphone assembly 832.
The embodiments described herein are described with respect to an air handling system. It should be noted that the embodiments described may be used within the air handling unit and/or in the inlet or discharge plenum of the air handling system. The embodiments may also be used upstream and/or downstream of the fan array within the air handling unit. Optionally, the described embodiments may be used in a clean room environment. The embodiments may be positioned in the discharged plenum and/or the return chase of the clean room. Optionally, the embodiments may be used in residential HVAC systems. The embodiments may be used in the ducts of an HVAC system. Optionally, the embodiments may be used with precision air control systems, DX and chilled-water air handlers, data center cooling systems, process cooling systems, humidification systems, and factory engineered unit controls. Optionally, the embodiments may be used with commercial and/or residential ventilation products. The embodiments may be used in the hood and/or inlet of the ventilation product. Optionally, the embodiments may be positioned downstream of the inlet in a duct and/or at a discharge vent.
The various embodiments described herein enable active monitoring of noise generated by a fan unit. By actively monitoring the noise, an attenuation signal is dynamically generated to cancel the noise. The attenuation signal is generated by inverting a noise signal acquired within the fan unit. Accordingly, attenuation is maximized by matching the amplitude of the noise signal. Additionally, the attenuation signal is configured to destructively interfere with the noise within a range defined inside the fan unit cone. As a result, the noise generated by the fan is attenuated prior to exiting the fan unit. The response microphone enables continual feedback of the attenuation, thereby promoting the dynamic changes of the system.
The various embodiments and/or components, for example, the modules, or components and controllers therein, also may be implemented as part of one or more computers or processors. The computer or processor may include a computing device, an input device, a display unit and an interface, for example, for accessing the Internet. The computer or processor may include a microprocessor. The microprocessor may be connected to a communication bus. The computer or processor may also include a memory. The memory may include Random Access Memory (RAM) and Read Only Memory (ROM). The computer or processor further may include a storage device, which may be a hard disk drive or a removable storage drive such as a floppy disk drive, optical disk drive, and the like. The storage device may also be other similar means for loading computer programs or other instructions into the computer or processor.
As used herein, the term “computer” or “module” may include any processor-based or microprocessor-based system including systems using microcontrollers, reduced instruction set computers (RISC), ASICs, logic circuits, and any other circuit or processor capable of executing the functions described herein. The above examples are exemplary only, and are thus not intended to limit in any way the definition and/or meaning of the term “computer”.
The computer or processor executes a set of instructions that are stored in one or more storage elements, in order to process input data. The storage elements may also store data or other information as desired or needed. The storage element may be in the form of an information source or a physical memory element within a processing machine.
The set of instructions may include various commands that instruct the computer or processor as a processing machine to perform specific operations such as the methods and processes of the various embodiments of the invention. The set of instructions may be in the form of a software program. The software may be in various forms such as system software or application software. Further, the software may be in the form of a collection of separate programs or modules, a program module within a larger program or a portion of a program module. The software also may include modular programming in the form of object-oriented programming. The processing of input data by the processing machine may be in response to operator commands, or in response to results of previous processing, or in response to a request made by another processing machine.
As used herein, the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by a computer, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments of the invention without departing from their scope. While the dimensions and types of materials described herein are intended to define the parameters of the various embodiments of the invention, the embodiments are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose the various embodiments of the invention, including the best mode, and also to enable any person skilled in the art to practice the various embodiments of the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the various embodiments of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if the examples have structural elements that do not differ from the literal language of the claims, or if the examples include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application relates to and claims priority from Provisional Application Ser. No. 61/324,634 filed Apr. 15, 2010, titled “METHODS AND SYSTEMS FOR ACTIVE SOUND ATTENUATION IN AN AIR HANDLING UNIT”, the complete subject matter of which is hereby expressly incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4865832 | Kamijyo | Sep 1989 | A |
4965832 | Edwards | Oct 1990 | A |
5448645 | Guerci | Sep 1995 | A |
5515444 | Burdisso | May 1996 | A |
5832095 | Daniels | Nov 1998 | A |
6049615 | Chou | Apr 2000 | A |
6118878 | Jones | Sep 2000 | A |
7001140 | Hustvedt | Feb 2006 | B2 |
7317801 | Amir | Jan 2008 | B1 |
7357621 | Hustvedt | Apr 2008 | B2 |
7783055 | Barath | Aug 2010 | B2 |
7853024 | Slapak | Dec 2010 | B2 |
7869607 | Barath | Jan 2011 | B2 |
20030112981 | McWilliam | Jun 2003 | A1 |
20040066940 | Amir | Apr 2004 | A1 |
20040194776 | Amir | Oct 2004 | A1 |
20050207585 | Christoph | Sep 2005 | A1 |
20080142294 | Cheng et al. | Jun 2008 | A1 |
20080162072 | Copley | Jul 2008 | A1 |
20100002385 | Lyon | Jan 2010 | A1 |
20100002890 | Lyon et al. | Jan 2010 | A1 |
20100014685 | Wurm | Jan 2010 | A1 |
20100028134 | Slapak | Feb 2010 | A1 |
20110116645 | Slapak | May 2011 | A1 |
Number | Date | Country |
---|---|---|
1180980 | May 1998 | CN |
1333419 | Jan 2002 | CN |
1755146 | Apr 2006 | CN |
4421803 | Jan 1996 | DE |
0619461 | Oct 1994 | EP |
0 715 131 | Jun 1996 | EP |
1 342 910 | Sep 2003 | EP |
1342910 | Sep 2003 | EP |
1357540 | Oct 2003 | EP |
5-232968 | Sep 1993 | JP |
5-289677 | Nov 1993 | JP |
10-143167 | May 1998 | JP |
11-101492 | Apr 1999 | JP |
2003-184799 | Jul 2003 | JP |
2005 009377 | Jan 2005 | JP |
2005 171838 | Jun 2005 | JP |
1994-0004114 | Jul 1993 | KR |
0111191 | Mar 1996 | KR |
WO 2009054429 | Apr 2009 | WO |
Entry |
---|
International Search Report and Written Opinion for counterpart PCT/US2011/027826, mailed Nov. 9, 2011. |
International Preliminary Report on Patentability for counterpart application PCT/US2011/027826, issued Oct. 16, 2012. |
The AcoustiFLO Modular Fan Model 686q Operation and Maintenance Manual. |
“Implementation of Active Noise Control Into Different Fan Applications,” Schneider, et al., Fan 2012, Apr. 2012. |
“25 Years Ago, Active Control First Appeared as a Great Solution for Fan Noise. What Has Happened?” Wise, Fan 2012, Apr. 2012. |
“Present and Future for Active Control of Fan Noise: Treatment at Source and in the Duct” Leventhall, et al., Fan Noise 2003, Sep. 2003. |
Machine translation of JP2005171838. |
Number | Date | Country | |
---|---|---|---|
20110255704 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61324634 | Apr 2010 | US |