Methods and systems for advanced harmonic energy

Information

  • Patent Grant
  • 11344362
  • Patent Number
    11,344,362
  • Date Filed
    Monday, August 5, 2019
    5 years ago
  • Date Issued
    Tuesday, May 31, 2022
    2 years ago
Abstract
Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over to time as the tissue impedance level begins to rise out of the “bathtub region,” which is the time period during energy application where the tissue impedance is low enough for electrosurgical energy to be effective for sealing tissue. In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region.”
Description
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/229,562, filed Aug. 5, 2016, entitled METHODS AND SYSTEMS FOR ADVANCED HARMONIC ENERGY, now U.S. Pat. No. 10,376,305, the entire disclosure of which is hereby incorporated by reference herein.


TECHNICAL FIELD

The present disclosure is related generally to medical devices with various mechanisms for grasping and sealing tissue. In particular, the present disclosure is related to electrosurgical instruments configured to regulate the application of energy applied to a surgical site to prolong the sealing time duration when performing sealing procedures.


BACKGROUND

Electrosurgical instruments are a type of surgical instrument used in many surgical operations. Electrosurgical instruments apply electrical energy to tissue in order to treat tissue. An electrosurgical instrument may comprise an instrument having a distally-mounted end effector comprising one or more electrodes. The end effector can be positioned against tissue such that electrical current is introduced into the tissue. Electrosurgical instruments can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active (or source) electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on a patient's body. Heat generated by the current flow through the tissue may form hemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical instrument sometimes also comprises a cutting member that is moveable relative to the tissue and the electrodes to transect the tissue.


Energy applied by an electrosurgical instrument can be transmitted to the instrument by a generator. The generator may form an electrosurgical signal that is applied to an electrode or electrodes of the electrosurgical instrument. The generator may be external or integral to the electrosurgical instrument. The electrosurgical signal may be in the form of radio frequency (“RF”) energy. For example, RF energy may be provided at a frequency range of between 100 kHz and 1 MHz. During operation, an electrosurgical instrument can transmit RF energy through tissue, which causes ionic agitation, or friction, in effect resistive heating, thereby increasing the temperature of the tissue. Because a sharp boundary may be created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy may be useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy may work particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat. In some cases, the instrument may also be configured to apply ultrasonic energy to create homeostasis. The generator may be configured to transmit energy which is converted into ultrasonic vibrations at the end effector. The energy transmitted to the tissue may similarly cause resistive heating through the ultrasonic vibrations.


During the application of the energy to tissue, the impedance of the tissue indicates the condition of the tissue. After a certain amount of energy applied, the impedance of the tissue dramatically increases and reduces the effectiveness of the further energy applied in the sealing procedure. Furthermore, as the tissue impedance approaches this threshold level where further energy applied is no longer effective, certain chemical processes in the tissue occur that would be desirable to be controlled better. The period of time under which the tissue responds to the sealing energy is sometimes referred to as the “bathtub region,” based on the shape of the level of impedance over time at which the tissue effectively responds to the sealing energy. There is a need therefore to better control the rise of impedance levels in the tissue and to prolong the period under which the tissue still responds (e.g., prolong the “bathtub region”) to applied energy during sealing procedures. While several devices have been made and used, it is believed that no one prior to the inventors has made or used the device described in the appended claims.


SUMMARY

In some aspects, a surgical system is provided.


In one aspect, the surgical system may include: an end effector comprising at least one energy delivery component configured to transmit electrosurgical energy at a number of different power levels (i.e., rates of energy delivery or levels of energy delivery) to tissue at a surgical site; and a control circuit communicatively coupled to the energy delivery component and programmed to: for a first application period, cause the energy delivery component to transmit the electrosurgical energy at a first power level or rate of energy delivery, the first application period comprising a point in time where impedance of the tissue reaches a minimum value; for a second application period after the first application period, cause the energy delivery component to transmit the electrosurgical energy at a decreasing power level or rate of energy level from the first power level until a second power level is reached, the second power level lower than the first power level and the second application period comprising a point in time where the impedance of the tissue rises above the minimum impedance value; for a third application period after the second application period, cause the energy delivery component to transmit the electrosurgical energy at a third power level, the third power level lower than the second power level and the third application period comprising a point in time where the impedance of the tissue rises above a transition impedance threshold level.


In another aspect of the surgical system, the first application period and the second application period combined comprise a time period where the electrosurgical energy causes sealing of the tissue at the surgical site.


In another aspect of the surgical system, the third application period further comprises a time period where the impedance of the tissue rises to a level such that the electrosurgical energy no longer causes sealing of the tissue at the surgical site.


In another aspect, the surgical system further comprises at least one sensor configured to measure an initial level of impedance in the tissue and a minimum level of impedance in the tissue.


In another aspect of the surgical system, the control circuit is further programmed to determine a beginning of the third application period based on the measured initial level of impedance in the tissue.


In another aspect of the surgical system, the control circuit is further programmed to determine a beginning of the third application period based on the measured minimum level of impedance in the tissue.


In another aspect of the surgical system, the first application period and the second application period combined comprise a continuous time period where the tissue impedance remains below an initial level of impedance in the tissue.


In another aspect of the surgical system, the energy delivery component is configured to transmit RF and ultrasonic energy.


In other aspects, a method for transmitting electrosurgical energy to tissue at a surgical site by a surgical system is provided. The method may include: causing, by an energy delivery component of a surgical system, electrosurgical energy to be applied to the tissue; measuring, by at least one sensor of the surgical system, a benchmark level of impedance of the tissue; determining, among a plurality of power load curve algorithms, a power load curve algorithm to be applied to the energy delivery component, based on the measured benchmark level of impedance of the tissue; based on the determined power load curve algorithm: for a first application period, causing the energy delivery component to transmit the electrosurgical energy at a first power level, the first application period comprising a point in time where impedance of the tissue reaches a minimum value; for a second application period after the first application period, cause the energy delivery component to transmit the electrosurgical energy at a decreasing power level from the first power level until a second power level is reached, the second power level lower than the first power level and the second application period comprising a point in time where the impedance of the tissue rises above the minimum impedance value; for a third application period after the second application period, cause the energy delivery component to transmit the electrosurgical energy at a third power level, the third power level lower than the second power level and the third application period comprising a point in time where the impedance of the tissue rises above a transition impedance threshold level.


In other aspects of the method, determining the power load curve algorithm comprises determining whether the benchmark level of impedance is less than a first threshold impedance value, whether the benchmark level of impedance is greater than the first threshold impedance value and less than a second threshold impedance value, and whether the benchmark level of impedance is greater than the second threshold impedance value.


In other aspects of the method, the first application period and the second application period combined comprise a time period where the electrosurgical energy is delivered at a higher rate and causes sealing of the tissue at the surgical site.


In other aspects of the method, the third application period further comprises a time period where the impedance of the tissue rises to a level such that the electrosurgical energy is delivered at a lower rate and no longer causes sealing of the tissue at the surgical site.


In other aspects of the method, the benchmark level of impedance is the minimum impedance value or an initial level of impedance of the tissue.


In other aspects of the method, a beginning of the third application period is based on the measured benchmark level of impedance.


In other aspects of the method, the first application period and the second application period combined comprise a continuous time period where the tissue impedance remains below an initial level of impedance in the tissue.


In other aspects of the method, the energy delivery component is configured to transmit RF and ultrasonic energy.


In other aspects, a surgical instrument is provided. The surgical instrument may include: a handle assembly; a shaft coupled to a distal end of the handle assembly; an end effector coupled to a distal end of the shaft and comprising at least one energy delivery component configured to transmit electrosurgical energy to tissue at a surgical site; and a control circuit communicatively coupled to the energy delivery component and programmed to: for a first application period, cause the energy delivery component to transmit the electrosurgical energy at a first energy level, the first application period comprising a point in time where impedance of the tissue reaches a minimum value; for a second application period after the first application period, cause the energy delivery component to transmit the electrosurgical energy at a decreasing energy level from the first energy level until a second energy level is reached, the second energy level lower than the first energy level and the second application period comprising a point in time where the impedance of the tissue rises above the minimum impedance value; for a third application period after the second application period, cause the energy delivery component to transmit the electrosurgical energy at a third energy level, the third energy level lower than the second energy level and the third application period comprising a point in time where the impedance of the tissue rises above a transition impedance threshold level.


In another aspect of the surgical instrument, the first application period and the second application period combined comprise a time period where the electrosurgical energy causes sealing of the tissue at the surgical site.


In another aspect of the surgical instrument, the third application period further comprises a time period where the impedance of the tissue rises to a level such that the electrosurgical energy no longer causes sealing of the tissue at the surgical site.


In another aspect, the surgical instrument further comprises at least one sensor configured to measure an initial level of impedance in the tissue and a minimum level of impedance in the tissue.


In other aspects, a non-transitory computer readable medium is presented. The computer readable medium may include instructions that, when executed by a processor, cause the processor to perform operations comprising any of the operations described in any one of the previous aspects.


The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects and features described above, further aspects and features will become apparent by reference to the drawings and the following detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the aspects described herein are set forth with particularity in the appended claims. The aspects, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1A shows one example of a surgical instrument system, according to some aspects.



FIG. 1B shows another example of a surgical instrument system, in this case showing multiple versions of a surgical instrument configured to deliver RF energy, ultrasonic energy, or a combination of both, according to some aspects.



FIG. 1C is a side, partially transparent schematic view of one aspect of a powered surgical device.



FIG. 1D is a side, partially transparent schematic view of another aspect of a powered surgical device.



FIG. 2 shows a perspective view of an end effector with jaws open, according to some aspects.



FIG. 3 is a block diagram describing further details of power supply elements of a surgical system, the surgical instrument coupled to a generator, according to some aspects.



FIG. 4A provides a visual depiction of the level of impedance over time present in tissue undergoing a sealing procedure during surgery.



FIG. 4B provides further details of various electrical readings of the surgical instrument system undergoing the sealing procedure during surgery.



FIG. 5 provides another example of the level of tissue impedance over time, this time using more empirical data.



FIG. 6A illustrates an example power profile of an amount of electrosurgical energy applied by a surgical instrument to tissue at a surgical site over time, in order to extend or prolong the bathtub region, according to some aspects.



FIG. 6B shows an example adjusted impedance profile over time as a result of the adjusted power applied to the surgical instrument, such as the example power profile in FIG. 6A, according to some aspects.



FIG. 7 shows an example power profile of the tapered load curve concept introduced in FIG. 6A, with additional power characteristics superimposed.



FIG. 8 provides an example of how multiple load curves may be programmed into the surgical instrument to apply different power adjustments based on impedance measurements during the sealing procedures.



FIG. 9 shows a visual depiction of an example load curve under the low minimum impedance threshold (see FIG. 8), according to some aspects.



FIG. 10 shows a visual depiction of an example load curve under the medium minimum impedance threshold (see FIG. 8), according to some aspects.



FIG. 11 is a graphical representation of impedance threshold and minimum pulse duration showing an example of additional adjustments that can be made to varying the power to account for other tissue properties.



FIG. 12 is a graphical illustration of voltage cutback caused by an impedance threshold greater than 325 Ohms, according to one aspect of the present invention.



FIG. 13 is a graphical illustration of a power pulse region of the graphical illustration shown in FIG. 11, according to one aspect of the present disclosure.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols and reference characters typically identify similar components throughout the several views, unless context dictates otherwise. The illustrative aspects described in the detailed description, drawings, and claims are not meant to be limiting. Other aspects may be utilized, and other changes may be made, without departing from the scope of the subject matter presented here.


The following description of certain examples of the technology should not be used to limit its scope. Other examples, features, aspects, aspects, and advantages of the technology will become apparent to those skilled in the art from the following description, which is, by way of illustration, one of the best modes contemplated for carrying out the technology. As will be realized, the technology described herein is capable of other different and obvious aspects, all without departing from the technology. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


It is further understood that any one or more of the teachings, expressions, aspects, examples, etc. described herein may be combined with any one or more of the other teachings, expressions, aspects, examples, etc. that are described herein. The following described teachings, expressions, aspects, examples, etc. should, therefore, not be viewed in isolation relative to each other. Various suitable ways in which the teachings herein may be combined will be readily apparent to those of ordinary skill in the art in view of the teachings herein. Such modifications and variations are intended to be included within the scope of the claims.


Also, in the following description, it is to be understood that terms such as front, back, inside, outside, upper, lower, and the like are words of convenience and are not to be construed as limiting terms. Terminology used herein is not meant to be limiting insofar as devices described herein, or portions thereof, may be attached or utilized in other orientations. The various aspects will be described in more detail with reference to the drawings. Throughout this disclosure, the term “proximal” is used to describe the side of a component, e.g., a shaft, a handle assembly, etc., closer to a user operating the surgical instrument, e.g., a surgeon, and the term “distal” is used to describe the side of the component farther from the user operating the surgical instrument.


Aspects of the present disclosure are presented for a medical instrument configured to adjust the power level for sealing procedures to account for changes in tissue impedance levels over time. Typically during sealing procedures, a period of time exists where the tissue impedance level is low enough to allow for the tissue to respond to energy applied to it. The impedance level typically dips slightly over time initially, and then rises. After a certain point, due to various heating and chemical factors, the level of impedance rises dramatically, and energy applied to the tissue is no longer effective. Further example details of the limits of any power sources over a range of loads are described in some of the accompanying figures, below. The period of time where the level of impedance is low enough for applied energy to be effective is sometimes referred to as the “bathtub” region, due to the initial dip in the level of impedance and subsequent slow rise. It is desirable to manipulate the level of power applied to the tissue in order to extend or prolong the length of this bathtub region, so that the period of time for sealing and manipulating the tissue may be extended.


In some aspects, a medical instrument may be configured to apply power according to a power algorithm to seal tissue by applying a gradually lower amount of power over to time as the tissue impedance level begins to rise out of the “bathtub region.” In some aspects, the power is then cut once the tissue impedance level exceeds the “bathtub region.” By gradually reducing the power, a balance is achieved between still applying an effective level of power for sealing and prolonging the time in which the tissue impedance remains in the “bathtub region,” due to the reduced power.


The medical instrument of the present disclosures may include additional features. An end effector of the electrosurgical device may include multiple members arranged in various configurations to collectively perform the aforementioned functions. As used herein, an end effector may be referred to as a jaw assembly or clamp jaw assembly comprising an upper jaw member and a lower jaw member where at least one of the upper jaw member and the lower jaw member may be movable relative to the other. Each of the jaw members may be adapted to connect to an electrosurgical energy source. Each jaw member may incorporate an electrode. The electrode may be a positive or negative electrode. In a bipolar electrosurgical device, the electrodes may be adapted for connection to the opposite terminals of the electrosurgical energy source, such as a bipolar radio frequency (RF) generator, so as to generate a current flow therebetween. An electrosurgical energy may be selectively communicated through tissue held between the jaw members to effect a tissue seal and/or treatment. Tissue may be coagulated from the current flowing between the opposite polarity electrodes on each jaw member.


At least one jaw member may include a knife channel defined therein configured to reciprocate a knife there along for severing tissue held between the jaw members. The knife channel may be an extended slot in the jaw member. The knife may be provided within a recess associated with the at least one jaw member. The electrosurgical device may have both coagulation and cutting functions. This may eliminate or reduce instrument interchange during a surgery. Cutting may be achieved using mechanical force alone or a combination of mechanical force and the electrosurgical energy. The electrosurgical energy may be selectively used for coagulation and/or cutting. The knife may be made from an electrically conductive material adapted to connect to the electrosurgical source, and selectively activatable to separate tissue disposed between the jaw members. The knife may be spring biased such that once tissue is severed, the knife may automatically return to an unengaged position within the knife channel or a retracted position in the recess.


In some aspects, the jaw members may be movable relative to each other. During operation of the electrosurgical device, at least one of the jaw members may move from a first, open position where the jaw members can be disposed around a mass of tissue, to a second, closed position where the jaw members grasp the tissue. The jaw members therefore may move through a graspers-like range of motion, similar to that of conventional pliers. In the second position, current flows between the jaw members to achieve hemostasis of the tissue captured therebetween. The jaw members may be configured to have a relatively thick proximal portion to resist bending. At least one of the jaw members may have a three-dimensional configuration with a D-shaped cross-sectional. The three-dimensional configuration with the D-shaped cross-sectional may resist bending. A lock mechanism may be included to lock the jaw members in the closed position. The lock mechanism may set the clamp pressure between the jaw members. At least one electrically conductive gap setting member may be provided between the jaw members to establish a desired gap between electrodes in bipolar electrosurgical devices.


The electrosurgical device may incorporate components to grasp a tissue via the end effector, deliver energy to the tissue via one or more electrodes, and cut the tissue via a dissecting device such as a tissue knife. The structural capabilities of any aspect of an electrosurgical device may be designed for use in one or more of a variety of surgical procedures. In some surgical procedures, the treated tissue may be readily accessible to an end effector affixed to a relatively straight and unbendable shaft. In some alternative surgical procedures, the tissue may not be readily accessible to the end effector on such a shaft. In such procedures, the electrosurgical device may incorporate a shaft designed to bend so that the end effector may contact the tissue requiring treatment. In such a device, the shaft may include one or more articulated joints that may permit the shaft to bend under control by the user. A sliding knife may include a feature to provide actuating force to the sliding knife. A knife actuator may be operably coupled to the shaft for selectively reciprocating the knife through the knife channel.


A front portion assembly may be designed for a specific surgical procedure, while a reusable handle assembly, configured to releasably attach to a front portion assembly, may be designed to provide control of surgical functions common to each front portion assembly, such as tissue grasping, cauterizing, and cutting. Consequently, the number and types of devices required for surgeries can be reduced. The reusable handle assembly may be designed to automate common functions of the electrosurgical device. Device intelligence may be provided by a controller located in the reusable handle assembly that is configured to receive information from a front portion assembly. Such information may include data regarding the type and use of the front portion assembly. Alternatively, information may include data indicative of the position and/or activation of control components (such as buttons or slides that can be manipulated) that may indicate what system functions should be activated and in what manner.


In some non-limiting examples, the controller may supply the RF current when the energy activation control is placed in an activating position by the user. In some alternative non-limiting examples, the controller may supply the RF current for a predetermined period of time once the energy activation control is placed in an activing position. In yet another non-limiting example, the controller may receive data related to the position of the jaws and prevent the RF current from being supplied to the one or more tissue cauterization power contacts if the jaws are not in a closed position.


In some aspects, any of the mentioned examples also may be configured to articulate along at least one axis through various means, including, for example, a series of joints, one or more hinges or flexure bearings, and one or more cam or pulley systems. Other features may include cameras or lights coupled to one or more of the members of the end effector, and various energy options for the surgical device.


The electrosurgical device can be configured to source energy in various forms including, without limitation, electrical energy, monopolar and/or bipolar RF energy, microwave energy, reversible and/or irreversible electroporation energy, and/or ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously. The energy can be transmitted to the electrosurgical device by a power source in electrical communication with the electrosurgical device. The power source may be a generator. The power source may be connected to the electrosurgical device via a suitable transmission medium such as a cable. The power source may be separate from the electrosurgical device or may be formed integrally with the electrosurgical device to form a unitary electrosurgical system. In one non-limiting example, the power source may include one or more batteries located within a portion of the electrosurgical device. It may be understood that the power source may source energy for use on the tissue of the patient as well as for any other electrical use by other devices, including, without limitation, lights, sensors, communication systems, indicators, and displays, which operate in relation to and/or with the electrosurgical device to form an electrosurgical system. In some aspects, the power source may source energy for use in measuring tissue effects with an RF impedance measuring portion. The remaining sources of energy, such as ultrasonic energy, may then be controlled based on the measured tissue effects. Similarly, multiple types of energy from one or more sources may be combined to interact in distinct ways. For example, an instrument with both RF and ultrasonic capabilities may allow for different energy types to perform different functions during a single procedure. For example, RF energy may be used to seal, while other energy types, such as ultrasonic energy, may be used to cut the tissue. In general, the present disclosures may be applied to these devices with combination elements (e.g., instruments having both RF and ultrasonic energy functionalities), and aspects are not so limited. Similar concepts include the systems and methods described in U.S. Pat. No. 9,017,326, “IMPEDANCE MONITORING APPARATUS, SYSTEM, AND METHOD FOR ULTRASONIC SURGICAL INSTRUMENTS,” which is incorporated herein by reference.


The electrosurgical device may be configured to source electrical energy in the form of RF energy. The electrosurgical device can transmit the RF energy through tissue compressed between two or more jaws. Such RF energy may cause ionic agitation in the tissue, in effect producing resistive heating, and thereby increasing the temperature of the tissue. Increased temperature of the tissue may lead to tissue cauterization. In some surgical procedures, RF energy may be useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy may work particularly well on connective tissue, which is primarily composed of collagen and shrinks when contacted by heat. Because a sharp boundary may be created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing untargeted adjacent tissue.


The RF energy may be in a frequency range described in EN 60601-2-2:2009+A11:2011, Definition 201.3.218—HIGH FREQUENCY. For example, the frequency in monopolar RF applications may be typically restricted to less than 5 MHz. However, in bipolar RF applications, the frequency can be almost anything. Frequencies above 200 kHz can be typically used for monopolar applications in order to avoid the unwanted stimulation of nerves and muscles that would result from the use of low frequency current. Lower frequencies may be used for bipolar applications if the risk analysis shows the possibility of neuromuscular stimulation has been mitigated to an acceptable level. Normally, frequencies above 5 MHz are not used in order to minimize the problems associated with high frequency leakage currents. Higher frequencies may, however, be used in the case of bipolar applications. It is generally recognized that 10 mA is the lower threshold of thermal effects on tissue.


As discussed above, the electrosurgical device may be used in conjunction with a generator. The generator may be an electrosurgical generator characterized by a fixed internal impedance and fixed operating frequency that deliver maximum power to an external load (e.g., tissue), such as having an electrical impedance in the range of about 50 ohms to 150 ohms. In this type of bipolar electrosurgical generator, the applied voltage may increase monotonically as the load impedance increases toward the maximum “open circuit” voltage as the load impedance increases to levels of tens of thousands of ohms or more. In addition, the electrosurgical device may be used with a bipolar electrosurgical generator having a fixed operating frequency and an output voltage that may be substantially constant over a range of load impedances of tens of ohms to tens of thousands of ohms including “open circuit” conditions. The electrosurgical device may be advantageously used with a bipolar electrosurgical generator of either a variable voltage design or substantially constant voltage design in which the applied voltage may be interrupted when the delivered current decreases below a predetermined level. Such bipolar generators may be referred to as automatic generators in that they may sense the completion of the coagulation process and terminate the application of voltage, often accompanied by an audible indication in the form of a cessation of a “voltage application” tone or the annunciation of a unique “coagulation complete” tone. Further, the electrosurgical device may be used with an electrosurgical generator whose operating frequency may vary with the load impedance as a means to modulate the applied voltage with changes in load impedance.


Various aspects of electrosurgical devices use therapeutic and/or sub-therapeutic electrical energy to treat tissue. Some aspects may be utilized in robotic applications. Some aspects may be adapted for use in a hand operated manner. In one non-limiting example, an electrosurgical device may include a proximal handle, a distal working end or end effector, and an introducer or elongated shaft disposed in-between.


Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications: U.S. Pat. Nos. 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,913,579; 6,905,497; 6,802,843; 6,770,072; 6,656,177; and 6,533,784; and U.S. Pat. App. Pub. Nos. 2010/0036370 and 2009/0076506, all of which are incorporated herein by reference in their entirety and made part of this specification.



FIG. 1A shows one example of a surgical instrument system 100, according to aspects of the present disclosure. The surgical instrument system 100 comprises an electrosurgical instrument 110. The electrosurgical instrument 110 may comprise a proximal handle 112, a distal working end or end effector 200 and an introducer or elongated shaft 114 disposed in-between. Alternatively, the end effector may be attached directly to the handle as in scissor style devices such as the electrosurgical instrument described in U.S. Pat. No. 7,582,087.


The electrosurgical system 100 can be configured to supply energy, such as electrical energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously, for example. In one example, the electrosurgical system 100 may include a generator 120 in electrical communication with the electrosurgical instrument 110. The generator 120 may be connected to the electrosurgical instrument 110 via a suitable transmission medium such as a cable 122. In one example, the generator 120 may be coupled to a controller, such as a control unit 125, for example. In various aspects, the control unit 125 may be formed integrally with the generator 120 or may be provided as a separate circuit module or device electrically coupled to the generator 120 (shown in phantom to illustrate this option). The control unit 125 may include automated or manually operated controls to control the amount of current delivered by the generator 120 to the electrosurgical instrument 110. Although as presently disclosed, the generator 120 is shown separate from the electrosurgical instrument 110, in some aspects, the generator 120 (and/or the control unit 125) may be formed integrally with the electrosurgical instrument 110 to form a unitary electrosurgical system 100, where a battery located within the electrosurgical instrument 110 may be the energy source and a circuit coupled to the battery produces the suitable electrical energy, ultrasonic energy, or heat energy.


In one aspect, the generator 120 may comprise an input device located on a front panel of the generator 120 console. The input device may comprise any suitable device that generates signals suitable for programming the operation of the generator 120, such as a keyboard, or input port, for example. In one example, one or more electrodes in the first jaw 210a and one or more electrodes in the second jaw 210b may be coupled to the generator 120. The cable 122 may comprise multiple electrical conductors for the application of electrical energy to a first electrode (which may be designated as a + electrode) and to a second electrode (which may be designated as a − electrode) of the electrosurgical instrument 110. It may be recognized that + and − designations are made solely for convenience and do not indicate an electrical polarity. An end of each of the conductors may be placed in electrical communication with a terminal of the generator 120. The generator 120 may have multiple terminals, each configured to contact one or more of the conductors. The control unit 125 may be used to activate the generator 120, which may serve as an electrical source. In various aspects, the generator 120 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example, which may be activated independently or simultaneously.


In various aspects, the electrosurgical system 100 may comprise at least one supply conductor 131 and at least one return conductor 133, wherein current can be supplied to the electrosurgical instrument 110 via the at least one supply conductor 131 and wherein the current can flow back to the generator 120 via the at least one return conductor 133. In various aspects, the at least one supply conductor 131 and the at least one return conductor 133 may comprise insulated wires and/or any other suitable type of conductor. As described below, the at least one supply conductor 131 and the at least one return conductor 133 may be contained within and/or may comprise the cable 122 extending between, or at least partially between, the generator 120 and the end effector 200 of the electrosurgical instrument 110. The generator 120 can be configured to apply a sufficient voltage differential between the supply conductor 131 and the return conductor 133 such that sufficient current can be supplied to the end effector 200 to perform the intended electrosurgical operation.


The shaft 114 may have a cylindrical or rectangular cross-section, for example, and can comprise a thin-wall tubular sleeve that extends from the proximal handle 112. The shaft 114 may include a bore extending therethrough for carrying actuator mechanisms, for example, an axially moveable member for actuating the jaws 210a, 210b and for carrying electrical leads for delivery of electrical energy to electrosurgical components of the end effector 200. The proximal handle 112 may include a jaw closure trigger 121 configured to adjust the position of the jaws 210a, 210b with respect to each other. In one non-limiting example, the jaw closure trigger 121 may be coupled to an axially moveable member disposed within the shaft 114 by a shuttle operably engaged to an extension of the jaw closure trigger 121.


The end effector 200 may be adapted for capturing and transecting tissue and for contemporaneously welding the captured tissue with controlled application of energy (e.g., RF energy). The first jaw 210a and the second jaw 210b may be closed thereby capturing or engaging tissue. The first jaw 210a and second jaw 210b also may apply compression to the tissue. In some aspects, the shaft 114, along with the first jaw 210a and second jaw 210b, can be rotated, for example, a full 360°. For example, a rotation knob 148 may be rotatable about the longitudinal axis of the shaft 114 and may be coupled to the shaft 114 such that rotation of the knob 148 causes corresponding rotation of the shaft 114. The first jaw 210a and the second jaw 210b can remain openable and/or closeable while rotated.


Also illustrated in FIG. 1 are a knife advancement control 140 and an energy activation control 145 located on the proximal handle 112. In some non-limiting examples, the knife advancement control 140 and the energy activation control 145 may be depressible buttons positioned to permit a user to control knife advancement or energy activation by the use of one or more fingers.



FIG. 1B illustrates a second example of a surgical system 10 comprising a generator 1002 and various surgical instruments 1004, 1006, 1202 usable therewith, according to some aspects. The generator 1002 may be configurable for use with a variety of surgical devices. According to various forms, the generator 1002 may be configurable for use with different surgical devices of different types including, for example, the ultrasonic device 1004, electrosurgical or RF surgical devices, such as, the RF device 1006, and multifunction devices 1202 that integrate electrosurgical RF and ultrasonic energies delivered simultaneously from the generator 1002. Although in the form of FIG. 1B, the generator 1002 is shown separate from the surgical devices 1004, 1006, 1202 in one form, the generator 1002 may be formed integrally with either of the surgical devices 1004, 1006, 1202 to form a unitary surgical system. The generator 1002 comprises an input device 1045 located on a front panel of the generator 1002 console. The input device 1045 may comprise any suitable device that generates signals suitable for programming the operation of the generator 1002.



FIG. 1C illustrates one aspect of a surgical device 900 configured to grasp and cut tissue. The surgical device 900 can include a proximal handle portion 910, a shaft portion 912, and an end effector 914 configured to grasp tissue. The proximal handle portion 910 can be any type of pistol-grip or other type of handle known in the art that is configured to carry various actuators, such as actuator levers, triggers or sliders, configured to actuate the end effector 914. As illustrated, the proximal handle portion 910 can include a closure grip 920 and a stationary grip 922. Movement of the closure grip 920 toward and away from the stationary grip 922, such as by manual movement by a hand of a user, can adjust a position of the end effector 914. The shaft portion 912 can extend distally from the proximal handle portion 910 and can have a bore (not shown) extending therethrough. The bore can carry mechanisms for actuating the end effector 914, such as a jaw closure tube and/or a drive shaft. As discussed further below, one or more sensors (not shown) can be coupled to the surgical device 900 and can be configured to sense data that can be used in controlling an output of the device's motor 932.


The end effector 914 can have a variety of sizes, shapes, and configurations. As shown in FIG. 1C, the end effector 914 can include a first, upper jaw 16a and a second, lower jaw 916b each disposed at a distal end 912d of the shaft portion 912. One or both of the upper and lower jaws 916a, 916b can be configured to close or approximate about a longitudinal axis L1 of the end effector 914. Both of the jaws 916a, 916b can be moveable relative to the shaft portion 912 such that the end effector 914 can be moved between open and closed positions, or only one the upper and lower jaws 916a, 916b can be configured to move relative to the shaft portion 912 and to the other of the jaws 916a, 916b so as to move the end effector 914 between open and closed positions. When the end effector 914 is in the open position, the jaws 916a, 916b can be positioned at a distance apart from one another with space therebetween. As discussed further below, tissue can be positioned within the space between the jaws 916a, 916b. When the end effector 914 is in the closed position, a longitudinal axis of the upper jaw 916a can be substantially parallel to a longitudinal axis of the lower jaw 916b, and the jaws 916a, 916b can be moved toward one another such that the distance therebetween is less than when the end effector 914 is in the open position. In some aspects, facing engagement surfaces 919a, 919b of the jaws 916a, 916b can be in direct contact with one another when the end effector 914 is in the closed position such that the distance between is substantially zero. As illustrated, the upper jaw 16a is configured to pivot relative to the shaft portion 912 and relative to the lower jaw 916b while the lower jaw 916b remains stationary. As illustrated, the jaws 916a, 916b have a substantially elongate and straight shape, but a person skilled in the art will appreciate that one or both of the jaws 916a, 916b can be curved along the longitudinal axis L1 of the end effector 914. The longitudinal axis L1 of the end effector 914 can be parallel to and coaxial with a longitudinal axis of the shaft portion 912 at least when the end effector 914 is in the closed configuration, and if the end effector 914 is configured to articulate relative to the shaft portion 912, when the end effector 914 is not articulated relative to the shaft portion 912.



FIG. 1D illustrates another aspect of a surgical device 1400 configured to cut and seal tissue clamped between first and second jaws 1402a, 1402b of the device's end effector 1404. The device 1400 can be configured to separately cut and seal tissue and configured to simultaneously cut and seal tissue, with a user of the device 1400 being able to decide whether cutting and sealing occurs separately or simultaneously. The device 1400 can generally be configured similar to the device 900 of FIG. 1C. The device 1400 can include a motor 1406, a closure trigger 1408, a firing actuator 1410, a controller 1412, a cutting element (not shown), a power connector (not shown) configured to attach to an external power source (not shown), an energy actuator 1414, an elongate shaft 1416 extending from a handle portion 1418 of the device 1400, a sensor 1420a, 1420b, the end effector 1404 at a distal end of the shaft 1416, a stationary handle 1424, and a gear box 1426 that can be operatively connected to the motor 1406 and configured to transfer output from the motor 1406 to the cutting element. As illustrated, the controller 1412 includes a printed circuit board (PCB), the sensor 1420a includes a Hall effect sensor, and the other sensor 1420b includes a Hall effect sensor. One of the jaws 1420a includes an insulator 1428 configured to facilitate safe energy application to tissue clamped by the end effector 1404. Each of the jaws 1402a, 1402b can include a proximal slot 1430a, 1430b configured to facilitate opening and closing of the end effector 1404, as will be appreciated by a person skilled in the art. The device 1400 can be configured to lock the closure trigger 1408 in the closed position, such as by the closure trigger 1408 including a latch 1432 configured to engage a corresponding latch 1434 on the stationary handle 1424 when the closure trigger 1408 is drawn close enough thereto so as to lock the closure trigger 1408 in position relative to the stationary handle 1424. The closure trigger latch 1432 can be configured to be manually released by a user so as to unlock and release the closure trigger 1408. A bias spring 1436 included in the handle portion 1418 can be coupled to the closure trigger 1408 and cause the closure trigger 1408 to open, e.g., move away from the stationary handle 1424, when the closure trigger 1408 is unlocked.



FIG. 2 shows a perspective view of the end effector 200 with the jaws 210a, 210b open, according to one aspect of the present disclosure. The end effector 200 may be attached to any of the various surgical instruments provided herein, including those configured to supply RF energy, ultrasonic energy, or various combinations of energy to the end effector 200. The end effector 200 may comprise the first or upper jaw 210a and the second or lower jaw 210b, which may be straight or curved. The upper jaw 210a may comprise a first distal end 212a and a first proximal end 214a. The lower jaw 210b may comprise a second distal end 212b and a second proximal end 214b. The first distal end 212a and the second distal end 212b may be collectively referred to as the distal end of the end effector when the jaws 210a, 210b are in a closed configuration. The first proximal end 214a and the second proximal end 214b may be collectively referred to as the proximal end of the end effector 200. The jaws 210a, 210b are pivotally coupled at the first and second proximal ends 214a, 214b. As shown in FIG. 2, The lower jaw 210b is fixed and the upper jaw 210a is pivotally movable relative to the lower jaw 210b from an open position to a closed position and vice versa. In the closed position, the first and second distal ends 212a, 212b are in proximity. In the open position, the first and second distal ends 214a, 214b are spaced apart. In other aspects, the upper jaw 210a may be fixed and the lower jaw 210b may be movable. In other aspects, both the upper and lower jaws 210a, 210b may be movable. The end effector 200 may comprise a pivot assembly 270 located at or in proximity to the proximal end of the end effector, which sets an initial gap between the jaws 210a, 210b at the proximal end of the end effector 200 in a closed position. The pivot assembly 270 may be welded in place in a gap setting process during manufacturing of the end effector 200, as described in greater detail below.


In some aspects, the first jaw 210a and the second jaw 210b may each comprise an elongated slot or channel 250a and 250b, respectively, disposed along their respective middle portions. The channels 250a and 250b may be sized and configured to accommodate the movement of an axially moveable member (not shown), which may comprise a tissue-cutting element, for example, comprising a sharp distal edge. The upper jaw 210a may comprise a first energy delivery surface 230a. The lower jaw 210b may comprise a second energy delivery surface 230b. The first and second energy delivery surfaces 230a, 230b face each other when the jaws 210a, 210b are in a closed configuration. The first energy delivery surface 230a may extend in a “U” shape around the channel 250a, connecting at the first distal end 212a. The second energy delivery surface 230b may extend in a “U” shape around the channel 250b, connecting at the second distal end 212b. The first and second energy delivery surfaces 230a, 230b may comprise electrically conductive material such as copper, gold plated copper, silver, platinum, stainless steel, aluminum, or any suitable electrically conductive biocompatible material, for example. The second energy delivery surface 230b may be connected to the supply conductor 131 shown in FIG. 1A, for example, thus forming the first electrode in the electrosurgical instrument 110. The first energy delivery surface 230a may be connected and the return conductor 133 shown in FIG. 1A, thus forming the second electrode the electrosurgical instrument 110. For example, the first energy delivery surface 230a may be grounded. Opposite connection is also possible.


As shown in FIG. 2, the second energy delivery surface 230b is formed by a conductive layer disposed, or at least partially disposed, along at least a portion of the body of the lower jaw 210b. The electrically conductive layer comprising the second energy delivery surface 230b may extend to the second distal end 212b, and thus operation of the end effector 200 is possible without actually grasping the tissue. The lower jaw 210b may further comprise an electrically insulative layer 260 arranged between the conductive layer and the body of the lower jaw 210b. The electrically insulative layer 260 may comprise electrically insulative material such as ceramic or nylon. Furthermore, the first energy delivery surface 230a is formed of an electrically conductive layer disposed, or at least partially disposed, along at least a portion of the body of the upper jaw 210a. The upper jaw 210a also may comprise an electrically insulative layer arranged between the conductive layer and the body of the upper jaw 210a.


The upper and lower jaws 210a and 210b may each comprise one or more electrically insulative tissue engaging members arranged on the first or second energy delivery surface 230a, 230b, respectively. Each of the electrically insulative tissue engaging members may protrude from the energy delivery surface and define a height above the energy delivery surface, and thus is sometimes referred to as a “tooth.” The electrically insulative tissue engaging members may comprise electrically insulative material such as ceramic or nylon. As shown in FIG. 2, the electrically insulative tissue engaging members 240 are arranged longitudinally, e.g., along the length of the lower jaw 210b, from the send proximal end 214b to the second distal end 212b and on the second energy delivery surface 230b. As shown in FIG. 2, the electrically insulative tissue engaging members 240 are in pairs, and each pair is arranged next to the channel 250b and is separated by the channel 250b. These paired electrically insulative tissue engaging members 240 as arranged here are sometimes referred to as “teeth.”


In other aspects, other configurations of the electrically insulative tissue engaging members 240 are possible. For example, the electrically insulative tissue engaging members 240 may be located at a distance away from the channel. For example, the electrically insulative tissue engaging members 240 may be arranged in a grid on the energy delivery surface. In other aspects, the electrically insulative tissue engaging members 240 may not have the half cylindrical cross sections as shown in FIG. 2, and may have cylindrical cross sections or rectangular cross sections. In other aspects, electrically insulative tissue engaging members 240 may be arranged on the first energy delivery surface 230a, or may be arranged on both of the first and second energy delivery surfaces 230a, 230b.



FIG. 3 is a block diagram of a surgical system 300 comprising a motor-driven surgical grasping instrument 900, 1400 (FIGS. 1C, 1D) according to some aspects of the present disclosure, the surgical instrument coupled to a generator 335 (340), according to some aspects. The motor-driven surgical cutting and fastening instrument 2 described in the present disclosure may be coupled to a generator 335 (340) configured to supply power to the surgical instrument through external or internal means. FIG. 3 describes examples of the portions for how electrosurgical energy may be delivered to the end effector. In certain instances, the motor-driven surgical instrument 110 may include a microcontroller 315 coupled to an external wired generator 335 or internal generator 340. Either the external generator 335 or the internal generator 340 may be coupled to A/C mains or may be battery operated or combinations thereof. The electrical and electronic circuit elements associated with the motor-driven surgical instrument 110 and/or the generator elements 335, 340 may be supported by a control circuit board assembly, for example. The microcontroller 315 may generally comprise a memory 310 and a microprocessor 305 (“processor”) operationally coupled to the memory 310. The microcontroller 315 may be configured to regulate the electrosurgical energy applied at the end effector according to the concepts disclosed herein and described more below. The processor 305 may control a motor driver 320 circuit generally utilized to control the position and velocity of the motor 325. The motor 325 may be configured to control transmission of energy to the electrodes at the end effector of the surgical instrument. In certain instances, the processor 305 can signal the motor driver 320 to stop and/or disable the motor 325, as described in greater detail below. In certain instances, the processor 305 may control a separate motor override circuit which may comprise a motor override switch that can stop and/or disable the motor 325 during operation of the surgical instrument in response to an override signal from the processor 305. It should be understood that the term processor as used herein includes any suitable microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or at most a few integrated circuits. The processor is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system.


In some cases, the processor 305 may be any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In some cases, any of the surgical instruments of the present disclosures may comprise a safety processor such as, for example, a safety microcontroller platform comprising two microcontroller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. Nevertheless, other suitable substitutes for microcontrollers and safety processor may be employed, without limitation. In one instance, the safety processor may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.


In certain instances, the microcontroller 315 may be an LM 4F230H5QR, available from Texas Instruments, for example. In at least one example, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory 310 of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet. Other microcontrollers may be readily substituted for use in the motor-driven surgical instrument 110. Accordingly, the present disclosure should not be limited in this context.


Referring again to FIG. 3, the surgical system 300 may include a wired generator 335, for example. In certain instances, the wired generator 335 may be configured to supply power through external means, such as through electrical wire coupled to an external generator. In some cases, the surgical system 300 also may include or alternatively include an internal generator 340. The internal generator 340 may be configured to supply power through internal means, such as through battery power or other stored capacitive source. Further descriptions of the internal generator 340 and the wired generator 335 are described below.


In certain instances, the motor-driven surgical instrument 110 may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. In certain instances, the motor-driven surgical instrument 110 may comprise various executable modules such as software, programs, data, drivers, and/or application program interfaces (APIs), for example.


Referring to FIG. 4A, graph 400 and provides a visual depiction of the level of impedance over time present in tissue undergoing a sealing procedure during surgery. This example graph 400 provides a conceptual framework for the types of power adjustments employed according to the present disclosures. Here, time zero represents the first point at which a surgical instrument, such as instrument 110, applies electrosurgical energy to tissue at a surgical site. The Y axis represents the level of tissue impedance (Z) present when a substantially constant level of power is applied to the tissue via an end effector of the instrument 110. At time zero, the tissue exhibits an initial level of impedance (Zinit) 410. The initial level of impedance 410 may be based on native physiological properties about the tissue, such as density, amount of moisture, and what type of tissue it is. Over a short period of time, it is known that the level of impedance actually dips slightly as power is continuously applied to the tissue. This is a common phenomenon that occurs in all kinds of tissue. A minimum level of impedance (Zmin) 420 is eventually reached. From here, the overall level of impedance monotonically increases, and at first increases with a slow rise. Eventually, a transition point is reached such that level of impedance starts to dramatically rise above the initial level of impedance 410. This point is generally known as a transition impedance level (Ztrans) 430. After the transition impedance 430 is reached, the level of impedance rises dramatically over time, and beyond this point the tissue impedance is generally too high for electrosurgical energy to have a substantial impact on the tissue. Therefore, termination 440 of the electrosurgical energy generally occurs soon after the transition impedance 430 point is reached. Thus, the period of time between the initial impedance 410 and when the transition impedance 430 is reached is generally the only effective time when electrosurgical energy may be applied to the tissue with any positive effect. This region is sometimes known as the bathtub region 450, due to the general shape of the curve over this time period. It is therefore desirable extend or prolong the bathtub region 450 in order to increase the amount of time where electrosurgical energy may be applied.


Referring to FIG. 4B, graph 450 shows an example of a typical load curve for a generator configured to provide power to an electrosurgical system of the present disclosure. The left vertical axis represents power (W) and voltage (V), the right vertical axis represents current (A), and the horizontal axis represents load impedance (Ohms). The voltage curve 452, current curve 454, and power curve 456 are shown as functions of load impedance. As shown, the amount of power and voltage applied to tissue typically reaches an impassable threshold, even over ever increasing load impedances. Looked at another way, the amount of energy applied to the tissue at a surgical site has a noticeable effect only up to certain levels of load impedances, and after a certain impedance threshold, such as 175 ohms, applying more or sustained power typically has little to no benefit. Graph 450 therefore provides further detail on why exceeding the transition impedance threshold, as shown in graph 400, generally represents the cutoff point to which power should continue to be applied.


Referring to FIG. 5, graph 500 provides another example of the level of tissue impedance over time, this time using more empirical data. As shown, the level of tissue impedance stays relatively low until the transition impedance level is reached, which occurs a little after four seconds in this example. In some cases, the transition impedance level is defined by the point at which the level of impedance rises above twice the value of the minimum impedance level, while in other cases it may be defined as the point at which the initial impedance level is reached again. Regardless of which definition is used, the transition impedance level generally occurs at around the same time, assuming a constant level of power is applied to the tissue. Furthermore, it is known that the transition impedance level is reliably a function of the initial impedance level of the tissue. In other words, depending on what the initial level of impedance is, the transition impedance level can be predicted reliably in the tissue.


Referring to FIG. 6A, graph 600 illustrates an example power profile of an amount of electrosurgical energy applied by a surgical instrument 110 to tissue at a surgical site over time, in order to extend or prolong the bathtub region, according to some aspects. The continuous, piecewise curve 610 shows that the level of power changes in multiple stages. Initially, the electrosurgical energy applied rises to a predetermined level of power, such as 20 W in this case. This represents the initial desired level of power used for the surgical procedure in question. While the tissue impedance is generally in the bathtub region, this initial level of power is acceptable. However, as the tissue impedance begins to change and rises toward the transition impedance level, according to some aspects, the level of power is tapered down at a steady rate, rather than the level of power be constantly maintained like in conventional methods. In this example, it is supposed that the transition impedance level is 200 ohms, and may have been determined based on a measurement of the initial impedance level. Thus, as the tissue impedance rises but before it reaches the transition impedance level, such as when the tissue impedance reaches 75% of the transition impedance level (i.e., 150 ohms), the power system of the surgical instrument 110 may cause the level of power to decrease at a steady rate, as shown in the downward sloped region 620. For example, the power level may be dropped by 50% over the course of time where the tissue impedance level continues to climb until it reaches the transition impedance level. Finally, once the transition impedance level is reached, the power to the surgical instrument 110 may be cut dramatically, as further application of power beyond the transition impedance level may be ineffective or may even cause unwanted damage to the tissue. In some aspects, the tapering of the power may be achieved in a number of ways that are all within the purview of this disclosure. For example, the microprocessor 315 (see FIG. 3) may regulate the power coming from generators 335 or 340 via pulse width modulation or by applying an increase in resistance via the driver 320. In general, the present disclosures may employ any methods for lowering the power known to those with skill in the art, and aspects are not so limited.


Referring to FIG. 6B, graph 650 shows an example adjusted impedance profile over time as a result of the adjusted power applied to the surgical instrument 110, such as the example power profile 610, according to some aspects. As shown, the rise in impedance out of the bathtub region may be made more gradual due to the tapering of the power made according to aspects of the present disclosure. In addition, the overall length of the bathtub region may be extended or prolonged. The gradual rise of the tissue impedance may also allow for better care and treatment of the tissue under surgery. Conventionally, continuous power applied to the tissue after the transition impedance level is reached may cause unwanted damage to the tissue, such as burning tissue, sizzling, and popping. Due to the adjustments disclosed herein, this unwanted damage may be reduced or even eliminated.


Referring to FIG. 7, graph 700 shows an example power profile of the tapered load curve concept introduced in FIG. 6A, with additional power characteristics superimposed. Here, the curve 710 as shown by the thick line represents a measure of voltage as a function of load impedance in the tissue. The curve 720 as shown by the medium line represents a measure of calculated power applied to the tissue as a function of load impedance. The calculated power may be the measure of power that is determined by the power system of the surgical instrument 110, while the curve 730 as shown by the dashed line represents the actual or effective power applied to the tissue. As shown, both of these curves exhibit a power taper that is reduced in a stepwise manner. This may be caused by the power being duty cycled at different rates over time, i.e., via pulse width modulation. The curve 740 as shown by the thin line represents a measure of current. The scale for the current is shown on the right-hand side, while the scale for power and voltage is shown on the left.


As shown, the power is tapered off in this example when the load impedance is measured to be approximately 60 to 70 ohms, and the power is nearly completely cut off when the load impedance is measured to be about 100 ohms. The voltage drops dramatically during the tapered region of the power profile, but begins to slowly rise again due to the low but constant application of power applied while the load impedance continues to increase. Practically, the power may be cut off long before the load impedance reaches these higher levels.


Referring to FIG. 8, in some aspects, the surgical instrument 110 may be configured to apply different power algorithms to manage the rise of tissue impedance, based on varying levels of initial tissue impedance at the surgical site. The flowchart 800 provides an example of how multiple load curves may be programmed into the surgical instrument 110 to apply different power adjustments based on impedance measurements during the sealing procedures. For example, an algorithm to adjust the power may begin at block 810 that includes applying power to the end effector and ultimately to the tissue in question at the surgical site. At block 820, while the end effector is applying the electrosurgical energy to the tissue, the impedance may be measured, and the minimum impedance may be determined based on the point at which the impedance eventually begins to rise. The end effector may include one or more sensors configured to monitor the impedance, voltage, or current, and may apply a number of mathematical formulas to determine what the measured impedance is. Various examples for how the tissue impedance may be measured are described in U.S. patent application Ser. Nos. 14/230,349 and 14/660,620, which are incorporated herein by reference.


In this example, three different power profiles may be available to be applied to the tissue, based on the measured level of minimum impedance: low, medium, and high. In this example, at block 830, the low minimum impedance threshold is defined as when the minimum impedance is less than 30 ohms. At block 840, the medium minimum impedance threshold is defined as when the minimum impedance is between 30 and 70 ohms. At block 850, the high minimum impedance threshold is defined as when the minimum impedance is greater than 70 ohms. Based on the measured minimum impedance falling into one of these three categories, the load curve may be adjusted according to three characteristics. For example, if following the low minimum impedance profile, the power level in the bathtub region may be set to a maximum available power level (e.g., 30 W), the transition impedance threshold may be defined as 30 ohms greater than the measured minimum impedance, and the impedance at which all power is terminated may be set to 250 ohms. Based on these three characteristics, the power load curve may be generated. Examples of these different load curves are visually depicted in FIGS. 9 and 10, below. As another example, if following the medium minimum impedance profile, the power level in the bathtub may be set to a moderate available power level (e.g., 20 W), the transition impedance threshold may be defined as 50 ohms greater than the measured minimum impedance, and the impedance at which all power is terminated may be set to 300 ohms. As a third example, if following the high minimum impedance profile, the power level in the bathtub region may be set to a low available power level (e.g., 10 W), the transition impedance threshold may be defined as 100 ohms greater than the measured minimum impedance, and the impedance at which all power is terminated may be set to 400 ohms.


In some aspects, rather than the minimum impedance being measured, and initial impedance may be measured and the load curves may be varied based on measured initial impedance levels. It may be apparent to those with skill in the art how the examples provided herein may be modified to account for an initial impedance level being measured, rather than the minimum impedance level being measured. For example, the calculation of the transition impedance may be offset by a different factor to account for the difference in value between the minimum impedance and the initial impedance. In addition, the thresholds under which the different load curves may be followed (e.g., blocks 830, 840, and 850) may be based on modified criteria according to the different ranges of initial impedance.


The power system in the medical instrument 110 may apply power to the tissue according to the load curve, depending on which load curve is chosen. In all cases, the power system may be configured to taper the power and the bathtub region as the impedance begins to slowly rise toward the transition impedance level, consistent with the concepts described in FIGS. 6A and 7.


Once the medical instrument 110 has finished applying power according to one of the load curves, a termination procedure may be executed at block 860. In some aspects, the termination power sequence may be based on what termination impedance value was set in the previous blocks of flowchart 800. For example, a series of termination pulses may be transmitted to the end effector of the medical instrument 110.


Referring to FIG. 9, a visual depiction of an example load curve under the low minimum impedance threshold is shown (see FIG. 8), according to some aspects. In this example, it may have been determined that the minimum impedance is 20 ohms, and therefore that the transition impedance level is 50 ohms (i.e., 30 ohms greater than the minimum impedance). The power level in the bathtub region may be set to a maximum level, such as 30 W. After the transition impedance level is reached, the power level may be dropped to a minimum, and may be ultimately terminated once the impedance reaches 250 ohms (not shown). In some aspects, the power level is dramatically cut once the transition impedance level is reached, while in other cases the power level may be tapered to decrease more gradually prior to the transition impedance being reached.


Referring to FIG. 10, a visual depiction of an example load curve under the moderate impedance threshold is shown (see FIG. 8), according to some aspects. In this example, it may have been determined that the minimum impedance is 50 ohms, and therefore that the transition impedance level is 100 ohms (i.e., 50 ohms greater than the minimum impedance). The power level in the bathtub region may be set to a moderate level, such as 20 W. After the transition impedance level is reached, the power level may be dropped to a minimum, and may be ultimately terminated once the impedance reaches 300 ohms (not shown). In some aspects, the power level is dramatically cut once the transition impedance level is reached, while in other cases the power level may be tapered to decrease more gradually prior to the transition impedance being reached.


In general, the example power algorithms and concepts from which these examples are based on may be adapted to many different types of electrode configurations, and aspects are not so limited. Various examples include electrodes of various length and width, including wider, narrower, longer or shorter electrodes than the examples shown herein; electrodes using I-Beam technology; motorized electrosurgical systems (similar to those described herein); scissor-type electrodes; and hand-held forceps-like instruments, whether open, laparoscopic or robotic. The power algorithms described herein may be set and adapted to these different scenarios by adjusting the various parameters as shown and described herein.



FIG. 11 is a graphical illustration 1100 of impedance threshold and minimum pulse duration showing an example of additional adjustments that can be made to varying the power to account for other tissue properties, according to one aspect of the present disclosure. The vertical axis represents, from left to right, Voltage (rms), Current (rms), Power (W), and Impedance (Ohms)/Energy (J) and the horizontal axis represents Time. Accordingly, a voltage curve 1102, current curve 1104, power curve 1106, and impedance/energy curve 1108 are shown superimposed as a function of time. Referring to FIG. 11, the illustration 1100 shows an example of additional adjustments that can be made to varying the power, in order to account for other tissue properties. The illustration 1100 shows example impedance thresholds and minimum pulse durations over time, along with corresponding levels of power, voltage and current. In some aspects, the initial power level applied to the tissue may be based on additional factors, and the power adjustments may be varied to prolong the bathtub region based on these initial varied power levels, according to some aspects. For example, fatty tissues tend to have higher impedances during sealing. These impedances are often greater than 50 ohms after the initial pulses of energy are delivered to the tissue. Without accounting for these tissue properties, if the tissue impedance is greater than 50 ohms, the tissue will not receive full power from the generator. In response, increasing this threshold from 50 to 125 ohms (see circle 1 in illustration 1100) may enable the generator to deliver full power into the base mesentery, thus reducing sealing cycle time. In this case, if human tissue is more resistive than 125 ohms, then long seal times could occur. The threshold may be therefore need to be increased beyond 125 ohms in other circumstances.


Regarding minimum pulse duration, it has been observed that with short 180 millisecond (ms) pulses, the impedance (black curve, e.g., curve within circle 1) tends to stall and not rise quickly (see the movement of this curve within the time span under circle 2). In order to allow the tissue impedance to increase, the duration of the pulse on time can be increased. Thus, in some aspects, the minimum pulse width may be increased from 180 ms to 480 ms for composite load curve (CLC) tables.



FIG. 12 is a graphical illustration 1200 of voltage cutback caused by an impedance threshold greater than 325 Ohms, according to one aspect of the present invention. As shown, the voltage curve 1102 based on the CLC table bounces between 60 and 100 Volts (see circle 3 in illustration 1100) as tissue impedance approaches a 300 Ohm termination impedance. This bouncing causes the impedance rise rate to slow down as can be seen in the bouncing impedance/energy curve 1108. The voltage cutback is caused by a 325 Ohm threshold programmed in the original algorithm. If the 325 Ohm threshold is exceeded, the generator is configured to reduce the applied voltage from 100 volts to 60 volts. Accordingly, one aspect of the algorithm described herein does not include an impedance threshold that is greater than 325 Ohms.



FIG. 13 is a graphical illustration 1300 of a power pulse region of the graphical illustration 1100 shown in FIG. 11, according to one aspect of the present disclosure. In one aspect, the algorithm is configured such that the duration of the power pulse is 1 second for each step of the voltage curve 1102. It was observed that during the later half of each 1 second pulse the rise rate (slope) of the impedance curve 1108 would decrease (see circle 4 in illustration 1300). Accordingly, in one aspect of the algorithm, the duration of the power pulse is decreased to 0.5 seconds for each step of the voltage curve 1102 to prevent the impedance trajectory from stalling during the power pulse. In accordance with the 0.5 seconds duration of the power pulse, the number of power pulses is reduced from 4 to 3 (see circle 5 in illustration 1300). The duration of each power pulse remains 1 second. This allows tissue which is done earlier to proceed through the algorithm and thus finish sooner.


In general, aspects of the present disclosure may allow for various types of adjustments to be made to the amount of electrosurgical energy applied to the tissue at the surgical site, based on measured levels of impedance in the surgical tissue. For example, the power algorithms made differ if the type of energy applied to the surgical tissue includes RF energy versus ultrasonic energy. The various characteristics of the load curves may need to be adjusted, e.g., what the maximum power level can be set to, what should the transition impedance be set to, when should the energy be terminated, at what level impedance should the power begin to taper off, etc., due to how the tissue may respond based on the different types of energy being applied to it. However, in general, the general shapes of the power profiles should remain consistent, and it may simply be a matter of determining what values should be set for the critical characteristics of the load curves, based on a measured minimum impedance or initial impedance, and in some aspects also based on various other characteristics of the types of energy applied to the tissue.


In some cases, various aspects may be implemented as an article of manufacture. The article of manufacture may include a computer readable storage medium arranged to store logic, instructions and/or data for performing various operations of one or more aspects. In various aspects, for example, the article of manufacture may comprise a magnetic disk, optical disk, flash memory or firmware containing computer program instructions suitable for execution by a general purpose processor or application specific processor. The aspects, however, are not limited in this context.


The functions of the various functional elements, logical blocks, modules, and circuits elements described in connection with the aspects disclosed herein may be implemented in the general context of computer executable instructions, such as software, control modules, logic, and/or logic modules executed by the processing unit. Generally, software, control modules, logic, and/or logic modules comprise any software element arranged to perform particular operations. Software, control modules, logic, and/or logic modules can comprise routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types. An implementation of the software, control modules, logic, and/or logic modules and techniques may be stored on and/or transmitted across some form of computer-readable media. In this regard, computer-readable media can be any available medium or media useable to store information and accessible by a computing device. Some aspects also may be practiced in distributed computing environments where operations are performed by one or more remote processing devices that are linked through a communications network. In a distributed computing environment, software, control modules, logic, and/or logic modules may be located in both local and remote computer storage media including memory storage devices.


Additionally, it is to be appreciated that the aspects described herein illustrate example implementations, and that the functional elements, logical blocks, modules, and circuits elements may be implemented in various other ways which are consistent with the described aspects. Furthermore, the operations performed by such functional elements, logical blocks, modules, and circuits elements may be combined and/or separated for a given implementation and may be performed by a greater number or fewer number of components or modules. As will be apparent to those of skill in the art upon reading the present disclosure, each of the individual aspects described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope of the present disclosure. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


Unless specifically stated otherwise, it may be appreciated that terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a computer or computing system, or similar electronic computing device, such as a general purpose processor, a DSP, ASIC, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein that manipulates and/or transforms data represented as physical quantities (e.g., electronic) within registers and/or memories into other data similarly represented as physical quantities within the memories, registers, or other such information storage, transmission, or display devices.


It is worthy to note that some aspects may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not intended as synonyms for each other. For example, some aspects may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. With respect to software elements, for example, the term “coupled” may refer to interfaces, message interfaces, and application program interface, exchanging messages, and so forth.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Although various aspects have been described herein, many modifications, variations, substitutions, changes, and equivalents to those aspects may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed aspects. The following claims are intended to cover all such modification and variations.

Claims
  • 1. A surgical system, comprising: an end effector comprising an energy delivery component configured to transmit electrosurgical energy to tissue; anda control circuit, configured to: cause the energy delivery component to apply preliminary power to tissue;measure impedance of the tissue;determine a minimum tissue impedance;compare the minimum tissue impedance to a plurality of tissue impedance thresholds, wherein a plurality of different load curve profiles are associated with the plurality of tissue impedance thresholds;set a load curve based on the comparison matching with one of the plurality of different load curve profiles, and the load curve comprises a maximum power value, a transition tissue impedance threshold, and a termination tissue impedance threshold; andset a value for the maximum power value, the transition tissue impedance threshold, and the termination tissue impedance threshold, wherein the transition tissue impedance threshold is a function of the minimum tissue impedance, and wherein at a tissue impedance value greater than the transition tissue impedance threshold, electrosurgical energy has an insubstantial impact on the tissue;determine that the impedance of the tissue changes from an initial level to a predetermined proportion of the transition tissue impedance threshold; andfor an application period, cause the energy delivery component to start from the predetermined proportion of the transition tissue impedance threshold and decrease the electrosurgical energy at a steady taper down rate from a first power level until a second power level on the load curve is reached, wherein the steady taper down rate extends a period of time where the tissue is sealed with an amount of energy that does not cause unwanted damage to the tissue, and wherein the steady taper down rate is a gradual rate of change over time until the second power level on the load curve is reached.
  • 2. The surgical system of claim 1, wherein the plurality of tissue impedance thresholds comprises a first tissue impedance threshold and a second tissue impedance threshold.
  • 3. The surgical system of claim 2, wherein: at the minimum tissue impedance that is below the first tissue impedance threshold, the load curve comprises a low minimum tissue impedance profile;at the minimum tissue impedance that is above the first tissue impedance threshold and below the second tissue impedance threshold, the load curve comprises a medium minimum tissue impedance profile; andat the minimum tissue impedance that is above the second tissue impedance threshold, the load curve comprises a high minimum tissue impedance profile.
  • 4. The surgical system of claim 1, wherein the transition tissue impedance threshold is defined as a predetermined amount greater than the minimum tissue impedance.
  • 5. The surgical system of claim 1, wherein the control circuit is further configured to cause the energy delivery component to apply subsequent power to the tissue based on the load curve.
  • 6. The surgical system of claim 5, wherein the control circuit is configured to initially apply the first power level at the maximum power value.
  • 7. The surgical system of claim 6, wherein the control circuit is configured to terminate the subsequent power at the termination tissue impedance threshold.
  • 8. A surgical system comprising: an end effector comprising an energy delivery component configured to transmit electrosurgical energy to tissue; anda control circuit operably coupled to the energy delivery component, wherein the control circuit is configured to: determine an initial tissue impedance;determine a transition impedance threshold level as a function of the initial tissue impedance, and wherein at a tissue impedance value greater than the transition impedance threshold level, electrosurgical energy has an insubstantial impact on the tissue;determine that a tissue impedance changes from the initial tissue impedance to a predetermined proportion of the transition impedance threshold level, wherein the transition impedance threshold level is less optimal for tissue sealing at a first power level; andfor an application period, cause the energy delivery component to start from the predetermined proportion of the transition impedance threshold level and decrease the electrosurgical energy at a steady taper down rate from the first power level until a second power level is reached, wherein the steady taper down rate extends a period of time where the tissue is sealed with an amount of energy that does not cause unwanted damage to the tissue, and wherein the steady taper down rate is a gradual rate of change overtime until the second power level is reached.
  • 9. The surgical system of claim 8, wherein the application period comprises a point in time where the tissue impedance rises above a minimum impedance value in the tissue.
  • 10. The surgical system of claim 9, further comprising a sensor configured to measure the minimum impedance value in the tissue.
  • 11. The surgical system of claim 8, wherein the energy delivery component is configured to transmit RF and ultrasonic energy.
  • 12. The surgical system of claim 8, wherein the application period is a first application period, wherein the control circuit is further configured to, for a second application period, cause the energy delivery component to reduce the second power level to a third power level.
  • 13. The surgical system of claim 12, wherein the second application period comprises a point in time where the tissue impedance rises above the transition impedance threshold level.
US Referenced Citations (2704)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3989952 Hohmann Nov 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4244371 Farin Jan 1981 A
4281785 Brooks Aug 1981 A
4300083 Helges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4353371 Cosman Oct 1982 A
4409981 Lundberg Oct 1983 A
4445063 Smith Apr 1984 A
4461304 Perstein Jul 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4549147 Kondo Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4593691 Lindstrom et al. Jun 1986 A
4608981 Rothfuss et al. Sep 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4694835 Strand Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5001649 Lo et al. Mar 1991 A
5009661 Michelson Apr 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042461 Inoue et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5052145 Wang Oct 1991 A
5061269 Muller Oct 1991 A
5075839 Fisher et al. Dec 1991 A
5084052 Jacobs Jan 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5113139 Furukawa May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190517 Zieve et al. Mar 1993 A
5190518 Takasu Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5231989 Middleman et al. Aug 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242339 Thornton Sep 1993 A
5242460 Klein et al. Sep 1993 A
5246003 DeLonzor Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5269297 Weng et al. Dec 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5318525 West et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5339723 Huitema Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5406503 Williams, Jr. et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatia Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451053 Garrido Sep 1995 A
5451161 Sharp Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5507297 Slater et al. Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522832 Kugo et al. Jun 1996 A
5522839 Pilling Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5548286 Craven Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5562703 Desai Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5573534 Stone Nov 1996 A
5577654 Bishop Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5600526 Russell et al. Feb 1997 A
5601601 Tai et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5626608 Cuny et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649955 Hashimoto et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5655100 Ebrahim et al. Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704791 Gillio Jan 1998 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722980 Schulz et al. Mar 1998 A
5723970 Bell Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5776155 Beaupre et al. Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810828 Lightman et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827271 Buysse Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5854590 Dalstein Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911699 Anis et al. Jun 1999 A
5913823 Hedberg et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5987344 West Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080149 Huang et al. Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6117152 Huitema Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6126658 Baker Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132429 Baker Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6156029 Mueller Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205383 Hermann Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6232899 Craven May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6306131 Hareyama Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6356224 Wohlfarth Mar 2002 B1
6358246 Behl et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6390973 Ouchi May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405184 Bohme et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6459363 Walker et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6590733 Wilson et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6632221 Edwards et al. Oct 2003 B1
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6730080 Harano et al. May 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6819027 Saraf Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6898536 Wiener et al. May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6988295 Tillim Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7018389 Camerlengo Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083613 Treat Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7113831 Hooven Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7119516 Denning Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Ratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160259 Tardy et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7166103 Carmel et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226447 Uchida et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7264618 Murakami et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7318832 Young et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckai et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357802 Palanker et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7412008 Lliev Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
7422582 Malackowski et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431694 Stefanchik et al. Oct 2008 B2
7431704 Babaev Oct 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455641 Yamada et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473145 Ehr et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507239 Shadduck Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520865 Radley Young et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
7535233 Kojovic et al. May 2009 B2
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7563259 Takahashi Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7601136 Akahoshi Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7617961 Viola Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645240 Thompson et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7649410 Andersen et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7667592 Ohyama et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678105 McGreevy et al. Mar 2010 B2
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7696441 Kataoka Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7713267 Pozzato May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7731717 Odom et al. Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7744615 Couture Jun 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7751115 Song Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7768510 Tsai et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815238 Cao Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7862561 Swanson et al. Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7878991 Babaev Feb 2011 B2
7879029 Jimenez Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883475 Dupont et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Iikura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931611 Novak et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972329 Refior et al. Jul 2011 B2
7975895 Milliman Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8002732 Visconti Aug 2011 B2
8002770 Swanson et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025672 Novak et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8034049 Odom et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8055208 Lilla et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057468 Konesky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105230 Honda et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8118276 Sanders et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8170717 Sutherland et al. May 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8211100 Podhajsky et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8221306 Okada et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8221418 Prakash et al. Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226665 Cohen Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246616 Amoah et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8246642 Houser et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292905 Taylor et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303579 Shibata Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8357149 Govari et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisei Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398394 Sauter et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stabler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430874 Newton et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8437832 Govari et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444663 Houser et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8460284 Aronow et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8471685 Shingai Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Horner Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512337 Francischelli et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535308 Govari et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8556929 Harper et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562600 Kirkpatrick et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568397 Horner et al. Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8585727 Polo Nov 2013 B2
8588371 Ogawa et al. Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597193 Grunwald et al. Dec 2013 B2
8597287 Benamou et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603085 Jimenez Dec 2013 B2
8603089 Viola Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8617152 Werneth et al. Dec 2013 B2
8617194 Beaupre Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8628534 Jones et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641663 Kirschenman et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657489 Ladurner et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663214 Weinberg et al. Mar 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8696917 Petisce et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709008 Willis et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8733613 Huitema et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8738110 Tabada et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8771293 Surti et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8777945 Floume et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795275 Hafner Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808204 Irisawa et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8874220 Draghici et al. Oct 2014 B2
8876726 Amit et al. Nov 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8926620 Chasmawala et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8932282 Gilbert Jan 2015 B2
8932299 Bono et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8945126 Garrison et al. Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968296 McPherson Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8974932 McGahan et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986297 Daniel et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
8998891 Garito et al. Apr 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9023070 Levine et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028478 Mueller May 2015 B2
9028481 Behnke, II May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9037259 Mathur May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039696 Assmus et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9060778 Condie et al. Jun 2015 B2
9066720 Ballakur et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072538 Suzuki et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107684 Ma Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113907 Allen, IV et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9144453 Rencher et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9165114 Jain et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9173656 Schurr et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186199 Strauss et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9186796 Ogawa Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192428 Houser et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198718 Marczyk et al. Dec 2015 B2
9198776 Young Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216051 Fischer et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9265973 Akagane Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9305497 Seo et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9333034 Hancock May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364171 Harris et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375264 Horner et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9385831 Marr et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9393070 Gelfand et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9427279 Muniz-Medina et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9442288 Tanimura Sep 2016 B2
9445784 O'Keeffe Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9474542 Slipszenko et al. Oct 2016 B2
9474568 Akagane Oct 2016 B2
9486236 Price et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9498275 Wham et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9522032 Behnke Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9545497 Wenderow et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9560995 Addison et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9585714 Livneh Mar 2017 B2
9592072 Akagane Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603669 Govari et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9636165 Larson et al. May 2017 B2
9636167 Gregg May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9649173 Choi et al. May 2017 B2
9655670 Larson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9671860 Ogawa et al. Jun 2017 B2
9674949 Liu et al. Jun 2017 B1
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9681884 Clem et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9693817 Mehta et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9705456 Gilbert Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9717548 Couture Aug 2017 B2
9717552 Cosman et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724120 Faller et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757142 Shimizu Sep 2017 B2
9757150 Alexander et al. Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770285 Zoran et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861381 Johnson Jan 2018 B2
9861428 Trees et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867670 Brannan et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9872726 Morisaki Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9878184 Beaupre Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9901321 Harks et al. Feb 2018 B2
9901383 Hassler, Jr. Feb 2018 B2
9901754 Yamada Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10004526 Dycus et al. Jun 2018 B2
10004527 Gee et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10039588 Harper et al. Aug 2018 B2
10045794 Witt et al. Aug 2018 B2
10045810 Schall et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080609 Hancock et al. Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10085792 Johnson et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10111703 Cosman, Jr. et al. Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10123835 Keller et al. Nov 2018 B2
10130367 Cappola et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130412 Wham Nov 2018 B2
10154848 Chernov et al. Dec 2018 B2
10154852 Conlon et al. Dec 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172665 Heckel et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10179022 Yates et al. Jan 2019 B2
10188455 Hancock et al. Jan 2019 B2
10194972 Yates et al. Feb 2019 B2
10194973 Wiener et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10194999 Bacher et al. Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201382 Wiener et al. Feb 2019 B2
10226273 Messerly et al. Mar 2019 B2
10231747 Stulen et al. Mar 2019 B2
10238385 Yates et al. Mar 2019 B2
10238391 Leimbach et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10245104 McKenna et al. Apr 2019 B2
10251664 Shelton, IV et al. Apr 2019 B2
10263171 Wiener et al. Apr 2019 B2
10265117 Wiener et al. Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10271840 Sapre Apr 2019 B2
10278721 Dietz et al. May 2019 B2
10285724 Faller et al. May 2019 B2
10285750 Coulson et al. May 2019 B2
10299810 Robertson et al. May 2019 B2
10299821 Shelton, IV et al. May 2019 B2
10314579 Chowaniec et al. Jun 2019 B2
10314638 Gee et al. Jun 2019 B2
10321950 Yates et al. Jun 2019 B2
10335182 Stulen et al. Jul 2019 B2
10335183 Worrell et al. Jul 2019 B2
10335614 Messerly et al. Jul 2019 B2
10342602 Strobl et al. Jul 2019 B2
10342606 Cosman et al. Jul 2019 B2
10349999 Yates et al. Jul 2019 B2
10357303 Conlon et al. Jul 2019 B2
10363084 Friedrichs Jul 2019 B2
10376305 Yates Aug 2019 B2
10398466 Stulen et al. Sep 2019 B2
10398497 Batross et al. Sep 2019 B2
10413352 Thomas et al. Sep 2019 B2
10420579 Wiener et al. Sep 2019 B2
10420607 Woloszko et al. Sep 2019 B2
10426507 Wiener et al. Oct 2019 B2
10426978 Akagane Oct 2019 B2
10433865 Witt et al. Oct 2019 B2
10433866 Witt et al. Oct 2019 B2
10433900 Harris et al. Oct 2019 B2
10441308 Robertson Oct 2019 B2
10441310 Olson et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10448986 Zikorus et al. Oct 2019 B2
10456193 Yates et al. Oct 2019 B2
10463421 Boudreaux et al. Nov 2019 B2
10463887 Witt et al. Nov 2019 B2
10485607 Strobl et al. Nov 2019 B2
10492849 Juergens et al. Dec 2019 B2
10507033 Dickerson et al. Dec 2019 B2
10512795 Voegele et al. Dec 2019 B2
10517627 Timm et al. Dec 2019 B2
10524787 Shelton, IV et al. Jan 2020 B2
10524854 Woodruff et al. Jan 2020 B2
10524872 Stewart et al. Jan 2020 B2
10537351 Shelton, IV et al. Jan 2020 B2
10543008 Vakharia et al. Jan 2020 B2
10548655 Scheib et al. Feb 2020 B2
10555769 Worrell et al. Feb 2020 B2
10561560 Boutoussov et al. Feb 2020 B2
10575892 Danziger et al. Mar 2020 B2
10595929 Boudreaux et al. Mar 2020 B2
10595930 Scheib et al. Mar 2020 B2
10610286 Wiener et al. Apr 2020 B2
10617420 Shelton, IV et al. Apr 2020 B2
10617464 Duppuis Apr 2020 B2
10624691 Wiener et al. Apr 2020 B2
RE47996 Turner et al. May 2020 E
10639092 Corbett et al. May 2020 B2
10639098 Cosman et al. May 2020 B2
10646269 Worrell et al. May 2020 B2
10677764 Ross et al. Jun 2020 B2
10687884 Wiener et al. Jun 2020 B2
10688321 Wiener et al. Jun 2020 B2
10695119 Smith Jun 2020 B2
10702329 Strobl et al. Jul 2020 B2
10709469 Shelton, IV et al. Jul 2020 B2
10709906 Nield Jul 2020 B2
10716615 Shelton, IV et al. Jul 2020 B2
10729458 Stoddard et al. Aug 2020 B2
10729494 Parihar et al. Aug 2020 B2
10736685 Wiener et al. Aug 2020 B2
10751108 Yates et al. Aug 2020 B2
10758294 Jones Sep 2020 B2
10765470 Yates et al. Sep 2020 B2
10779845 Timm et al. Sep 2020 B2
10779849 Shelton, IV et al. Sep 2020 B2
10779879 Yates et al. Sep 2020 B2
10820938 Fischer et al. Nov 2020 B2
10828058 Shelton, IV et al. Nov 2020 B2
10835307 Shelton, IV et al. Nov 2020 B2
10842523 Shelton, IV et al. Nov 2020 B2
10842563 Gilbert et al. Nov 2020 B2
10856896 Eichmann et al. Dec 2020 B2
10856929 Yates et al. Dec 2020 B2
10856934 Trees et al. Dec 2020 B2
10874465 Weir et al. Dec 2020 B2
10881449 Boudreaux et al. Jan 2021 B2
10888347 Witt et al. Jan 2021 B2
10898256 Yates et al. Jan 2021 B2
10912580 Green et al. Feb 2021 B2
10912603 Boudreaux et al. Feb 2021 B2
10925659 Shelton, IV et al. Feb 2021 B2
10932847 Yates et al. Mar 2021 B2
10952788 Asher et al. Mar 2021 B2
10966741 Illizaliturri-Sanchez et al. Apr 2021 B2
10966747 Worrell et al. Apr 2021 B2
10987123 Weir et al. Apr 2021 B2
10987156 Trees et al. Apr 2021 B2
10993763 Batross et al. May 2021 B2
11020140 Gee et al. Jun 2021 B2
11033322 Wiener et al. Jun 2021 B2
11051840 Shelton, IV et al. Jul 2021 B2
11051873 Wiener et al. Jul 2021 B2
11058447 Houser Jul 2021 B2
11058448 Shelton, IV et al. Jul 2021 B2
11058475 Wiener et al. Jul 2021 B2
11090104 Wiener et al. Aug 2021 B2
11096752 Stulen et al. Aug 2021 B2
11129669 Stulen et al. Sep 2021 B2
11129670 Shelton, IV et al. Sep 2021 B2
11134978 Shelton, IV et al. Oct 2021 B2
11141213 Yates et al. Oct 2021 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002380 Bishop Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20020165577 Witt et al. Nov 2002 A1
20020177862 Aranyi et al. Nov 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040758 Wang et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030109778 Rashidi Jun 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181898 Bowers Sep 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040142667 Lochhead et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040267311 Viola et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050080427 Govari et al. Apr 2005 A1
20050088285 Jei Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050107777 West et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050262175 Iino et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050271807 Iijima et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060025757 Heim Feb 2006 A1
20060030797 Zhou et al. Feb 2006 A1
20060030848 Craig et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060109061 Dobson et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060259026 Godara et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060264995 Fanton et al. Nov 2006 A1
20060265035 Yachi et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070066971 Podhajsky Mar 2007 A1
20070067123 Jungerman Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20070299895 Johnson et al. Dec 2007 A1
20080005213 Holtzman Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033465 Schmitz et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080122496 Wagner May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080275440 Kratoska et al. Nov 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090043293 Pankratov et al. Feb 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090065565 Cao Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090157064 Hodel Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090177119 Heidner et al. Jul 2009 A1
20090179923 Amundson et al. Jul 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090192441 Gelbart et al. Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204114 Odom Aug 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090259149 Tahara et al. Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100034605 Huckins et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063437 Nelson et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100109480 Forslund et al. May 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100181966 Sakakibara Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110015650 Choi et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110071523 Dickhans Mar 2011 A1
20110106141 Nakamura May 2011 A1
20110112400 Emery et al. May 2011 A1
20110125149 El-Galley et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110238010 Kirschenman et al. Sep 2011 A1
20110273465 Konishi et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120136279 Tanaka et al. May 2012 A1
20120136386 Kishida et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120150049 Zielinski et al. Jun 2012 A1
20120150169 Zielinksi et al. Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120191091 Allen Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120265196 Turner Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296325 Takashino Nov 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130085510 Stefanchik et al. Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20130334989 Kataoka Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140180274 Kabaya et al. Jun 2014 A1
20140194868 Sanai et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080887 Sobajima et al. Mar 2015 A1
20150088122 Jensen Mar 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150238260 Nau, Jr. Aug 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150282879 Ruelas Oct 2015 A1
20150289364 Ilkko et al. Oct 2015 A1
20150313667 Allen, IV Nov 2015 A1
20160038228 Daniel Feb 2016 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160358849 Jur et al. Dec 2016 A1
20170086909 Yates et al. Mar 2017 A1
20170119426 Akagane May 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170164997 Johnson et al. Jun 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170325874 Noack et al. Nov 2017 A1
20180014872 Dickerson Jan 2018 A1
20180098785 Price et al. Apr 2018 A1
20180146976 Clauda et al. May 2018 A1
20180235691 Voegele et al. Aug 2018 A1
20190105067 Boudreaux et al. Apr 2019 A1
20190201048 Stulen et al. Jul 2019 A1
20190209201 Boudreaux et al. Jul 2019 A1
20190262030 Faller et al. Aug 2019 A1
20190274700 Robertson et al. Sep 2019 A1
20190282288 Boudreaux Sep 2019 A1
20190388091 Eschbach et al. Dec 2019 A1
20200054382 Yates et al. Feb 2020 A1
20200078085 Yates et al. Mar 2020 A1
20200078609 Messerly et al. Mar 2020 A1
20200085465 Timm et al. Mar 2020 A1
20200113624 Worrell et al. Apr 2020 A1
20200129261 Eschbach Apr 2020 A1
20200138473 Shelton, IV et al. May 2020 A1
20200229833 Vakharia et al. Jul 2020 A1
20200229834 Olson et al. Jul 2020 A1
20200237434 Scheib et al. Jul 2020 A1
20200261141 Wiener et al. Aug 2020 A1
20200268433 Wiener et al. Aug 2020 A1
20210052313 Shelton, IV et al. Feb 2021 A1
20210100578 Weir et al. Apr 2021 A1
20210100579 Shelton, IV et al. Apr 2021 A1
20210177481 Shelton, IV et al. Jun 2021 A1
20210177496 Shelton, IV et al. Jun 2021 A1
20210186553 Green et al. Jun 2021 A1
20210186554 Green et al. Jun 2021 A1
20210196263 Shelton, IV et al. Jul 2021 A1
20210196265 Shelton, IV et al. Jul 2021 A1
20210196266 Shelton, IV et al. Jul 2021 A1
20210196267 Shelton, IV et al. Jul 2021 A1
20210196268 Shelton, IV et al. Jul 2021 A1
20210196269 Shelton, IV et al. Jul 2021 A1
20210196270 Shelton, IV et al. Jul 2021 A1
20210196271 Shelton, IV et al. Jul 2021 A1
20210196301 Shelton, IV et al. Jul 2021 A1
20210196302 Shelton, IV et al. Jul 2021 A1
20210196305 Strobl Jul 2021 A1
20210196306 Estera et al. Jul 2021 A1
20210196307 Shelton, IV Jul 2021 A1
20210196334 Sarley et al. Jul 2021 A1
20210196335 Messerly et al. Jul 2021 A1
20210196336 Faller et al. Jul 2021 A1
20210196343 Shelton, IV et al. Jul 2021 A1
20210196344 Shelton, IV et al. Jul 2021 A1
20210196345 Messerly et al. Jul 2021 A1
20210196346 Leuck et al. Jul 2021 A1
20210196349 Fiebig et al. Jul 2021 A1
20210196350 Fiebig et al. Jul 2021 A1
20210196351 Sarley et al. Jul 2021 A1
20210196352 Messerly et al. Jul 2021 A1
20210196353 Gee et al. Jul 2021 A1
20210196354 Shelton, IV et al. Jul 2021 A1
20210196355 Shelton, IV et al. Jul 2021 A1
20210196356 Shelton, IV et al. Jul 2021 A1
20210196357 Shelton, IV et al. Jul 2021 A1
20210196358 Shelton, IV et al. Jul 2021 A1
20210196359 Shelton, IV et al. Jul 2021 A1
20210196360 Shelton, IV et al. Jul 2021 A1
20210196361 Shelton, IV et al. Jul 2021 A1
20210196362 Shelton, IV et al. Jul 2021 A1
20210196363 Shelton, IV et al. Jul 2021 A1
20210196364 Shelton, IV et al. Jul 2021 A1
20210196365 Shelton, IV et al. Jul 2021 A1
20210196366 Shelton, IV et al. Jul 2021 A1
20210196367 Salguero et al. Jul 2021 A1
20210212744 Shelton, IV et al. Jul 2021 A1
20210220036 Shelton, IV et al. Jul 2021 A1
20210236195 Asher et al. Aug 2021 A1
20210282804 Worrell et al. Sep 2021 A1
Foreign Referenced Citations (155)
Number Date Country
2535467 Apr 1993 CA
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
101474081 Jul 2009 CN
101516285 Aug 2009 CN
102100582 Jun 2011 CN
102149312 Aug 2011 CN
202027624 Nov 2011 CN
102792181 Nov 2012 CN
103281982 Sep 2013 CN
103379853 Oct 2013 CN
203468630 Mar 2014 CN
104001276 Aug 2014 CN
104013444 Sep 2014 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
102012109037 Apr 2014 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0705571 Apr 1996 EP
1698289 Sep 2006 EP
1862133 Dec 2007 EP
1972264 Sep 2008 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
2131760 Dec 2009 EP
1214913 Jul 2010 EP
1946708 Jun 2011 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2668922 Dec 2013 EP
2076195 Dec 2015 EP
2510891 Jun 2016 EP
2032221 Apr 1980 GB
2317566 Apr 1998 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
S62227343 Oct 1987 JP
S62292153 Dec 1987 JP
S62292154 Dec 1987 JP
S63109386 May 1988 JP
S63315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Nov 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0425707 Feb 1992 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H04152942 May 1992 JP
H 0541716 Feb 1993 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336545 Dec 1996 JP
H09130655 May 1997 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105237 Jan 1998 JP
10127654 May 1998 JP
H10295700 Nov 1998 JP
H11128238 May 1999 JP
2000210299 Aug 2000 JP
2000271142 Oct 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2001029353 Feb 2001 JP
2002059380 Feb 2002 JP
2002186901 Jul 2002 JP
2002263579 Sep 2002 JP
2002330977 Nov 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2005003496 Jan 2005 JP
2005027026 Jan 2005 JP
2005074088 Mar 2005 JP
2005337119 Dec 2005 JP
2006068396 Mar 2006 JP
2006081664 Mar 2006 JP
2006114072 Apr 2006 JP
2006217716 Aug 2006 JP
2006288431 Oct 2006 JP
2007037568 Feb 2007 JP
200801876 Jan 2008 JP
200833644 Feb 2008 JP
2008188160 Aug 2008 JP
D1339835 Aug 2008 JP
2010009686 Jan 2010 JP
2010121865 Jun 2010 JP
2012071186 Apr 2012 JP
2012235658 Nov 2012 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2405603 Dec 2010 RU
2013119977 Nov 2014 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9639086 Dec 1996 WO
WO-9800069 Jan 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-0024330 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0128444 Apr 2001 WO
WO-0167970 Sep 2001 WO
WO-0172251 Oct 2001 WO
WO-0195810 Dec 2001 WO
WO-03095028 Nov 2003 WO
WO-2004037095 May 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2007008710 Jan 2007 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2010027109 Mar 2010 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012088535 Jun 2012 WO
WO-2012150567 Nov 2012 WO
Non-Patent Literature Citations (55)
Entry
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008], Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Moraleda et al., A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend, Sensors 2013, 13, 13076-13089, doi: 10.3390/s131013076, ISSN 1424-8220.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . .
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Campbell et al., “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724.
http://www.4-traders.com/JOHNSON-JOHNSON-4832/news/Johnson-Johnson-Ethicon-E . . .
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 Erbe en Vio 200 S D027541.
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
Sullivan, “Optimal Choice for No. of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=Ml&sp=1 . . . , accessed Aug. 25, 2009.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
Covidien 501 (k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Related Publications (1)
Number Date Country
20200030021 A1 Jan 2020 US
Continuations (1)
Number Date Country
Parent 15229562 Aug 2016 US
Child 16531591 US