This invention relates generally to managing tokens, more particularly, to methods and systems for assigning roles on the token.
Smart cards are generally well known. Smart cards can be used to provide authentication for transactions such as logging into a secure computer. However, smart cards are not merely a piece of plastic with a strip of magnetic material. Smart cards also store and process information. Smart cards are storage devices with the core mechanics to facilitate communication with a reader or coupler. They have file system configurations and the ability to be partitioned into public and private spaces that can be made available or locked. They also have segregated areas for protected information, such as certificates, e-purses, and entire operating systems. In addition to traditional data storage states, such as read-only and read/write, some vendors are working with sub-states best described as “add only” and “update only.”
The physical characteristics of smart cards are governed by international standards. For example, the size of a card is covered by ISO-7810. ISO-7816 and subsequent standards cover manufacturing parameters, physical and electrical characteristics, location of the contact points, communication protocols, data storage, and more. Data layout and format, however, can vary from vendor to vendor.
The use of smart cards is a mechanism to increase security especially for large business and governmental entities. These entities often contain valuable information such as financial data, personnel records, strategies, etc., that may be critical for the respective entity. Moreover, smart cards can provide a method to control access to data within the enterprise systems of the respective entity. Accordingly, the reasons to use smart card (“tokens”) are plentiful.
However, in some large business or governmental entities, multiple sub-organizations may want access and control of the tokens. The reason for the access and control can be related to the role of the sub-organization within the respective entity. For example, a human resource sub-organization may want access to the token to control the distribution of the token to valid employees while the sub-organization that hired the employee may want access to the token for its respective function. Both sub-organizations prefer not to have the other sub-organization to have access to their respective confidential information based on a shared token. Accordingly, there is a need for a method and/or system to be able to provide exclusive access to areas of the token based on roles.
Various features of the embodiments can be more fully appreciated, as the same become better understood with reference to the following detailed description of the embodiments when considered in connection with the accompanying figures, in which:
For simplicity and illustrative purposes, the principles of the present invention are described by referring mainly to exemplary embodiments thereof. However, one of ordinary skill in the art would readily recognize that the same principles are equally applicable to, and can be implemented in, all types of secure computing applications, and that any such variations do not depart from the true spirit and scope of the present invention. Moreover, in the following detailed description, references are made to the accompanying figures, which illustrate specific embodiments. Electrical, mechanical, logical and structural changes may be made to the embodiments without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense and the scope of the present invention is defined by the appended claims and their equivalents.
Embodiments relate generally to systems, methods, and apparatus for providing role-based access to a smart card or token being shared by multiple groups, organizations, entities, etc. More particularly, a role assigner module can be configured to implement a role-assigning protocol to allow a smartcard (or token) to get from an initial state where the token can be managed by both the factory and a first recipient to a second state where the management of the token is split between two or more parties. Each party having exclusive access to their portion of the token with out the ability to access the other party's portion.
Embodiments use cryptographic keys as part of the protocol to move from the initial state to the above-described second state. More particularly, the cryptographic keys can be symmetric or asymmetric. Symmetric cryptographic keys can be derived using known key derivation algorithms that use encryption or hashing algorithms. These algorithms generally take public data and mixing it with a secret key. The mixing can be performed by: (1) hashing the derivation key material and the public data with a hash function (such as SHA-1 or MD-5); and (2) encrypting or decrypting public data with the derivation key and a block cipher (such as DES or AES), where the output (or a portion thereof) is the derived key.
Embodiments can also use multiple key sets. Multiple key sets (each with different purposes) can be derived from a single cryptographic key by varying the public data input. The public data input can be as simple as including a single byte which takes on the value (0, 1, 2, etc.) for A1, A1, A2, etc., respectively. Accordingly, a key set based on a cryptographic key A can be derived from hashing A, 0, and a card identification number (CUID) together to arrive at A0. The CUID can be regarded as a serial number that is embedded by the manufacturer. Similarly, A1 can be derived from hashing A, 1, and the CUID together and so on for the rest of the set.
Embodiments can further use authentication as part of the role assigning protocol to move from the initial state to the second state. More specifically, authentication using symmetric cryptographic keys is based on two parties knowing a secret key. The secret key cannot be shared to any other third party. For the case where one party has to authenticate two different entities, each entity requires its own respective secret key.
Authentication can be generally accomplished by a challenge/response protocol, in which the response with the challenge is transformed by a key known to both parties. The authenticator can issue a random challenge to the authenticatee. The authenticatee “signs” the challenge using a cryptographic primitive called a message authentication code (MAC). The MAC can be generated by hashing algorithms, block ciphers, or other similar algorithms known to those skilled in the art. The MAC is then published back to the authenticator.
Embodiments of the present invention can also use asymmetric cryptographic keys. Asymmetric keys are different from symmetric keys in that asymmetric keys come in pairs. One of the keys is published, i.e., public and the second of the keys is kept private. Like symmetric keys, asymmetric keys can be used in signing/verification, encryption/decryption, and key derivation. Asymmetric keys can also be used to distribute or generate symmetric keys.
Accordingly, some embodiments use symmetric cryptographic keys to implement the role-assigning protocol. More particularly, a factory (or token manufacturer) and a first recipient can agree to share a cryptographic key A. The token manufacturer can embed or inject a first applet onto the token. The first applet can issue commands like “load new application”, “new set of keys to use”, “turn off a key set”, “reset password”, “erase smartcard”, “lock the smartcard”, “unlock the smartcard”, etc.
The token manufacturer can also derive a symmetric key set (A0, A1, . . . AN) based on cryptographic key A, public data and the CUID. The token manufacturer can then attach the symmetric key set (A0, A1, . . . AN) to the first applet by using the command “new set of keys to use”. Accordingly, first applet can now be accessed by a party (token manufacturer and first recipient) with access to cryptographic key A. Subsequently, the token with the first applet associated with the symmetric key set (A0, A1, . . . AN) is forwarded to the first recipient.
In some embodiments, the first recipient can be an organization within a larger entity. For example, a human resource group in a corporation or a federal agency in the federal government. The first recipient can act a gatekeeper to grant access to the received token to other organizations within the entity. The other organizations would prefer not to grant access of their applets to the first recipient.
When the first recipient receives the token with the first applet associated with the symmetric key set (A0, A1, . . . AN), the first recipient can initiate a key changeover to obtain exclusive the first applet can be configured to authenticate to the first applet. Since one of the keys in the symmetric key set (A0, A1, . . . AN) is an authentication key and the first recipient share the cryptographic key A with the token manufacturer, the first recipient can generate a MAC with the authentication key, i.e., signs the challenge. The first applet validates the MAC and allows the first recipient access to the first applet.
Subsequently, the first recipient can use a symmetric cryptographic key B to derive a second set of symmetric keys (B0, B1, . . . BN). The cryptographic key B is not shared and kept private by the first recipient. The first recipient can then load the second set of symmetric keys (B0, B1, . . . BN) onto the token using its knowledge of cryptographic key A. The first recipient can use the first applet to issue commands to discontinue use of the symmetric key set (A0, A1, . . . AN) and to use the second set of symmetric keys (B0, B1, . . . BN). Accordingly, only users with access to the cryptographic key B can access the first applet.
The first recipient can embed additional applets for additional organizations. For the sake of clarity, the case of one additional applet for a second organization as a receiver entity is described. Accordingly, the first recipient and the receiver entity can share a symmetric cryptographic key C and derived a third symmetric key set (C0, C1, . . . CN), where on the keys is an authentication key. The first recipient can authenticate to the first applet using the private cryptographic key B to sign the challenge from the first applet. The first recipient can invoke the first applet to load a second applet and the third symmetric key set (C0, C1, . . . CN) once authenticated. The first recipient can use the second applet to associate the third symmetric key set (C0, C1, . . . CN) with the second applet, i.e., issue a command to use new key set. Accordingly, the token now contains a first applet which is accessible only to the first recipient and a second applet which is accessible to the first recipient and the receiver entity. Subsequently, the token is forwarded to the receiver entity.
When the token is received, the receiver entity can perform a key changeover to obtain exclusive access over the second applet. More particularly, the receiver entity can authenticate to the received token using a MAC derived from the shared cryptographic key C. Once authenticated, the receiver entity can now access the second applet and discontinue the use of the third set of symmetric keys (C0, C1, . . . CN) for the second applet. The receiver entity can derive a fourth set of symmetric keys (D0, D1, . . . DN) based on a private symmetric cryptographic key D. The receiver entity can load the fourth set of symmetric keys (D0, D1, . . . DN) onto the token and set this set of symmetric keys to the second applet. Accordingly, the receiver entity now has exclusive access to the second applet and cannot access the first applet. Similarly, the first recipient has exclusive access to the first applet an now cannot access the second applet. Thus, the protocol from switching to the from an initial state where the token can be managed by both the factory and a first recipient to a second state where the management of the token is split between two or more parties for symmetric keys is described according to some embodiments.
The role-assigning protocol can also be implemented using asymmetric keys. More particularly, the first recipient can send its public key B to the token manufacturer. The token manufacturer loads the first applet associated with the public key B of the first recipient and forward the embedded token to the first recipient.
The first recipient authenticates to the token using a MAC that uses the private key pair of public key B. Once authenticated, the first recipient can insert a second applet associated with a public key D, which was forwarded to the first recipient by the receiver entity. The token can then be forwarded to the receiver entity.
The receiver entity can now authenticate to the second applet using a MAC that uses the private key pair of public key D and access the second applet. The receiver entity does not have access to the first applet because it is associated with the public key of B. Similarly, the first recipient has exclusive access to the first applet and cannot access the second applet because it is associated with the pubic key of D.
As shown in
The security server 110 can also interface with a remote client 115c over an external network 125 such as the Internet. The external network 125 can also be a virtual private network implemented over the Internet for security reasons in some embodiments.
The clients 115a-c can be a computing machine or platform configured to execute secure and open applications through a multi-user operating system. The clients 115a-c can be implemented with personal computers, workstations, thin clients, thick clients, or other similar computing platforms as known to those skilled in the art. The clients 115a-c can operate using operating systems such as Linux, Windows, Macintosh or other available multi-tasking operating systems.
Each client 115 can be configured to interface with a respective security device 130. The security device 130a-c can be configured to act as a gatekeeper for the respective client 115a-c. More particularly, a user can use a security token, such as a smart card, to access the respective client 115a-c as well as each client 115a-c to manage an inserted token.
Each client 115a-c can also represent an internal organization, division, and/or sub-organization of the entity 105. For example, client 115a can represent a human resource organization and client 115b can represent an accounting organization. As another example, remote client 115c can represent another internal organization or a third party entity in a relationship with entity 105.
Notwithstanding the embodiments of the client and security server of system 100 can be implemented in a variety of methods without departing from the scope of the claims. For example, a client could be a wireless device such as Blackberry™, where a wearable token provides access to the wireless device via Bluetooth™ interface or the smartcard can be connected with a contactless interface such as an radio frequency identification reader.
The system 100 can further comprise a token manufacturer 140. The token manufacturer 140 can produce tokens for the entity 105 and interface with one of the sub-organizations (e.g., security, human resources, IT, etc.) to manage the exchange of the tokens. The token manufacturer 140 can produce a token as depicted in
As shown in
The circuit 210 can also be configured to with a key storage area 230. The key storage area 230 can be a buffer which stores cryptographic keys. The cryptographic keys can be a single or a set of cryptographic keys. Each key or set of keys can be attached or associated with a respective applet. For example, key storage area 230 can store derived cryptographic keys or sets of cryptographic keys based on respective cryptographic keys A and B and the CUID. Accordingly, a user with access to cryptographic key A can access the first applet 225A while being barred from the second applet 225B. Similarly, a user with the access to cryptographic key B can access the second applet 225B while being barred from the first applet 225A.
Returning to
As shown in
The token manufacturer 140 can generate a first set of symmetric keys (A0, A1, . . . AN) 304 based on the symmetric cryptographic key A, an input value, and the CUID stored on the card identification module 215. For the sets of symmetric keys being described, each key within the set can be derived from hashing a cryptographic key, an input data value, and the CUID. The variants within the key set can be based on varying the input data value.
The first set of symmetric keys (A0, A1, . . . AN) 304 can then be stored in the key storage area 230 such as buffer space 230A. The token manufacturer 140 can then attach or associate the first set of symmetric keys (A0, A1, . . . AN) 304 to the first applet 225A as indicated by line 306. More particularly, the token manufacturer 140 can issue a command from the first applet 225A to use the first set of symmetric keys (A0, A1, . . . AN) 304.
The token manufacturer 140 can then forward the token 200 embedded with the first applet 225A to the granter entity 115A. Accordingly, at this point in time, the token manufacturer 140 and the granter entity 115 have access to the first applet 225A based on both entities sharing the symmetric cryptographic key A 302.
As shown in
The granter entity 115A can then store the second set of symmetric keys (B0, B1, . . . BN) 308 in the key storage area 230, e.g., in buffer space 230B. Subsequently, the granter entity 115A can be configured to sever the association between the first set of symmetric keys (A0, A1, . . . AN) 304, i.e., issue a command to discontinue the use of the first set of symmetric keys (A0, A1, . . . AN) 304, and the first applet 225A 312 as indicated in line 306 and attach or associate the second set of keys (B0, B1, . . . BN) 308 with the first applet 225A as indicated by line 314, i.e., issue a command to use the new key set. Accordingly, granter entity 115A currently has exclusive access and control over the first applet 225A. The granter entity 115A can also be configured to delete the first set of symmetric keys (A0, A1, . . . AN) 304 from the key storage area 230 in some embodiments.
The current state of the token is that first applet 225A is exclusively controlled by the granter entity 115A by virtue of being attached to the second set of keys (B0, B1, . . . BN) 308 as indicated by line 314. The granter entity 115A can authenticate to the first applet 225A by signing a challenge from the first applet 225A with a MAC that uses the cryptographic key B. The granter entity 115A can insert a second applet 225B on the circuit 210 once authenticated by issuing a command to add new applet. The second applet 225B can be a variety of applications such as an electronic wallet, secure Web log-on, etc.
The granter entity 115A can then be configured to generate a third set of symmetric keys (C0, C1, . . . CN) 320 based on the symmetric cryptographic key C 318, where the cryptographic key C 318 is shared between granter entity 115A and the receiver entity 115B. More particularly, the granter entity 115A can generate the third set of symmetric keys (C0, C1, . . . CN) 320 based on hashing the symmetric cryptographic key C 318, varying an input value, and the CUID stored in the card identification module 215.
The granter entity 115A can then be configured to associate or attach the third set of symmetric keys (C0, C1, . . . CN) 320 with the second applet 225A as indicated by line 322 by issuing a command to the second applet 225B to use the third set of symmetric keys (C0, C1, . . . CN) 320. As a result, the second applet 225B has been injected on the card and be accessed by the granter entity 115A and the receiver entity 115B. Subsequently, the granter entity 115A can forward the token 200 to the receiver entity 115B.
As shown in
The receiver entity 115B can then be configured to generate a fourth set of symmetric keys (D0, D1, . . . DN) 326 based on a symmetric cryptographic key D 324 similar to the other sets of symmetric keys previously described. The cryptographic key D 324 is held privately by the receiver entity 115B and is not shared with any other entities. Similar to the other cryptographic keys A, B, or C, the cryptographic key D 324 can be a symmetric key generated by cryptographic algorithms known to those skilled in the art.
The receiver entity 115B can then store the fourth set of keys (D0, D1, . . . DN) 326 in the key storage area 230, e.g., in buffer space 230D. The receiver entity 115B can attach or associate the fourth set of symmetric keys (D0, D1, . . . DN) 326 with the second applet 225B as indicated by line 328 by issuing a command to the second applet 225B to use the newest key set. Accordingly, receiver entity 115B now has exclusive access and control over the second applet 225B. Moreover, the receiver entity 115B cannot access first applet 225A and the granter entity 115A cannot access the second applet 225A. Thus, roles have been assigned on a token based on the functions of various parties.
The current state of the token is that first applet 225A is exclusively controlled by the granter entity 115A by virtue of first applet 225A being attached to the second set of keys (B0, B1, . . . BN) 312 as indicated by line 314. Further, the receiver entity 115A has exclusive control over the second applet 225B by virtue of being attached to the fourth set of keys (D0, D1, . . . DN) 320 as indicated by line 322. The granter entity 115A can insert a third applet 225C on the circuit 210 by operation of the first applet 225A once authenticated. The third applet 225C like the second applet 225B can be a variety of applications such as an electronic wallet, secure Web log-on, etc.
The granter entity 115A can be configured to generate a fifth set of symmetric cryptographic keys (E0, E1, . . . EN) 334 based on a symmetric cryptographic key E 332, where the cryptographic key E 326 is shared between granter entity 115A and the second receiver entity 115C. More particularly, the granter entity 115A can generate the fifth set of symmetric keys (E0, E1, . . . EN) 334 like the other key sets previously described. The granter entity can be configured to store the fifth set of keys (E0, E1, . . . EN) 334 in the key storage area 230 such as buffer space 230E.
The granter entity 115A can then be configured to associate or attach the fifth set of symmetric keys (E0, E1, . . . EN) 334 to the third applet 225C as indicated by line 336. As a result, the third applet 225A has been injected on the token 200 and be accessed by the granter entity 115A and the second receiver entity 115B. Subsequently, the granter entity 115A can forward the token 200 to the second receiver entity 115A. The second receiver entity 115C can perform a key changeover similar to the key changeover depicted in
One aspect of the space occupied by an applet is that it can be shared. As shown in
One of the premises of scenario 338 is that the receiver entity 115B and the second receiver entity 115C share an cryptographic key E 342. The cryptographic key E 342, similar to cryptographic keys A-D, can be a symmetric or an asymmetric key known to those skilled in the art.
The receiver entity 115B can then generate a fifth set of keys (E0, E1, . . . EN) 344 based on cryptographic key E 342, which is shared by receiver entity 115B and a second receiver entity 115C. Since the cryptographic key E can be symmetric or asymmetric, it follows the fifth set of keys (E0, E1, . . . EN) 344 can also be symmetric or asymmetric depending on the state of the cryptographic key E 342. The fifth set of keys (E0, E1, . . . EN) 344 can be stored in the key storage area 230 such as buffer space 230E. The receiver entity 115B can be configured to sever the attachment of the fourth set of symmetric keys (D0, D1, . . . DN) 320 for partition 340B as indicated by line 322B and attach or associate the fifth set of symmetric keys (E0, E1, . . . EN) 342 with the partition 332B as indicated by line 346. The second receiver entity 115C can perform a key changeover similar to the key changeover depicted in
Although it appears from the previously described scenarios that the cryptographic key sets can be used to control access to the applets, the cryptographic key sets can also be used to control access control lists, data, and other components on the token.
Accordingly, as shown in
The granter entity 115A can now exclusively access the first applet 225A because the granter entity 115A secretly holds the complementary key of the public key Apu 348, which is private key Apr 350. The token manufacturer 140 is barred from accessing the first applet 225A because it does not have access to the private key Apr 350.
When the embedded token is received, the receiver entity 115B has exclusive control over applet 225B. More particularly, since the receiver entity 115B secretly holds the private key Bpr 356, it can authenticate to the second applet 225B by signing with a MAC that uses the private key Bpr 356 and gain access to the second applet 225B. The token manufacturer 140 and the granter entity 115 can only access the public key Bpu 354, and thus are barred from accessing the second applet 225B.
As shown in
As shown in
In step 510, the role assigner module 135 can be configured to sever the attachment between the current applet and a previous set of keys.
In step 515, the role assigner module 135 can be configured to attach or associate the new set of keys with the current applet.
As shown in
Certain embodiments may be performed as a computer program. The computer program may exist in a variety of forms both active and inactive. For example, the computer program can exist as software program(s) comprised of program instructions in source code, object code, executable code or other formats; firmware program(s); or hardware description language (HDL) files. Any of the above can be embodied on a computer readable medium, which include storage devices and signals, in compressed or uncompressed form. Exemplary computer readable storage devices include conventional computer system RAM (random access memory), ROM (read-only memory), EPROM (erasable, programmable ROM), EEPROM (electrically erasable, programmable ROM), and magnetic or optical disks or tapes. Exemplary computer readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running the present invention can be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of executable software program(s) of the computer program on a CD-ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer readable medium. The same is true of computer networks in general.
While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments without departing from the true spirit and scope. The terms and descriptions used herein are set forth by way of illustration only and are not meant as limitations. In particular, although the method has been described by examples, the steps of the method may be performed in a different order than illustrated or simultaneously. Those skilled in the art will recognize that these and other variations are possible within the spirit and scope as defined in the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4108367 | Hannan | Aug 1978 | A |
4849614 | Watanabe et al. | Jul 1989 | A |
4924330 | Seamons et al. | May 1990 | A |
5247163 | Ohno et al. | Sep 1993 | A |
5355414 | Hale et al. | Oct 1994 | A |
5499371 | Henninger et al. | Mar 1996 | A |
5594227 | Deo | Jan 1997 | A |
5631961 | Mills et al. | May 1997 | A |
5666415 | Kaufman | Sep 1997 | A |
5721781 | Deo et al. | Feb 1998 | A |
5745576 | Abraham et al. | Apr 1998 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5768373 | Lohstroh et al. | Jun 1998 | A |
5862310 | Crawford et al. | Jan 1999 | A |
5923884 | Peyret et al. | Jul 1999 | A |
5937066 | Gennaro et al. | Aug 1999 | A |
5943423 | Muftic | Aug 1999 | A |
5991411 | Kaufman et al. | Nov 1999 | A |
5991882 | O'Connell | Nov 1999 | A |
6005942 | Chan et al. | Dec 1999 | A |
6005945 | Whitehouse | Dec 1999 | A |
6011847 | Follendore, III | Jan 2000 | A |
6016476 | Maes et al. | Jan 2000 | A |
6044155 | Thomlinson et al. | Mar 2000 | A |
6072876 | Obata et al. | Jun 2000 | A |
6141420 | Vanstone et al. | Oct 2000 | A |
6178507 | Vanstone | Jan 2001 | B1 |
6179205 | Sloan | Jan 2001 | B1 |
6226744 | Murphy et al. | May 2001 | B1 |
6377825 | Kennedy et al. | Apr 2002 | B1 |
6490680 | Scheidt et al. | Dec 2002 | B1 |
6502108 | Day et al. | Dec 2002 | B1 |
6539093 | Asad et al. | Mar 2003 | B1 |
6636975 | Khidekel et al. | Oct 2003 | B1 |
6643701 | Aziz et al. | Nov 2003 | B1 |
6687190 | Momich et al. | Feb 2004 | B2 |
6691137 | Kishi | Feb 2004 | B1 |
6698654 | Zuppicich | Mar 2004 | B1 |
6734886 | Hagan et al. | May 2004 | B1 |
6760752 | Liu et al. | Jul 2004 | B1 |
6804687 | Sampson | Oct 2004 | B2 |
6819766 | Weidong | Nov 2004 | B1 |
6826686 | Peyravian | Nov 2004 | B1 |
6829712 | Madoukh | Dec 2004 | B1 |
6880037 | Boyer | Apr 2005 | B2 |
6880084 | Brittenham et al. | Apr 2005 | B1 |
6898605 | Constantino | May 2005 | B2 |
6898714 | Nadalin et al. | May 2005 | B1 |
6931133 | Andrews et al. | Aug 2005 | B2 |
6941326 | Kadyk et al. | Sep 2005 | B2 |
6970970 | Jung et al. | Nov 2005 | B2 |
6978933 | Yap et al. | Dec 2005 | B2 |
6986040 | Kramer et al. | Jan 2006 | B1 |
7007105 | Sullivan et al. | Feb 2006 | B1 |
7010600 | Prasad et al. | Mar 2006 | B1 |
7050589 | Kwan | May 2006 | B2 |
7051213 | Kobayashi et al. | May 2006 | B1 |
7085386 | Audebert et al. | Aug 2006 | B2 |
7114028 | Green et al. | Sep 2006 | B1 |
7156302 | Yap et al. | Jan 2007 | B2 |
7159763 | Yap et al. | Jan 2007 | B2 |
7185018 | Archbold et al. | Feb 2007 | B2 |
7251728 | Toh et al. | Jul 2007 | B2 |
7278581 | Ong | Oct 2007 | B2 |
7299364 | Noble et al. | Nov 2007 | B2 |
7302585 | Proudler et al. | Nov 2007 | B1 |
7356688 | Wang | Apr 2008 | B1 |
7374099 | de Jong | May 2008 | B2 |
7386705 | Low et al. | Jun 2008 | B2 |
7437757 | Holdsworth | Oct 2008 | B2 |
7451921 | Dowling et al. | Nov 2008 | B2 |
7469837 | Mizushima | Dec 2008 | B2 |
7475250 | Aull et al. | Jan 2009 | B2 |
7475256 | Cook | Jan 2009 | B2 |
7480384 | Peyravian et al. | Jan 2009 | B2 |
7502793 | Snible et al. | Mar 2009 | B2 |
7571321 | Appenzeller et al. | Aug 2009 | B2 |
7602910 | Johansson et al. | Oct 2009 | B2 |
7702917 | Tevosyan et al. | Apr 2010 | B2 |
7769996 | Randle et al. | Aug 2010 | B2 |
7822209 | Fu et al. | Oct 2010 | B2 |
7860243 | Zheng et al. | Dec 2010 | B2 |
8146141 | Grandcolas et al. | Mar 2012 | B1 |
20010008012 | Kausik | Jul 2001 | A1 |
20010036276 | Ober et al. | Nov 2001 | A1 |
20010054148 | Hoornaert et al. | Dec 2001 | A1 |
20020004816 | Vange et al. | Jan 2002 | A1 |
20020007351 | Hillegass et al. | Jan 2002 | A1 |
20020007359 | Nguyen | Jan 2002 | A1 |
20020010679 | Felsher | Jan 2002 | A1 |
20020029343 | Kurita | Mar 2002 | A1 |
20020056044 | Andersson | May 2002 | A1 |
20020059144 | Meffert et al. | May 2002 | A1 |
20020064095 | Momich et al. | May 2002 | A1 |
20020080958 | Ober et al. | Jun 2002 | A1 |
20020099727 | Kadyk et al. | Jul 2002 | A1 |
20020112156 | Gien et al. | Aug 2002 | A1 |
20020120842 | Bragstad et al. | Aug 2002 | A1 |
20020133707 | Newcombe | Sep 2002 | A1 |
20020171546 | Evans et al. | Nov 2002 | A1 |
20020184149 | Jones | Dec 2002 | A1 |
20020188848 | Buttiker | Dec 2002 | A1 |
20030005291 | Burn | Jan 2003 | A1 |
20030012386 | Kim et al. | Jan 2003 | A1 |
20030028664 | Tan et al. | Feb 2003 | A1 |
20030035548 | Kwan | Feb 2003 | A1 |
20030056099 | Asanoma et al. | Mar 2003 | A1 |
20030075610 | Ong | Apr 2003 | A1 |
20030093695 | Dutta | May 2003 | A1 |
20030115455 | Aull et al. | Jun 2003 | A1 |
20030115466 | Aull et al. | Jun 2003 | A1 |
20030115467 | Aull et al. | Jun 2003 | A1 |
20030115468 | Aull et al. | Jun 2003 | A1 |
20030167399 | Audebert et al. | Sep 2003 | A1 |
20030172034 | Schneck et al. | Sep 2003 | A1 |
20030177392 | Hiltgen | Sep 2003 | A1 |
20030204732 | Audebert et al. | Oct 2003 | A1 |
20040042620 | Andrews et al. | Mar 2004 | A1 |
20040053642 | Sandberg et al. | Mar 2004 | A1 |
20040066274 | Bailey | Apr 2004 | A1 |
20040088562 | Vassilev et al. | May 2004 | A1 |
20040096055 | Williams et al. | May 2004 | A1 |
20040103324 | Band | May 2004 | A1 |
20040103325 | Priebatsch | May 2004 | A1 |
20040120525 | Miskimmin et al. | Jun 2004 | A1 |
20040144840 | Lee et al. | Jul 2004 | A1 |
20040146163 | Asokan et al. | Jul 2004 | A1 |
20040153451 | Phillips et al. | Aug 2004 | A1 |
20040162786 | Cross et al. | Aug 2004 | A1 |
20040230831 | Spelman et al. | Nov 2004 | A1 |
20050022123 | Constantino | Jan 2005 | A1 |
20050033703 | Holdsworth | Feb 2005 | A1 |
20050109841 | Ryan et al. | May 2005 | A1 |
20050114673 | Raikar et al. | May 2005 | A1 |
20050119978 | Ates | Jun 2005 | A1 |
20050123142 | Freeman et al. | Jun 2005 | A1 |
20050138386 | Le Saint | Jun 2005 | A1 |
20050138390 | Adams et al. | Jun 2005 | A1 |
20050144312 | Kadyk et al. | Jun 2005 | A1 |
20050184163 | de Jong | Aug 2005 | A1 |
20050184164 | de Jong | Aug 2005 | A1 |
20050184165 | de Jong | Aug 2005 | A1 |
20050188360 | de Jong | Aug 2005 | A1 |
20050216732 | Kipnis et al. | Sep 2005 | A1 |
20050262361 | Thibadeau | Nov 2005 | A1 |
20050279827 | Mascavage et al. | Dec 2005 | A1 |
20050289652 | Sharma et al. | Dec 2005 | A1 |
20060005028 | Labaton | Jan 2006 | A1 |
20060010325 | Liu et al. | Jan 2006 | A1 |
20060015933 | Ballinger et al. | Jan 2006 | A1 |
20060036868 | Cicchitto | Feb 2006 | A1 |
20060043164 | Dowling et al. | Mar 2006 | A1 |
20060072747 | Wood et al. | Apr 2006 | A1 |
20060073812 | Punaganti Venkata et al. | Apr 2006 | A1 |
20060075133 | Kakivaya et al. | Apr 2006 | A1 |
20060075486 | Lin et al. | Apr 2006 | A1 |
20060101111 | Bouse et al. | May 2006 | A1 |
20060101506 | Gallo et al. | May 2006 | A1 |
20060173848 | Peterson et al. | Aug 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060206932 | Chong | Sep 2006 | A1 |
20060208066 | Finn et al. | Sep 2006 | A1 |
20060226243 | Dariel | Oct 2006 | A1 |
20060291664 | Suarez et al. | Dec 2006 | A1 |
20060294583 | Cowburn et al. | Dec 2006 | A1 |
20070014416 | Rivera et al. | Jan 2007 | A1 |
20070074034 | Adams et al. | Mar 2007 | A1 |
20070112721 | Archbold et al. | May 2007 | A1 |
20070113267 | Iwanski et al. | May 2007 | A1 |
20070113271 | Pleunis | May 2007 | A1 |
20070118891 | Buer | May 2007 | A1 |
20070162967 | de Jong et al. | Jul 2007 | A1 |
20070169084 | Frank et al. | Jul 2007 | A1 |
20070189534 | Wood et al. | Aug 2007 | A1 |
20070204333 | Lear et al. | Aug 2007 | A1 |
20070230706 | Youn | Oct 2007 | A1 |
20070271601 | Pomerantz | Nov 2007 | A1 |
20070277032 | Relyea | Nov 2007 | A1 |
20070280483 | Fu | Dec 2007 | A1 |
20070282881 | Relyea | Dec 2007 | A1 |
20070283163 | Relyea | Dec 2007 | A1 |
20070283427 | Gupta et al. | Dec 2007 | A1 |
20070288745 | Kwan | Dec 2007 | A1 |
20070288747 | Kwan | Dec 2007 | A1 |
20080005339 | Kwan | Jan 2008 | A1 |
20080019526 | Fu | Jan 2008 | A1 |
20080022086 | Ho | Jan 2008 | A1 |
20080022088 | Fu et al. | Jan 2008 | A1 |
20080022121 | Fu et al. | Jan 2008 | A1 |
20080022122 | Parkinson et al. | Jan 2008 | A1 |
20080022128 | Proudler et al. | Jan 2008 | A1 |
20080034216 | Law | Feb 2008 | A1 |
20080046982 | Parkinson | Feb 2008 | A1 |
20080056496 | Parkinson | Mar 2008 | A1 |
20080059790 | Parkinson | Mar 2008 | A1 |
20080059793 | Lord et al. | Mar 2008 | A1 |
20080069338 | Relyea | Mar 2008 | A1 |
20080069341 | Relyea | Mar 2008 | A1 |
20080072283 | Relyea | Mar 2008 | A1 |
20080077794 | Arnold et al. | Mar 2008 | A1 |
20080077803 | Leach et al. | Mar 2008 | A1 |
20080133514 | Relyea | Jun 2008 | A1 |
20080148047 | Appenzeller et al. | Jun 2008 | A1 |
20080189543 | Parkinson | Aug 2008 | A1 |
20080209224 | Lord | Aug 2008 | A1 |
20080229401 | Magne | Sep 2008 | A1 |
20090003608 | Lee et al. | Jan 2009 | A1 |
20090133107 | Thoursie | May 2009 | A1 |
20100313027 | Taylor | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
9724831 | Jul 1997 | WO |
0048064 | Aug 2000 | WO |
2007096590 | Aug 2007 | WO |
Entry |
---|
ATM and Credit Card Notification, Feb. 2005 (internet archive) pp. 1-2 www.thereareplaces.com/infgdes/money.atmnotif.htm. |
AMD Announces Specification for Open Platform Management Architecture, Feb. 28, 2005, pp. 1-2 http://www.thefreelibrary.com/AMD+Announces+Specification+for+Open+Platform+Management+Architecture-a0129342307. |
Bellvin and Merritt, “Augmented Encrypted Key Exchange: a Password-Based Protocol Secure Against Dictionary Attacks and Password File Compromise”, Proceedings of the 1st ACM Conference on Computer and Communications Security, Nov. 1993. |
Schneier, “Applied Cryptography: Protocols, Algorithms, and Secure Code in C”, 1996, John Wiley & Sons, Inc., Second Edition, pp. 455-456. |
Zuccherato, Robert, Elliptic Curve Cryptography Support in Entrust, May 9, 2000. |
Red Hat Certificate System, http://www.redhat.com/f/pdf/rhas/DirSecProductSheetCertificateSystem.pdf, Jun. 2005. |
PKCS# v2.20: Cryptographic Token Interface Standard, RSA Laboratories, Jun. 28, 2004 (see, e.g. Chapter 10, Objects) (see www.rsasecurity.com, 407 pages). |
Cryptographic Message Syntax, R. Housley, Request for Comments (RFC) 2630, Network Working Group, The Internet Society, Jun. 1999. |
Balfanz (Dirk ABalfanz, “Access Control for Ad-Hoc Collaboration”, Princeton University Jan. 2001). |
Schneier, Bruce. Applied Cryptography, Second Edition. 1996 John Wiley and Sons, pp. 480-481. |
Number | Date | Country | |
---|---|---|---|
20080209225 A1 | Aug 2008 | US |