The present application claims priority to U.S. patent application Ser. No. 13/328,656 entitled “Methods and Systems for Attaching Tissue to Bone” filed Dec. 16, 2011, which is hereby incorporated by reference in its entirety.
The complete or partial detachment of ligaments, tendons and/or other soft tissues from their associated bones within the body are relatively commonplace injuries, particularly among athletes. Such injuries are generally the result of excessive stresses being placed on these tissues. By way of example, tissue detachment may occur as the result of an accident such as a fall, over-exertion during a work-related activity, or during the course of an athletic event. In the case of a partial detachment, the injury will frequently heal itself, if given sufficient time and if care is taken not to expose the injury to further undue stress. In the case of complete detachment, however, surgery is often needed to re-attach the soft tissue to its associated bone.
Numerous devices are currently available to re-attach soft tissue to bone. Examples of such currently-available devices include screws, staples, suture anchors and tacks. In soft tissue re-attachment procedures utilizing screws, the detached soft tissue is typically moved back into its original position over the bone. Then the screw is screwed through the soft tissue and into the bone, with the shank and head of the screw holding the soft tissue to the bone. Similarly, in soft tissue re-attachment procedures utilizing staples, the detached soft tissue is typically moved back into its original position over the bone. Then the staple is driven through the soft tissue and into the bone, with the legs and bridge of the staple holding the soft tissue to the bone.
In soft tissue re-attachment procedures utilizing suture anchors, an anchor-receiving hole is drilled into the bone, through a drill guide, at the desired point of tissue re-attachment. Next, a suture anchor is deployed through the drill guide and into the hole using an appropriate installation tool. This effectively locks the suture to the bone, with the free end(s) of the suture extending out of the bone for attachment to soft tissue. The free ends of the suture are passed through or around the soft tissue and are used to secure the soft tissue to the bone.
While current suture anchoring methods are effective in anchoring soft tissue to bone, it can be difficult to deploy the suture anchor into the anchor-receiving hole, especially when a knotless suture anchor is used. For example, after the hole is formed in bone and the drill is removed from the surgical site, it can be difficult for a surgeon to locate the hole and navigate muscle and other bone to gain access to it. Even after the location of the hole is confirmed, it can be difficult to determine the angle of the hole. It is important that the location and angle of the drilled hole is accurately identified because forcing a suture anchor into the hole at an improper angle will often cause the anchor to fail. This can increase the time required to perform the tissue attachment procedure and increase costs.
Accordingly, there is a need for improved methods and systems for attaching tissue to bone.
A system for attaching soft tissue to bone is disclosed herein. In general, the system includes a suture, suture anchor, and drill guide. The suture can have proximal and distal ends and a suture anchor can have an aperture for receiving a suture. In one embodiment, the drill guide comprises an outer drill guide and an inner drill guide. The outer drill guide can have a lumen formed therein that extends from a proximal end to a distal end. The inner drill guide can also have an inner lumen formed therein that extends from a proximal end to a distal end of the inner drill guide. Additionally, the inner drill guide can be configured to be removably and replaceably positioned within the lumen of the outer drill guide. When the inner drill guide is inserted into the lumen of the outer drill guide, the inner drill guide and outer drill guide are configured to retain at least a portion of the suture therebetween, and the suture is configured to slide relative to the inner and outer drill guides. In another embodiment, when the inner drill guide is inserted into the lumen of the outer drill guide, the distal end of the inner drill guide can terminate distal to the distal end of the outer drill guide. In yet another embodiment, when the inner drill guide is inserted into the lumen of the outer drill guide, the distal end of the inner drill guide can terminate proximal to the distal end of the outer drill guide. In another embodiment, the distal end of the outer drill guide can include at least one slot formed in a side wall thereof and extending proximally from the distal end.
The suture anchor and the drill guide can have a variety of other features. For example, the outer guide can further include at least one optional viewing window positioned adjacent to the at least one slot. Additionally, the distal end of the outer guide can have a plurality of surface features for engaging bone. In another embodiment, at least one bone engaging feature can be disposed on an outer surface of the suture anchor. In yet another embodiment, a proximal end of the inner guide can be configured to mate with the proximal end of the handle disposed on the outer guide.
The system can include a variety of other devices, such as a cannula, threader, and drill tool. The drill tool can be configured to be removably and replaceably positioned within the inner lumen of the inner drill guide, and a distal end of the drill tool can have a bone cutting tip disposed thereon. The threading tool can be configured to thread terminal ends of the suture through the lumen formed in the suture anchor. The cannula can have a central lumen that is configured to receive the outer guide therein.
A method of attaching soft tissue to bone is also disclosed herein. In one embodiment, a suture can be passed through tissue at a desired location within a patient's body such that the suture extends through the tissue and the first and second terminal ends of the suture are positioned outside of the patient's body. The outer guide can be positioned within the patient such that a distal end of the outer guide is located adjacent to bone at a location that will receive a suture anchor and such that a portion of suture extends through a central lumen of the outer guide. The suture can be attached to a suture anchor while terminal ends of the suture remain positioned outside of the patient's body. The inner guide can be inserted through the central lumen of the outer guide such that a portion of the suture is positioned between an outer wall of the inner guide and an inner wall of the outer guide. The bone drill can be inserted through a central lumen in the inner guide and can form a hole at a desired location in the bone and subsequently, the bone drill and the inner guide can be removed. While the outer guide is maintained in position surrounding the hole and in contact with bone, the suture anchor can be passed through the outer guide and implanted within the hole.
The method can include a variety of other steps. For example, in one embodiment, when the outer guide is positioned within the patient, a portion of the suture adjacent to the distal end of the outer guide is slidably nested in a notch that extends proximally from the distal end of the outer guide. In another embodiment, when the inner guide is inserted into the outer guide, the distal end of the inner guide terminates proximal to the distal end of the outer guide. This ensures that the suture can pass through the notch rather than being pinched between the distal end of the drill guide and bone. In another embodiment, attaching the suture to the suture anchor is accomplished by passing a portion of the suture from a position outside of the suture anchor, through an opening at a distal end of the suture anchor, and up through a central lumen within the suture anchor. In addition, attaching the suture to the suture anchor can be performed prior to inserting the bone drill through the central lumen in the inner guide. In yet another embodiment, the method includes tensioning the suture to draw the tissue into a desired position with respect to the bone. In another embodiment, positioning an outer guide within the patient includes passing a portion of the suture through the central lumen of the outer guide until the terminal ends of the suture are positioned outside of the outer guide. In another embodiment, positioning the outer guide within the patient includes positioning the outer guide through a cannula inserted in the patient. In yet another embodiment, when the suture anchor is passed through the outer guide, a longitudinal axis of the suture anchor is substantially aligned with a longitudinal axis of the anchor receiving hole. The method can further comprise trimming the suture adjacent to a proximal end of the suture anchor.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Systems and methods for attaching tissue to bone are disclosed herein. In one embodiment, a system for attaching tissue to bone includes a suture, suture anchor, inserter tool, drill, and a drill guide set. The drill guide set comprises an outer drill guide and an inner drill guide that is configured to be removably and replaceably received within a lumen of the outer drill guide. The inner drill guide also has a lumen that extends longitudinally therethrough and that is configured to receive a drill. In one embodiment, the outer drill guide can include a slot or notch extending proximally from the distal end thereof that is configured to receive a portion of suture therein. The notch protects the suture from rotational movement of the drill and prevents the suture from being trapped between an outer surface edge of the outer drill guide and adjacent bone.
A method for attaching soft tissue to bone is also provided. This method includes attaching a suture to tissue, passing a suture through a lumen formed in the outer drill guide, and inserting an inner drill guide into the lumen of the outer drill guide. The method further includes inserting a drill through a lumen in the inner drill guide, removing the inner drill guide, threading an anchor with the suture, and inserting it through the outer guide. The anchor and its attached suture are then seated in the prepared hole and the outer drill guide is removed. An advantage of this method is that alignment between the drilled hole and the drill guide can be maintained such that a suture anchor can be more easily inserted into the drilled hole.
A variety of tools can be used in practicing the method for attaching soft tissue to bone that is described herein. The types and designs for the various tools that assist in practicing this method are first described, followed by a discussion of the method for attaching soft tissue to bone.
Suture anchors having a variety of different constructions can be used with the method disclosed herein. By way of example,
A variety of drill guides can be used. For example, a drill guide set 20 is able to protect a suture during rotation of a drill that is inserted in the drill guide 20. As shown in
The outer guide can include additional features, such as a notch and a viewing window. As shown in
A plurality of engagement features 23 can also be formed on the distal end 22b of the outer guide 22, serving to help maintain the guide in a desired position on bone. As will be appreciated by a person skilled in the art, such surface features can allow the outer guide to superficially penetrate the bone surface, such as by forming indentations to help seat the outer guide in bone.
As explained, the inner guide can be configured to be removably and replaceably inserted into the lumen 26 formed in the outer guide 22.
Although a variety of suture anchor inserter tools can be used, an exemplary suture anchor inserter tool is shown in
While a variety of drills can be used to form a hole in bone, an exemplary embodiment is provided in
The devices described above can be used to perform a surgical procedure for attaching soft tissue to bone. One skilled in the art will understand that the procedure is ideally a minimally invasive procedure. A flow chart illustrating the general method for attaching tissue to bone is provided in
Once the patient is prepared for surgery, a length of suture 100 is passed into the patient's body and passed through soft tissue 200 that is to be surgically reattached to bone 300. As shown in
As shown in
With the inner and outer guides 24, 22 so arranged, and the terminal ends of the suture 100 positioned outside of the drill guide 20, the suture can be threaded onto the suture anchor 10 using a threader tool (not shown) while the anchor remains outside of the patient's body. As will be appreciated by a person skilled in the art, the threader tool can have a variety of configurations. In one embodiment, the suture 100 is threaded onto the anchor 10 prior to drilling of the bone hole to prevent inadvertent movement of the drill guide 20 between the drilling and anchor insertion steps. Prior to or after threading, the threaded suture anchor 10 can be mated to a distal end 60b of the inserter tool 60, as shown in
With the inner and outer guides 24, 22 so positioned, and the suture 100 optionally threaded onto the suture anchor 10, a drill 70, having a cutting tip 72, can be inserted through the lumen 28 formed in the inner guide 24, as shown in
A user can monitor the position of the anchor 10 within the outer guide 22 using a scoping device that is focused on one or more of the viewing windows, such as viewing window 42. In particular,
Once the anchor 10 is partially seated within the drilled hole 400, the terminal ends 100a, 100b of the suture 100 can be pulled to tension the suture 100 and thereby pull the attached tissue 200 closer to the anchor 10, and thus, to the position of bone 300 to which it is to be secured. As will be appreciated by a person skilled in the art, the suture can also be tensioned prior to the anchor 10 being partially seated or fully seated in the drilled bole. The anchor 10 can be driven into the hole 400, such as by rotating and/or tapping the proximal end 60a of the inserter tool 60. This action serves to lock the suture 100 between an outer surface of the anchor 10 and an inner surface of the drilled hole 400. As will be appreciated by a person skilled in the art, the anchor 10 can lock the suture 100 in other ways, such as using a push-lock. As shown in
The systems and methods described above can be used for a variety of tissue attachment procedures including, by way of non-limiting example, arthroscopic shoulder surgery. For example, the suture can be passed through the labrum and the drill guide can also be used to lever the humeral head away from the glenoid cavity to gain access to the glenoid rim prior to drilling the bone.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5015247 | Michelson | May 1991 | A |
5250055 | Moore et al. | Oct 1993 | A |
5441502 | Bartlett | Aug 1995 | A |
5484437 | Michelson | Jan 1996 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5505732 | Michelson | Apr 1996 | A |
5749878 | Bracy et al. | May 1998 | A |
5797909 | Michelson | Aug 1998 | A |
RE36020 | Moore et al. | Dec 1998 | E |
5944739 | Zlock et al. | Aug 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5948002 | Bonutti | Sep 1999 | A |
5951559 | Burkhart | Sep 1999 | A |
5984002 | Kido et al. | Nov 1999 | A |
6013083 | Bennett | Jan 2000 | A |
RE36974 | Bonutti | Nov 2000 | E |
6200322 | Branch et al. | Mar 2001 | B1 |
6224595 | Michelson | May 2001 | B1 |
6325804 | Wenstrom, Jr. et al. | Dec 2001 | B1 |
6416518 | DeMayo | Jul 2002 | B1 |
6491714 | Bennett | Dec 2002 | B1 |
6547800 | Foerster et al. | Apr 2003 | B2 |
6929606 | Ritland | Aug 2005 | B2 |
6951538 | Ritland | Oct 2005 | B2 |
7033363 | Powell | Apr 2006 | B2 |
7431722 | Michelson | Oct 2008 | B1 |
7785347 | Harvie et al. | Aug 2010 | B2 |
8439947 | Howard et al. | May 2013 | B2 |
8911474 | Howard et al. | Dec 2014 | B2 |
9788844 | Miller et al. | Oct 2017 | B2 |
20030236447 | Ritland | Dec 2003 | A1 |
20050049617 | Chatlynne et al. | Mar 2005 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060149280 | Harvie | Jul 2006 | A1 |
20060149370 | Schmieding et al. | Jul 2006 | A1 |
20060167479 | Morris et al. | Jul 2006 | A1 |
20060293693 | Farr et al. | Dec 2006 | A1 |
20060293710 | Foerster et al. | Dec 2006 | A1 |
20070162124 | Whittaker | Jul 2007 | A1 |
20070219557 | Bourque et al. | Sep 2007 | A1 |
20080058816 | Philippon | Mar 2008 | A1 |
20090312776 | Kaiser et al. | Dec 2009 | A1 |
20110015675 | Howard et al. | Jan 2011 | A1 |
20130158596 | Miller et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
19537747 | Apr 1997 | DE |
2010521195 | Jun 2010 | JP |
Entry |
---|
Australian Office Action for Application No. 2012261743, dated Oct. 10, 2013 (4 pages). |
Chinese Office Action for Application No. 201210545423.2 dated Dec. 23, 2015. |
Japanese Office Action for Application No. 2012-273236, dated Nov. 29, 2016. |
Number | Date | Country | |
---|---|---|---|
20180028203 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13328656 | Dec 2011 | US |
Child | 15782045 | US |