The present invention related to determining message priority in converged networks. More particularly, the present invention provides a system and method for setting the priority of a transport packet based on parameters of a message being transported.
Signaling system number 7 (SS7) is widely used as the signaling protocol in telecommunication networks. Each SS7 message is assigned one of four congestion priorities, which may be used to determine how each message is handled based on the current capacity of each signaling route. Typically, user messages, such as those for call setup and teardown, are assigned a lower priority than network management messages.
In converged networks, portions of the network use the Internet protocol (IP) to transport signaling messages, while other portions of the network use SS7 to transport signaling messages. For example, IP may be used for message transfer between signal transfer points (STP) in the network, and SS7 may be used to communicate with endpoints, or vice-versa. In one implementation, an STP may receive an SS7 message from a service switching point (SSP), encapsulate the SS7 message in an IP packet, and transfer the received SS7 message to another STP using IP. However, once the SS7 message is encapsulated in an IP packet, the priority level of the SS7 message cannot be determined by examining the IP packet header. In the event that the IP network becomes congested, the delivery of high priority SS7 messages may be delayed since all IP encapsulated SS7 messages may be treated with the same priority level.
In addition, most SS7 user messages are considered low priority and are treated the same. However, users may wish to ensure that their messages are handled in a timely fashion, especially when the network is experiencing abnormal conditions, such as congestion. While a user may be willing to pay for preferred service, there is currently no provision to enable tiers of service in an SS7/IP network.
Accordingly, there is a need to provide a system and method to assign a priority to an IP packet based on the priority of the SS7 message that is encapsulated in the packet.
There is also a need to provide a system and method to indicate a desired level of service for an SS7 user message and reflect the desired level of service in the IP packet in which the SS7 user message is encapsulated.
Methods and systems for automatically correlating signaling message priority and IP priority are disclosed. A priority level of a signaling message may be determined based on a priority parameter in the signaling message or a user based priority. The signaling message is encapsulated in an IP packet. A priority level in the IP packet is set based on the priority level determined for the signaling message.
In accordance with another aspect of the invention, a signaling gateway includes a first interface module operatively coupled to a first network. The first interface module is capable of receiving a signaling message from the first network. The first interface module routes the signaling message to a second interface module associated with an outbound signaling link. The second interface module includes a priority determination process for determining a priority of the message in a first protocol and mapping the priority in the first protocol to a second protocol, the second interface module may encapsulate the received signaling message in a packet of the second protocol, set the priority information in the packet, and transmit the packet on the second network.
Accordingly, it is an object of the invention to provide methods and systems for assigning a priority to an IP packet based on a priority parameter of the signaling message that is encapsulated in the packet.
It is another object of the invention to provide methods and systems for determining priority of a signaling message based on a calling or called party parameter in the signaling message and for setting the priority of an IP packet that encapsulates the signaling message based on the priority determined for the signaling message.
Some of the objects of the invention having been stated hereinabove, and which are addressed in whole or in part by the present invention, other objects will become evident as the description proceeds when taken in connection with the accompanying drawings as best described hereinbelow.
The present invention includes methods and systems for correlating SS7 message priority to IP type of service parameters. In one implementation, the methods and systems for correlating priority may be implemented in a signaling message routing node, such as a signal transfer point or a signaling gateway.
In the illustrated embodiment, SG 100 includes an interprocessor message transport (IMT) bus 102, which provides a reliable transport mechanism for transporting messages between modules in SG 100. IMT bus 102 may include a dual-ring, counter-rotating bus so that traffic may be re-routed in response to a module failure. A number of cards or processing modules may be coupled to IMT bus 102. These cards or processing modules may include an SS7-capable link interface module (LIM) 104, an IP-capable data communication module (DCM) 106, and a database services module (DSM) 108. Each of the modules may be physically connected to IMT bus 102 such that signaling and other messages may be routed internally between all active cards or modules.
As used herein the term “module” may include a hardware component, a software component, a firmware component or any combination thereof. For example, a module may be a chip, such as an ASIC, designed to perform a specific function. Alternatively, a module may be a part of a computer program that performs a specific function or a module may be a microprocessor programmed to perform a specific function.
In one implementation, each module includes a printed circuit board having an application processor and a communications processor mounted thereon. The application processor on each module may be programmed to perform a telecommunications processing function. For example, the application processor on database services module 108 may be configured to provide database services, such as global title translation (GTT). The communications processor on each module may be programmed to perform link-level communications with other modules via IMT bus 102.
For simplicity of illustration, only single LIM, DCM, and DSM cards are included in
Focusing now on the functions of LIM card 104, in the illustrated embodiment, LIM 104 includes a number of sub-components including an SS7 MTP level 1 and 2 process 110, an I/O buffer or queue 112, a gateway screening (GWS) process 114, an SS7 MTP level 3 discrimination process 116, a distribution process 118, and a routing process 120. MTP level 1 and 2 process 110 provides the facilities necessary to send and receive digital data over a particular physical medium. MTP level 1 and 2 process 110 also performs error detection, error correction and sequenced delivery of SS7 message packets from the SS7 network. I/O queue 112 provides for temporary buffering of incoming and outgoing signaling message packets. GWS process 114 examines received message packets and determines whether the messages should be allowed into SG 100 for processing and/or routing. Gateway screening may include examining the destination point code of the received MSU to determine whether the MSU is to be allowed into a network for which SG 100 routes messages.
Discrimination process 116 performs a discrimination function, effectively determining whether an incoming SS7 message packet requires internal processing or is simply to be through-switched, i.e., routed to another node. This determination may be made by examining a destination point code in the message. If the destination point code is set to the point code of routing node 100, discrimination process 116 may determine that the message requires internal processing. If the destination point code is not set to the point code of routing node 100, discrimination process 116 may determine that the message is required to be through-switched.
In addition to examining the destination point code in a received message, discrimination process 116 may also examine the service indicator in a message to determine whether the message is an SCCP message. If the destination point code in the message is set to the point code of routing node 100 and the service indicator indicates that the message is an SCCP message, discrimination process 116 may forward the message to distribution process 118. Distribution process 118 handles the internal routing of SS7 message packets that require additional processing prior to final routing. If discrimination process 116 determines that a message should be through switched, discrimination process 116 forwards the message to routing process 120. Routing process 120 routes signaling messages to the appropriate outbound signaling links based on destination point codes in the messages.
Database services module (DSM) 108 receives SS7 message packets from the distribution process 118 on the LIM 104. In the illustrated embodiment, DSM 108 includes a signaling connection routing controller (SCRC) 126 that is responsible for routing SCCP messages to the appropriate application on the DSM 108. For example, SCCP messages requiring global titled translation would be routed from the SCRC 126 to the global title translation (GTT) application 128. As is known to the art, global title translation involves resolving a called party address to the point code and subsystem number of an intermediate or final destination. Once the point code is determined, the message is sent to the routing application 132 for delivery to the processing module associated with the outbound signaling link, such as DCM 106. It should be appreciated that the SCRC 126 may direct SCCP messages to other applications 130 on the DSM 108, as well. Examples of other SCCP applications that may be provided by DSM 108 include mobile application part (MAP) screening, G-FLEX™ service, and G-PORT™ service. MAP screening involves screening of messages based on MAP parameters in the message, e.g., to control routing of messages at the MAP level. G-FLEX™ is a feature available on STPs manufactured by Tekelec of Calabasas, Calif. for translating called party information in mobile signaling messages to point codes of mobile services nodes, such as home location registers (HLRs) and short message service centers (SMSCs). G-PORT™ is a feature available on STPs available from Tekelec of Calabasas, Calif. for relaying mobile signaling messages relating to home HLRs for calls to ported-in subscribers and for responding on behalf of a home network HLR for ported-out subscribers.
Data communication module (DCM) 106 converts incoming IP-encapsulated SS7 messages into SS7 format and encapsulates outgoing SS7 messages in IP packets. In the illustrated embodiment, DCM 106 includes an HMCG process 122 that is responsible for monitoring congestion on the associated DCM linksets and internally communicating this link congestion information to peer processes on other modules via IMT bus 102.
DCM 106 may also include a priority determination process 134. As discussed in greater detail below, priority determination process 134 may determine the priority of an outgoing SS7 message based on message parameters, such as originating point code (OPC), calling party address (CgPA) OPC, CgPA global type address (GTA), and subsystem number (SSN), or based on MTP level 3 priority parameters included in the message. The message priority determined by the priority determination process 134 may be used to place the outgoing message in I/O queue 112. As discussed in greater detail below, the determined priority may also be used by the IP process 126 to set the values of the type of service octet of the IP header, and in particular the precedence bits in the type of service fields.
As the SS7 communication protocol and the IP communication protocol are not inherently compatible, all SS7 message packets that are to be sent into the IP network are first encapsulated within an IP routing envelope prior to transmission over the IP network and decapsulated before being transmitted over the SS7 network. This IP encapsulation and decapsulation is performed by IP process 136. IP process 136 may include physical layer functionality, network layer functionality, transport layer functionality, and transport adapter layer functionality. The physical layer functionality may include any suitable physical layer function for communicating IP packets over an underlying network. In one implementation, the physical layer functionality may include Ethernet functionality. The network layer functionality may include IP functionality. The transport layer functionality may include any suitable transport layer for reliable, stream-oriented delivery of signaling messages. Exemplary transport layer protocols suitable for use with embodiments of the present invention include TCP, UDP, and SCTP. The transport adapter layer functionality may include TALI, SUA, M2PA, M3UA, or other suitable transport adapter layer protocols, such as SIP, as described in the correspondingly named IETF Internet drafts and RFCs.
In addition to forwarding outbound messages over an IP network, DCM 106 receives inbound IP messages. In one implementation, DCM 106 receives IP encapsulated messages. IP process 136 may remove the IP and transport layers and any transport adapter layers from each incoming SS7 message. The message is then passed up the MTP stack and processed in a manner similar to SS7 messages received by LIM 104. In the illustrated example, DCM 106 includes gateway screening process 114, discrimination process 116, distribution process 118, and routing process 120. These processes perform the same functions as the correspondingly numbered processes described above with regard to LIM 104.
As previously noted, each SS7 message is assigned one of four priority levels. The priority of an SS7 message may be determined by examining the two priority bits in the Service Indicator Octet (SIO) of the SS7 message. These priority bits are set in accordance with the message priority, as defined by American National Standards Institute (ANSI) TI. III. 5, Annex A, which is reproduced in pertinent part at the end of the Detailed Description of the Invention. The message priority may also be determined in the SCCP layer using, for example, the importance field.
If the capacity of each signaling route is exceeded, procedures may be implemented that limit signaling traffic by selectably controlling the delivery of messages according to the priority of each message. For example, messages having a priority level that is lower than the current congestion level may be discarded. Thus, the priority of a message may determine the timeliness of the delivery of the message or whether the message is delivered at all.
As indicated by the broken signaling links in
In accordance with one aspect of the invention, the priority of the SS7 message is mapped to the type of service (TOS) octet of the IP routing envelope used to encapsulate the SS7 message before it is transmitted over the IP network. In particular, the value of the precedence field, which denotes the importance or priority of the IP datagram, may be set according to the corresponding MTP priority value.
It should be appreciated that the type of service octet in the IP header has various definitions as described in, for example, Internet Engineering Task Force (IETF) RFC 791, RFC 1349, and RFC 2474. Although each of these documents define portions of the type of service octet differently, the three precedence bits appear in the same location and are consistently defined. For example, RFC 2474 redefines the TOS octet as a differentiated services code point. The first three bits define a class selector code point (CSCP), which designates the per-hop behavior of the packet. The CSCP is designed to backward compatible with the precedence field of the TOS octet.
RFC 1349 defines the type of service field as a single enumerated value rather than as a set of independently definable bits. For example, the type of service field as defined by RFC 791 permits a user to select more than one type of service parameter (e.g., low delay and high throughput). In contrast, the type of service field as defined by RFC 1349 does not define each type of service bit independently. Thus, it is not possible to select more than one type of service parameter.
In accordance with one aspect of the invention, the message priority of various protocol levels may be correlated or modified to synchronize the message priority fields so that the message gets equal treatment at various protocol levels. Although the embodiments of the present invention are described in relation to SS7, most signaling protocols carry a field to designate the priority of the message. Thus, the invention should not be limited to the SS7 protocol.
In typical implementations, buffers for the different protocol layers are independent of each other. Therefore, there is a need to make sure that the message priorities are equivalent at different protocol layers. In accordance with one aspect of the invention, the message priority of the IP layer is correlated with the message priority at the signaling layer. Table 3 shows an exemplary mapping of MTP priority to IP priority.
It should be appreciated that the priority levels shown in Table 3 may be configurable by the user so that unique network translation schemes may be implemented. The capability of setting the priority of the IP packet may be provided for through-switched traffic as well as global title translation traffic, and may be set on the outbound link prior to transmission.
As previously noted, most SS7 user messages, such as SCCP, ISUP, TCAP, or MAP messages, are considered low priority and network resources or user messages are allocated on a first come, first served basis. Thus, as network resources become unavailable, for example, due to congestion, low priority user messages are frequently discarded in favor of higher priority network management messages.
In accordance with another aspect of the invention, the originator's SS7 parameters are correlated to the message priority at the signaling layer as well as the message priority of the IP layer. In one embodiment of the invention, the originator's originating point code (OPC), calling party address (CgPA) OPC, and CgPA global type address (GTA) are used to determine the priority of the message.
When the first message is processed by STP 202, it may be forwarded to the DSM 108 for global title translation and a determination of the user priority. As shown in
If in step 902, the STP determines that the MSU is not to be through switched, the STP determines if the MSU is carrying an SCCP message, for example by examining the service indicator, in step 907. If the message is not an SCCP message, in step 908 the STP discharges the message.
If, however, the MSU is carrying an SCCP message, control proceeds to step 909 in
In step 909, if the calling party OPC was present, the STP tries to match the calling party OPC against the values in the GTT table (step 912). If no match is found, the STP correlates the priority of the MSU to the IP TOS and routes the message (step 913). If the calling party OPC matches a value in the GTT or if the calling party address is not present or does not match a value in the GTT table, processing continues with step 914, in which the STP matches the called party SSN if the SSN is present. After matching the called party SSN with an SSN in the GTT table, control proceeds to step 915 in
Once the priority and type of service has been determined in step 915, the global title indicator (GTI) of the message is examined to determine the format of the global title field. In steps 916 and 917, it is determined whether the global title indicator is 2 or 4, which indicates ANSI or ITU formatting, respectively. If the GTI equals 2, the appropriate GTT table is consulted to obtain the global title information. If the GTI equals 4, the NP and NAI parameters of the message are used to determine which GTT table to consult in step 918. In step 919, the selected GTT table is accessed and used to translate the called party address in the message into a point code. After the destination point code is translated, the message is routed over the signaling link associated with the translated destination point code. If the outbound signaling link is an IP link, the IP TOS octet may be set according to the value selected using the steps in
Accordingly, the present invention provides a system and method to assign a priority to an IP packet based on the priority of the signaling message that is encapsulated in the packet.
The present invention also provides a system and method to indicate a desired level of service for a user message and reflect the level of service in the packet in which the user message is encapsulated.
Although the examples described above relate primarily to IPv4, the present invention is not limited to mapping SS7 priorities to IPv4 priorities. For example, the methods and systems described herein can be used to map SS7 priorities to IPv6 priorities. IPv6 priorities may be set by writing appropriate values to the traffic class octet in the IPv6 header based on an SS7 priority level and/or a user-based priority. IPv6 priorities are described in detail in IETF RFC 2474, the disclosure of which is incorporated herein by reference in its entirety.
It will be understood that various details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the invention is defined by the claims as set forth hereinafter.
Number | Name | Date | Kind |
---|---|---|---|
5008929 | Olsen et al. | Apr 1991 | A |
5142622 | Owens | Aug 1992 | A |
5173897 | Schrodi et al. | Dec 1992 | A |
5208811 | Kashio et al. | May 1993 | A |
5239542 | Breidenstein et al. | Aug 1993 | A |
5315641 | Montgomery et al. | May 1994 | A |
5384840 | Blatchford et al. | Jan 1995 | A |
5420916 | Sekiguchi | May 1995 | A |
5430727 | Callon | Jul 1995 | A |
5477531 | McKee et al. | Dec 1995 | A |
5497460 | Balley et al. | Mar 1996 | A |
5509010 | LaPorta et al. | Apr 1996 | A |
5553097 | Dagher | Sep 1996 | A |
5568487 | Sitbon et al. | Oct 1996 | A |
5581558 | Horney, II et al. | Dec 1996 | A |
5583926 | Venier et al. | Dec 1996 | A |
5583927 | Fly et al. | Dec 1996 | A |
5586177 | Farris et al. | Dec 1996 | A |
5592530 | Brockman et al. | Jan 1997 | A |
5610910 | Focsaneanu et al. | Mar 1997 | A |
5612949 | Bennett | Mar 1997 | A |
5638431 | Everett et al. | Jun 1997 | A |
5640446 | Everett et al. | Jun 1997 | A |
5650998 | Angenot et al. | Jul 1997 | A |
5651002 | Van Seters et al. | Jul 1997 | A |
5657452 | Kralowetz et al. | Aug 1997 | A |
5661790 | Hsu | Aug 1997 | A |
5664102 | Faynberg | Sep 1997 | A |
5675635 | Vos et al. | Oct 1997 | A |
5680437 | Segal | Oct 1997 | A |
5680552 | Netravali et al. | Oct 1997 | A |
5694463 | Christie et al. | Dec 1997 | A |
5696809 | Voit | Dec 1997 | A |
5701301 | Weisser, Jr. | Dec 1997 | A |
5706286 | Reiman et al. | Jan 1998 | A |
5712903 | Bartholomew et al. | Jan 1998 | A |
5732213 | Gessel et al. | Mar 1998 | A |
5740374 | Raffali-Schreinemachers | Apr 1998 | A |
5754752 | Sheh et al. | May 1998 | A |
5761281 | Baum et al. | Jun 1998 | A |
5761290 | Farris et al. | Jun 1998 | A |
5761500 | Gallant et al. | Jun 1998 | A |
5764750 | Chau et al. | Jun 1998 | A |
5764955 | Doolan | Jun 1998 | A |
5768361 | Cowgill | Jun 1998 | A |
5768525 | Kralowetz et al. | Jun 1998 | A |
5774695 | Autrey et al. | Jun 1998 | A |
5781534 | Perlman et al. | Jul 1998 | A |
5787255 | Parlan et al. | Jul 1998 | A |
5793425 | Balakrishnan | Aug 1998 | A |
5793771 | Darland et al. | Aug 1998 | A |
5802285 | Hirviniemi | Sep 1998 | A |
5805587 | Norris et al. | Sep 1998 | A |
5809028 | Nethercott et al. | Sep 1998 | A |
5812669 | Jenkins et al. | Sep 1998 | A |
5812781 | Fahlman et al. | Sep 1998 | A |
5815669 | Lee et al. | Sep 1998 | A |
5828844 | Civanlar et al. | Oct 1998 | A |
5838782 | Lindquist | Nov 1998 | A |
5852660 | Lindquist | Dec 1998 | A |
5867495 | Elliott et al. | Feb 1999 | A |
5870565 | Glitho | Feb 1999 | A |
5872782 | Dendi | Feb 1999 | A |
5878129 | Figurski et al. | Mar 1999 | A |
5889954 | Gessel et al. | Mar 1999 | A |
5892822 | Gottlieb et al. | Apr 1999 | A |
5898667 | Longfield et al. | Apr 1999 | A |
5905724 | Carson et al. | May 1999 | A |
5912887 | Sehgal | Jun 1999 | A |
5917900 | Allison et al. | Jun 1999 | A |
5920562 | Christie et al. | Jul 1999 | A |
5923659 | Curry et al. | Jul 1999 | A |
5926482 | Christie et al. | Jul 1999 | A |
5933490 | White et al. | Aug 1999 | A |
5940598 | Strauss et al. | Aug 1999 | A |
5949871 | Kabay et al. | Sep 1999 | A |
5958016 | Chang et al. | Sep 1999 | A |
5966431 | Reiman et al. | Oct 1999 | A |
5971900 | Miller | Oct 1999 | A |
5974052 | Johnson et al. | Oct 1999 | A |
5991301 | Christie | Nov 1999 | A |
5995608 | Detampel, Jr. et al. | Nov 1999 | A |
6002754 | Jaiswal et al. | Dec 1999 | A |
6006098 | Rathnasabapathy et al. | Dec 1999 | A |
6011780 | Vaman et al. | Jan 2000 | A |
6011794 | Mordowitz et al. | Jan 2000 | A |
6011803 | Bicknell et al. | Jan 2000 | A |
6014379 | White et al. | Jan 2000 | A |
6021126 | White et al. | Feb 2000 | A |
6023502 | Bouanaka et al. | Feb 2000 | A |
6026091 | Christie et al. | Feb 2000 | A |
6028921 | Malik et al. | Feb 2000 | A |
6035020 | Weinstein et al. | Mar 2000 | A |
6047005 | Sherman | Apr 2000 | A |
6055202 | Merritt | Apr 2000 | A |
6055302 | Schmersel et al. | Apr 2000 | A |
6061364 | Hager et al. | May 2000 | A |
6064653 | Farris | May 2000 | A |
6067546 | Lund | May 2000 | A |
6069890 | White et al. | May 2000 | A |
6075783 | Voit | Jun 2000 | A |
6078582 | Curry et al. | Jun 2000 | A |
6079036 | Moharram | Jun 2000 | A |
6081589 | Jiang et al. | Jun 2000 | A |
6084892 | Benash et al. | Jul 2000 | A |
6084956 | Turner et al. | Jul 2000 | A |
6094437 | Loehndorf, Jr. et al. | Jul 2000 | A |
6097036 | Teshima et al. | Aug 2000 | A |
6097719 | Benash et al. | Aug 2000 | A |
6097805 | Figurski et al. | Aug 2000 | A |
6111780 | Bertin | Aug 2000 | A |
6111870 | Kurtz | Aug 2000 | A |
6111893 | Volftsun et al. | Aug 2000 | A |
6112090 | Valentine | Aug 2000 | A |
6115383 | Bell et al. | Sep 2000 | A |
6118779 | Madonna | Sep 2000 | A |
6119160 | Zhang et al. | Sep 2000 | A |
6122255 | Bartholomew et al. | Sep 2000 | A |
6122263 | Dahlin et al. | Sep 2000 | A |
6122363 | Friedlander et al. | Sep 2000 | A |
6122365 | Yegoshin | Sep 2000 | A |
6125111 | Snow et al. | Sep 2000 | A |
6125177 | Whittaker | Sep 2000 | A |
H1880 | Vines et al. | Oct 2000 | H |
H1896 | Hoffpauir et al. | Oct 2000 | H |
6128379 | Smyk | Oct 2000 | A |
6134235 | Goldman et al. | Oct 2000 | A |
6134246 | Cai et al. | Oct 2000 | A |
6137869 | Voit et al. | Oct 2000 | A |
6137874 | Brown et al. | Oct 2000 | A |
6138110 | Jahn et al. | Oct 2000 | A |
6144667 | Doshi et al. | Nov 2000 | A |
6144670 | Sponaugle et al. | Nov 2000 | A |
6147999 | Honda et al. | Nov 2000 | A |
6151390 | Volftsun et al. | Nov 2000 | A |
6154445 | Farris et al. | Nov 2000 | A |
6154467 | Hager et al. | Nov 2000 | A |
6154784 | Liu | Nov 2000 | A |
6157710 | Figurski et al. | Dec 2000 | A |
6167025 | Hsing et al. | Dec 2000 | A |
6178181 | Glitho | Jan 2001 | B1 |
6189031 | Badger et al. | Feb 2001 | B1 |
6192051 | Lipman et al. | Feb 2001 | B1 |
6195425 | Farris | Feb 2001 | B1 |
6201804 | Kikinis | Mar 2001 | B1 |
6208642 | Balachandran et al. | Mar 2001 | B1 |
6215783 | Neyman | Apr 2001 | B1 |
6236722 | Gilbert et al. | May 2001 | B1 |
6240067 | Sorber | May 2001 | B1 |
6278697 | Brody et al. | Aug 2001 | B1 |
6285754 | Sun et al. | Sep 2001 | B1 |
6292479 | Bartholomew et al. | Sep 2001 | B1 |
6307926 | Barton et al. | Oct 2001 | B1 |
6311186 | MeLampy et al. | Oct 2001 | B1 |
6324173 | Deschaine et al. | Nov 2001 | B1 |
6324183 | Miller et al. | Nov 2001 | B1 |
6327258 | Deschaine et al. | Dec 2001 | B1 |
6327267 | Valentine et al. | Dec 2001 | B1 |
6327350 | Spangler et al. | Dec 2001 | B1 |
6330250 | Curry et al. | Dec 2001 | B1 |
6330614 | Aggarwal et al. | Dec 2001 | B1 |
6332166 | Cranford, Jr. et al. | Dec 2001 | B1 |
6333931 | LaPier et al. | Dec 2001 | B1 |
6335937 | Chao et al. | Jan 2002 | B1 |
6349099 | Larikka et al. | Feb 2002 | B1 |
6366655 | Book et al. | Apr 2002 | B1 |
6377799 | Hameleers et al. | Apr 2002 | B1 |
6385301 | Nolting et al. | May 2002 | B1 |
6393022 | Hewett et al. | May 2002 | B1 |
6393581 | Friedman et al. | May 2002 | B1 |
6411604 | Brockman et al. | Jun 2002 | B1 |
6411632 | Lindgren et al. | Jun 2002 | B2 |
6415027 | Malik | Jul 2002 | B1 |
6425009 | Parrish et al. | Jul 2002 | B1 |
6430189 | Juntumaa et al. | Aug 2002 | B1 |
6442169 | Lewis | Aug 2002 | B1 |
RE37826 | Samueli et al. | Sep 2002 | E |
6448500 | Hosaka et al. | Sep 2002 | B1 |
6459697 | Neyman | Oct 2002 | B1 |
6459783 | March et al. | Oct 2002 | B1 |
6483837 | Howell et al. | Nov 2002 | B1 |
6483842 | Mauger | Nov 2002 | B1 |
6487286 | Reaves et al. | Nov 2002 | B1 |
6496512 | Medhat | Dec 2002 | B1 |
6501764 | Fudatate et al. | Dec 2002 | B1 |
6504923 | Swale | Jan 2003 | B1 |
6507649 | Tovander | Jan 2003 | B1 |
6515985 | Shmulevich et al. | Feb 2003 | B2 |
6522667 | Oda et al. | Feb 2003 | B1 |
6529524 | Liao et al. | Mar 2003 | B1 |
6533427 | Chang et al. | Mar 2003 | B2 |
6535599 | Torrey et al. | Mar 2003 | B1 |
6542497 | Curry et al. | Apr 2003 | B1 |
6546003 | Farris | Apr 2003 | B1 |
6563835 | Chen | May 2003 | B1 |
6574216 | Farris et al. | Jun 2003 | B1 |
6577626 | Christie et al. | Jun 2003 | B2 |
6584190 | Bressler | Jun 2003 | B1 |
6594246 | Jorgensen | Jul 2003 | B1 |
6594258 | Larson et al. | Jul 2003 | B1 |
6611532 | Madour et al. | Aug 2003 | B1 |
6611533 | Liao et al. | Aug 2003 | B1 |
6625170 | Curry et al. | Sep 2003 | B1 |
6631133 | Christi et al. | Oct 2003 | B1 |
6636504 | Albers et al. | Oct 2003 | B1 |
6668051 | Ashdown et al. | Dec 2003 | B1 |
6674748 | Dykhuizen et al. | Jan 2004 | B1 |
6678242 | Simon | Jan 2004 | B1 |
6680953 | Kim | Jan 2004 | B1 |
6681009 | Graf et al. | Jan 2004 | B1 |
6683881 | Mijares et al. | Jan 2004 | B1 |
6724752 | Turtiainen et al. | Apr 2004 | B1 |
6731741 | Fourcand et al. | May 2004 | B1 |
6760343 | Krishnamurthy et al. | Jul 2004 | B1 |
6782004 | Brusilovsky et al. | Aug 2004 | B1 |
6912590 | Lundbäck et al. | Jun 2005 | B1 |
6940866 | Miller et al. | Sep 2005 | B1 |
6944184 | Miller et al. | Sep 2005 | B1 |
6954526 | Glenn et al. | Oct 2005 | B1 |
6965592 | Tinsley et al. | Nov 2005 | B2 |
6967956 | Tinsley et al. | Nov 2005 | B1 |
6987781 | Miller et al. | Jan 2006 | B1 |
6990089 | Benedyk et al. | Jan 2006 | B2 |
6996225 | Bordonaro et al. | Feb 2006 | B1 |
7002988 | Benedyk et al. | Feb 2006 | B1 |
7031340 | Sprague et al. | Apr 2006 | B2 |
7046667 | Sprague et al. | May 2006 | B2 |
7050456 | Sprague et al. | May 2006 | B1 |
7088728 | Delaney et al. | Aug 2006 | B2 |
7113581 | Benedyk et al. | Sep 2006 | B2 |
7120139 | Kung et al. | Oct 2006 | B1 |
7190702 | Sprague et al. | Mar 2007 | B2 |
7242695 | Sprague et al. | Jul 2007 | B2 |
7318091 | Brendes et al. | Jan 2008 | B2 |
7327670 | Sprague et al. | Feb 2008 | B2 |
20010029182 | McCann et al. | Oct 2001 | A1 |
20010046227 | Matsuhira et al. | Nov 2001 | A1 |
20010046234 | Agrawal et al. | Nov 2001 | A1 |
20010049730 | Brendes et al. | Dec 2001 | A1 |
20010055380 | Benedyk et al. | Dec 2001 | A1 |
20020048360 | Zambre et al. | Apr 2002 | A1 |
20020105969 | Benedyk et al. | Aug 2002 | A1 |
20020131400 | Tinsley et al. | Sep 2002 | A1 |
20020150221 | Carson et al. | Oct 2002 | A1 |
20030047342 | Rotta et al. | Mar 2003 | A1 |
20030156578 | Bergenlid et al. | Aug 2003 | A1 |
20030191883 | April | Oct 2003 | A1 |
20040114611 | O'Connell et al. | Jun 2004 | A1 |
20050238036 | Miller et al. | Oct 2005 | A1 |
20050265341 | Benedyk et al. | Dec 2005 | A1 |
20050286502 | Benedyk et al. | Dec 2005 | A1 |
20060013203 | Benedyk et al. | Jan 2006 | A1 |
20060013204 | Benedyk et al. | Jan 2006 | A1 |
20060077978 | Sprague et al. | Apr 2006 | A1 |
20080075068 | Brendes et al. | Mar 2008 | A1 |
20080075115 | Brendes et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
2239764 | Dec 1998 | CA |
0 853 411 | Jul 1998 | EP |
1 014 735 | Dec 1999 | EP |
1 026 861 | Sep 2000 | EP |
1 089 575 | Sep 2000 | EP |
1 054 568 | Nov 2000 | EP |
1 161 819 | Aug 2006 | EP |
1 177 660 | Aug 2006 | EP |
1 135 905 | Oct 2006 | EP |
1 169 829 | Oct 2006 | EP |
1 169 816 | Nov 2006 | EP |
1 192 758 | Feb 2007 | EP |
1 755 295 | Feb 2007 | EP |
1 715 658 | Oct 2007 | EP |
1 371 246 | Jul 2008 | EP |
WO 9711563 | Mar 1997 | WO |
WO 9733441 | Sep 1997 | WO |
WO 9742774 | Nov 1997 | WO |
WO 9742776 | Nov 1997 | WO |
WO 9746045 | Dec 1997 | WO |
WO 9828879 | Jul 1998 | WO |
WO 9828885 | Jul 1998 | WO |
WO 9828897 | Jul 1998 | WO |
WO 9909759 | Feb 1999 | WO |
WO 9916256 | Apr 1999 | WO |
WO 0019758 | Apr 2000 | WO |
WO 0022840 | Apr 2000 | WO |
WO 0030369 | May 2000 | WO |
WO 0031933 | Jun 2000 | WO |
WO 0033519 | Jun 2000 | WO |
WO 0035155 | Jun 2000 | WO |
WO 0035156 | Jun 2000 | WO |
WO 0054476 | Sep 2000 | WO |
WO 0056032 | Sep 2000 | WO |
WO 0060812 | Oct 2000 | WO |
WO 0060814 | Oct 2000 | WO |
WO 0060821 | Oct 2000 | WO |
WO 0065785 | Nov 2000 | WO |
WO 0076134 | Dec 2000 | WO |
WO 0111825 | Feb 2001 | WO |
WO 0124499 | Apr 2001 | WO |
WO 0137532 | May 2001 | WO |
WO 0182635 | Nov 2001 | WO |
WO 0193526 | Dec 2001 | WO |
WO 0207455 | Jan 2002 | WO |
WO 02056618 | Jul 2002 | WO |
WO 02060192 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060013264 A1 | Jan 2006 | US |