Various noise cancellation and reduction techniques, both active and passive, have been used to reduce unwanted ambient sounds. For example, an active system includes a speaker producing sound with the same amplitude but with the opposite polarity to the ambient sound. The system is designed such that the ambient and generated waves cancel each other thereby producing noise cancellation. However, active noise cancellation in free space has been challenging and generally limited to narrow frequency ranges. Furthermore, active noise reduction using conventional feedback methods tends to cause amplification of the noise at other frequencies. What is needed are methods and system for broad-band active noise cancellation.
Described are methods and systems for broad-band active reduction of noise in target spaces, such as spaces around headrests in aircraft cabins. Systems describe herein are effective over wide frequency ranges without causing undesirable amplification at any subrange ranges. Specifically, a system comprises a speaker and a resonator, both coupled to an enclosure. The interior space of the resonator is in fluid communication with the enclosed space of the enclosure, allowing the resonator to reduce the amplitude of the audio reducing sound generated by the speaker. The amplitude is reduced in a selected frequency range, which may correspond to an expected amplification for this particular system. The resonator may partially extend into the enclosure or may be completely incorporated into the enclosure. Some examples of the resonator include a Helmholtz resonator, a passive radiator, a quarter wave resonator, a pipe resonator, and an acoustic metamaterial.
Illustrative, non-exclusive examples of inventive features according to present disclosure are described in following enumerated paragraphs:
Illustrative, non-exclusive examples of inventive features according to present disclosure are described in following enumerated paragraphs:
A1. Method 300 for broad-band reduction of noise in target space 290, method 300 comprising:
generating microphone signal 211, wherein microphone signal 211 represents noise in target space 290 and is generated using feedback microphone 210;
transmitting microphone signal 211 to system controller 220;
generating speaker signal 221 based on microphone signal 211, wherein speaker signal 221 is generated using system controller 220;
transmitting speaker signal 221 to speaker 230, wherein speaker 230 partially extends into an enclosure 240, and wherein rear side 232 of speaker 230 forms enclosed space 242 together with enclosure 240;
generating audio reducing sound 231 in target space 290, wherein audio reducing sound 231 is generated using speaker 230 and based on speaker signal 221; and
reducing amplitude of unwanted amplification due to audio reducing sound 231 in a selected frequency range using resonator 250, wherein resonator 250 is in fluid communication with enclosed space 242.
A2. Method 300 of paragraph A1, wherein, while reducing amplitude of audio reducing sound 231, air flows between resonator 250 and enclosed space 242.
A3. Method 300 of any one of paragraphs A1-A2, wherein resonator 250 at least partially extends into enclosed space 242.
A4. Method 300 of any one of paragraphs A1-A3, wherein resonator 250 comprises neck 254, extending into enclosed space 242.
A5. Method 300 of any one of paragraphs A1-A2, wherein resonator 250 is selected from the group consisting of a Helmholtz resonator, a passive radiator, a quarter wave resonator, a pipe resonator, and an acoustic metamaterial.
A6. Method 300 of any one of paragraphs A1-A5, wherein selected frequency range muted using resonator 250 is above 100 Hz.
A7. Method 300 of any one of paragraphs A1-A6, further comprising reducing amplitude of audio reducing sound 231 in an additional selected frequency range using additional resonator 255, wherein additional resonator 280 in fluid communication with enclosed space 242, wherein additional selected frequency range is different from selected frequency range.
A8. Method 300 of any one of paragraphs A1-A7, further comprising changing selected frequency range by changing one of more characteristics of resonator.
A9. Method 300 of paragraph A8, wherein changing one of more characteristics of resonator 250 comprises changing the volume of interior space 252 of resonator 250 or changing an area of an opening to interior space 252 of resonator 250.
A10. Method 300 of any one of paragraphs A1-A9, wherein target space 290 is an area surrounding headrest 507 of passenger seat 505 in an aircraft, and feedback microphone 210, speaker 230, and enclosure 240 are disposed in headrest 507 of passenger seat 505.
B1. System 200 for broad-band reduction of noise in target space 290, system 200 comprising:
feedback microphone 210, configured to generate microphone signal 211 representing noise in target space 290;
system controller 220, coupled to feedback microphone 210, configured to receive microphone signal 211 representing from feedback microphone 210 and configured to generate speaker signal 221 based on microphone signal 211; speaker 230, comprising rear side 232 and configured to generate audio reducing sound 231 in target space 290 based on speaker signal 221;
enclosure 240, wherein speaker 230 partially extends into enclosure 240, and wherein rear side 232 of speaker 230 forms enclosed space 242 together with enclosure 240; and
resonator 250, in fluid communication with enclosed space 242, wherein resonator 250 is configured to reduce amplitude of audio reducing sound 231 in a selected frequency range.
B2. System 200 of paragraph B1, wherein resonator 250 is selected from group consisting of a Helmholtz resonator, a passive radiator, a quarter wave resonator, a pipe resonator, and an acoustic metamaterial.
B3. System 200 of any one of paragraphs B1-B2, wherein resonator 250 at least partially extends into enclosed space 242.
B4. System 200 of any one of paragraphs B1-B3, wherein resonator 250 comprises neck 254, extending into enclosed space 242.
B5. System 200 of any one of paragraphs B1-B4, wherein resonator 250 is fully within enclosed space 242.
B6. System 200 of any one of paragraphs B1-B5, wherein resonator 250 is a part of enclosure 240.
B7. System 200 of any one of paragraphs B1-B6, wherein resonator 250 comprises interior space 252, comprising an opening, wherein the volume of interior space 252 or an area of opening to interior space 252 of resonator 250 is controllably adjustable.
B8. System 200 of any one of paragraphs B1-B7, further comprising additional resonator 280, in fluid communication with enclosed space 242, wherein additional resonator 280 is configured to reduce amplitude of audio reducing sound 231 in an additional selected frequency range, different from selected frequency range.
B9. System 200 of any one of paragraphs B1-B2, further comprising headrest 507 for use in a passenger seat of an aircraft, wherein feedback microphone 210, speaker 230, and enclosure 240 are disposed in headrest 507 of passenger seat 505.
C1. Aircraft 500 comprising:
passenger seat 505, comprising headrest 507, and
system 200, comprising:
These and other embodiments are described further below with reference to figures.
The disclosure may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which illustrate various embodiments of the disclosure.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the presented concepts. The presented concepts may be practiced without some, or all, of these specific details. In other instances, well known process operations have not been described in detail to not unnecessarily obscure the described concepts. While some concepts will be described with the specific embodiments, it will be understood that these embodiments are not intended to be limiting.
Active noise control has been primarily used in headphones where speakers can positioned at controlled distances to users' ears. Expanding active noise control to free space applications has been limited because of less control, which may cause amplification rather than reduction of sound at certain frequencies and certain conditions as will now be described with reference to
Furthermore, when A-weighting is taken into account to estimate human perception of the results shown in
Feedback microphone 210 is configured to generate microphone signal 211, which may correspond to sound in target space 290. Feedback microphone 210 is positioned outside of enclosure 240 and may be oriented toward speaker 230 as, for example, shown in
System controller 220 is configured to receive microphone signal 211 from feedback microphone 210, to which system controller 220 is coupled. System controller 220 is also configured to generate speaker signal 221 based on microphone signal 211. System controller 220 then transmits generate speaker signal 221 to speaker 230, to which system controller 220 is coupled. Speaker signal 221 is generated from a feedback controller with the control objective to minimize noise.
Speaker 230 is configured to receive speaker signal 221 from system controller 220 and also configured to generate audio reducing sound 231 in target space 290. Audio reducing sound 231 is generated based on speaker signal 221. Speaker 230 comprises rear side 232, which may extend into enclosure 240.
Enclosure 240 may be used to house speaker 230. For example, speaker 230 partially extends into enclosure 240. In some embodiments, rear side 232 of speaker 230 forms enclosed space 242 together with enclosure 240.
Resonator 250 is configured to reduce the amplitude of audio reducing sound 231 that is amplifying in a selected frequency range. For purposes of this disclosure, the amplitude reduction may be referred to as muting. Specifically, resonator 250 comprises interior space 252, which is in fluid communication with enclosed space 242. The volume of interior space 252 and other characteristics of resonator 250 may be selected to achieve muting in the desired frequency range. The muting is achieved through coupling because of springiness of air within interior space 252, e.g., compressing and expanding the air within interior space 252.
Some examples of resonator 250 include, but are not limited to, a Helmholtz resonator, a passive radiator, a quarter wave resonator, a pipe resonator, and an acoustic metamaterial. A Helmholtz resonator comprises interior space 252 and neck 254, as for example, shown in
A passive radiator may have a similar design to speaker 230 but have not voice coil and/or magnet assembly. A passive radiator may uses audio reducing sound 231, otherwise trapped in enclosure 240, to excite a resonance. A pipe resonator may be configured in a manner of a pipe side branch with dimensions determined to produce an acoustic resonance at a desired frequency. A pipe resonator may be a cylindrical side branch resonator, which is approximately one-quarter wavelength deep. Alternatively, a pipe resonator is an acoustic metamaterial resonator, which is a fraction of a wavelength deep, can reduce the overall size of the resonator enclosure.
In some embodiments, resonator 250 at least partially extends into enclosed space 242 as, for example, shown in
In some embodiments, resonator 250 is fully within enclosure 240 as, for example, shown in
In some embodiments, resonator 250 may be a part of enclosure 240. In these embodiments, walls of resonator 250 may monolithic with walls of enclosure 240. For example, resonator 250 and enclosure 240 may be formed during the same injection molding or additive manufacturing process.
In some embodiments, system 200 comprises additional resonator 280 as, for example, shown in
In some embodiments, the volume of interior space 252 of resonator 250, the area of the opening to interior space 252 of resonator 250, and/or some other characteristic of resonator 250 is controllably adjustable. This adjustment may be used to change the selected frequency range. The adjustment may be automatic, e.g., in response to a signal from system controller 220 or manual (e.g., by a use of system 200).
In some embodiments, system 200 further comprises headrest 507 for use in passenger seat 505 of aircraft 500, as for example, shown in
Also provided is aircraft 500, comprising passenger seat 505 or, more specifically, multiple passenger seats as, for example, shown in
Referring to block 310 in
Referring to block 320 in
Referring to block 330 in
Referring to block 340 in
Referring to block 350 in
Referring to block 360 in
In some embodiments, resonator 250 comprises interior space 252, which is in fluid communication with enclosed space 242. Compressibility of the air in interior space 252 is used for this operation. For example, some air may flow between interior space 252 of resonator 250 and enclosed space 242.
Referring to block 365 in
Referring to block 370 in
Various performance characteristics of system 200, described above, will now be discussed.
To understand the impact of this selectable phase increase, a mathematical model was formulated that included a model of the speaker with resonance around 100 Hz, a model of the amplifier as a high pass filter with a cutoff frequency of 5 Hz and a selectable delay to represent the propagation delay between the control speaker and the microphone. The transfer function of the model is shown in
For comparison, the transfer function of the model with the Helmholtz resonator is shown in
Applying the same feedback control as described above and illustrated in
In order to reduce the amplification of a traditional feedback control system, the next step would be to look at the gain and phase margins in the open-loop transfer function. This was done for the acoustic compensator and the frequency of the Helmholtz resonator was varied until the gain and phase margins were maximized. The starting point for the frequency selected was the 0 dB point on the open-loop transfer function or crossover frequency. Improved performance was observed when the frequency was adjusted to approximately 1.5 times the crossover frequency.
An aircraft manufacturing and service method 600 shown in
Each of the processes of aircraft manufacturing and service method 600 may be performed or carried out by a system integrator, a third party, and/or an operator (e.g., a customer). For the purposes of this description, a system integrator may include, without limitation, any number of aircraft manufacturers and major-system subcontractors; a third party may include, for example, without limitation, any number of vendors, subcontractors; and suppliers; and an operator may be an airline, leasing company, military entity, service organization, and so on.
As shown in
Apparatus and methods embodied herein may be employed during any one or more of the stages of aircraft manufacturing and service method 600. For example, without limitation, components or subassemblies corresponding to component and subassembly manufacturing 606 may be fabricated or manufactured in a manner like components or subassemblies produced while aircraft 630 is in service.
Also, one or more apparatus embodiments, method embodiments, or a combination thereof may be utilized during component and subassembly manufacturing 606 and system integration 608, for example, without limitation, by substantially expediting assembly of or reducing the cost of aircraft 630. Similarly, one or more of apparatus embodiments, method embodiments, or a combination thereof may be utilized while aircraft 630 is in service, for example, without limitation, to maintenance and service 614 may be used during system integration 608 and/or maintenance and service 614 to determine whether parts may be connected and/or mated to each other.
Turning now to
Processor unit 704 serves to execute instructions for software that may be loaded into memory 706. Processor unit 704 may be a number of processors, a multi-processor core, or some other type of processor, depending on the particular implementation.
Memory 706 and persistent storage 708 are examples of storage devices 716. A storage device is any piece of hardware that is capable of storing information, such as, for example, without limitation, data, program code in functional form, and/or other suitable information either on a temporary basis and/or a permanent basis. Storage devices 716 may also be referred to as computer readable storage devices in these illustrative examples. Memory 706, in these examples, may be, for example, a random-access memory or any other suitable volatile or non-volatile storage device. Persistent storage 708 may take various forms, depending on the particular implementation. For example, persistent storage 708 may contain one or more components or devices. For example, persistent storage 708 may be a hard drive, a flash memory, a rewritable optical disk, a rewritable magnetic tape, or some combination of the above. The media used by persistent storage 708 also may be removable. For example, a removable hard drive may be used for persistent storage 708.
Communications unit 710, in these illustrative examples, provides for communications with other data processing systems or devices. In these illustrative examples, communications unit 710 is a network interface card.
Input/output unit 712 allows for input and output of data with other devices that may be connected to data processing system 700. For example, input/output unit 712 may provide a connection for user input through a keyboard, a mouse, and/or some other suitable input device. Further, input/output unit 712 may send output to a printer. Display 714 provides a mechanism to display information to a user.
Instructions for the operating system, applications, and/or programs may be located in storage devices 716, which are in communication with processor unit 704 through communications framework 702. The processes of the different embodiments may be performed by processor unit 704 using computer-implemented instructions, which may be located in a memory, such as memory 706.
These instructions are referred to as program code, computer usable program code, or computer readable program code that may be read and executed by a processor in processor unit 704. The program code in the different embodiments may be embodied on different physical or computer readable storage media, such as memory 706 or persistent storage 708.
Program code 718 is located in a functional form on computer readable media 720 that is selectively removable and may be loaded onto or transmitted to data processing system 700 for execution by processor unit 704. Program code 718 and computer readable media 720 form computer program product 722 in these illustrative examples. In one example, computer readable media 720 may be computer readable storage media 724 or computer readable signal media 726.
In these illustrative examples, computer readable storage media 724 is a physical or tangible storage device used to store program code 718 rather than a medium that propagates or transmits program code 718.
Alternatively, program code 718 may be transmitted to data processing system 700 using computer readable signal media 726. Computer readable signal media 726 may be, for example, a propagated data signal containing program code 718. For example, computer readable signal media 726 may be an electromagnetic signal, an optical signal, and/or any other suitable type of signal. These signals may be transmitted over communications channels, such as wireless communications channels, optical fiber cable, coaxial cable, a wire, and/or any other suitable type of communications channel.
The different components illustrated for data processing system 700 are not meant to provide architectural limitations to the manner in which different embodiments may be implemented. The different illustrative embodiments may be implemented in a data processing system including components in addition to and/or in place of those illustrated for data processing system 700. Other components shown in
Although foregoing concepts have been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within scope of appended claims. It should be noted that there are many alternative ways of implementing processes, systems, and apparatuses. Accordingly, present embodiments are to be considered as illustrative and not restrictive.
This application is a continuation of U.S. application Ser. No. 15/992,671, entitled “METHODS AND SYSTEMS FOR BROAD-BAND ACTIVE NOISE REDUCTION,” filed on 30May 2018, and issued as U.S. Pat. No. 10,453,438 on 2 Oct. 2019 (Attorney Docket No. 17-2582-US-NP BNGCP142US), which is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 15992671 | May 2018 | US |
Child | 16657786 | US |