A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The following commonly owned, co-pending United States Patents and Patent Applications, including the present application, are related to each other. Each of the other patents/applications are incorporated by reference herein in its entirety:
U.S. Provisional Patent Application 61/500,223 entitled METHODS AND SYSTEMS FOR CACHING DATA SHARED BETWEEN ORGANIZATIONS IN A MULTI-TENANT DATABASE SYSTEM by Mike Janson et al., filed on Jun. 23, 2011 , the entire contents of which are incorporated herein by reference.
U.S. patent application Ser. No. 13/225,123 entitled METHODS AND SYSTEMS FOR CACHING DATA SHARED BETWEEN ORGANIZATIONS IN A MULTI-TENANT DATABASE SYSTEM, by Michael Alexander Janson et al., filed Sep. 2, 2011.
The current invention relates generally to sharing data in a multitenant database system.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
In conventional database systems, users access their data resources in one logical database. A user of such a conventional system typically retrieves data from and stores data on the system using the user's own systems. A user system might remotely access one of a plurality of server systems that might in turn access the database system. Data retrieval from the system might include the issuance of a query from the user system to the database system. The database system might process the request for information received in the query and send to the user system, information relevant to the request. The rapid and efficient retrieval of accurate information and subsequent delivery of this information to the user system has been and continues to be a goal of administrators of database systems.
In a multi-tenant database system, tenants may want to share data with each other. Each time a tenant requests to share data, the data has to be fetched from one tenant's storage space and transferred to the second tenant's storage space. In addition to fetching data, the metadata associated with the data has to be fetched. Fetching data and metadata is a time consuming process.
Accordingly, it is desirable to provide techniques for faster transfer of data between tenants.
In the following drawings like reference numbers are used to refer to like elements. Although the following figures depict various examples, the one or more implementations are not limited to the examples depicted in the figures.
General Overview
Systems and methods are provided for sharing data in a multi-tenant database system.
Although various embodiments of the invention may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments of the invention do not necessarily address any of these deficiencies. In other words, different embodiments of the invention may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
Mechanisms and methods for sharing data between tenants will be described with reference to example embodiments.
System 100 is a system for sharing data between multiple tenants in an on-demand, multitenant database system (system 100). Tenant to tenant implementations facilitate cross-organization data sharing and synchronization in a multi-tenant environment.
An on-demand multi-tenant database is provided with a multithreaded, message driven approach of managing through put. Cross instance (XI) API traffic for accessing mostly static (or infrequently updated) metadata, such as partner organization, currency, and custom field/object definition is diminished when transferring data by caching metadata (as compared to the traffic that would exist were the metadata not cached). Most of the data (which is read only) that is fetched repeatedly via XI API is cached in order to minimize the amount of redundant traffic by utilizing memcached (http://memcached.org). In an embodiment, the Memcached may provide a distributed memory object caching system, generic in nature, but may be intended for use in speeding up dynamic web applications by alleviating load on the distributed server system of the multitenant database system. In an embodiment, the memcached stores an in-memory key-value for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering. In an embodiment, the system takes memory from parts of the system where there is more memory than needed, the extra memory is made accessible to areas that have less memory than needed. By sharing caches less effort is required to keep the caches consistent across all of nodes. In an embodiment, using memcached, all of the servers access the same virtual pool of memory. In embodiment, a given item is always stored and always retrieved from the same location in the web cluster. As the demand for an application grows to the point where more servers are needed, it generally also grows in terms of the data that must be regularly accessed. In other embodiments, other caching infrastructure may be used instead of Memcached.
In an embodiment, a call is intercepted between two tenants in a multi-tenant database system. The call that is intercepted may be a transfer of data. A key associated with the call is generated. The cache associated with the key is consulted, and information is returned to the calling tenant. The re-fetching of static or slowly changing metadata is avoided by maintaining a short-lived local copy of the data in cache. Before the cache metadata enhancement, a partner context was re-initialized for each handler “batch” (which may be up to 500 events returned for each Message Queue (MQ) peek set—the peek set is a small subset of the messages in the MQ that is easily retrievable, whereas the entire MQ may contain millions of messages and consequently each batch may be quite large and the reinitialization may use a significant amount of resources). The slowly changing metadata that is cached may include the partner-organization's currency, the owner of the partner's connection, the account type (such as business-to-business vs. business to customer), sObject (the object subscribed to) to describe the partner's subscribed objects for the connection, the partner's field and value mappings corresponding to these subscribed objects. The term “partner” may refer either to the tenant that has the subscription, or the tenant that has published the information that is being subscribed to. Where ever the term partner appears the subscriber, the publisher, or both may be substituted to get different specific embodiments. For example, in the existing implementation, when events are processed, the following occurs. Tenant to tenant messages are dequeued from the MQ table. In an embodiment, the message query table is a table in which messages are stored that are in the queue (usually backed by a table). There are different kinds of messages in the same queue. Messages in the queue may be categorized, searched for, and/or identified by the message type. In an embodiment, when a new message is received the message is placed into the MQ table, while the message is in a queue waiting to be processed, and when the message is processed the message is removed from the MQ table. In an embodiment, the MQ table may include fields for the time that the message was received, a priority indicator, and it current status. The tenant-to-tenant Message Queue Handler (MqHandler) picks tenant-to-tenant messages to create a batch having uniform tenant to organization-Id+connenction-Id (which are all for the same partner organization). The connection Id is a unique identifier for the connection and the organization Id is a unique identification for the tenant. A subscribing tenant may have connections to many publishing tenants, and a publishing tenant may have many connections to subscribing tenants. Although it might be possible to figure out the organizationid from the connectionid and the subscription object, it is computationally more efficient to supply the organizationid of the subscriber. A connection always involves two partners, and consequently to uniquely identify the call (the transfer of data) between tenants an organization ID and connection ID are needed. The tenant-to-tenant Message Queue Handler (MqHandler) then retrieves the tenant to tenant Events from the pnetQuery table using the combination of orgId+connId+sfdcId of the dequeued s2sMessages. The events are the inserts and updates associated with the sObjects (subscription objects) and mapping fields and values and synchronizing. In other words, the pnetQuery table is a table of the queries, associated with the connection, that are in a queue. The pnetQuery table has properties and data of the queries stored. PnetQueue stores more information related to the message object stored in MQ. In an embodiment, the pnetQuery table is a table of information about a partner network (the connection may be referred to as a partner network) where data from events and properties of events are stored. The tenant-to-tenant Events are in turn passed into the PartnerNetworkEvent.processEvents( )method, which is a method where the context is initialized for partner organization (there is a one-to-one relationship between the partner organizations and the connection Ids in that both partners need to have the same connection id to share data via the connection). After the context is initialized, the following information is loaded on demand via an XI API call (the information is loaded as a result of accessing the information for reading during event processing) (1) Partner subscriber-Object, which is described by entity type (the entity type is invoked from all insert and update events), (2) Partner mapped fields/values by entity type (which is also invoked from all insert and update events), (3) PartnerNetworkEventContext.getPartnerConnectionOwner( ) (which is invoked from EntitylnsertEvent), (4) PartnerNetworkEventContext.getPartnerPersonAccountTypeRecordId( ) (which is invoked from SyncEvent for inserts of person accounts to partner org), and (5) PartnerNetworkEventContext.getPartnerCurrencies( ) (invoked from SyncEvent for currency fields). The Partner subscriber-Object is the object from which the information is being copied to which the subscriber is subscribed. The partner mapped field values is the values that constitute the mapping from the published object to the object where the subscriber has directed the information to be transferred. The PartnerNetworkEventContext.getPartnerConnectionOwner( ) is a method that retrieves an identifier of the user representing the partner that owns (that is a member of) the connection (which may facilitate identifying where the information is being transferred to). The PartnerNetworkEventContext.getPartnerPersonAccountTypeRecordId( ) retrieves the account type of the partner associated with different people (so that a conversion for information about the person may be transferred with the proper account type). The PartnerNetworkEventContext.getPartnerCurrencies( ) retrieves the currency of the partner uses, so that the value of the information about the money is converted to the correct currency type.
The data including the above 5 items may be cached for up to 15 minutes, for example (or for another time period), in a local cache, and re-used for every event “batch” that is processed via one or more asynchronous tenant-to-tenant events. In an embodiment, there is a default setting for the amount of time that the metadata remains in cache (e.g., 15 minutes), and an administrator or other user with the appropriate access privileges may adjust the amount of time that the metadata stays in cache. In other embodiments other amounts of time may be chosen for the amount of time that the items may be cached, such as 5 minutes, 10 minutes, or 20 minutes, for example. The caching behavior may be transparent to the end user and may be solely an optimization in the way that the metadata is not re-fetched from the partner organization. The cache that is partitioned by the client may be a PartnerMetadataCache.descCache (for #1 above storing the Partner subscriber-Object), PartnerMetadataCache.mappedFieldAndValueCache (for #2 above storing the Partner mapped fields/values), PartnerMetadataCache.queryCache (for #3-5 above storing the information returned by the PartnerNetworkEventContext.getPartnerConnectionOwner( ) which is the information about the connection type of the partner, PartnerNetworkEventContext.getPartnerPersonAccountTypeRecordId( ) which is the information about the type of account having information about the people is stored—examples of people would be contacts for sales or for leads, and PartnerNetworkEventContext.getPartnerCurrencies( ) which is the information about the how to convert the currency in transferring monetary information). The storing of the information in cache is implemented as follows. Each method call listed above is intercepted before the corresponding XI call is made. (As an aside, the first query usually loads the meta-data. In other words, the first query may check the cache, if the metadata is not in the cache then the first query loads the metadata from the partner organization.) Next a unique key is generated for the query type and the parameters of the query. Then the corresponding cache is consulted by query key to see if there is already an existing value for the unique key stored. The unique key is an identifier for the metadata. If there is an existing value stored for the metadata data identifier, the data is returned to the caller without making an XI call. Otherwise, the XI call is performed, and the results of the call are stored in cache by key before returning to the caller.
Server system 102 is a system for serving clients of a multitenant database. Server system 102 may include multiple servers and/or multiple machines on which the server applications run. Server system 102 may be part of system 100. Server system 102 may have cache memory 104, code for sharing data 106 and multi-tenant database 108 among others.
Server system 102 may run machine instructions, and include a memory storing machine instructions, for sharing data between tenants of the multi-tenant database while caching frequently used metadata thereby reducing the overhead in fetching the metadata for every transaction. The specification is not limited to the specific objects, tables or applications mentioned, but any combination of objects, tables or applications that will accomplish the same or a similar purpose may be substituted for the specific objects, tables, or applications mentioned. Cache memory 104 may be a memory which can be used for temporary storage of copies of metadata which might be used frequently. Read and write operations on cache memory may be faster than read and write operations to a multi-tenant database. Cache memory 104 may be part of a distributed memory that is shared by multiple servers. When a processor system (which will be described further in conjunction with
Tenant portion1110 may be a portion of the multi-tenant database 108 that is used by a first tenant. Tenant portion2112 may be a portion of the multi-tenant database 108 that is used by a second tenant. Tenant data1114 may be data associated with (e.g., belonging to) the first tenant, which may store in tenant portion1110 of multitenant database 108. Tenant data2116 may be data associated with the second tenant, which may be stored in tenant portion2112 of the multitenant database 108. Tenant metadata1118 may store metadata related to the tenant of tenant portion1110 of the multi-tenant database 108, and similarly, tenant metadata2120 may store metadata related to the tenant associated with tenant portion2112 of the multi-tenant database 108. In this specification, metadata refers to the information about the data in the multi-tenant database system. Metadata describes the characteristics of the data objects such as the type, the name and the size of the data. Metadata may also contain information about the data table such as the length of fields, the number of columns in a table and other information. Metadata may include the relationships associated with the data objects between which the data may be transferred. The metadata may include information associated with the tenants and the portion of the database that tenant uses. Metadata may help in understanding and interpreting the contents of a database system. For example, the first and the second columns of table 1, belonging to the first tenant, may store the first name and the last name, respectively, of a group of individuals. Table 2 of the second tenant may be synchronized with table 1 of the first tenant, and column 5 of table 2 may store a last name and column 6 may store a first name of the same group of individuals. The correspondence of the addresses of table 1 with those of table 2, the length of the corresponding fields in each table, the data type of each of the corresponding fields in each table, and/or the relationship of the corresponding columns to the rest of their respective tables in which the columns are located may all be stored as metadata.
Network 122 (which is further discussed in conjunction with
Client Side Method of Requesting a Connection
In an embodiment, each of the steps of method 200A may be a distinct step. In other embodiments, method 200A may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 200A may be performed in another order. Subsets of the steps listed above as part of method 200A may be used to form their own method. In an embodiment, there could be multiple instances of method 200A.
Client Side Method of Accepting a Connection
In an embodiment, each of the steps of method 200B may be a distinct step. In other embodiments, method 200B may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 200B may be performed in another order. Subsets of the steps listed above as part of method 200B may be used to form their own method. In an embodiment, there could be multiple instances of method 200B.
Server Side Method of Establishing a Connection
In an embodiment, each of the steps of method 200C may be a distinct step. In other embodiments, method 200C may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 200C may be performed in another order. Subsets of the steps listed above as part of method 200C may be used to form their own method. In an embodiment, there could be multiple instances of method 200C.
Client Side Method of Publishing Data for Sharing Between Tenants
In step 302, after a connection has been established as described above in conjunction with
In step 310, the user requests a webpage having a list of published data for editing which data is published. For example, the user may select a link for viewing a list of data published.
In step 312, the tenant receives a webpage for indicating data that has been published. The web page providing an option for indicating which object to publish or remove from being published. For example, the tenant may receive a list of objects with check marks in check boxes next to the objects and/or field that have been published and with empty check boxes next to objects and/or fields that are available for publication, but have not been published.
In step 314, the tenant selects which data should be published and/or removed from being published. In an embodiment, the tenant may select the object to publish and/or which fields in the object to publish. The tenant may interact with multiple webpages provided by the server for publishing data and/or for removing data from publication. Also as part of the step 314, the tenant machine sends to the server information indicating the tenant's selections. In step 318, the tenant receives an indication that the changes that were made to the list of published and unpublished data took effect.
In an embodiment, each of the steps of method 300A may be a distinct step. In other embodiments, method 300A may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 300A may be performed in another order. Subsets of the steps listed above as part of method 300A may be used to form their own method. In an embodiment, there could be multiple instances of method 300A.
Client Side Method of Subscribing to Data Published by Another Tenant
In step 330, the user requests a webpage having a list of subscriptions for editing, via which the tenant may change which data the tenant has subscriptions to.
In step 332, the tenant receives a webpage indicating the data to which the tenant has subscriptions, via which the tenant may add a subscription or remove a subscription. For example, the tenant may receive a list of objects with check marks in check boxes next to the objects and/or fields to which the tenant has a subscription and with empty check boxes next to objects and/or fields to which the tenant has no subscription, but have been published and are therefore available for subscription.
In step 334, the tenant selects data to which the tenant desires to subscribe and/or unsubscribe, such as by checking or unchecking the check box next to the data in the list. In an embodiment, the tenant may subscribe to objects and/or to one or more fields in the object. The tenant may interact with multiple webpages provided by the server for subscribing to data and/or unsubscribing to data. Also in step 334, the tenant sends the modified list of subscriptions to the server.
In optional step 336 the subscribing tenant chooses data sharing properties such as how often to receive updates to the data and/or what sorts of events trigger the receipt of an update of the data. Alternatively, the conditions under which the data is updated may be preset and the tenant may not have control over how the subscription is fulfilled. For example, the subscription may synchronize the data of the publisher with the corresponding data in the subscriber's portion of the database so that whenever the publisher changes the data, the corresponding data in the subscriber's portion of the database is updated. In step 338, subscribing tenant indicates the location of where to store the data received as a result of the subscription, which may create a mapping between the published object and objects receiving the published data in the subscribing tenant's portion of the database. To fulfill the subscription, it may be necessary for the server to transform the format of the data, and the server may create a storage area for storing information about how to effect the transformation from which the metadata that will be copied to the cache may be derived. In step 342, the tenant receives an indication that the subscription is being implemented.
In an embodiment, each of the steps of method 300B may be a distinct step. In other embodiments, method 300B may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 300B may be performed in another order. Subsets of the steps listed above as part of method 300B may be used to form their own method. In an embodiment, there could be multiple instances of method 300B.
Server Side Method of Publishing Data
In step 402, after a connection has been established as described above in conjunction with
In step 410, the server receives a request for a webpage having a list of data published by the tenant, which allows the tenant to edit and thereby modify which data is published. For example, the request may indicate a selection of a link for viewing list of published data.
In step 412, the server sends a webpage for indicating data that has been published. The webpage may be used for indicating which object to publish or remove from being published. For example, the server may send a list of published and non-published objects with check marks in check boxes next to the objects and/or field that have been published and with empty check boxes next to objects and/or fields that are available for publication, but have not been published.
In step 414, the server receives information indicating the tenant's selection of which data should be published and/or removed from being published. In an embodiment, the information received may indicate which objects to publish and/or which fields in the object to publish. The server may send multiple webpages to the tenant related to publishing data and/or for removing data from publication for the tenant to interact with and indicate the tenant's selection. In step 416, the server changes the settings associated with the objects selected making the data newly indicated as being published available for subscription and the data newly indicated as being unpublished not available for subscription. In step 418, the server sends an indication that the changes that were made to the list of published and unpublished data took effect. In an embodiment, each of the steps of method 400A may be a distinct step. In other embodiments, method 400A may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 400A may be performed in another order. Subsets of the steps listed above as part of method 400A may be used to form their own method. In an embodiment, there could be multiple instances of method 400A.
Server Side Method of Subscribing to Data
Method 400B is a method for subscribing to data in the publish-subscription model. Steps 402, 404, 406 and 408 of method 400B may be the same as the same steps having the same numbers of method 400A. The tenant may be granted access to the same tool and/or webpages, and then be presented with a link to webpages for publishing data and with another link to a webpage for subscribing to data that has been published.
In step 430, the server receives a request for a webpage having a list of subscriptions for editing, via which the tenant may change which data the tenant has subscriptions to.
In step 432, the server sends the webpage to the tenant regarding the data to which the tenant has subscriptions, which may indicate which data the tenant has subscribed to and which data the tenant has not subscribed to. For example, the server may send a webpage indicating the tenant's prior selections on a list of objects that are available for subscription. The list of objects may have check marks in check boxes next to the objects and/or fields indicating that the tenant has a subscription to those objects/fields and with an empty check boxes next to objects and/or fields to which the tenant has no subscription. The server may send multiple webpages to the tenant for subscribing to data and/or unsubscribing to data.
In step 434, the server receives an indication of the tenant's selection of data to which the tenant desires to subscribe and/or unsubscribe, such as with newly checked or unchecked check boxes next to the data in the list. In an embodiment, the selections may be for subscriptions to objects and/or to one or more fields in the objects.
In optional step 436 the server receives a selection form the tenant of the tenant's choices of data sharing properties such as how often to receive updates to the data and/or what sorts of events trigger the receipt of an update of the data. Alternatively, the conditions under which the data is updated may be preset and the tenant may not have control over how the subscription is fulfilled. For example, the subscription may synchronize the data of the publisher with the corresponding data in the subscriber's portion of the database so that whenever the publisher changes the data, the corresponding data in the subscriber's portion of the database is updated. In step 438, the server receives from the tenant an indication of the location at which store the data transferred as a result of the subscription, which may create a mapping between the published object and objects receiving the published data in the subscribing tenant's portion of the database. To fulfill the subscription, it may be necessary for the server to transform the format of the data, and the server may create a storage area for storing information about how to effect the transformation from which the metadata that will be copied to the cache may be derived. In step 440 the server sets up the new subscriptions indicated and deactivates any subscriptions that are being removed. The server may store information about how to transfer data from the publishing tenant's portion of the database to the subscribing tenant's portion of the database. The information may include a mapping from one or more fields of the publishing tenant's portion of the database to corresponding fields in the subscribing member's portion of the database, where the subscriber wants the data transferred to. The server may store information such as a transformation of the data that needs to be performed, changing the font, variable type (e.g., numerical to text), and/or color of the text, for example. The data stored about the how to perform the transfer, may be collected and stored in a cache with other metadata during the data transfer. The server may also setup various triggers or hooks that cause the data to be transferred when certain events occur, such as the publisher makes a change to the data. In step 442, the server sends an indication that the subscription is being implemented.
In an embodiment, each of the steps of method 400B may be a distinct step. In other embodiments, method 400B may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 400B may be performed in another order. Subsets of the steps listed above as part of method 400B may be used to form their own method. In an embodiment, there could be multiple instances of method 400B.
Client Side Method of Transferring Data
In an embodiment, each of the steps of method 500 may be a distinct step. In other embodiments, method 500 may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 500 may be performed in another order. Subsets of the steps listed above as part of method 500 may be used to form their own method. In an embodiment, there could be multiple instances of method 500.
In an embodiment, each of the steps of method 600A may be a distinct step. In other embodiments, method 600A may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 600A may be performed in another order. Subsets of the steps listed above as part of method 600A may be used to form their own method. In an embodiment, there could be multiple instances of method 600A.
In the embodiment of
In an embodiment, each of the steps of method 600B may be a distinct step. In other embodiments, method 600B may not have all of the above steps and/or may have other steps in addition to or instead of those listed above. The steps of method 600B may be performed in another order. Subsets of the steps listed above as part of method 600B may be used to form their own method. In an embodiment, there could be multiple instances of method 600B.
Screenshots
Screenshot 700 may be a screenshot of a web page for managing connections for sharing data with other tenants of the multi-tenant database with other tenants. Screenshot 700 shows an example of a webpage according to a publish-subscribe model for sharing data. In the publish-subscribe model, a first tenant (also referred to in this discussion as the publishing tenant) publishes a list of data objects to share. Other tenants (subscribing tenants) can choose from the available list of the data objects to accept. A publishing tenant may be a subscriber to the data of another tenant. Data sharing may be one way. where the publishing tenant shares the published data with the subscribers. In another embodiment data may be shared between tenants, i.e. an update of data in one tenant may trigger an update in the other tenant. Sharing of data can happen automatically where an update of data in one tenant automatically updates other subscribed tenants.
The portion of the webpage of screen shot 700 is used by a particular tenant to request and/or establish a connection to other tenants. In an embodiment, prior to two tenants establishing the connection, the two tenants cannot share data. After establishing the connection, either one of the tenants may publish objects and subscribe to the objects that the other published. Home tab 702 when selected may cause a webpage to appear that may be the home page of the tenant. Connections tab 704 is the tab that is currently selected in
Screenshot 800 shows a portion of a webpage for managing connections. Screenshot 800 shows published and subscribed data sharing objects and the connection history. Published objects 802 is a list of objects published by the user for sharing with other users. In the example of screenshot 800 no objects are listed for sharing. Subscribed objects 804 is a list of data objects (of other tenants) and associated data fields that the current tenant subscribed to. Edit subscribed objects 806 when selected, displays a webpage similar to screenshot 1100 (which will be described in conjunction with
Screenshot 900 shows a list of data objects for sharing. Home tab 702, connections tab 704, chatter tab 706, campaigns tab 708, leads tab 710, accounts tab 712, contacts tab 714, forecast tab 716, contracts tab 720, cases tab 722, and solutions tabs 724 were described in conjunction with
Screenshot 1000 may be a screenshot of a portion of a webpage, which is a continuation of webpage in
Home tab 702, connections tab 704, chatter tab 706, campaigns tab 708, leads tab 710, accounts tab 712, contacts tab 714, forecast tab 716, contracts tab 720, cases tab 722, and solutions tabs 724 were discussed in conjunction with
Home tab 702, connections tab 704, chatter tab 706, campaigns tab 708, leads tab 710, accounts tab 712, contacts tab 714, forecast tab 716, contracts tab 720, cases tab 722, and solutions tabs 724 were described in conjunction with
Home tab 702, connections tab 704, chatter tab 706, campaigns tab 708, leads tab 710, accounts tab 712, contacts tab 714, forecast tab 716, contracts tab 720, cases tab 722, and solutions tabs 724 were discussed in conjunction with
Screenshot 1400 shows a screenshot of an invitation to share data by a tenant of the multi-tenant database with another tenant using handshaking protocol to establish the connection. In the invite-to-share model, a first tenant invites a second tenant to share data. The second tenant acknowledges sharing data. Data sharing can be one-way or two-way sharing. Header 1402 shows the title of the screenshot of a new invitation. Save button 1404, when selected, may cause the invitation to be presented to the invitee. Cancel button 1406 when selected cancels the invitation and clears the information filled in the invitation. Contact 1408 may list the information about the second tenant receiving the invitation to share data; the information may include the name of the authorized personnel and the account or tenant name. Sender 1410 shows the information about the authorized personnel of the tenant sending the invitation. Save 1412 when selected may perform similar to save button 1404. Cancel 1414 when selected may perform similar to cancel button 1406.
Screenshot 1500 shows a screenshot showing a webpage with received invitation to share data from the first tenant. Header 1502 shows the tenant of current connection. Message 1504 displays a message about the invitation to connect to the tenant sending the invitation. Connection details 1506 displays the details of the connection to share data. Tenant invitation form 1508 displays name of the tenant sending the invitation to connect. Connection history 1510 displays the connection history. Accept 1512 when selected causes to accept the invitation to connect to the tenant to share data. Decline 1514 when selected causes to decline an invitation to share data with the sender. Decide later 1516 when selected may defer the decision to connect to the sender.
System Overview
Environment 1610 is an environment in which an on-demand database service exists. User system 1612 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 1612 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated in
An on-demand database service, such as system 1616, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 1616” and “system 1616” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 1618 may be a framework that allows the applications of system 1616 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database service 1616 may include an application platform 1618 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 1612, or third party application developers accessing the on-demand database service via user systems 1612.
The users of user systems 1612 may differ in their respective capacities, and the capacity of a particular user system 1612 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 1612 to interact with system 1616 that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 1616, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network 1614 is any network or combination of networks of devices that communicate with one another. For example, network 1614 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I,” that network will be used in many of the examples herein. However, it should be understood that the networks that the one or more implementations might use are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 1612 might communicate with system 1616 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 1612 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 1616. Such an HTTP server might be implemented as the sole network interface between system 1616 and network 1614, but other techniques might be used as well or instead. In some implementations, the interface between system 1616 and network 1614 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS′ data; however, other alternative configurations may be used instead.
In one embodiment, system 1616, shown in
One arrangement for elements of system 1616 is shown in
Several elements in the system shown in
According to one embodiment, each user system 1612 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 1616 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 1617, which may include an Intel Pentium® processor or the like, and/or multiple processor units. A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 1616 to intercommunicate and to process webpages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for implementing embodiments can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
According to one embodiment, each system 1616 is configured to provide webpages, forms, applications, data and media content to user (client) systems 1612 to support the access by user systems 1612 as tenants of system 1616. As such, system 1616 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 1612, network 1614, system 1616, tenant data storage 1622, and system data storage 1624 were discussed above in
Application platform 1618 includes an application setup mechanism 1738 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 1622 by save routines 1736 for execution by subscribers as one or more tenant process spaces 1604 managed by tenant management process 1610 for example. Invocations to such applications may be coded using PL/SOQL 1734 that provides a programming language style interface extension to API 1732. A detailed description of some PL/SOQL language embodiments is discussed in commonly owned co-pending U.S. Provisional Patent Application 60/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by one or more system processes, which manage retrieving application metadata 1616 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 1700 may be communicably coupled to database systems, e.g., having access to system data 1725 and tenant data 1723, via a different network connection. For example, one application server 17001 might be coupled via the network 1614 (e.g., the Internet), another application server 1700N-1 might be coupled via a direct network link, and another application server 1700N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 1700 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain embodiments, each application server 1700 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 1700. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 1700 and the user systems 1612 to distribute requests to the application servers 1700. In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 1700. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 1700, and three requests from different users could hit the same application server 1700. In this manner, system 1616 is multi-tenant, wherein system 1616 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 1616 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 1622). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 1616 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 1616 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain embodiments, user systems 1612 (which may be client systems) communicate with application servers 1700 to request and update system-level and tenant-level data from system 1616 that may require sending one or more queries to tenant data storage 1622 and/or system data storage 1624. System 1616 (e.g., an application server 1700 in system 1616) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 1624 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. patent application Ser. No. 10/8128,161, filed Apr. 2, 2004, entitled “Custom Entities and Fields in a Multi-Tenant Database System”, and which is hereby incorporated herein by reference, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain embodiments, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
Method for Using the Environment (
Method for Creating the Environment (
In step 1904, system 1616 (
In step 1906, user system 1612 is communicatively coupled to network 1704. In step 1908, system 1616 is communicatively coupled to network 1704 allowing user system 1612 and system 1616 to communicate with one another (
While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This application claims the benefit of U.S. Provisional Patent Application 61/500,223 entitled METHODS AND SYSTEMS FOR CACHING DATA SHARED BETWEEN ORGANIZATIONS IN A MULTI-TENANT DATABASE SYSTEM by Michael Alexander Janson et al., filed on Jun. 23, 2011, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5715450 | Ambrose et al. | Feb 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6324568 | Diec et al. | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7634505 | Chasman et al. | Dec 2009 | B2 |
7802007 | Reese | Sep 2010 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8051101 | Chasman et al. | Nov 2011 | B2 |
8069153 | Chan | Nov 2011 | B2 |
8140576 | Viripaeff et al. | Mar 2012 | B1 |
8255548 | Hopkins et al. | Aug 2012 | B2 |
8271837 | Prophete et al. | Sep 2012 | B2 |
8407184 | Prophete et al. | Mar 2013 | B2 |
8407338 | Brady | Mar 2013 | B2 |
8447779 | Viripaeff | May 2013 | B2 |
8452726 | Kuruganti et al. | May 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
8620954 | Weissman | Dec 2013 | B2 |
8881129 | McKinnon | Nov 2014 | B1 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020022986 | Coker et al. | Feb 2002 | A1 |
20020029161 | Brodersen et al. | Mar 2002 | A1 |
20020029376 | Ambrose et al. | Mar 2002 | A1 |
20020035577 | Brodersen et al. | Mar 2002 | A1 |
20020042264 | Kim | Apr 2002 | A1 |
20020042843 | Diec | Apr 2002 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020152102 | Brodersen et al. | Oct 2002 | A1 |
20020161734 | Stauber et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030088545 | Subramaniam et al. | May 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030191743 | Brodersen et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan, Jr. et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20070078950 | Hopkins et al. | Apr 2007 | A1 |
20070088741 | Brooks | Apr 2007 | A1 |
20070124276 | Weissman | May 2007 | A1 |
20080010243 | Weissman et al. | Jan 2008 | A1 |
20080086479 | Fry | Apr 2008 | A1 |
20080147753 | Chasman et al. | Jun 2008 | A1 |
20090259699 | Chasman et al. | Oct 2009 | A1 |
20100076946 | Barker et al. | Mar 2010 | A1 |
20100088316 | Robinson et al. | Apr 2010 | A1 |
20100185593 | Wong et al. | Jul 2010 | A1 |
20100205243 | Brady | Aug 2010 | A1 |
20100223467 | Dismore et al. | Sep 2010 | A1 |
20100235322 | Kuruganti et al. | Sep 2010 | A1 |
20100235495 | Petersen et al. | Sep 2010 | A1 |
20100299663 | Weissman et al. | Nov 2010 | A1 |
20110082854 | Eidson | Apr 2011 | A1 |
20110113058 | Lee et al. | May 2011 | A1 |
20110208858 | Yancey et al. | Aug 2011 | A1 |
20110213797 | Hess | Sep 2011 | A1 |
20110214062 | Doshi et al. | Sep 2011 | A1 |
20110219050 | Ly | Sep 2011 | A1 |
20110225206 | Sureshchandra et al. | Sep 2011 | A1 |
20110231919 | Vangpat et al. | Sep 2011 | A1 |
20110238760 | Kuruganti et al. | Sep 2011 | A1 |
20110246434 | Cheenath et al. | Oct 2011 | A1 |
20110246449 | Collins | Oct 2011 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20110258199 | Oliver et al. | Oct 2011 | A1 |
20110258225 | Taylor et al. | Oct 2011 | A1 |
20110258242 | Eidson et al. | Oct 2011 | A1 |
20110258612 | Matthiesen et al. | Oct 2011 | A1 |
20110264650 | Tobin et al. | Oct 2011 | A1 |
20110264861 | Fee et al. | Oct 2011 | A1 |
20110265066 | Fee et al. | Oct 2011 | A1 |
20110265069 | Fee et al. | Oct 2011 | A1 |
20110270832 | Le Stum | Nov 2011 | A1 |
20110270885 | Vieira et al. | Nov 2011 | A1 |
20110276601 | Pin et al. | Nov 2011 | A1 |
20110289356 | Hossain et al. | Nov 2011 | A1 |
20110295728 | Bulumulla et al. | Dec 2011 | A1 |
20110295814 | Kothari | Dec 2011 | A1 |
20110302133 | Kuruganti et al. | Dec 2011 | A1 |
20110302135 | Prophete et al. | Dec 2011 | A1 |
20110302212 | Agrawal et al. | Dec 2011 | A1 |
20110302221 | Tobin et al. | Dec 2011 | A1 |
20110302256 | Sureshehandra et al. | Dec 2011 | A1 |
20110302277 | Baker | Dec 2011 | A1 |
20110302454 | Prophete et al. | Dec 2011 | A1 |
20110302631 | Sureshchandra et al. | Dec 2011 | A1 |
20110307510 | Lopitaux et al. | Dec 2011 | A1 |
20110307695 | Slater | Dec 2011 | A1 |
20110321175 | Slater | Dec 2011 | A1 |
20120030192 | An | Feb 2012 | A1 |
20120059795 | Hersh et al. | Mar 2012 | A1 |
20120059853 | Jagota | Mar 2012 | A1 |
20120089550 | Arora et al. | Apr 2012 | A1 |
20120089610 | Agrawal et al. | Apr 2012 | A1 |
20120089638 | Jagota et al. | Apr 2012 | A1 |
20120089647 | Jagota et al. | Apr 2012 | A1 |
20120140923 | Lee et al. | Jun 2012 | A1 |
20120143916 | Viripaeff et al. | Jun 2012 | A1 |
20120144023 | Guest et al. | Jun 2012 | A1 |
20120144024 | Lee | Jun 2012 | A1 |
20120144313 | Park et al. | Jun 2012 | A1 |
20120144332 | Sola | Jun 2012 | A1 |
20120144340 | Knight | Jun 2012 | A1 |
20120144501 | Vangpat | Jun 2012 | A1 |
20120173485 | Kothule et al. | Jul 2012 | A1 |
20120173513 | Agrawal | Jul 2012 | A1 |
20120173589 | Kwon | Jul 2012 | A1 |
20120190432 | Nathanson | Jul 2012 | A1 |
20120197948 | Tsai et al. | Aug 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120233212 | Newton et al. | Sep 2012 | A1 |
20120239619 | Hersh et al. | Sep 2012 | A9 |
20120254221 | Lai et al. | Oct 2012 | A1 |
20120271857 | Chasman et al. | Oct 2012 | A1 |
20120304014 | Prophete et al. | Nov 2012 | A1 |
20120317121 | Fuchs et al. | Dec 2012 | A1 |
20120317149 | Jagota et al. | Dec 2012 | A1 |
20120317238 | Beard | Dec 2012 | A1 |
20120330644 | Giraudy et al. | Dec 2012 | A1 |
20120330915 | Mehra | Dec 2012 | A1 |
20120330926 | Rajan et al. | Dec 2012 | A1 |
20120331000 | Mehra | Dec 2012 | A1 |
20120331016 | Janson et al. | Dec 2012 | A1 |
20120331518 | Lee | Dec 2012 | A1 |
20120331536 | Chabbewal et al. | Dec 2012 | A1 |
20130006402 | Carlberg et al. | Jan 2013 | A1 |
20130007062 | Dutta et al. | Jan 2013 | A1 |
20130007523 | Unger et al. | Jan 2013 | A1 |
20130007862 | Kincaid | Jan 2013 | A1 |
20130018869 | Hanson et al. | Jan 2013 | A1 |
20130018955 | Thaxton et al. | Jan 2013 | A1 |
20130019106 | Fischer | Jan 2013 | A1 |
20130024454 | Dunn | Jan 2013 | A1 |
20130024788 | Olsen et al. | Jan 2013 | A1 |
20130024795 | Robotham et al. | Jan 2013 | A1 |
20130024843 | Kutlu | Jan 2013 | A1 |
20130024910 | Verma et al. | Jan 2013 | A1 |
20130031144 | Elango et al. | Jan 2013 | A1 |
20130031172 | Olsen et al. | Jan 2013 | A1 |
20130031245 | Subramanian et al. | Jan 2013 | A1 |
20130031496 | Mathrubootham et al. | Jan 2013 | A1 |
20130031613 | Shanabrook et al. | Jan 2013 | A1 |
20130036406 | Zheng et al. | Feb 2013 | A1 |
20130036407 | Zheng et al. | Feb 2013 | A1 |
20130036413 | Venkatesan et al. | Feb 2013 | A1 |
20130041912 | Arora et al. | Feb 2013 | A1 |
20130042146 | Unger et al. | Feb 2013 | A1 |
20130054582 | Macklem et al. | Feb 2013 | A1 |
20130054714 | Bedi | Feb 2013 | A1 |
20130054792 | Sharaf | Feb 2013 | A1 |
20130055118 | Donovan et al. | Feb 2013 | A1 |
20130055147 | Vasudev et al. | Feb 2013 | A1 |
20130055201 | No et al. | Feb 2013 | A1 |
20130060859 | Olsen et al. | Mar 2013 | A1 |
20130061156 | Olsen et al. | Mar 2013 | A1 |
20130085745 | Koister et al. | Apr 2013 | A1 |
20130086670 | Vangpat et al. | Apr 2013 | A1 |
20130091149 | Dunn et al. | Apr 2013 | A1 |
20130091217 | Schneider | Apr 2013 | A1 |
20130091229 | Dunn et al. | Apr 2013 | A1 |
20130091350 | Gluck | Apr 2013 | A1 |
20130097253 | Mencke | Apr 2013 | A1 |
20130097713 | White | Apr 2013 | A1 |
20130103640 | Rehman | Apr 2013 | A1 |
20130103641 | Rehman | Apr 2013 | A1 |
20130117353 | Wong et al. | May 2013 | A1 |
20130132861 | Kienzle et al. | May 2013 | A1 |
20130145445 | Lee | Jun 2013 | A1 |
20130151231 | Giraudy et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
WO2007143620 | Dec 2007 | WO |
WO2008077053 | Jun 2008 | WO |
WO2010135696 | Nov 2010 | WO |
WO2012048092 | Apr 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20120331016 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61500223 | Jun 2011 | US |