Methods and systems for call management with user intervention

Information

  • Patent Grant
  • 8774380
  • Patent Number
    8,774,380
  • Date Filed
    Thursday, October 23, 2008
    16 years ago
  • Date Issued
    Tuesday, July 8, 2014
    10 years ago
Abstract
Methods and systems for managing a call in real-time are disclosed. Methods and systems consistent with the present invention manage a call in real-time based on input from a user. A service center receives information pertaining to a call to the user from a service control point and sends a notification of the call to a device associated with the user. The service center receives a response to the notification from the user. Thereafter, the service center instructs the service control point to connect the call based on the response.
Description
TECHNICAL FIELD

The present invention relates generally to data processing systems and, more particularly, to a method and system for managing calls in real-time with user intervention.


BACKGROUND

A wide variety of means exist for communication between users. For example, a user may conduct phone calls via a home phone, work phone, and mobile phone. In addition, users may also communicate using devices such as PC's, PDA's, pagers, etc. using manners of communicating such as email and instant messaging.


Unfortunately, managing such a wide variety of communication means can be difficult. In particular, as a user changes location, communication with the user may vary. For example, while on travel, it may only be possible to reach a user by mobile phone. However, the user may best be reached by email while at work. Also, the user may wish to implement various rules for receiving and controlling communications. For example, to be reached at home, the user may want the home phone to ring three times before forwarding the call to a mobile phone. As another example, the user may wish to be paged each time an email is received from a particular person while away from the office.


A user may also wish to treat a phone call differently dependent on who is calling the user. For example, if a user receives a call from a caller that the user does not want to speak to at the moment, the user may want to send that call directly to voice mail. Also, if a user receives a call from a number that displays no caller ID information or that the user otherwise does not recognize, the user may wish to somehow specially treat the call because the caller is a potential telemarketer.


Current call management systems make it possible for a user to receive notification of a call on a communications device, and then to either take the call or divert it to voice mail to the user's discretion. Current call management systems also make it possible to automatically intercept and specially treat a call that displays no caller ID information.


Current call management systems, however, do not enable a user to perform other functions as a call is being received, such as forwarding a phone call received on one device to another device, manually initiating protection from telemarketers, or otherwise managing a call in real-time. Accordingly, there is a need for a method and system for a method and system for managing calls in real-time with user intervention.


SUMMARY OF THE INVENTION

Methods and systems consistent with the principles of the invention manage a call. A service center receives information pertaining to a call to a customer from a service control point, the service control point being operable to determine how a call is connected. The service center also sends a notification of the call to a device associated with the customer and receives a response to the notification from the customer. Thereafter, the service center instructs the service control point to connect the call based on the response.


Other methods and systems consistent with the principles of the invention also manage a call. A service center receives information pertaining to a call to a customer from a service control point, the service control point being operable to determine how a call is connected. The service center also retrieves data corresponding to the customer using the information pertaining to the call, sends a notification of the call to a device associated with the customer, and receives a response to the notification from the customer. Thereafter, the service center instructs the service control point to connect the call based on the response.


Other methods and systems consistent with the principles of the invention manage a call in real-time based on input from a user. A service center receives information pertaining to a call to the user. The service center also sends a notification of the call to a first device associated with the user and receives a response to the notification from the user. Thereafter, a service control point forwards the call to a second device based on the response. The user provides a telephone number for the second device.


Other methods and systems consistent with the principles of the invention also manage a call in real-time based on input from a user. A service center receives information pertaining to a call to the user. The service center also retrieves data corresponding to the user using the information pertaining to the call and selects a device associated with the user to receive a notification of the call based on the retrieved data corresponding to the user. Additionally, the service center provides the notification to the selected device for display on the selected device and receives a response to the notification from the user. Thereafter, a service control point initiates a call screening process based on the response.


Other methods and systems consistent with the principles of the invention also manage a call. A service center receives information pertaining to a call to a customer from a service control point, the service control point being operable to determine how a call is connected. The service center also retrieves data corresponding to the customer using the information pertaining to the call, determines features enabled for the customer based on the information pertaining to the call, selects a device associated with the customer to receive a notification of the call based on the retrieved data, provides the notification to the selected device, and receives a response to the notification from the customer. Thereafter, the service center instructs the service control point to connect the call based on the response.


Other methods and systems consistent with the principles of the invention also manage a call. A device associated with a customer receives a notification of a call to the customer, wherein the device is determined based on retrieved data corresponding to the customer and the retrieved data was retrieved using information pertaining to the call. The device also receives input from the customer indicative of a response to the notification and sends response information to a server reflective of the response to the notification. Thereafter, the server instructs a service control point to connect the call based on the response to the notification.


Other methods and systems consistent with the principles of the invention also manage a call. A service control point sends information to a service center pertaining to a call to a customer. The service center is operable to retrieve data corresponding to the customer using the information pertaining to the call; send a notification of the call to a device associated with the customer, wherein the device is determined based on the retrieved data, and the device is one of a plurality of devices associated with the customer; and provide response information reflective of a response to the notification from the customer. The service control point receives the response information from the service center and connects the call based on the response information.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one embodiment of the invention and, together with the description, serve to explain the principles of the invention.



FIG. 1 is a diagram of an exemplary data processing and telecommunications environment in which features and aspects consistent with the principals of the present invention may be implemented;



FIG. 2 is a diagram of an exemplary user terminal, consistent with the principals of the present invention;



FIG. 3 is a diagram of a voice network, consistent with the principles of the present invention;



FIG. 4 is a block diagram of a service center, consistent with the principles of the present invention;



FIG. 5 illustrates a logical architecture of an exemplary system, consistent with the present invention;



FIG. 6 is a diagram of an exemplary network access server consistent with the principles of the present invention;



FIG. 7 is a diagram of an exemplary application server consistent with the principles of the present invention;



FIG. 8 is a diagram of an exemplary flowchart of a method for real-time call management in a manner consistent with the present invention;



FIGS. 9A and 9B comprise another diagram of an exemplary flowchart of a method for real-time call management in a manner consistent with the present invention;



FIG. 10 is a diagram of an exemplary user interface including customer-selectable real-time call management options consistent with the present invention; and



FIG. 11 is a diagram of an exemplary user interface that enables a customer to change preferences consistent with the present invention.





DETAILED DESCRIPTION

Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. While the description includes exemplary embodiments, other embodiments are possible, and changes may be made to the embodiments described without departing from the spirit and scope of the invention. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims and their equivalents.


Overview

Methods and systems consistent with the present invention manage a call in real-time based on input from a user. A service center receives information pertaining to a call to the user from a service control point. The service center also retrieves data corresponding to the user using the information pertaining to the call and sends a notification of the call to a device associated with the user. The device is determined based on the retrieved data. Based on a response to the notification from the user, the service center instructs the service control point to connect the call by providing the service control point with response information reflective of the response. The service control point thereafter receives the response information from the service center and connects the call based on the response information.


Network Environment


FIG. 1 is a block diagram of a data processing and telecommunications environment 100, in which features and aspects consistent with the present invention may be implemented. The number of components in environment 100 is not limited to what is shown and other variations in the number of arrangements of components are possible, consistent with embodiments of the invention. The components of FIG. 1 may be implemented through hardware, software, and/or firmware. Data processing and telecommunications environment 100 may include a data network 102, a voice network 104, and a service center 106. A user 110 may use a user terminal 112 to interface with data network 102 and may use phones 114, 116, and 118 to interface with voice network 104. Calling party 120 may use phone 122 to call a user, such as user 110, at anyone of phones 114, 116, and 118.


Data network 102 provides communications between the various entities depicted in environment 100 of FIG. 1, such as user terminal 112 and service center 106. Data network 102 may be a shared, public, or private network and encompass a wide area or local area. Data network 102 may be implemented through any suitable combination of wired and/or wireless communication networks. By way of example, data network 102 may be implemented through a wide area network (WAN), local area network (LAN), an intranet and/or the Internet. Further, the service center 106 may be connected to multiple data networks 102, such as, for example, to a wireless carrier network and to the Internet.


Voice network 104 may provide telephony services to allow a calling party, such as calling party 120, to place a telephone call to user 110. In one embodiment, voice network 104 may be implemented using a network, such as the Public Switched Telephone Network (“PSTN”). Alternatively, voice network 104 may be implemented on a voice over broadband network, such as a network using voice-over Internet Protocol (“VoIP”) technology. Additionally, in other embodiments, the voice network may be a video over broadband network, such as, for example, a network for providing 2-way video communications. In another example, the voice network may be a wireless broadband network, such as, for example, a network using WiFi (i.e., IEEE 802.11(b) and/or (g)). In yet another example, the voice network 104 may be a wireless voice network(s), such as, for example, a cellular or third-generation cellular network). In addition, voice network 104 may be implemented using any single or combination of the above-described technologies consistent with the principles of the present invention. Further, service center 106 may be connected to multiple voice networks 104, such as for example, Verizon's™ Voice Network, voice networks operated by other carriers, and wireless carrier networks.


Service center 106 provides a platform for managing communications over data network 102 and voice network 104. Service center 106 also provides gateway functions, such as code and protocol conversions, to transfer communications between data network 102 and voice network 104. Service center 106 may be implemented using a combination of hardware, software, and/or firmware. For example, service center 106 may be implemented using a plurality of general purpose computers or servers coupled by a network (not shown). Although service center 106 is shown with direct connections to data network 102 and voice network 104, any number and type of network elements may be interposed between service center 106, data network 102, and voice network 104.


User terminal 112 provides user 110 an interface to data network 102. For example, user terminal 112 may be implemented using any device capable of accessing the Internet, such as a general purpose computer or personal computer equipped with a modem. User terminal 112 may also be implemented in other devices, such as the Blackberry™, and Ergo Audrey™. Furthermore, user terminal 112 may be implemented in wireless devices, such as pagers, mobile phones (with data access functions), and Personal Digital Assistants (“PDA”) with network connections.


User terminal 112 also allows user 110 to communicate with service center 106. For example, user 110 may use instant messaging (“IM”) to communicate with service center 106. In addition, user terminal 112 may use other aspects of TCP/IP including the hypertext transfer protocol (“HTTP”); the user datagram protocol (“UDP”); the file transfer protocol (“FTP”); the hypertext markup language (“HTML”); and the extensible markup language (“XML”).


Furthermore, user terminal 112 may communicate directly with service center 106. For example, a client application may be installed on user terminal 112, which directly communicates with service center 106. Also, user terminal 112 may communicate with service center 106 via a proxy.


Phones 114, 116, 118, and 122 interface with voice network 104. Phones 114, 116, 118, and 122 may be implemented using known devices, including wireline phones and mobile phones. Although phones 114, 116, 118, and 122 are shown directly connected to voice network 104, any number of intervening elements, such as a private branch exchange (“PBX”), may be interposed between phones 114, 116, 118, and 122 and voice network 104.



FIG. 2 is a block diagram of a user terminal consistent with the present invention. User terminal 112 may include a central processing unit (CPU) 200, a memory 202, a storage module 204, a network interface 206, an input interface 208, an output interface 210, an input device 216, and an output device 218.


CPU 200 provides control and processing functions for user terminal 112. Although FIG. 2 illustrates a single CPU, user terminal 112 may include multiple CPUs. CPU 200 may also include, for example, one or more of the following: a co-processor, memory, registers, and other processing devices and systems as appropriate. CPU 200 may be implemented, for example, using a Pentium™ processor provided from Intel Corporation.


Memory 202 provides a primary memory for CPU 200, such as for program code. Memory 202 may be embodied with a variety of components of subsystems, including a random access memory (“RAM”) and a read-only memory (“ROM”). When user terminal 112 executes an application installed in storage module 204, CPU 200 may download at least a portion of the program code from storage module 204 into memory 202. As CPU 200 executes the program code, CPU 200 may also retrieve additional portions of program code from storage module 204.


Storage module 204 may provide mass storage for user terminal 112. Storage module 204 may be implemented with a variety of components or subsystems including, for example, a hard drive, an optical drive, CD ROM drive, DVD drive, a general-purpose storage device, a removable storage device, and/or other devices capable of storing information. Further, although storage module 204 is shown within user terminal 112, storage module 204 may be implemented external to user terminal 112.


Storage module 204 includes program code and information for user terminal 112 to communicate with service center 106. Storage module 204 may include, for example, program code for a calendar application, such as GroupWise provided by Novell Corporation or Outlook provided by Microsoft Corporation; a client application, such as a Microsoft Network Messenger Service (MSNMS) client or America Online Instant Messenger (AIM) client; and an Operating System (OS), such as the Windows Operation System provided by Microsoft Corporation. In addition, storage module 204 may include other program code and information, such as program code for TCP/IP communications; kernel and device drivers; configuration information, such as a Dynamic Host Configuration Protocol (DHCP) configuration; a web browser, such as Internet Explorer provided by Microsoft Corporation, or Netscape Communicator provided by Netscape Corporation; and any other software that may be installed on user terminal 112.


Network interface 206 provides a communications interface between user terminal 112 and data network 102. Network interface 206 may receive and transmit communications for user terminal 112. For example, network interface 206 may be a modem, or a local area network (“LAN”) port.


Input interface 208 receives input from user 110 via input device 212 and provides the input to CPU 200. Input device 212 may include, for example, a keyboard, a microphone, and a mouse. Other types of input devices may also be implemented consistent with the principles of the present invention.


Output interface 210 provides information to user 110 via output device 214. Output device 214 may include, for example, a display, a printer, and a speaker. Other types of output devices may also be implemented consistent with the principles of the present invention.



FIG. 3 is a diagram of a voice network, consistent with the principles of the present invention. As shown, voice network 104 includes an intelligent service control point (ISCP) 302, service transfer points (STP) 304 and 306, service switching points (SSP) 308 and 310, a line information database (LIDB) 312, an ISCP Service Provisioning And Creation Environment (SPACE) 314, a Recent Change Environment 316, an Intelligent Peripheral (IP) 320, and a switch access 322. Although this embodiment of a voice network 104 is described as a PSTN, as discussed above in other embodiments, the voice network 104 may be, for example, a voice or video over broadband network a wireless broadband, a wireless voice network, etc.


Voice network 104 may be implemented using the PSTN and SS7 as a signaling protocol. The SS7 protocol allows voice network 104 to provide features, such as call forwarding, caller-ID, three-way calling, wireless services such as roaming and mobile subscriber authentication, local number portability, and toll-free/toll services. The SS7 protocol provides various types of messages to support the features of voice network 104. For example, these SS7 messages may include Transaction Capabilities Applications Part (“TCAP”) messages to support event “triggers,” and queries and responses between ISCP 302 and SSPs 308 and 310.


ISCP 302 may also be, for example, a standard service control point (SCP), an Advanced Intelligent Network (AIN) SCP, a soft switch, or any other network call controller. ISCP 302 provides translation and routing services of SS7 messages to support the features of voice network 104, such as call forwarding. In addition, ISCP 302 may exchange information with the service center 106 using TCP/IP or SS7. ISCP 302 may include service logic used to provide a switch, such as SSP 308 or 310, with specific call processing instructions. ISCP 302 may also store data related to various features that a user may activate. Such features may include, for example, call intercept and voice mail. ISCP 302 may be implemented using a combination of known hardware and software. ISCP 302 is shown with a direct connection to service center 106 and a connection to ISCP SPACE 314, however, any number of network elements including routers, switches, hubs, etc., may be used to connect ISCP 302, ISCP SPACE 314, and service center 106. Further, information exchanged between the ISCP 302 and service center 106 may use, for example, the SR-3389 General Data Interface (GDI) for TCP/IP.


STPs 304 and 306 relay SS7 messages within voice network 104. For example, STP 304 may route SS7 messages between SSPs 308 and 310. STP 304 or 306 may be implemented using known hardware and software from manufacturers such as NORTEL™ and LUCENT Technologies™.


SSPs 308 and 310 provide an interface between voice network 104 and phones 114 and 120, respectively, to setup, manage, and release telephone calls within voice network 104. SSPs 308 and 310 may be implemented as a voice switch, an SS7 switch, or a computer connected to a switch. SSPs 308 and 310 exchange SS7 signal units to support a telephone call between calling party 120 and user 110. For example, SSPs 308 and 310 may exchange SS7 messages, such as TCAP messages, within message signal units (“MSU”) to control calls, perform database queries to configuration database 312, and provide maintenance information.


Line Information Database (LIDB) 312 comprises one or more known databases to support the features of voice network 104. For example, LIDB 312 may include subscriber information, such as a service profile, name and address, and credit card validation information. Although, in this figure, LIDB 312 is illustrated as directly connected to ISCP 302, LIDB 312 may be connected to ISCP 302 through an STP (e.g., 304 and 306). Additionally, this communication link may use, for example, the GR-2838 General Dynamic Interface (GDI) for SS7.


ISCP Service Provisioning and Creation Environment (SPACE) 314 may be included as part of the ISCP 302 or be separate from the ISCP 302. For example, the Telcordia™ ISCP may include an environment similar to SPACE 314 as part of the product. Further, ISCP SPACE 314 may include one or more servers. ISCP SPACE 314 is the point in the ISCP platform where customer record updates may be made.


In one embodiment, customer records may be stored in the ISCP SPACE 314 such that the records may be updated and sent to the ISCP 302. These records may include information regarding how to handle calls directed to the customer. For example, these customer records may include information regarding whether or not calls for the customer are to be forwarded to a different number, and/or whether or not the call should be directed to an IP, such as a voice mail system, after a certain number of rings. Additionally, one ISCP SPACE 314 may provide updates to one or more ISCPs 302 via an ISCP network (not shown).


Additionally, the voice network 104 may include one or more recent change engines 316 such as, for example, an Enterprise Recent Change engine (eRC); an Assignment, Activation, and Inventory System (AAIS); or a multi-services platform (MSP). As an example, the eRC and AAIS may be used in voice networks 104 located in the western part of the United States, while an MSP may be used in networks in the eastern part. The recent change engines may be used to update switch and ISCP databases. For example, a recent change engine may deliver database updates to SSPs and to ISCPs, such that when updating databases, these recent change engines emulate human operators. Additionally, if the instructions are to be sent to an ISCP 302, the recent change engine may first send the instructions to the ISCP SPACE 314, which then propagates the instructions to the ISCP 302 as discussed above. Further, an MSP or eRC may be used, for example, for providing updates to both the SSPs 308 or 310 and the ISCPs 302. Or, for example, an eRC may be used for providing updates to the SSPs 308 or 310, while an AAIS is used for providing updates to the ISCPs 302.


Updates sent to the SSPs 308 or 310 may be sent from the recent change engine 316 via a switch access 322 that may, for example, convert the updates into the appropriate protocol for the SSP 308 or 310. For example, recent change engine 316 may send updates to the SSPs 308 or 310 via TCP/IP. The switch access 322 may then convert the updates from TCP/IP to X.25. This switch access 322 may be implemented using hardware and/or software. These connections may include any number of elements, such as, for example, switches, routers, hubs, etc. and may be, for example, an internal data network for the voice network 104.


The voice network 104 may also include one or more intelligent peripherals (IP). For example, in FIG. 3, an IP 320 is illustrated as being connected to SSP 308. These IPs may be used for providing functions for interaction between users and the voice network, such as voice mail services, digit collection, customized announcements, voice recognition, etc. Moreover, the communications between the SSP 308 and IP 320 may use the Primary Rate interface (PRi) (e.g., the 1129 protocol) protocol. Additionally, the IP 320 may be capable of sending and receiving information to/from the Service Center 106. These communications may use, for example, the SR-3511 protocol. Further, although FIG. 3 illustrates this connection as a direct connection, this connection may include any number of elements including routers, switches, hubs, etc., and may be via, for example, an internal data network for the voice network 104.



FIG. 4 is a block diagram of a service center, consistent with the principles of the present invention. As shown, service center 106 may include firewalls 402 and 404, one or more digital companion servers 406, one or more communication portal servers 408, one or more network access servers 410, and a voice portal 412. The voice portal 412 may include a voice portal application server 414 and a voice recognition server 416. A network 418 may be used to interconnect the firewalls and servers. Additionally, back end server(s) 420 may be provided between the service center 106 and the voice network 104.


Firewalls 402 and 404 provide security services for communications between service center 106, data network 102, and voice network 104, respectively. For example, firewalls 402 and 404 may restrict communications between user terminal 112 and one or more servers within service center 106. Any appropriate security policy may be implemented in firewalls 402 and 404 consistent with the principles of the present invention. Firewalls 402 and 404 may be implemented using a combination of known hardware and software, such as the Raptor Firewall provided by the Axent Corporation. Further, firewalls 402 and 404 may be implemented as separate machines within service center 106, or implemented on one or more machines external to service center 106.


Network 418 may be any type of network, such as an Ethernet or FDDI network. Additionally, network 418 may also include switches and routers as appropriate without departing from the scope of the invention. Further, additional firewalls may be present in the network 418, for example, to place one or more of servers 406, 408, 410, or voice portal 412 behind additional firewalls.


Each server (406, 408, 410, 414, 416, 420) may be any appropriate type of server or computer, such as a Unix or DOS-based server or computer. The servers may implement various logical functions, such as those described below. In FIG. 4, a different server is illustrated as being used for each logical function. In other embodiments, the logical functions may be split across multiple servers, multiple servers may be used to implement a single function, all functions may be performed by a single server, etc.


In general, a digital companion server 406 may provide the software and hardware for providing specific services of the service center. Exemplary services include, for example, permitting a customer to add contacts to their address book from a history of calls made or received by the customer, permitting a customer to make calls directly from their address book, scheduling a call to be placed at a specific time, or permitting the customer to look at the name and/or address associated with a phone number. Additionally, these services may include permitting the customer to listen to their voice mail on-line, forwarding their calls based on a scheduler and/or the calling parties number, setting up conference calls on-line, real-time call management, etc. In one embodiment, real-time call management enables a user to perform several functions as a call is being received, such as sending a call to voice mail, sending a call received on one device to another device, manually initiating protection from telemarketers, playing an announcement for the caller, scheduling a call back, bridging a caller onto a current call, etc.


A communication portal server 408 may provide the hardware and software for managing a customer's account and interfacing with customer account information stored by the provider of customer's voice network 104. The network access servers 410 may provide the hardware and software for sending and receiving information to the voice network 104 in processing the applications provided by the service center. For example, the network access servers 410 may be used for transmitting and/or receiving information from/to an ISCP 302 or an SSP 308 or 310 of the voice network 104.


The voice portal 412 includes software and hardware for receiving and processing instructions from a customer via voice. For example, a customer may dial a specific number for the voice portal 412. Then the customer using speech may instruct the service center 105 to modify the services to which the customer subscribes. The voice portal 412 may include, for example, a voice recognition function 416 and an application function 414. The voice recognition function 416 may receive and interpret dictation, or recognize spoken commands. The application function 414 may take, for example, the output from the voice recognition function 416, convert it to a format suitable for the service center 106 and forward the information to one or more servers (406, 408, 410) in the service center 106.



FIG. 5 illustrates a logical architecture of an exemplary system, consistent with the present invention. As illustrated, the logical architecture may be split into four planes: client side 602, application service 504, network access 506, and the voice network 508.


Client side 502 includes user terminals 112_A and 112_B that a user may use to send and/or receive information to/from the service center 106. Additionally; client side 502 includes the user's phone(s) 114. As discussed above, user terminals 112 may be any type of device a user may use for communicating with Service Center 106. For example, user terminal 112_A may be a PDA running a program for communicating with the Service Center 106, while user terminal 112_B may be a desktop type computer running a web browser for communicating with the Service Center 106 via the Internet. Additionally, the user may have one or more phones 114, such as, for example, one or more standard landline telephones and/or wireless phones.


The application service plane 504 includes the digital companion server(s) 406, communication portal server(s) 408, and the voice portal 412. These entities may communicate between one another using, for example, web services or any other suitable protocols. Web services are a standardized way of integrating Web-based applications using the Extensible Markup Language (XML), Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL) and Universal Description, Discovery and Integration (UDDI) open standards over an Internet protocol (IP) backbone.


As illustrated, a digital companion server 406 may provide the following functions: a client proxy 512, a web server 514, an application server function 516, a calendar server function 518, a notification server function 520, and a database function 522. Each of these functions may be performed in hardware, software, and/or firmware. Further, these functions may each be executed by a separate server, split across multiple servers, included on the same server functions, or any other manner.


The client proxy function 512 provides a proxy function for the digital companion that may be used for security purposes. This client proxy function 512 may be included in a separate server such that all communications sent from the other digital companion functions/servers to a user terminal 112 via the data network 102 go through the client proxy 512. Also, if the client proxy 512 is included on a separate server, for example, an additional firewall may be provided between the client proxy 512 and the other digital companion servers to provide additional security.


Web server 514 provides functionality for receiving traffic over the data network 102 from a customer. For example, web server 514 may be a standard web server that a customer may access using a web browser program, such as Internet Explorer or Netscape Communicator.


Application server function 516 encompasses the general functions performed by the digital companion server(s) 406. For example, these functions may include interfacing with the various other digital companion functions to perform specific services provided by the service center. These services may include, for example, interfacing with other function(s), software, and/or hardware to provide a customer with the capability of managing their calls online. For example, permitting a customer to add contacts to their address book from a history of calls made or received by the customer, permitting a customer to make calls directly from their address book, scheduling a call to be placed at a specific time, or permitting the customer to look at the name and/or address associated with a phone number. Additionally, these services may include permitting the customer to listen to their voice mail on-line, forwarding their calls based on a scheduler and/or the calling parties number, setting up conference calls on-line, enabling call management with user intervention in real-time, etc.


Additionally, the application server function 516 may interface with one or more external devices, such as an external web server, for retrieving or sending information. For example, the application server function 516 may interface with a voice network's data center 556 (e.g., verizon.com) to determine the services to which the customer subscribes (e.g., call waiting, call forwarding, voice mail, etc.).


Calendar server function 518 may provide the capability of scheduling events, logging when certain events occurred, triggering the application-functions to perform a function at a particular time, etc.


Notification server function 520 provides the capability to send information from the service center 106 to a user terminal 112. For example, the notification server function 520 at the direction of the application server function 516 may send a notification to the user terminal 112 that the user is presently receiving a phone call at the user's phone 114. This notification may be, for example, an instant message pop-up window that provides an identification of the caller as well as the number being called. The notification may also have a number of user-selectable buttons or items associated with it that enable the user to manage a call in real-time.


Database function 522 provides the storage of information useable by the various applications executed by the digital companion servers. These databases may be included in, for example, one or more external storage devices connected to the digital companion servers. Alternatively, the databases may be included in storage devices within the digital companion servers themselves. The storage devices providing the database function 522 may be any type of storage device, such as for example, CD-ROMs, DVD's, disk drives, magnetic tape, etc.


As discussed above, the communication portal server(s) 408 provide the hardware and software for managing a customer's account and interfacing with customer account information stored by the provider of customer's voice network 104. As illustrated in FIG. 5, a communication portal server 408 may provide the following functions: a web server function 526, an application server function 528, a contacts database function 530, and/or a customer profile function 532. Each of these functions may be performed by a separate server, split across multiple servers, included on the same server functions, or any other manner.


Web server function 526, as with web server function 514 of the digital companion servers, provides functionality for receiving traffic over the data network 102 from a customer. For example, the web server may be a standard web server that a customer may access using a web browser, such as Internet Explorer or Netscape Communicator.


The application server function 528 encompasses the general functions performed by the communication portal servers 408. For example, these functions may include interfacing with the voice network to retrieve and/or modify customer profile information, and creating and editing an address book for the user. Additionally, the application server function 528 may include the functionality of sending and/or receiving information to/from external servers and/or devices. For example, the communication portal servers 408 may be connected to a network, such as, the Internet. The application server function 528 may then provide connectivity over the Internet to external servers 552 that provide web services, such as the Superpages web page. The application server function 528 could then contact these external services 552 to retrieve information, such as an address for a person in the user's address book.


In another example, the application server function 528 of the communication portal 408 may interface a single sign on (SSO) server 554. SSO 554 may be used to allow users to access all services to which the user subscribes, on the basis of a single authentication that is performed when they initially access the network.


Moreover, the application server function 528, similar to application server 516, may provide functionality to facilitate services performed by the service center. These services may include, for example, interfacing with other function(s), software, and/or hardware to provide a customer with the capability of managing their calls online. For example, permitting a customer to add contacts to their address book from a history of calls made or received by the customer, permitting a customer to make calls directly from their address book, scheduling a call to be placed at a specific time, or permitting the customer to look at the name and/or address associated with a phone number. Additionally, these services may include permitting the customer to listen to their voice mail on-line, forwarding their calls based on a scheduler and/or the calling parties number, setting up conference calls on-line, enabling call management with user intervention in real-time, etc.


The contacts database 530 includes storage devices for storing an address book for the user. This address book may be any appropriate type of address book. For example, the user's address book may include the names, phone numbers, and addresses of people and/or organizations. These storage devices may be internal or external to the communication portal servers 406 or some combination in between. In addition, these storage devices may be any type of storage device, such as magnetic storage, memory storage, etc.


The customer profile database 532 includes storage devices for storing customer profile information for the user. These storage devices may be the same or separate storage devices used for the contacts database. The customer profile may include information regarding the user's account for their voice network. For example, this information may include the user's name, billing address, and other account information. Additionally, the customer profile may include information regarding voice services to which the user subscribes, such as, for example, call waiting, voice mail, etc.


The application services plane 504 of the architecture may also include a voice portal 412. As discussed above, the voice portal 412 may include, for example, a voice recognition function 416 and an application server function 414, and be used for receiving and processing instructions from a customer via voice. The voice recognition function may be implemented using hardware and/or software capable of providing voice recognition capabilities. This hardware and/or software may be a commercially available product, such as the Voice Application platform available from Tellme Networks, Incorporated. The application server function 414 of the voice portal 412 may include hardware and/or software for exchanging information between the digital companion servers 406 and the voice recognition function 416. Additionally, the application server function 414 may be included on a separate server, included in the hardware and software providing the voice recognition function 416, included in the digital companion servers 406, etc.


The Network Access plane 506 of the architecture includes the functions for providing connectivity between the application service plane 502 and the voice network 104. For example, this plane may include the recent change engines 316, network access servers 410, and/or back end servers 420.


As discussed above, recent change engines 316 may be used to update switches and ISCP databases included in the voice network 104. In one embodiment, the recent change engines 316 may include an AAIS 544, an eRC 546, and/or an MSP 548. Additionally, a proxy 542 may be used between the digital companion servers 406 and the recent change engines 542 for security purposes.


The network access servers 410 may be included in the service center 106 and may provide the hardware and software for sending and receiving information to the voice network 410 in processing the applications provided by the service center. For example, the network access servers 410 may include a Caller ID (CID) functionality for retrieving caller ID information from the voice network 104, a click to dial (CTD) functionality for instructing an intelligent peripheral (IP) in the voice network to place a call via an SSP, and/or a real time call management (RTCM) functionality for interfacing with an ISCP of the voice network.


Network Access plane 506 may also include one or more back end server(s) 420. These back end server(s) 420 may include hardware and/or software for interfacing the service center 106 and the voice network 104. The back end server(s) 420 may be connected to the service center 106 by a network, by a direct connection, or in any other suitable manner. Further, the back end server(s) 420 may connect to one or more devices in the voice network 104 by a network, a direct connection, or in any other suitable manner.


The back end server(s) 420 may include, for example, a server providing a voice mail retrieval and notification function. This voice mail retrieval and notification function may include the capability to receive notifications when a user receives a voice mail, physically call a user's voice mail system, enter the appropriate codes to retrieve the voice mail, retrieve the voice mail, convert the voice mail to a digital file, and send it to the digital companion servers 406.


Additionally, these back end server(s) 420 may also include, for example, a directory assistance server. This directory assistance server may interface the service center 106 with a Reverse Directory Assistance Gateway (RDA Gateway) of the voice network 104. An RDA Gateway is a device for issuing requests to a Data Operations Center (DOC) of the voice network 104 for name and/or address information associated with a phone number and receiving the name and/or phone number in response to this request.


In another example, the back end server(s) 420 may include a wireless internet gateway that is used for interfacing with a mobile switching center (MSC) of a wireless voice network. As with the above-described back end server(s) 420, this wireless internet gateway may be used for converting requests and information between the formats used by the service center 106 and those used by the wireless voice network.


In yet another example, the back end server(s) 420 may include a conference blasting server for instructing a conference bridge in the voice network 106 to dial out via an SSP to the participants of a voice conference. Alternatively, for example, the back end server(s) may include a server for instructing an IP of the voice network to place a call between two parties by dialing out to each of the parties. The back end server(s) may also include the capability to instruct the bridge or IP device to call an audio digitizing device that can listen to the conference, convert the audio signals to digital format, and forward the digitized signals to a user device via, for example, an audio streaming server. The audio streaming server may, for example, allow a user to connect to it via, for example, the Internet. Additionally, the audio streaming device may buffer or record the signals to permit the user to pause, rewind, and/or fast-forward thru the conference.


In yet another example, the back end server(s) 420 may include a Single Number Short Message Service (SN SMS) server for interfacing the service center 106 with a Short Message Service (SMS) gateway in the voice network 104. This may be used to permit the customer to have SMS messages addressed to their home phone number directed to an SMS capable device of the users choosing.


The voice network plane 508 includes the hardware and software included in the voice network 104, as discussed above with reference to FIG. 3. For example, the voice network plane 508 may include the ISCP SPACE 314, the ISCP 302, the intelligent peripherals 320, and the SSP 308. Additionally, the voice network plane 508 may also include the hardware and software included in a wireless carrier's network, such as, for example, the mobile switching center, etc.



FIG. 6 shows an exemplary network access server 410 consistent with the present invention. As noted above in conjunction with FIGS. 4 and 5, network access server 410 may include functionality that enables real-time call management. Real-time call management (RTCM) server 602 may be used to perform this functionality. For example, RTCM server 602 may facilitate call management by receiving information indicative of an incoming call from an ISCP 302, forwarding a request related to that information to digital companion server 406, receiving a response to the request, and causing the ISCP 302 to connect the call based on the response. One of ordinary skill in the art will recognize that other functionality may also be included in a network access server 410 in addition to RTCM server 602.



FIG. 7 shows an exemplary application server 516 consistent with the present invention. As noted above in conjunction with FIG. 5, application server 516 may include functionality that facilitates real-time call management. RTCM application 702 may be used to perform this functionality. For example, RTCM application 702 may facilitate call management by receiving a request corresponding to an incoming call, looking up customer-specific information, and providing information to a notification server that may notify a customer of an incoming call and present the customer with several options on handling the call. One of ordinary skill in the art will recognize that other functionality may also be included in an application server 516 in addition to RTCM application 702. One of ordinary skill in the art will also recognize that RTCM application 702 may be located in application server 528 instead of or in addition to application 516.


Real-Time Call Management


FIG. 8 is a diagram of an exemplary flowchart of a method for real-time call management in a manner consistent with the present invention. Although the steps of the flowchart are described in a particular order, one skilled in the art will appreciate that these steps may be performed in a modified or different order. Further, one or more of the steps in FIG. 8 may be performed concurrently or in parallel.


As illustrated in FIG. 8, a calling party first initiates a call to a digital companion customer (step 802). For example, calling party 120 may use a phone, such as phone 122, to call a digital companion customer, such as user 110. In response to the initiation of a call, service center 106 may send a notification of the incoming call to the customer at a communications device (step 804). The notification may present a number of customer-selectable options associated with it that enable the customer to manage a call in real-time. For example, the notification may present different options that permit a customer to send a call to voice mail, send a call received on one device to another device, perform a call screening operation, accept a call, play an announcement, place a call on hold, schedule a call back operation, perform an automatic call back operation, or bridge the caller onto the current call. Once the customer selects one of the call management options (e.g., by pressing an appropriate button on a touch-sensitive display), service center 106 causes the call to be connected based on the customer's response to the notification (step 806).



FIGS. 9A and 9B comprise an expanded diagram of an exemplary flowchart of a method for realtime call management in a manner consistent with the present invention. Although the steps of the flowchart are described in a particular order, one skilled in the art will appreciate that these steps may be performed in a modified or different order. Further, one or more of the steps in FIG. 9 may be performed concurrently or in parallel.


As illustrated in FIGS. 9A and 9B, a calling party first initiates a call to a digital companion customer (step 902). For example, calling party 120 may use a phone, such as phone 122, to call a digital companion customer, such as user 110. In one embodiment, the call may be routed from a phone to a voice network, such as voice network 104, where an SSP 308 or 310 may intercept the call (step 904). The SSP 308 or 310 may intercept the call because it encountered a trigger, such as a terminating attempt trigger or a specific digit string trigger, associated with the call. For example, a trigger may be set at SSP 308 or 310 on each of the lines corresponding to a digital companion customer. In this manner, a trigger is set to detect calls received at the SSP that are directed to telephone numbers of digital companion customers. In addition, triggers may be set on lines corresponding to digital companion customers that have the real-time call management feature enabled. As such, calls to telephone numbers associated with digital companion customers having real-time call management are detected by the triggers. For the purposes of this description, it is those calls that the SSP intercepts. In an alternative environment, such as a soft switch environment, functionality similar to a trigger may be utilized to intercept calls.


After intercepting the call, SSP 308 or 310 sends a query to ISCP 302 requesting further instructions. In response, ISCP 302 sends call information to a network access server 410 (step 906). More particularly, ISCP 302 may send call information to RTCM server 602. In one embodiment, the call information may be sent to network access server 410 via a Generic Data Interface (GDI), using a message structure associated with GDI (e.g., GetData, SendData, or InvokeApp). The call information sent to RTCM server 602 may also be sent in an encrypted form.


The call information may include, for example, call state data, a call intercept parameter, a voice mail parameter, time zone data, user ID, called number data, calling name data, calling number data, and calling party number (CPN) presentation information. One of ordinary skill in the art will appreciate that additional information may be included with the call information, or that some of the previously noted information may be omitted from the call information.


Call state data may provide the current call state based on processing (e.g., AIN processing) that has already occurred for the call. For example, some possible values for call state data may be indicative of a call being authorized for termination, a call being to a call intercept (CI) service node or IP, a call being from a CI service node or IP, a call being a priority call from the CI service node or IP, a call having a CI error encountered on a call to a CI service node or IP, or a call being on the first leg of a click-to-dial call.


The call intercept parameter identifies when a customer has call intercept. In one embodiment, a call intercept feature allows a customer to stop invalid numbers that typically appear as “unavailable,” “private,” “anonymous,” or “out of area” on a caller ID display. The feature may tell callers that unidentified calls are not accepted and ask them to record a name. If an unidentified caller does not record a name or enter an override code, the called party's phone will not ring, thus eliminating interruptions from unidentified callers.


The voice mail parameter identifies when a subscriber has voice mail capability. Time zone data refers to the customer's time zone. Called number data refers to the number of a called device associated with the subscriber. User ID refers to a parameter that may have one of two values. If a distinctive ring feature is present, then user ID is set to a primary number value. If no such feature is present, then user ID is set to the same value as the called number. Distinctive ring, for example, may provide a customer with additional telephone numbers on a single line, with their own unique ringing pattern. A customers primary number is the main number associated with the line.


Calling number data refers to the number of the caller. This parameter may contain such a number when it is available. In addition, the parameter may contain a calling party address when the information is made available by a previously executed AIN service. Otherwise, the calling number parameter may include some arbitrary string of digits or characters (e.g., ten zeros) when the caller ID information does or does not match a particular format.


Calling name data refers to the name of the calling party. This parameter may be retrieved, for example, by ISCP 302 from a database such as LIDB 312. It may be typically possible to retrieve the calling name when the database was populated with this data by a previously executed AIN service. If the calling name is not successfully retrieved, then the calling name parameter may include, for example, an arbitrary string of digits or characters (e.g., zeros) indicative of situations where there was no response from LIDB 312, there was an erroneous response from LIDB 312, there was no name returned from LIDB 312, the format of the caller ID is not in conformance, or the caller ID presentation is restricted.


ISCP 302 also sends an announcement to an SSP where the call is being handled. The announcement can be some kind of recording that is played for the calling party. This announcement has the effects of preventing a call timer in the SSP from expiring and giving the calling party an indication that the call is progressing. The ISCP 302 may continue to cause the announcement to be played while waiting for a response from the RTCM server 602.


Upon receiving the call information from the ISCP 302, the RTCM server 602 may decrypt the information, if necessary, and forward the received information to application server 516 (step 908). For example, the RTCM server 602 may dispatch the received call information to RTCM application 702. The RTCM application 702 may then determine whether the customer associated with the triggered phone number (e.g., destination/dialed phone number) is logged into the digital companion system (step 910). RTCM application 702 makes this determination, for example, by performing a lookup in a database, such as database 522, using the called number as an index. Based on the called number, RTCM application 702 can determine a digital companion customer ID. This digital companion customer ID may have a number of access points (e.g., user terminals 112) associated with it. RTCM application 702 may lookup entries in database 522 that correspond to the digital companion customer ID to determine whether the customer is currently logged onto the system using any access points. For example, whenever a customer is logged onto the system using an access point, an indication of such is stored in database 522. If RTCM application 702 finds such an indication in database 522, then it knows that the customer is logged on, and it knows which access point the customer is using.


If the customer is not logged on anywhere, then there is no way for service center 106 to communicate with the customer using digital companion operations. Instead, service center 106 logs the call (step 912). When the customer logs in at a later time, the customer is provided with an indication that the customer was called. Calls may be logged, for example, in database 522 or in other storage on digital companion server 406 or communication portal server 408. The call may be subsequently routed without digital companion processing (e.g., call may be completed as dialed, if possible) (step 914).


If the customer is logged on, then RTCM application 702 retrieves call preference information from a database (step 920). In one embodiment, the database storing this call preference information may be database 522, customer profile database 532, or another database used to stored customer-related data. The call preference information may include, for example, call block lists, lists of forwarding devices or telephone numbers, voice mail preferences, lists of recordings that the customer can set as pre-recorded messages, etc.


RTCM application 702 may also proceed to determine whether the call intercept feature and/or voice mail features are enabled for the called party by examining the call information received from the RTCM server 602 (step 922). RTCM application 702 makes this determination so that it knows which options should be made available to a called party using RTCM. One of ordinary skill in the art will appreciate that the RTCM application 702 may also check for any other feature that can be enabled and disabled (e.g., call screening). RTCM application 702 also determines the CPN presentation value associated with the call by examining the call information received from the RTCM server 602 (step 924). The CPN presentation value is determined so that the calling party's CPN information can either be displayed or not displayed for the customer.


Thereafter, RTCM application 702 may provide the collected information (e.g., call information, call preference information, and access point information) to notification server 520 and instruct notification server 520 to send an RTCM notification to the customer associated with the called number (e.g., by providing an indication of the access point that the customer is using to the notification server 520). Notification server 520 has open connections to all devices (e.g., user terminals 112) that are logged on. When notification server 520 receives information from RTCM application 702, it uses the information to route an RTCM notification to the customer at the appropriate access point (step 926). In one embodiment, the RTCM notification may be sent using a protocol such as HTTP (Hypertext Transfer Protocol), Java, or a similar protocol.


As noted above with reference to FIG. 8, the RTCM notification may be a notification of the incoming call to the customer. The notification may include a display having a number of customer-selectable buttons associated with it that enable the customer to manage a call in real-time. For example, the notification may have different buttons that permit a customer to send a call to voice mail, send a call received on one device to another device, perform a call screening operation, accept a call, play an announcement, place a call on hold, schedule a call back operation, perform an automatic call back operation, perform a call block operation, or bridge a caller onto the current call (e.g., initiate a conference call).


The notification may provide the customer with different options dependent on the features for which the customer is authorized and has enabled. For example, if the customer does not have call intercept enabled, then the RTCM notification will not include a user-selectable area corresponding to the telemarketer zap operation. If the customer does not have voice mail enabled, then the RTCM notification will not include a user-selectable area corresponding to voice mail. One of ordinary skill in the art will appreciate that any feature that can be enabled and disabled may be used as a basis for altering the RTCM notification (e.g., call screening, conference call, etc.).


Once it has received the RTCM notification, the customer's selected device displays the RTCM notification, including the customer-selectable buttons associated with it. The device does not yet ring. Even though the device is not yet ringing, the caller may hear on the calling device (e.g., the phone or other device used to place the call) a ringing tone or an announcement indicating that the call is proceeding. RTCM server 602 then waits for a response from the customer (step 928). Response information may include, for example, call disposition information, forwarding number information, nature of forwarding number information, carrier access code, announcement type, and ring cadence. One of ordinary skill in the art will appreciate that additional data may be included with the response data, or that some of the previously noted data may be omitted from the response data.


Call disposition information may provide an indication of the customers choice for how the call should be handled. For example, call disposition information may include an indication of sending a call to voice mail, sending a call received on one device to another device (e.g., call forwarding), performing a call screening operation, accepting a call, playing an announcement, placing a call on hold, scheduling a call back operation, performing an automatic call back operation, performing a call block operation, or bridging a caller onto the current call.


When a call forwarding operation is invoked, forwarding number information includes a number to which the call should be forwarded. Nature of forwarding number information identifies the nature of the call forwarding number. For example, a number may be a national number or an international number.


Carrier access code may be a sequence of digits indicative of a specific carrier when a call should be routed using the specific carrier.


Announcement type identifies an announcement that should be played to the caller. This parameter, for example, may be used when the customer selects the play announcement option.


Ring cadence may be indicative of the ring cadence value that should be applied for the call. For example, different values may be used to designate normal cadence; short, short cadence; and short, short, long cadence; or any other possible cadences.


If, after a predetermined period of time, the notification server 520 has not received a response, then the call is accepted for the device receiving the RTCM notification (step 930). For example, after the period of time, the RTCM notification may disappear from the device's display and the device may start ringing. The customer may answer the call if he or she is available and chooses to do so. One of ordinary skill in the art will appreciate that other default actions may occur instead of allowing the call to go through. For example, a busy signal may be played, the call may be sent to voice mail, the call may be forwarded to a preferred forwarding number, an announcement may be played, etc.


If the customer responds by selecting one of the RTCM options, then the RTCM notification disappears from the display, and the RTCM server 602 receives the response and encrypts it, if necessary (step 932). RTCM server 602 proceeds to instruct ISCP 302 to route the incoming call based on the response from the customer (step 934). In one embodiment, RTCM server 602 instructs ISCP 302 by sending ISCP 302 the response information via a connection such as a GDI link. The ISCP 302 may decrypt the response data, if necessary, and route the call based on the response. For example, the service logic associated with ISCP 302 may take different actions based on the call disposition information and other information included in the response. Exemplary call routing options include place call on hold (step 936), forward call to another device (step 938), screen call (step 940), voice mail (step 942), accept call (step 944), play announcement (step 946), schedule call back (step 948), auto call back (step 950), conference call (step 952), and block call (step 954).


Selecting the place call on hold option (step 936) temporarily causes the call to be delayed until the customer is ready to speak or otherwise deal with the call. For example, when the caller is placed on hold, an announcement may be played for the caller (e.g., “The party you are trying to reach is currently on a call, but wishes to talk with you. Please stay on the line.”) The popup may remain on the screen in this case and display the time elapsed since placing the caller on hold.


If a customer decides to forward the call to another device (step 938), then RTCM server 602 instructs ISCP 302 to route the call to a device other than the one on which the RTCM notification was received. In one embodiment, the customer may preset the phone number of the device to which the call should be forwarded. This device may be one of a plurality of devices that are normally associated with the customer (e.g., part of a list of devices stored in a digital companion database). The device may also be a device that is not one of the customer's normal potential preferred devices, but the customer has some reason that he or she wants to receive calls on the device (e.g., the device is physically close to the customer's temporary location, etc.).


In an alternative embodiment, upon selecting the forward call option, the customer may be presented with a query asking what number the call should be forwarded to. The customer may respond to the query by entering a phone number or selecting a number from a list of predetermined numbers.


When the call screening option (step 940) is selected, the RTCM server 602 causes a series of steps to occur for screening potential telemarketers or other unwanted callers. For example, when the RTCM notification indicates that the call is from a blocked, unavailable, or otherwise undesirable number, the customer may select the call screening option. The calling party may then be presented with an announcement requesting the calling party to leave a spoken name, a PIN (personal identification number), or a voice message. In one embodiment, the announcement may be accompanied by a Special Instruction Tone (SIT) cadence.


If the calling party leaves a name, the customer's device may then ring. The ring may be accompanied by a notification that gives the customer the option of taking the call, diverting the call to voice mail, deny the call, etc. The customer's device that rings may be preset or manually provided by the customer in response to a query. The device may also be whatever device originally received the RTCM notification. The call is routed according to the customer's selection. If the calling party enters a valid PIN, the calling party's call may be connected to the customer right away. The call screening option is more fully explained in U.S. patent application Ser. No. 10/720,938, which has already been incorporated by reference.


When the voice mail option is selected (step 942), the RTCM server 602 may instruct ISCP 302 to route the call to the customer's current preferred voice mail number. The preferred voice mail number may be preset or manually provided by the customer in response to a query. For example, when the customer selects the send to voice mail option, the popup (e.g., RTCM notification) goes away and the incoming call is sent to either a present voice mail box or a voice mail box provided by the customer in response to a query given to the customer after the popup went away.


When the accept call option is selected (step 944), the RTCM server 602 may instruct ISCP 302 to route the call to the device on which the customer received the RTCM notification. If the customer is connected to the Internet via dial-up access on the same phone line that the call is to be routed, the customers Internet session may be immediately disconnected so that the call may be answered.


In cases where the play announcement option (step 946) is selected, the RTCM server 602 may instruct ISCP 302 to cause a predetermined recorded announcement to be played for the calling party. For example, the customer may wish to tell particular callers that he or she is not available, without giving them the option of leaving a voice message. One of ordinary skill in the art will recognize that other announcements may be played.


When the schedule call back option is selected (step 948), the RTCM server 602 may instruct ISCP 302 to cause an announcement to be played for the calling party. For example, the announcement could be “the party you are trying to reach is currently on a call but will call you back later.” The RTCM server may also cause a prompt to be presented to the customer asking for the customer to set up a callback event in the digital companion calendar. This callback event may, with the customer's approval, send an e-mail or other message to the caller showing the intended date and time of the callback, if the caller is also a digital companion customer or has an e-mail address or other device indicator (e.g., phone number of a mobile phone capable of receiving text messages) in a contacts list associated with the called customer. When the time and date of the callback occur, a call may be automatically placed from the called customer to the calling party.


When the auto call back option is selected (step 950), the RTCM server 602 may instruct ISCP 302 to cause an announcement to be played for the calling party. For example, the announcement could be “the party you are trying to reach is currently on a call but will call you back as soon as that call is finished.” When the customer's line is free (e.g., the customer is done with the previous call), a call may be automatically placed from the customer to the calling party.


When the conference call option is selected (step 952), the RTCM server may instruct ISCP 302 to cause the calling party to be bridged onto the current call. For example, the called customer may be on a telephone call with a first party when a second party calls the customer. If the customer selects the conference call option, the a RTCM server 602 instructs ISCP 302 to create a conference call between the customer, the first party, and the second party. For example, in response to a request from RTCM server 602, ISCP 302 may instruct a switch handling the existing call between the customer and the first party to bridge the incoming call from the second party with the existing call. One of ordinary skill in the art will appreciate that the calling party can be bridged onto a conference call between the customer and multiple other parties instead of bridged onto a normal call between the customer and one other party.


When the block call option is selected (step 954), the RTCM server 602 may instruct ISCP 302 to cause a predetermined recorded announcement to be played for the calling party. For example, the announcement could be “the party you are trying to reach does not wish to speak to you.” The calling party's number may also optionally be added to a call block list of numbers with which the customer does not wish to speak.



FIG. 10 is a diagram of an exemplary user interface 1000 including customer-selectable real-time call management options. User interface 1000 may be a display on a customer device, such as user terminal 112 or phone 114, that is currently showing an RTCM notification. The RTCM notification includes an area 1002 indicating that the customer has an incoming call. Area 1002 also provides an identification of the caller as well as the number being called. The number being called may belong to the device displaying the RTCM notification or another device. The RTCM has a number of user-selectable areas 1004-1022 associated with it, allowing the customer to decide how an incoming call is routed. In one embodiment, the customer may select one of these user-selectable areas through any suitable input methods. For example, the customer may click on the desired option using a mouse, touch an appropriate area of a touchscreen, enter input on a keypad, etc., in order to choose the manner in which the incoming call is routed.


Selecting area 1004 enables the customer to answer the call on the device that received the RTCM notification (e.g., the device the includes user interface 1000). Selecting area 1006 forwards the call the voice mail as discussed above with reference to FIGS. 9A and 9B. Selecting area 1008 initiates a call screening feature as discussed above with reference to FIGS. 9A and 9B. Selecting area 1010 places the call on hold as discussed above with reference to FIGS. 9A and 9B. Selecting area 1012 forwards the call to another device of the customer's choosing as discussed above with reference to FIGS. 9A and 9B. Selecting area 1014 plays an announcement for the calling party as discussed above with reference to FIGS. 9A and 9B. Selecting area 1016 enables a customer to schedule a call back event on a calendar as discussed above with reference to FIGS. 9A and 9B. Selecting area 1018 enables a customer to cause the calling party to be automatically called back after the current call as discussed above with reference to FIGS. 9A and 9B. Selecting area 1020 bridges call party onto the current call as discussed above with reference to FIGS. 9A and 9B. Selecting area 1022 cause a recording to be played indicating that the customer does not wish to speak to the calling party and optionally cause the calling party's telephone number to be added to a call block list, as discussed above with reference to FIGS. 9A and 9B.



FIG. 11 is a diagram of an exemplary user interface 1100 that enables a customer to change preferences consistent with the present invention. As illustrated in FIG. 11, a customer may have the ability to enable or disable real-time call management for a given device. The customer also may select particular devices to handle different actions. For example, a customer may set specific phone numbers to handle features such as answer calls, send to voice mail, forward call, and/or telemarketer zap (e.g., call screening). One of ordinary skill in the art will appreciate that other features may also have phone numbers set for them. The customer also has the option of viewing various other settings associated with the customer, such as a list of numbers that are call blocked, call back settings, etc.


While the present invention has been described in connection with various embodiments, many modifications will be readily apparent to those skilled in the art. One skilled in the art will also appreciate that all or part of the systems and methods consistent with the present invention may be stored on or read from computer-readable media, such as secondary storage devices, like hard disks, floppy disks, and CD-ROM; a carrier wave received from a network such as the Internet; or other forms of ROM or RAM. Accordingly, embodiments of the invention are not limited to the above described embodiments and examples, but instead is defined by the appended claims in light of their full scope of equivalents.

Claims
  • 1. A method comprising: receiving, from a service control point, information pertaining to a call to a user;retrieving, using the information pertaining to the call, data corresponding to the user;selecting, from a plurality of devices, a device associated with the user based on the retrieved data;sending, to the selected device, a notification of the call, where the notification includes displayable user-selectable options for managing the call;receiving, responsive to the notification, a selection from the user of at least one of the user-selectable options; andinstructing the service control point to connect the call based on the selected at least one user-selectable option.
  • 2. The method of claim 1, further comprising: intercepting the call at a switch prior to the receiving the information pertaining to the call.
  • 3. The method of claim 2, where the switch intercepts the call upon encountering a trigger.
  • 4. The method of claim 3, where the trigger is a terminating attempt trigger.
  • 5. The method of claim 3, where the trigger is a specific digit string trigger.
  • 6. The method of claim 2, further comprising: sending an announcement to the switch by the service control point.
  • 7. The method of claim 6, further comprising: playing the announcement for a calling party while the service control point is waiting for the selection from the user.
  • 8. The method of claim 1, where the information pertaining to the call comprises at least one of call state data, a call intercept indicator, a voice mail indicator, time zone data, a user identifier, called number data, calling name data, calling number data, or calling party number presentation information.
  • 9. The method of claim 1, where the receiving the information comprises receiving the information pertaining to the call via a Generic Data Interface.
  • 10. The method of claim 1, further comprising: determining, prior to sending the notification, user-selectable options that are enabled for the user based on the retrieved data.
  • 11. The method of claim 1, where the retrieved data comprises an indication of an access point associated with the user.
  • 12. The method of claim 1, where the retrieved data comprises at least one of an indication of an access point that the customer is using, a call block list, a list of forwarding devices, a list of forwarding numbers, voice mail preferences, or a list of recordings.
  • 13. The method of claim 1, where the retrieving comprises: determining a user identifier using called number data; andfinding an indication of an access point being used by the user, using the user identifier.
  • 14. The method of claim 1, where the notification comprises an indication of a calling number and a called number.
  • 15. The method of claim 1, where the user-selectable options comprise at least one of sending the call to voice mail, forwarding the call to another device, performing a call screening operation, accepting the call, playing an announcement, placing the call on hold, scheduling a call-back operation, performing an automatic call-back operation, performing a call block operation, or initiating a conference call.
  • 16. A non-transitory computer-readable medium storing instructions, the instructions comprising: one or more instructions which, when executed by at least one processor, cause the at least one processor to receive, from a service control point, information pertaining to a call to a user;one or more instructions which, when executed by the at least one processor, cause the at least one processor to retrieve, using the information pertaining to the call, data corresponding to the user;one or more instructions which, when executed by the at least one processor, cause the at least one processor to send, to the user terminal, a notification of the call, where the notification includes displayable call management features identified from the retrieved data corresponding to the user;one or more instructions which, when executed by the at least one processor, cause the at least one processor to determine whether a response to the notification has been received from the user within a predetermined amount of time;one or more instructions which, when executed by the at least one processor, cause the at least one processor to connect the call, when no response to the notification has been received from the user within the predetermined amount of time, to the user terminal; andone or more instructions which, when executed by the at least one processor, cause the at least one processor to route the call, when the response to the notification has been received within the predetermined amount of time, based on information included in the response.
  • 17. The non-transitory computer-readable medium of claim 16, further comprising: one or more instructions which, when executed by the at least one processor, cause the at least one processor to determine whether the user is currently using a user terminal connected to the service control point via a data network; andone or more instructions which, when executed by the at least one processor, cause the at least one processor to log the call, when the user is not currently using the user terminal connected to the service control point via the data network, and not to retrieve the data corresponding to the user, send the notification, connect the call, or route the call.
  • 18. The non-transitory computer-readable medium of claim 16, where the response to the notification includes a selection of at least one of the call management features, and the one or more instructions to route the call include one or more instructions to perform the selected at least one management feature.
  • 19. The non-transitory computer-readable medium of claim 16, further comprising: one or more instructions which, when executed by the at least one processor, cause the at least one processor to remove the displayable call management features from the notification when no response to the notification has been received within the predetermined amount of time and before the call is connected to the user terminal.
  • 20. A system for call management responsive to user input, comprising: a server system coupled to a service control point, where the server system is configured to: receive, from the service control point, information pertaining to a call to a user;determine, using the information pertaining to the call, whether the user is currently using a user terminal connected to the service control point via a data network;retrieve, when the user is currently using the user terminal, data corresponding to the user;send, to the user terminal, a notification of the call, where the notification includes displayable call management features identified from the retrieved data corresponding to the user;determine whether a response to the notification has been received from the user;connect the call, when no response to the notification has been received from the user, to the user terminal; androute the call, when the response to the notification has been received from the user, based on information included in the response.
  • 21. The system of claim 20, where the server system is further configured to: connect the call to the user terminal when no response to the notification has been received from the user within a predetermined amount of time, androute the call based on information included in the response when the response to the notification has been received from the user within the predetermined amount of time.
  • 22. The system of claim 20, where the server system is further configured to: log the call, when the user is not currently using the user terminal.
  • 23. The system of claim 20, where the response to the notification includes a selection of at least one of the call management features, and the server system is further configured to route the call and perform the selected at least one management feature.
  • 24. The system of claim 20, where the server system is further configured to: remove the displayable call management features from the notification when no response to the notification has been received within the predetermined amount of time and before the call is connected to the user terminal.
  • 25. A method comprising: receiving, at a first server and from a service control point, information pertaining to a call to a user, the service control point being operable to determine how the call is connected;sending, from a second server, a notification of the call to a device associated with the user, where the notification includes a plurality of user-selectable call disposition options;receiving, at the first server, a response to the notification from the user; andinstructing the service control point to connect the call based on the response.
  • 26. The method of claim 25, where the call disposition options comprise at least one of sending the call to voice mail, forwarding the call to another device associated with the user, performing a call screening operation, accepting the call, playing an announcement, placing the call on hold, scheduling a call-back operation, performing an automatic call-back operation, performing a call block operation, or initiating a conference call.
  • 27. The method of claim 26, where the response includes a selection, from the user, of one of the at least one of the sending the call to voice mail, forwarding the call to another device associated with the user, performing a call screening operation, accepting the call, playing an announcement, placing the call on hold, scheduling a call-back operation, performing an automatic call-back operation, performing a call block operation, or initiating a conference call.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/721,005, entitled “METHODS AND SYSTEMS FOR CALL MANAGEMENT WITH USER INTERVENTION,” filed Nov. 24, 2003, which was a continuation-in-part of U.S. patent application Ser. No. 10/083,793, entitled “METHOD AND APPARATUS FOR CALENDARED COMMUNICATIONS FLOW CONTROL,” filed Feb. 27, 2002; U.S. patent application Ser. No. 10/083,792, entitled “VOICE MAIL INTEGRATION WITH INSTANT MESSENGER,” filed Feb. 27, 2002; U.S. patent application Ser. No. 10/083,884, entitled “DEVICE INDEPENDENT CALLER ID,” filed Feb. 27, 2002; and U.S. patent application Ser. No. 10/083,822, entitled “METHOD AND APPARATUS FOR A UNIFIED COMMUNICATION MANAGEMENT VIA INSTANT MESSAGING,” filed Feb. 27, 2002, all of which claim priority to U.S. Provisional Patent Application Nos. 60/272,422, 60/272,167, 60/275,667, 60/275,719, 60/275,020, 60/275,031 and 60/276,505, and all of which are expressly incorporated herein by reference in their entirety. Applicants also claim the right to priority under 35 U.S.C. §119(e) based on Provisional Patent Application No. 60/428,704, entitled “DIGITAL COMPANION,” filed Nov. 25, 2002; and Provisional Patent Application No. 60/436,018, entitled “DIGITAL COMPANION,” filed Dec. 26, 2002, both of which are expressly incorporated herein by reference in their entirety. The present application also relates to U.S. patent application Ser. No. 10/084,121, entitled “CALENDAR-BASED CALLING AGENTS,” filed Feb. 27, 2002; U.S. patent application Ser. No. 10/720,661, entitled “METHODS AND SYSTEMS FOR DRAG AND DROP CONFERENCE CALLING,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,859, entitled “METHODS AND SYSTEMS FOR CONFERENCE CALL BUFFERING,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/721,009, entitled “METHODS AND SYSTEMS FOR COMPUTER ENHANCED CONFERENCE CALLING,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,943, entitled “METHODS AND SYSTEMS FOR REMOTE CALL ESTABLISHMENT,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,868, entitled “METHODS AND SYSTEMS FOR DIRECTORY INFORMATION LOOKUP,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,970, entitled “METHODS AND SYSTEMS FOR AUTOMATICALLY FORWARDING CALLS TO CELL PHONE,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,952, entitled “METHODS AND SYSTEMS FOR ADAPTIVE MESSAGE AND CALL NOTIFICATION,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,870, entitled “METHODS AND SYSTEMS FOR A CALL LOG,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,633, entitled “METHODS AND SYSTEMS FOR AUTOMATIC FORWARDING OF CALLS TO A PREFERRED DEVICE,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,971, entitled “METHODS AND SYSTEMS FOR MULTI-LINE INTEGRATED DEVICE OR LINE MANAGEMENT,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,784, entitled “METHODS AND SYSTEMS FOR CONTACT MANAGEMENT,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,920, entitled “METHODS AND SYSTEMS FOR NOTIFICATION OF CALL TO PHONE DEVICE,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,825, entitled “METHODS AND SYSTEMS FOR SINGLE NUMBER TEXT MESSAGING,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,944, entitled “METHODS AND SYSTEMS FOR MULTI-USER SELECTIVE NOTIFICATION,” filed Nov. 24, 2003; U.S. patent application Ser. No. 10/720,933, entitled “METHODS AND SYSTEMS FOR CPN TRIGGERED COLLABORATION,” filed Nov. 24, 2003; and U.S. patent application Ser. No. 10/720,938, entitled “METHODS AND SYSTEMS FOR PREEMPTIVE REJECTION OF CALLS,” filed Nov. 24, 2003, all of which are expressly incorporated herein by reference in their entirety.

US Referenced Citations (430)
Number Name Date Kind
4013839 Bell Mar 1977 A
4540850 Herr et al. Sep 1985 A
4600814 Cunniff et al. Jul 1986 A
4924496 Figa et al. May 1990 A
5014303 Velius May 1991 A
5113431 Horn May 1992 A
5168515 Gechter et al. Dec 1992 A
5222125 Creswell et al. Jun 1993 A
5274700 Gechter et al. Dec 1993 A
5327486 Wolff et al. Jul 1994 A
5329578 Brennen et al. Jul 1994 A
5428663 Grimes et al. Jun 1995 A
5440624 Schoof Aug 1995 A
5483586 Sussman Jan 1996 A
5533096 Bales Jul 1996 A
5535265 Suwandhaputra Jul 1996 A
5546449 Hogan et al. Aug 1996 A
5548636 Bannister et al. Aug 1996 A
5550907 Carlsen Aug 1996 A
5583564 Rao et al. Dec 1996 A
5586173 Misholi et al. Dec 1996 A
5588037 Fuller et al. Dec 1996 A
5608788 Demlow et al. Mar 1997 A
5619555 Fenton et al. Apr 1997 A
5621787 McKoy et al. Apr 1997 A
5623541 Boyle et al. Apr 1997 A
5631904 Fitser et al. May 1997 A
5638434 Gottlieb et al. Jun 1997 A
5649105 Aldred et al. Jul 1997 A
5652789 Miner et al. Jul 1997 A
5661788 Chin Aug 1997 A
5668863 Bieselin et al. Sep 1997 A
5673080 Biggs et al. Sep 1997 A
5692213 Goldberg et al. Nov 1997 A
5710591 Bruno et al. Jan 1998 A
5712903 Bartholomew et al. Jan 1998 A
5715444 Danish et al. Feb 1998 A
5717863 Adamson et al. Feb 1998 A
5719925 Peoples Feb 1998 A
5724412 Srinivasan Mar 1998 A
5742095 Bryant et al. Apr 1998 A
5742668 Pepe et al. Apr 1998 A
5742905 Pepe et al. Apr 1998 A
5745561 Baker et al. Apr 1998 A
5745884 Carnegie et al. Apr 1998 A
5751800 Ardon May 1998 A
5752191 Fuller et al. May 1998 A
5764901 Skarbo et al. Jun 1998 A
5805607 Khu Sep 1998 A
5805670 Pons et al. Sep 1998 A
5841837 Fuller et al. Nov 1998 A
5864603 Haavisto et al. Jan 1999 A
5872841 King et al. Feb 1999 A
5875242 Glaser et al. Feb 1999 A
5875437 Atkins Feb 1999 A
5892900 Ginter et al. Apr 1999 A
5903845 Buhrmann et al. May 1999 A
5907324 Larson et al. May 1999 A
5907547 Foladare et al. May 1999 A
5910987 Ginter et al. Jun 1999 A
5916302 Dunn et al. Jun 1999 A
5917817 Dunn et al. Jun 1999 A
5917912 Ginter et al. Jun 1999 A
5920826 Metso et al. Jul 1999 A
5920847 Kolling et al. Jul 1999 A
5926535 Reynolds Jul 1999 A
5944769 Musk et al. Aug 1999 A
5945989 Freishtat et al. Aug 1999 A
5960342 Liem et al. Sep 1999 A
5963925 Kolling et al. Oct 1999 A
5982870 Pershan et al. Nov 1999 A
6005870 Leung et al. Dec 1999 A
6011579 Newlin Jan 2000 A
6018571 Langlois et al. Jan 2000 A
6018737 Shah et al. Jan 2000 A
6021428 Miloslavsky Feb 2000 A
6029151 Nikander Feb 2000 A
6031896 Gardell et al. Feb 2000 A
6041103 La Porta et al. Mar 2000 A
6052372 Gittins et al. Apr 2000 A
6058163 Pattison et al. May 2000 A
6061432 Wallace et al. May 2000 A
6078658 Yunoki Jun 2000 A
6088435 Barber et al. Jul 2000 A
6100882 Sharman et al. Aug 2000 A
6122348 French-St. George et al. Sep 2000 A
6134318 O'Neil Oct 2000 A
6134548 Gottsman et al. Oct 2000 A
6144671 Perinpanathan et al. Nov 2000 A
6145096 Bereiter et al. Nov 2000 A
6154646 Tran et al. Nov 2000 A
6161008 Lee et al. Dec 2000 A
6163692 Chakrabarti et al. Dec 2000 A
6167119 Bartholomew et al. Dec 2000 A
6188756 Mashinsky Feb 2001 B1
6189026 Birrell et al. Feb 2001 B1
6192123 Grunsted et al. Feb 2001 B1
6195660 Polnerow et al. Feb 2001 B1
6215863 Bennett et al. Apr 2001 B1
6219413 Burg Apr 2001 B1
6226374 Howell et al. May 2001 B1
6240449 Nadeau May 2001 B1
6243366 Bradley et al. Jun 2001 B1
6260050 Yost et al. Jul 2001 B1
6275575 Wu Aug 2001 B1
6282522 Davis et al. Aug 2001 B1
6298062 Gardell et al. Oct 2001 B1
6298129 Culver et al. Oct 2001 B1
6301338 Makela et al. Oct 2001 B1
6301609 Aravamudan et al. Oct 2001 B1
6310939 Varney Oct 2001 B1
6310947 Polcyn Oct 2001 B1
6324269 Malik Nov 2001 B1
6330321 Detampel et al. Dec 2001 B2
6333973 Smith et al. Dec 2001 B1
6349299 Spencer et al. Feb 2002 B1
6351279 Sawyer Feb 2002 B1
6363143 Fox Mar 2002 B1
6371484 Yuan Apr 2002 B1
6373817 Kung et al. Apr 2002 B1
6373930 McConnell et al. Apr 2002 B1
6385754 Mizumoto et al. May 2002 B1
6389113 Silverman May 2002 B1
6404873 Beyda et al. Jun 2002 B1
6408191 Blanchard et al. Jun 2002 B1
6408327 McClennon et al. Jun 2002 B1
6411605 Vance et al. Jun 2002 B1
6418214 Smythe et al. Jul 2002 B1
6430176 Christie Aug 2002 B1
6430289 Liffick Aug 2002 B1
6434226 Takahashi Aug 2002 B1
6442245 Castagna et al. Aug 2002 B1
6442251 Maes et al. Aug 2002 B1
6442748 Bowman-Amuah Aug 2002 B1
6453031 Malik Sep 2002 B2
6453167 Michaels et al. Sep 2002 B1
6459780 Wurster et al. Oct 2002 B1
6459913 Cloutier Oct 2002 B2
6463145 O'Neal et al. Oct 2002 B1
6463464 Lazaridis et al. Oct 2002 B1
6466910 Desmond et al. Oct 2002 B1
6470079 Benson Oct 2002 B1
6473615 Theppasandra et al. Oct 2002 B1
6477374 Shaffer et al. Nov 2002 B1
6480830 Ford et al. Nov 2002 B1
6480890 Lee, Jr. et al. Nov 2002 B1
6507644 Henderson et al. Jan 2003 B1
6519326 Milewski et al. Feb 2003 B1
6522734 Allen et al. Feb 2003 B1
6526134 Wallenius Feb 2003 B1
6532285 Tucker et al. Mar 2003 B1
6535596 Frey et al. Mar 2003 B1
6539082 Lowe et al. Mar 2003 B1
6542596 Hill et al. Apr 2003 B1
6546005 Berkley et al. Apr 2003 B1
6546262 Freadman Apr 2003 B1
6547830 Mercer Apr 2003 B1
6560329 Draginich et al. May 2003 B1
6563914 Sammon et al. May 2003 B2
6564261 Gudjonsson et al. May 2003 B1
6574324 Malik Jun 2003 B1
6574470 Chow et al. Jun 2003 B1
6577622 Schuster et al. Jun 2003 B1
6577720 Sutter Jun 2003 B1
6584122 Matthews et al. Jun 2003 B1
6587890 Kult et al. Jul 2003 B1
6590603 Sheldon et al. Jul 2003 B2
6590969 Peters et al. Jul 2003 B1
6593352 Weichert et al. Jul 2003 B2
6594470 Barnes et al. Jul 2003 B1
6600736 Ball et al. Jul 2003 B1
6609113 O'Leary et al. Aug 2003 B1
6611590 Lu et al. Aug 2003 B1
6614786 Byers Sep 2003 B1
6618710 Zondervan et al. Sep 2003 B1
6625258 Ram et al. Sep 2003 B1
6628194 Hellebust et al. Sep 2003 B1
6628770 Jain et al. Sep 2003 B1
6631186 Adams et al. Oct 2003 B1
6636587 Nagai et al. Oct 2003 B1
6643356 Hickey et al. Nov 2003 B1
6654768 Celik Nov 2003 B2
6661340 Saylor et al. Dec 2003 B1
6665388 Bedingfield Dec 2003 B2
6668046 Albal Dec 2003 B1
6668049 Koch et al. Dec 2003 B1
6681119 Verdonk Jan 2004 B1
6683939 Chiloyan et al. Jan 2004 B1
6687362 Lindquist et al. Feb 2004 B1
6690672 Klein Feb 2004 B1
6693897 Huang Feb 2004 B1
6694351 Shaffer et al. Feb 2004 B1
6697461 Middleswarth et al. Feb 2004 B1
6697796 Kermani Feb 2004 B2
6704294 Cruickshank Mar 2004 B1
6711158 Kahane et al. Mar 2004 B1
6717938 D'Angelo Apr 2004 B1
6718026 Pershan et al. Apr 2004 B1
6724887 Eilbacher et al. Apr 2004 B1
6731238 Johnson May 2004 B2
6735292 Johnson May 2004 B1
6738458 Cline et al. May 2004 B1
6744861 Pershan et al. Jun 2004 B1
6747970 Lamb et al. Jun 2004 B1
6748054 Gross et al. Jun 2004 B1
6754227 Petersen et al. Jun 2004 B1
6757365 Bogard Jun 2004 B1
6768788 Langseth et al. Jul 2004 B1
6768790 Manduley et al. Jul 2004 B1
6771949 Corliss Aug 2004 B1
6772436 Doganata et al. Aug 2004 B1
6775267 Kung et al. Aug 2004 B1
6775546 Fuller Aug 2004 B1
6788772 Barak et al. Sep 2004 B2
6788775 Simpson Sep 2004 B1
6792092 Michalewicz Sep 2004 B1
6798753 Doganata et al. Sep 2004 B1
6801610 Malik Oct 2004 B1
6807258 Malik Oct 2004 B1
6807259 Patel et al. Oct 2004 B1
6816468 Cruickshank Nov 2004 B1
6816469 Kung et al. Nov 2004 B1
6820055 Saindon et al. Nov 2004 B2
6839417 Weisman et al. Jan 2005 B2
6842460 Olkkonen et al. Jan 2005 B1
6847823 Lehikoinen et al. Jan 2005 B2
6853634 Davies et al. Feb 2005 B1
6853713 Fobert et al. Feb 2005 B1
6856974 Ganesan et al. Feb 2005 B1
6870916 Henrikson et al. Mar 2005 B2
6876632 Takeda Apr 2005 B1
6876736 Lamy et al. Apr 2005 B2
6882714 Mansfield Apr 2005 B2
6882838 Lee et al. Apr 2005 B1
6885742 Smith Apr 2005 B1
6907111 Zhang et al. Jun 2005 B1
6917610 Kung et al. Jul 2005 B1
6944279 Elsey et al. Sep 2005 B2
6947538 Shen et al. Sep 2005 B2
6954521 Bull et al. Oct 2005 B2
6954524 Gibson Oct 2005 B2
6956942 McKinzie et al. Oct 2005 B2
6958984 Kotzin Oct 2005 B2
6961409 Kato Nov 2005 B2
6963857 Johnson Nov 2005 B1
6970705 Yoshimoto et al. Nov 2005 B2
6996227 Albal et al. Feb 2006 B2
6996370 DeLoye et al. Feb 2006 B2
6999563 Thorpe et al. Feb 2006 B1
7024209 Gress et al. Apr 2006 B1
7027435 Bardehle Apr 2006 B2
7031437 Parsons et al. Apr 2006 B1
7043521 Eitel May 2006 B2
7065198 Brown et al. Jun 2006 B2
7068768 Barnes Jun 2006 B2
7069298 Zhu et al. Jun 2006 B2
7076528 Premutico Jul 2006 B2
7099288 Parker et al. Aug 2006 B1
7102643 Moore et al. Sep 2006 B2
7107312 Hackbarth et al. Sep 2006 B2
7116972 Zhang et al. Oct 2006 B1
7127050 Walsh et al. Oct 2006 B2
7130390 Abburi Oct 2006 B2
7139728 Rigole Nov 2006 B2
7139782 Osaki Nov 2006 B2
7142646 Zafar et al. Nov 2006 B2
7149773 Haller et al. Dec 2006 B2
7155001 Tiliks et al. Dec 2006 B2
7167552 Shaffer et al. Jan 2007 B1
7174306 Haseltine Feb 2007 B1
7181417 Langseth et al. Feb 2007 B1
7187932 Barchi Mar 2007 B1
7190773 Chingon et al. Mar 2007 B1
7209955 Major et al. Apr 2007 B1
7212808 Engstrom et al. May 2007 B2
7245929 Henderson et al. Jul 2007 B2
7254643 Peters et al. Aug 2007 B1
7283808 Castell et al. Oct 2007 B2
7289489 Kung et al. Oct 2007 B1
7308087 Joyce et al. Dec 2007 B2
7315614 Bedingfield, Sr. et al. Jan 2008 B2
7353258 Washburn Apr 2008 B2
7379538 Ali et al. May 2008 B1
7418090 Reding et al. Aug 2008 B2
7420935 Virolainen Sep 2008 B2
7428580 Hullfish et al. Sep 2008 B2
7546337 Crawford Jun 2009 B1
7606909 Ely et al. Oct 2009 B1
7616747 Wurster et al. Nov 2009 B2
7912193 Chingon et al. Mar 2011 B2
8166173 Low et al. Apr 2012 B2
8238380 D'Angelo Aug 2012 B2
8271591 Malik et al. Sep 2012 B2
8467502 Sureka et al. Jun 2013 B2
20010003202 Mache et al. Jun 2001 A1
20010012286 Huna et al. Aug 2001 A1
20010014863 Williams, III Aug 2001 A1
20010017777 Maruyama et al. Aug 2001 A1
20010025262 Ahmed Sep 2001 A1
20010025280 Mandato et al. Sep 2001 A1
20010032181 Jakstadt et al. Oct 2001 A1
20010039191 Maierhofer Nov 2001 A1
20010040954 Brachman et al. Nov 2001 A1
20010043689 Malik Nov 2001 A1
20010043690 Bakshi et al. Nov 2001 A1
20010043691 Bull et al. Nov 2001 A1
20010051534 Amin Dec 2001 A1
20010054066 Spitzer Dec 2001 A1
20010056466 Thompson et al. Dec 2001 A1
20020012425 Brisebois et al. Jan 2002 A1
20020018550 Hafez Feb 2002 A1
20020022453 Balog et al. Feb 2002 A1
20020026575 Wheeler et al. Feb 2002 A1
20020035617 Lynch et al. Mar 2002 A1
20020040355 Weiner Apr 2002 A1
20020046299 Lefeber et al. Apr 2002 A1
20020055351 Elsey et al. May 2002 A1
20020057678 Jiang et al. May 2002 A1
20020062251 Anandan et al. May 2002 A1
20020064268 Pelletier May 2002 A1
20020069060 Cannavo et al. Jun 2002 A1
20020069096 Lindoerfer et al. Jun 2002 A1
20020071539 Diament et al. Jun 2002 A1
20020073163 Churchill et al. Jun 2002 A1
20020075303 Thompson et al. Jun 2002 A1
20020075306 Thompson et al. Jun 2002 A1
20020076022 Bedingfield Jun 2002 A1
20020076026 Batten Jun 2002 A1
20020076027 Bernnan et al. Jun 2002 A1
20020077082 Cruickshank Jun 2002 A1
20020078153 Chung et al. Jun 2002 A1
20020080942 Clapper Jun 2002 A1
20020082028 Wittenkamp Jun 2002 A1
20020082030 Berndt et al. Jun 2002 A1
20020082997 Kobata et al. Jun 2002 A1
20020083462 Arnott Jun 2002 A1
20020085515 Jaynes et al. Jul 2002 A1
20020085687 Contractor et al. Jul 2002 A1
20020085701 Parsons et al. Jul 2002 A1
20020100798 Farrugia et al. Aug 2002 A1
20020103864 Rodman et al. Aug 2002 A1
20020103898 Moyer et al. Aug 2002 A1
20020110121 Mishra Aug 2002 A1
20020115471 DeLoye et al. Aug 2002 A1
20020122545 Schwab et al. Sep 2002 A1
20020126817 Hariri et al. Sep 2002 A1
20020128025 Sin Sep 2002 A1
20020128033 Burgess Sep 2002 A1
20020137507 Winkler Sep 2002 A1
20020137530 Karve Sep 2002 A1
20020138468 Kermani Sep 2002 A1
20020146105 McIntyre Oct 2002 A1
20020147777 Hackbarth et al. Oct 2002 A1
20020147811 Schwartz et al. Oct 2002 A1
20020152165 Dutta et al. Oct 2002 A1
20020154210 Ludwig et al. Oct 2002 A1
20020168055 Crockett et al. Nov 2002 A1
20020177410 Klein et al. Nov 2002 A1
20020178117 Maguire et al. Nov 2002 A1
20020187794 Fostick et al. Dec 2002 A1
20030005150 Thompson et al. Jan 2003 A1
20030014488 Dalal et al. Jan 2003 A1
20030035381 Chen et al. Feb 2003 A1
20030036380 Skidmore Feb 2003 A1
20030045309 Knotts Mar 2003 A1
20030046071 Wyman et al. Mar 2003 A1
20030053612 Henrikson et al. Mar 2003 A1
20030055735 Cameron et al. Mar 2003 A1
20030055906 Packham et al. Mar 2003 A1
20030058838 Wengrovitz Mar 2003 A1
20030063732 Mcknight et al. Apr 2003 A1
20030069874 Hertzog et al. Apr 2003 A1
20030083040 Ruth et al. May 2003 A1
20030092451 Holloway et al. May 2003 A1
20030093700 Yoshimoto et al. May 2003 A1
20030096626 Sabo et al. May 2003 A1
20030097635 Giannetti May 2003 A1
20030104827 Moran et al. Jun 2003 A1
20030108172 Petty et al. Jun 2003 A1
20030112928 Brown et al. Jun 2003 A1
20030112952 Brown et al. Jun 2003 A1
20030119532 Hatch Jun 2003 A1
20030140004 O'Leary et al. Jul 2003 A1
20030142798 Gavette et al. Jul 2003 A1
20030147518 Albal et al. Aug 2003 A1
20030149662 Shore Aug 2003 A1
20030158860 Caughey Aug 2003 A1
20030165223 Timmins et al. Sep 2003 A1
20030167229 Ludwig et al. Sep 2003 A1
20030169330 Ben-Shachar et al. Sep 2003 A1
20030179743 Bosik et al. Sep 2003 A1
20030179864 Stillman et al. Sep 2003 A1
20030187992 Steenfeldt et al. Oct 2003 A1
20030208541 Musa Nov 2003 A1
20030217097 Eitel Nov 2003 A1
20030228863 Vander Veen et al. Dec 2003 A1
20040002350 Gopinath et al. Jan 2004 A1
20040002902 Muehlhaeuser Jan 2004 A1
20040019638 Makagon et al. Jan 2004 A1
20040034700 Polcyn Feb 2004 A1
20040037409 Crockett et al. Feb 2004 A1
20040044658 Crabtree et al. Mar 2004 A1
20040052356 McKinzie et al. Mar 2004 A1
20040081292 Brown et al. Apr 2004 A1
20040103152 Ludwig et al. May 2004 A1
20040119814 Clisham et al. Jun 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20040156491 Reding et al. Aug 2004 A1
20040184593 Elsey et al. Sep 2004 A1
20040203942 Dehlin Oct 2004 A1
20040208305 Gross et al. Oct 2004 A1
20040236792 Celik Nov 2004 A1
20040247088 Lee Dec 2004 A1
20040249884 Caspi et al. Dec 2004 A1
20040264654 Reding et al. Dec 2004 A1
20050053206 Chingon et al. Mar 2005 A1
20050053221 Reding et al. Mar 2005 A1
20050102382 MacGregor et al. May 2005 A1
20050117714 Chingon et al. Jun 2005 A1
20050129208 McGrath et al. Jun 2005 A1
20050149487 Celik Jul 2005 A1
20050191994 May et al. Sep 2005 A1
20050216421 Barry et al. Sep 2005 A1
20050243993 McKinzie et al. Nov 2005 A1
20060093120 Thorpe et al. May 2006 A1
20060168140 Inoue et al. Jul 2006 A1
20060276179 Ghaffari et al. Dec 2006 A1
20060277213 Robertson et al. Dec 2006 A1
20070021111 Celik Jan 2007 A1
20090060155 Chingon et al. Mar 2009 A1
Foreign Referenced Citations (88)
Number Date Country
2240878 Dec 1998 CA
10110942 Sep 2002 DE
10110942 Sep 2002 DE
0818908 Jan 1998 EP
1014630 Jun 2000 EP
1028578 Aug 2000 EP
1161063 Dec 2001 EP
1193617 Apr 2002 EP
1235387 Aug 2002 EP
1294201 Mar 2003 EP
59-169264 Sep 1984 JP
02-260750 Oct 1990 JP
04-336742 Nov 1992 JP
05-316233 Nov 1993 JP
6-113020 Apr 1994 JP
07-030664 Jan 1995 JP
07-058856 Mar 1995 JP
07-107171 Apr 1995 JP
07-107549 Apr 1995 JP
07-123098 May 1995 JP
08-149226 Jun 1996 JP
08-181763 Jul 1996 JP
08-298546 Nov 1996 JP
08-331642 Dec 1996 JP
09-064869 Mar 1997 JP
09-064977 Mar 1997 JP
09-083651 Mar 1997 JP
09-200350 Jul 1997 JP
09-223087 Aug 1997 JP
9-261759 Oct 1997 JP
09-294158 Nov 1997 JP
09-294163 Nov 1997 JP
10-013546 Jan 1998 JP
10-051555 Feb 1998 JP
10-155038 Jun 1998 JP
10-173769 Jun 1998 JP
10-336319 Dec 1998 JP
11-055407 Feb 1999 JP
11-127222 May 1999 JP
11-136316 May 1999 JP
11-187156 Jun 1999 JP
11-191800 Jun 1999 JP
11-191800 Jul 1999 JP
11-266309 Sep 1999 JP
2000-032116 Jan 2000 JP
2000-134309 May 2000 JP
2000-165433 Jun 2000 JP
2000-196756 Jul 2000 JP
2000-224301 Aug 2000 JP
2000-270307 Sep 2000 JP
2000-349902 Dec 2000 JP
2001-144859 May 2001 JP
2001-156921 Jun 2001 JP
2001-197210 Jul 2001 JP
2001-197562 Jul 2001 JP
2001-243231 Sep 2001 JP
2001-298545 Oct 2001 JP
2002-016673 Jan 2002 JP
2002-41522 Feb 2002 JP
2002-044123 Feb 2002 JP
2002-044257 Feb 2002 JP
2002-057807 Feb 2002 JP
2002-094696 Mar 2002 JP
2002-232575 Aug 2002 JP
2002-237893 Aug 2002 JP
2002-247148 Aug 2002 JP
2002-261834 Aug 2002 JP
2002-261834 Sep 2002 JP
2002-300290 Oct 2002 JP
2002-300306 Oct 2002 JP
WO-9512948 May 1995 WO
9614704 May 1996 WO
WO-9720423 Jun 1997 WO
WO-9703342 Sep 1997 WO
WO-9802007 Jan 1998 WO
WO-9922493 May 1999 WO
9938309 Jun 1999 WO
9938309 Jul 1999 WO
0045557 Aug 2000 WO
0064133 Aug 2000 WO
WO-0060837 Oct 2000 WO
WO 0111586 Feb 2001 WO
WO-0122751 Mar 2001 WO
WO 0135621 May 2001 WO
0152513 Jul 2001 WO
WO 0189212 Nov 2001 WO
WO-0225907 Mar 2002 WO
0243338 May 2002 WO
Non-Patent Literature Citations (77)
Entry
Data Connection, Strategic Computer Technology, “DC SurroundSuite for Enterprises,” Data Connection Ltd, 1998 2000, http://web.archive.org/web/20010306082711/www.dataconnection.com/messging/enssuite.htm.
“Calendar Scheduling Teleconference Communication Mechanism,” IBM Technical Disclosure Bulletin, IBM Corp. New York, US, vol. 37, No. 3, Mar. 1, 1994, p. 561.
White, “How Computers Work,” Millenium Edition, Sep. 1999, Que Corporation, pp. vi-xi, 135-184, 399-421.
Derfler et al., “How Networks Work,” Bestseller Edition, 1996, Ziff-Davis Press, pp. vi-ix, 1-3, 21-70, 190-198.
Gralla, “How the Internet Works,” Ziff-Davis Press, 1999, pp. vi-xi, 2-3, 8-11, 308-324.
Muller, “Desktop Encyclopedia of the Internet,” Artech House Inc., 1999, pp. v-xiv, 233-246, 539-559.
U.S. Appl. No. 09/828,679, filed Apr. 6, 2001, Reding et al.
U.S. Appl. No. 09/785,223, filed Feb. 16, 2001, Swingle et al.
“MP3 Recorder Download—MP3 Recorder—Record Audio Stream to MP3 or WAV,” 2002 http://www.mp3-recorder.net.
“Voice-ASP, White Paper Technology & Processes,” eVoice, Dec. 13, 2000.
“Voice-ASP, White Paper: Market Opportunities for Enhanced Voicemail,” eVoice, Nov. 10, 2000.
“Supplemental Report to Diary 53, Networking the Sound Digitizing Device,” Old Colorado City Communications and the National Science Foundation Wireless Field Tests, Oct. 20, 2002, Lansing, Michigan, http://wireless.oldcolo.com/biology/ProgressReports2002/Progress%20Reports2002/53SupplementalReport(10-20-02).htm.
“Chapter 3: Overview,” last updated Dec. 2, 1999, http://service.real.com/help/library/guides/g270/htmfiles/overview.htm.
“Telecommunications and Personal Management Services Linked in Collaboration by Verizon and Microsoft,” Oct. 23, 2001, http://www.microsoft.com/presspass/press/2001/oct01/10-23MSVerizonPr.asp.
“File Transfer,” Microsoft Windows Technologies Windows NetMeeting, last updated Jun. 4, 1999, http://www.microsoft.com/windows/netmeeting/features/files/default.asp.
“From Dial Tone to Media Tone,” Analyst: R. Mahowald, IDC, Jun. 2002.
“Media Tone—The ‘Dial Tone’ for Web Communications Services,” Webex, 2003.
“Accessline Comms' Accessline Service, The One-Number Wonder,” CommWeb, T. Kramer, Feb. 1, 2000, http:www.cconvergence.com/article/TCM20000504S0014.
“InteleScreener,” 2003, http://www.intelescreener.com/howitworks.html.
“TeleZapper from Privacy Technologies,” Privacy Corps—Our Review, 2002, http://www.privacycorps.com/pages/product1.htm.
“A Proposal for Internet Call Waiting Service Using SIP,” A. Brusilovsky et al., Lucent Technologies, PINT Working Group, Internet Draft, Jan. 1999.
“A Model for Presence and Instant Messaging”, M. Day et al. Fujitsu, Feb. 2000, Network Working Group, Request for Comments 2778.
Data Connection, Strategic Computer Technology, MeetingServer, “Broadband for Learning Case Study,” Data Connection Ltd.., 1998-2004, http://www.dataconnection.com/conferencing /meeting—srver—casestudy.htm.
Data Connection, MailNGen, “Next Generation Messaging for Service providers,” Data Connection Limited, 2003-4.
Data Connection, Strategic Computer Technology, “Directories Explained,” Data Connection Ltd.., 1998-2004, http://www/dataconnection.com/inetapps/direxpl.htm.
Data Connection, Strategic Computer Technology, Directory Systems, “Directories and Meta-Directories,” Data Connection Ltd.., 1998-2004, http://www.dataconnection.com/inetapps/directory.htm.
Data Connection, Strategic Computer Technology, “DC-IMS\Voice Unified Messaging Gateway,” Data Connection Ltd.., 1998-2000, http://web.archive.org/web/20010307174512/www.dataconnection.com/messging/spivoice.htm.
Data Connection, Strategic SoftwareTechnology, “DC-SurroundSuite for Service Providers,” Data Connection Ltd.., 1998-2000, http://web.archive.org/web/20000914200355/www.dataconnection.com/messging/spssuite.htm.
Data Connection, Strategic Computer Technology, “Messaging Software Products and Services,” Data Connection Ltd.., 1998-2000, http://web.archive.org/web/20000819063320/www.dataconnection.com/messging/messgidx.htm.
Data Connection, Strategic Software Technology, “DC-Share for UNIX,” Data Connection Ltd.., 1998-2000, http://web.archive.org/web/20000914200713/www.dataconnection.com/conf/DCshare.htm.
Data Connection, Strategic Software Technology, “DC-H.323,” Data Connection Ltd.., 1998-2000, http://web.archive.org/web/200001120050600/www.dataconnection.com/conf/h323.htm.
Data Connection, Strategic Software Technology, “DC-WebShare,” Data Connection Ltd.., 1998-2000, http://web.archive.org/web/20001016115016/www.dataconnection.com/conf/webshare.htm.
Data Connection, Strategic Computer Technology, “DC-Recorder,” Data Connection Ltd., 1998-2000, http://web.archive.org/web/20001016055611/www.dataconnection.com/conf/recorder.htm.
Data Connection, Strategic Software Technology, “DC-MeetingServer,” Data Connection Ltd., 1998-2000, http://web.archive.org/web/20000914200719/www.dataconnection.com/conf/meetingserver.htm.
Data Connection, Strategic Computer Technology, “DC-MeetingServer,” Data Connection Ltd., 1998-2000, http://web.archive.org/web/20021201144529/www.dataconnection.com/inetapps/conferencing.htm.
Data Connection, Strategic Software Technology, “DC-VoiceNet Features,” Data Connection Ltd., 1998-2000, http://web.archive.org/web/20001016102614/www.dataconnection.com/messging/vnfeat.htm.
Data Connection, Strategic Computer Technology, “DC-VoiceNet,” Data Connection Ltd., 1998-2000, http://web.archive.org/web/20000914200424/www.dataconnection.com/messging/vnet.htm.
Data Connection, Strategic Computer Technology, “Messaging Software Products and Services,” Data Connection Ltd., 1998-2000, http://web.archive.org/web/20010305143803/www.dataconnection.com/messging/messgidx.htm.
Data Connection, “SmartDialer Functional Overview,” Version v1.0, Internet Applications Group, Data Connection Ltd., Nov. 3, 2003.
Data Connection, “SIP Market Overview, An analysis of SIP technology and the state of the SIP Market,” Jonathan Cumming, Data Connection Ltd., 2003-2004.
Data Connection, “Integrating Voicemail Systems, A white paper describing the integration of heterogeneous voicemail systems,” Michael James, Internet Applications Group, Data Connection Ltd., 2004.
Data Connection, Strategic Computer Technology, “MailNGen: Next generation messaging for Service Providers,” Data Connection Ltd., 1998-2004, http://www.dataconnection.com/messaging/.
Data Connection, Strategic Computer Technology, “MailNGen: Unified messaging,” Data Connection Ltd., 1998-2004, http://www.dataconnection.com/messaging/unified—messaging.htm.
Data Connection, Strategic Computer Technology, “Meeting Server: The award-winning web conferencing solution for Service providers,” Data Connection Ltd., 1998-2005, http://www.dataconnection.com/conferencing/.
Data Connection, Strategic Computer Technology, “Meeting Server: The web conferencing solution for Service Providers,” Data Connection Ltd., 1998-2004, http://www.dataconnection.com/conferencing/meetingserver.htm.
Data Connection, Strategic Computer Technology, “Meeting Server: Web conferencing architecture,” Data Connection Ltd., 1998-2004, http://www.dataconnection.com/conferencing/meetingserver—arch.htm.
“The Mobile Phone User Guide”, http://www.mobileshop.org/usertech/wildfire.htm , printed Oct. 1, 2004.
Kornowski, J., “Wildfire at Your Back and Call—A Voice-Activated Telephone Assistant That Minds You and Your Messages”, http://www.lacba.org/lalawyer/techwildfire.html, printed Oct. 1, 2004.
Cisco Personal Assistant 1.4, Cisco Systems, Jun. 24, 2003, http://www.cisco.com/en/US/products/sw/voicesw/ps2026/prod—presentation—list.html, printed Oct. 1, 2004.
Co-pending U.S. Appl. No. 10/858,973, filed Jun. 2, 2004, entitled “Methods and Systems for Integrating Communications Services”, [Reza Ghaffari].
Co-pending U.S. Appl. No. 11/156,134, filed Jun. 17, 2005, entitled “Interactive Assistant for Managing Telephone Communications”, [Ashutosh Sureka].
Co-pending U.S. Appl. No. 11/091,158, filed Mar. 28, 2005, entitled “Method and Apparatus for Facilitating Integrated Access to Communications Services in a Communication Device”, [John Valdez].
Data Connection, Strategic Computer Technology, “DC SurroundSuite for Enterprises,” Data Connection Ltd, 1998, http://web.archive.org/web/20010306082711/www.dataconnection.com/messging/enssuite.htm.
Muller, “Calendar Scheduling Teleconference Communication Mechanism,” IBM Technical Disclosure Bulletin, IBM Corp. New York, US, vol. 37, No. 3, Mar. 1, 1994, p. 561.
“www.clicktocall.com”, http://replay.waybackmachine.org/20020207142936/http://www.clicktocall.com/main.htm, Internet archive of website “www.clicktocall.com”, dated Feb. 7, 2002.
Data Connection Ltd., “DC SurroundSuite for Enterprises”, Data Connection, Strategic Computer Technology, “DC SurroundSuite for Enterprises,” Data Connection Ltd, 1998 2000, http://web.archive.org/web/20010306082711/www.dataconnection.com/messging/enssuite.htm.
Gaedke, et al., “Web Content Delivery to Heterogeneous Mobile Platforms”, http://citeseer.ist.psu.edu/viewdoc/summary?doi=10 .1.1.33.4361, 1998, 1-14.
Gessler, et al., “PDAs as mobile WWW browers”, http://citesee.ist.psu.edu/viewdoc/summary?do5=10.1.1.48.9198, 1995, 1-12.
Gralla, “Desktop Encyclopedia of the Internet”, Muller, “Desktop Encyclopedia of the Internet,” Artech House Inc., 1999, pp. v-xiv, 233-246, 539-559, Jan. 1, 1999.
Gralla, “How the Internet Works”, Gralla, “How the Internet Works,” Ziff-Davis Press, 1999, pp. vi-xi, 2-3, 8-11, 308-324, Jan. 1, 1999.
Kunz, et al., “An Architecture for Adaptive Mobile Applications”, http://citeseer.ist.psu.edu/viewdoc/summary?doi=1 0.1.1.40.824, 1999, 1-15.
Lauff, et al., “Multimedia Client Implementation on Personal Digital.Assistants”, http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.6059, 1997, 1-15.
Muller, “Calendar Scheduling Teleconference Communication Mechanism”, IBM Technical Disclosure Bulletin, IBM Corp. New York, US, vol. 37, No. 3, Mar. 1, 199, p. 561.
White, “How Computers Work”, White, “How Computers Work,”Millenium Edition, Sep. 1999, Que Corporation, pp. vi-xi, 135-184, 399-421, Sep. 1, 1999.
White, “How Networks Work”, Derfler et al., “How Networks Work,”Bestseller Edition, 1996, Ziff-Davis Press, pp. vi-ix, 1-3, 21-70, 190-198, Jan. 1, 1996.
“FAQ Premium Home Answer” eVoice, http://content.evoice.com/wcs/signUp/FAQ—premHA—s01.htm, Jul. 2, 2001.
Audio Digitizing Process, TalkBank, http://www.talkbank.org/da/audiodig.html, Oct. 15, 2003.
Macromedia SoundEdit 16 Support Center-Working with Other Programs, What is Shockwave Audio Streaming? http://www.macromedia.com/support/soundedit/how/shock/whatis.html, Oct. 24, 2003.
How Internet Radio Works, Howstuffworks,http://computer.howstuffworks.com/internet-radio.htm/printable, Oct. 16, 2003.
Real-Time Collaboration Integration in the Portal, T. Odenwald, SAP Design Guild, http://www.sapdesignguild.org/editions/edition5/synch—collab.asp, Oct. 6, 2003.
NetMeeting101, http://www,meetingbywire.com/NetMeeting101.htm, Oct. 6, 2003.
NetMeeting102, http://www.meetingbywire.com/NetMeeting102.htm, Oct. 6, 2003.
Instructions on Application Sharing and Data Collaboration, VCON Escort and Cruiser, http://www.vide.gatech.edu/docs/share/, Oct. 6, 2003.
Instructions on Multipoint Application Sharing and Data Collaboration, VCON Escort and Cruiser with the Red Vision MCU, http://www.vide.gatech.edu/docs/multi-share/, Oct. 6, 2003.
Business Solutions/Professional, http://www.accessline.com/business—sol/bs—professional—body.html, Apr. 17, 2003.
Chou, “Inside SSL: The Secure Sockets Layer Protocol,” IT Professional, vol. 4, Issue 4, pp. 47-52, Jul./Aug. 2002.
Wagner, et al, “Analysis of the SSL 3.0 Protocol,” Proceedings of the 2nd Conference on Proceedings of the Second USENIX Workshop on Electronic Commerce (WOEC'96 ) vol. 2, 12 pages, Nov. 1996.
Related Publications (1)
Number Date Country
20090060155 A1 Mar 2009 US
Provisional Applications (9)
Number Date Country
60275020 Mar 2001 US
60275031 Mar 2001 US
60275667 Mar 2001 US
60275719 Mar 2008 US
60272122 Feb 2001 US
60272167 Feb 2001 US
60436018 Dec 2002 US
60428704 Nov 2002 US
60276505 Mar 2001 US
Continuations (1)
Number Date Country
Parent 10721005 Nov 2003 US
Child 12256583 US
Continuation in Parts (4)
Number Date Country
Parent 10083793 Feb 2002 US
Child 10721005 US
Parent 10083792 Feb 2002 US
Child 10083793 US
Parent 10083884 Feb 2002 US
Child 10083792 US
Parent 10083822 Feb 2002 US
Child 10083884 US