The present invention generally relates to the fields of graphical user interfaces and application programming interfaces. More particularly, the present invention relates to methods, systems, and media for changing language characters displayed in graphical user interfaces and application programming interfaces.
As personal computers (PCs), portable cellular telephones, handheld PCs, and other electronic devices have become more sophisticated over the years, user interfaces for these devices have also become more sophisticated. These user interfaces allow a user to interact with the electronic devices by inputting commands, inputting data, and receiving results from the commands and data. Of the various interfaces available, graphical user interfaces (GUIs) and application programming interfaces (APIs) have become very popular for interacting with these electronic devices, as well as operating and providing users access to device software and configuration.
A GUI screen generally presents a variety of information to the user, with the content of the GUI screen changing in various ways depending on the input made by the user and other factors. A large number of electronic devices today actually comprise a small central processing system running an operating system that generates and controls the GUI. Through a consistent interface of items such as windows, pull-down menus, and toolbars, GUI operating systems have simplified the use of electronic devices. These GUIs have also rendered the technology more “user friendly” by organizing the information contained in the devices in a logical manner and eliminating difficult tasks, such as requiring users to enter arcane and complex sets of keystrokes to either enter or retrieve data from the devices.
Conventionally, GUI screens are changed by switching between a plurality of GUI screens that are defined in advance. Each GUI screen is defined by specifying the shape, arrangement, and operation of the screen and the shapes, arrangements, and operations of all GUI elements. These GUI screens are then generally arranged and stored into memory elements of electronic devices, such as read-only-memory (ROM) or flash memory components, for later retrieval by the operating system.
In addition to providing a convenient method for displaying and scrolling information in windows or screens, GUIs also provide a simple method for executing various commands associated with user information. These commands are normally executed from a menu bar displayed across the top of the screen, or alternatively across the top of the application window, or executed from a toolbar comprising a plurality of push-button control icons associated with each command. The menu bar normally comprises a number of menu categories. For example, a menu bar on a handheld PC may contain categories of “File”, “Edit”, “Setup”, etc. Associated with each menu category may be a group of menu items or commands for manipulating user data. These menu items are normally displayed in a pull-down menu when the user selects a menu category from the menu bar with an input device, such as a keystroke of a keyboard or a click of a mouse button. For example, a menu bar on a cellular telephone may have a “Ring” menu category in order to display a pull-down menu comprised of various menu items for manipulating the format of the various ring tones that the telephone may activate. Each menu item may have a short title, for example “Volume”, “Ring Type”, etc., that helps identify the command associated with the menu item.
Many electronic devices are designed for use in a global economy, sometimes with millions of the devices being distributed throughout numerous countries of the world. In order to enhance marketability of electronic devices and to enable foreign users to efficiently interact with the devices, the graphical interfaces and screen displays of the device may need to appear in the language of the foreign user. Many device manufactures solve this problem by creating separate models with GUI screens customized for different languages. For example, a Japanese cellular telephone manufacturer may create one telephone model with GUI screens written only in Japanese and another model with GUI screens written only in English. However, such a business method can be expensive and time consuming, as it is then necessary to change or modify the GUI screens to create different models intended for distribution in other countries, or worse yet, create altogether different models with altogether with different GUI screens.
Many electronic device manufacturers approach the problem of creating devices for a global economy by creating a single device programmed in several languages. For example, a handheld PC manufacturer may create a single handheld PC model and store numerous sets of GUI screens encoded in separate languages, such as English, Chinese, Spanish, and Russian. When a user purchases and operates the PC, she may simply “select” a particular language that she desires. For example one model of a handheld PC may be distributed and sold in both China and in Australia. A user of the model purchased in China may select Chinese for the desired GUI screen system format. Alternatively, a user of the same model sold in Australia may select English for the desired GUI screen format language.
Most often, a user selects a desired GUI screen format language by navigating through a series of pull-down menu items. For example, a user may choose a “Format” menu bar category, from which numerous pull-down selection items are presented. One of the pull-down selection items may be a “Language” target submenu item. Upon selecting the “Language” target, a submenu pull-down list may further present a list of various languages from which one particular language may be selected. For example, the submenu list selection items may comprise “English”, “Chinese”, “Spanish”, and “Russian”. Keeping with our example noted above, a Chinese user may then select “Chinese”, while an Australian user would likely choose “English”. Upon selecting a GUI screen format language in this manner, the electronic device may then switch to the alternate display mode and present GUI screens formatted in the selected language.
This method of using menu bar and submenu bar items, however, has a seriously frustrating problem for many, if not most, users. Unless a user is multilingual, he may be scrolling through the various menu items and intentionally or unintentionally select a language that he cannot read. Once the electronic device starts presenting the GUI screens formatted in the alternate language, the user may have an extremely difficult time navigating the various GUI screens and menus to reselect a language he can read.
Presently, there are no elegant or even sufficient solutions to address this problem. Many electronic device manufacturers leave the user to fumbling around the GUI system menus until he reselects the desire language. Manufacturers that do acknowledge the problem and try to assist users in reselecting correct languages often choose one of two methods. In one method, manufacturers have the system default to a factory-selected “default” language once the system is forced through a hard reset, such as when operating power is removed for a period of time. This solution has some serious drawbacks though. One drawback is the fact that the user will often lose all personalized information stored in the device, such as date, time, or even addresses and telephone numbers. Another drawback may be the fact that the system default language may be one that the user does not recognize. For example, an Australian user that accidentally sets the GUI screen format language to Spanish from English, may be no better off if the system is reset and starts displaying the GUI system screens in Japanese.
In another method of addressing the GUI language selection problem, manufacturers may provide specific and detailed instructions for selecting a different language in the device user manual. Problems with this solution are readily apparent. For one, the user may have lost the manual a long time ago, before encountering the language selection problem. Even if the user does have the manual, he may not be able to readily locate it. Alternatively, the user may know precisely where the manual is, but may not know that the manual provides the solution. Even further, the user may be traveling and not have access to the manual.
There is therefore a long-felt need in the art for user-friendly methods and apparatuses for selecting GUI screen format languages. The methods and apparatuses of the present invention are readily adaptable to many types of electronic devices having GUI screens that may be displayed in more than one language.
The problems identified above are in large part addressed by methods and systems to change language characters displayed in graphical user interfaces and application programming interfaces. One embodiment comprises a method to change characters of one language on an interface screen to characters of another language when a user activates an element. One variation of the method provides that the display language may change to a third language when the user activates the element. Other variations of the method generally include changing the display characters from such languages as English and Chinese to such languages as Spanish and Russian. The elements for changing the language of the displayed characters may be targets selected on a touch-screen by a stylus, targets selected by a device key, or activating a mechanical switch.
Other embodiments comprise systems that change characters from one language to another language on a user interface screen. Some systems comprise user interface screens on cellular telephones, while other systems comprise screens on personal computers and portable game consoles.
A further embodiment comprises a machine-accessible medium containing instructions, which when executed by a machine cause the machine to change characters displayed on an interface from one language to another language in response to a person activating a readily accessible element of the machine.
Other objects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which, like references may indicate similar elements:
The following is a detailed description of example embodiments of the invention depicted in the accompanying drawings. The example embodiments are in such detail as to clearly communicate the invention. However, the amount of detail offered is not intended to limit the anticipated variations of embodiments; but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present invention as defined by the appended claims. The detailed descriptions below are designed to make such embodiments obvious to a person of ordinary skill in the art.
Generally speaking, methods, systems, and media for selecting display languages for graphical user interfaces (GUIs) and application programming interfaces (APIs) are disclosed. Embodiments comprise GUI and API screens which may be configured to display a variety of different languages, including one or more elements that a user may activate to select a display language. In some embodiments, the element for selecting the display language comprises an element displayed on the GUI or API screen. In other embodiments, the elements displayed on the GUI or API screens for selecting the display languages may be continually visible screen targets.
In some embodiments, the element displayed on the GUI or API screen to select a display language may be a continually visible menu bar item. In another embodiment, the element for may comprise a physical switch, recessed into a case of a device housing the GUI screen. Embodiments of this invention may be implemented in countless consumer electronic devices such as desktop and portable PCs, cellular telephones, point-of-sale terminals, Digital Versatile Disk (DVD) players, satellite receivers, digital cameras and video recorders, portable music players, and even watches. In different embodiments GUIs and APIs may be used to perform various tasks, such as device set-up, selection of operational functions, programming user preferences, and determining conditional access. Other tasks may include operating application programs, selecting audio and visual characteristics. In alternative embodiments, various media may store software for selecting a display language for GUI and API screens, such media as compact discs (CDs), digital versatile discs (DVDs), read-only-memory (ROM), and flash memory.
While portions of the following detailed discussion describe many embodiments comprising several specific methods for selecting a display language in GUIs and APIs, upon review of the teachings herein, a person of ordinary skill in the art will recognize that the display language may be selected using numerous slight variations of the methods discussed. One of ordinary skill in the art will recognize that such variations may substituted for these described methods and employed in accordance with similar constraints to perform substantially equivalent functions.
Turning to the drawings,
In an alternative embodiment, system 100 may employ a hardware switch to select a GUI display language instead of a screen element. The hardware switch may be recessed, or concealed, to help prevent a user from accidentally activating it. For example, the switch may reside in an area that the user does not grasp or hold during normal use, such as an upper or lower location on one of the sides of system 100, or even on the rear of the system 100.
In
In alternative embodiments, switch 160 may serve dual or multiple purposes. For example, switch 160 may serve as both a system reset and as a language selection key for system 100. Switch 160 may serve in this dual or multiple capacity by altering the amount of time the user depresses switch 160 for each function. For example, the user may reset system 100 by momentarily depressing switch 160. Alternatively, the user may select a default language for system 100 by holding switch 160 down for 5 seconds. As discussed above, the default language to be activated by switch 160 may be fixed at the factory, and unchangeable, or configurable by a variety of deliberate means.
Note that in
Once a screen target, or menu bar element is highlighted, or selected, a number of submenu bar elements may appear. For example,
As a consequence of having chosen “English” sub-element 255, the device controlling GUI screen 200 may display all language characters on GUI screen 200 in English. Similarly, a user could have chosen another sub-element, such as “Chinese” sub-element 260. If the user chooses sub-element “Chinese” 260, the device may alter displayed language characters on GUI screen 200, such that the resulting user interface screen looks similar to
In this particular embodiment, GUI screen 200 depicted in both
Displaying a consistent set of language characters in a dedicated language selection box, regardless of the language selected and activated by a user, may enable the user to easily alter the displayed language back to a language that the user can understand. For example, suppose that the user has accidentally selected Chinese as the display language for the device and GUI screen 200, similar to GUI screen 200 depicted in
Having the “English” selection box 245 characters displayed in English on GUI screen 200 at all times, regardless of the language configured for the rest of the system and regardless of what menu and submenu elements are highlighted, may allow for an intuitive and user-friendly method for the user to configure the display language for the device and GUI screen 200. For example, imagine that the user jumped to a different menu and submenu element, such as a “Save” submenu element under menu bar “File” element 210, after choosing sub-element “Chinese” 260 and altering the display language characters on GUI screen 200 to Chinese. Since the menu and submenu elements would be displayed in Chinese, the user would likely have a difficult time navigating back to the menu bar “Format” element 215 and choosing sub-element “English” 255. Fortunately, in this embodiment, the user would not have to navigate to another menu bar element to change the display language back to English. The user would simply highlight and select “English” selection box 245, which would be displayed on GUI screen 200 with English characters.
In some embodiments, GUI screen 200 may contain menu bar elements located at the top of the screen, such as the manner in which the menu bar elements are positioned in
GUI screen 200 may also include one or more scroll bars, such as a vertical scroll bar or a horizontal scroll bar. For example, the scroll bar may include controls for incrementally scrolling up or down GUI screen 200. In such case, a user may simply use the scroll bar to move to the portion of the window containing “English” selection box 245 and then highlight and select it to cause the characters on GUI screen 200 to be displayed as English characters. In even further embodiments, the default or base language can be a language other than English. For example, “English” selection box 245 may instead be a “Spanish” or a “Chinese” selection box, which would convert the displayed characters to Spanish or Chinese, respectively.
Turning now to
Manufacturers of portable game console 400 may employ a recessed switch 405 for selecting a different display language. Recessed switch 405 may function similar to switch 360 as shown and described in
For example the portable game console 400 may start displaying Japanese characters when it is turned on straight out of the box. A Russian user, who cannot read Japanese, may desire to change the display language. The user may activate switch 405 one time, and force portable game console 400 to start displaying the characters in English. Assuming the Russian user cannot read English either, the user may then activate switch 405 a second time, forcing portable game console 400 to start displaying the characters in the desired language format, Russian. Alternatively, the Russian user could continue activating switch 405 until the user finds a suitable set of language characters. The underlying software and hardware for selecting the various languages may be configured to continually cycle through the list of available languages with each until a language is selected. For example the sequence of the cycle may look something like “English->Spanish->Chinese->Russian->English->Spanish-> . . . ”, etc.
One benefit of employing a switch 405 as a multiple-setting switch to select different languages in this fashion may be the benefit of having uninterrupted play. For example, if the display characters are accidentally changed to an alternate language during play using joystick or cursor control component 420 and function keys 430, the user may pause the game and activate switch 405 to select the desired language. This process of selecting a different language format may be configured to retain the game status items in memory, such as score and level, whereupon the user may then resume his game after changing the display language.
To provide yet another example embodiment, we turn to
With the English option button 520 highlighted, or selected, the several lines of text 510 may be displayed in English, as in
When the device employing apparatus 700 is first powered up, a language pre-selection element 750 may provide information indicating the default language to a language function element 740. Based on the pre-selected language, language function element 740 may generate and transmit characters of a default language on an initial power-up display, which may be the current display 720. A user of the device may select a different display language by selecting, or activating, an element 730. Similar to previous embodiments, element 730 may comprise a hardware switch located somewhere on the device or a target displayed on the current display 720. The activation of element 730 may transmit a signal to a language toggle element 770. Upon receiving this signal, language toggle element 770 may then work in conjunction with language element 740 and a language translations element 760 to translate the characters to an alternate language, and display the characters of the alternate language on the current display 720. This translating of characters to the alternate language may continue as the user pages through various menu displays that are generated by the language function element 740 and sent to screen 710 and then made the current display 720.
In a variation of the embodiment, a user may have selected another display language after power-up, such that the current display 720 is in a language unintelligible by the user. Regardless of the current display language, the user may then select element 730 to activate language toggle element 770. Language toggle element 770 may then work in conjunction with language function element 740, and possibly language translations element 760 if necessary, to display the pre-selected language indicated by language pre-selection element 750 on the current display 720. In this variation of the embodiment, element 730 may be equivalent to a “language reset,” changing the display language back to the pre-selected language as indicated by language pre-selection element 750. In an even further embodiment of this variation, the default language of language pre-selection element 750 may be selectable by hardware, such as with a configuration of DIP switches, or selectable by software and stored in nonvolatile memory.
An embodiment of flowchart 800 continues by displaying information on a graphical user interface screen, or GUI, of the computer in a first language (element 820). In some embodiments, the first language may be a default language, such as Russian. In alternative embodiments, the first language may be the language that was last displayed when the BSA was executed. Accompanying the information on the GUI displayed in the first language may be a screen target or menu item immediately allowing a user to select a different display language (element 830). For example, if the information on the GUI screen is initially Russian, the user could select or activate a screen target or menu item to change the display language of the information on the GUI screen from Russian to Chinese.
A system according to the embodiment of
The embodiment of
This process of sending information from the BSA to the language API, converting the information into the selected display language, and displaying the converted information on the GUI may comprise the bulk of the system activity, with the language selection only occurring during the initial execution of the base software application. This sequence may be continually repeated as long as the user continues using the system and base software application (element 880), as depicted in
Another embodiment of the invention is implemented as a program product for use with a system to display languages on a GUI or in conjunction with an API in accordance with, e.g., flowchart 800 as shown in
In general, the routines executed to implement the embodiments of the invention, may be part of an operating system or a specific application, component, program, module, object, or sequence of instructions. The computer program of the present invention typically is comprised of a multitude of instructions that will be translated by a computer into a machine-readable format and hence executable instructions. Also, programs are comprised of variables and data structures that either reside locally to the program or are found in memory or on storage devices. In addition, various programs described hereinafter may be identified based upon the application for which they are implemented in a specific embodiment of the invention. However, it should be appreciated that any particular program nomenclature that follows is used merely for convenience, and thus the invention should not be limited to use solely in any specific application identified and/or implied by such nomenclature.
It will be apparent to those skilled in the art having the benefit of this disclosure that the present invention contemplates methods and apparatuses for selecting display languages in graphical user interfaces and application programming interfaces. It is understood that the form of the invention shown and described in the detailed description and the drawings are to be taken merely as examples. It is intended that the following claims be interpreted broadly to embrace all the variations of the example embodiments disclosed.
Although the present invention and some of its advantages have been described in detail for some embodiments, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Further, embodiments may achieve multiple objectives but not every embodiment falling within the scope of the attached claims will achieve every objective. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.