Distributed Energy Resource (DER) devices, for example, solar panels, electric vehicle batteries, etc., are typically wired into the grid via a connection into a circuit breaker in an electrical panel within a customer's premises. If metering of the DER device is required, a separate meter is mounted on the customer's wall for this purpose. One or more disconnect switches are also mounted on the customer's wall.
In some installations, a collar is added between the meter socket and the meter. Included in this collar are circuit breakers and/or disconnect switches, and terminal block connections to connect a DER device to a meter to measure the energy flow to or from the DER device.
Currently there is no standard method to connect DER devices to the grid. Existing methods are often complicated and present an unaesthetic solution attached on the side of a wall, for example, at a customer's residence.
Systems and methods for connecting and metering distributed energy resource devices are provided.
According to various aspects of the present disclosure there is provided an electric meter socket. In some aspects, the electric meter socket may include: a first plurality of connection points within the electric meter socket configured to form electrical connections to line voltage wiring of an electric distribution system; a second plurality of connection points within the electric meter socket configured to form electrical connections to output voltage wirings of a DER device; one or more third connection points within the electric meter socket configured to form an electrical connection of neutral wires of the electric distribution system, the DER device, and a load; and a plurality of receptacles, each of the plurality of receptacles electrically connected to a corresponding connection point and configured to accept a mating connector of an electric meter.
The electric meter socket may further include a third plurality of connection points within the electric meter socket configured to form electrical connections to the load. The neutral wire of the load may be connected to the one or more connection points within the electric meter socket forming an electrical connection with the neutral wires of the electric distribution system and the DER device.
Each of the first plurality of connection points within the electric meter socket may correspond to line voltage wirings of the electric distribution system with voltages having different electrical phases.
The electric meter socket may further include a controllable electrical disconnect switch configured to connect and disconnect the DER device from the electric distribution system based on power production and consumption requirements of the electric distribution system and the DER device. The controllable electrical disconnect switch may also be configured to connect and disconnect the DER device from the electric distribution system based on a command received from the electric meter.
The electric meter socket may further include a circuit breaker connected between the line voltage wiring of the DER device and the corresponding receptacles. The circuit breaker may be configured to disconnect the DER device from the electric distribution system on an occurrence of an electrical fault.
According to various aspects of the present disclosure there is provided an electric meter. In some aspects, the electric meter may include: a plurality of connectors configured to form electrical connections to corresponding receptacles in an electric meter socket, where at least one electrical connection to the plurality of receptacles may be formed with a neutral wire; and a plurality of measurement devices configured to measure electrical characteristics of voltage and current waveforms provided to the electric meter from an electric distribution system and a distributed energy resource (DER) device via the plurality of connectors.
The plurality of measurement devices may be configured to measure electrical characteristics of voltage and current waveforms provided to a load. The neutral wire may provide an electrical reference point for measurement of the voltage waveforms.
The plurality of measurement devices may include a plurality of voltage transformers. Each of the plurality of voltage transformers may be configured to individually measure voltage characteristics of one of a plurality of line voltages provided from the electric distribution system or output voltage provided by the DER device. Each of the plurality of line voltages provided from the electric distribution system may have a different electrical phase. Measurements of the voltage characteristics may be performed between line voltage wirings of the electric distribution system and the neutral wire.
The plurality of measurement devices may include a plurality of current transformers. The plurality of current transformers may be configured to individually measure current consumed by a load on each line voltage wiring connected to the load and current provided by the line voltage wirings of the electric distribution system and the output voltage wirings of the DER device.
According to various aspects of the present disclosure there is provided a system for connecting and metering distributed energy resource devices. In some aspects, the system may include: an electric meter; and an electric meter socket configured to accommodate the electric meter. The electric meter socket of the system may include a first plurality of connection points within the electric meter socket configured to form electrical connections to line voltage wiring of an electric distribution system; a second plurality of connection points within the electric meter socket configured to form electrical connections to line voltage wirings of a DER device; one or more third connection points within the electric meter socket configured to form an electrical connection of neutral wires of the electric distribution system, the DER device, and a load; and a plurality of receptacles, each of the plurality of receptacles electrically connected to a corresponding connection point and configured to accept a mating connector of an electric meter.
The electric meter socket of the system may further include a third plurality of connection points within the electric meter socket configured to form electrical connections to a load. The neutral wire of the load may be connected to the one or more connection points within the electric meter socket forming an electrical connection with the neutral wires of the electric distribution system and the DER device.
Each of the first plurality of connection points within the electric meter socket of the system may correspond to line voltage wirings of the electric distribution system with voltages having different electrical phases.
The electric meter socket of the system may further include a controllable electrical disconnect switch configured to connect and disconnect the DER device from the electric distribution system based on power production and consumption requirements of the electric distribution system and the DER device. This controllable electrical disconnect switch may also be a standalone device separate from the electric meter socket. The controllable electrical disconnect switch may also be configured to connect and disconnect the DER device from the electric distribution system based on a command received from the electric meter.
The electric meter socket of the system may further include a circuit breaker connected between the line voltage wirings of the DER device and the corresponding receptacles. The circuit breaker may be configured to disconnect the DER device from the electric distribution system on an occurrence of an electrical fault.
The electric meter of the system may include: a plurality of connectors configured to form electrical connections to corresponding receptacles in an electric meter socket, wherein at least one electrical connection to the receptacles may be formed with a neutral wire; and a plurality of measurement devices configured to measure electrical characteristics of voltage and current waveforms provided to the electric meter from the electric distribution system and a distributed energy resource (DER) device via the plurality of connectors.
The plurality of measurement devices may include measurement devices configured to measure electrical characteristics of voltage and current waveforms provided to a load. The neutral wires may provide an electrical reference point for measurement of the voltage waveforms.
The plurality of measurement devices may include a plurality of voltage transformers. Each of the plurality of voltage transformers may be configured to individually measure voltage characteristics of one of a plurality of line voltages provided from the electric distribution system or output voltage provided by the DER device. Each of a plurality of line voltages provided from the electric distribution system may have a different electrical phase. Measurements of the voltage characteristics may be performed between the line voltage wirings of the electric distribution system and the neutral wires.
The plurality of measurement devices may include a plurality of current transformers. The plurality of current transformers may be configured to individually measure current consumed by the load on each of the line voltage wirings connected to the load and current provided by the line voltage wirings of the electric distribution system and the DER device.
Numerous benefits are achieved by way of the various embodiments over conventional techniques. For example, the various embodiments provide a more aesthetically pleasing and simpler installation as compared to conventional meter installations. In some embodiments, integrating metering and processing into a single meter may form a basis for utilization of the meter as a home energy controller to manage all energy aspects of a residential home or commercial building. These and other embodiments along with many of its advantages and features are described in more detail in conjunction with the text below and attached figures.
Aspects and features of the various embodiments will be more apparent by describing examples with reference to the accompanying drawings, in which:
While certain embodiments are described, these embodiments are presented by way of example only, and are not intended to limit the scope of protection. The apparatuses, methods, and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions, and changes in the form of the example methods and systems described herein may be made without departing from the scope of protection.
The electrical service 140 is also connected to the meter socket 120 via corresponding electrical wiring L1 and L2. The meter socket 120 includes electrical connectors to provide electrical connections to the meter 130 when the meter 130 is plugged into the meter socket 120. An electrical connection between the grid 110 and the electrical service 140 is formed through the meter 130 when the meter 130 is plugged into the meter socket 120. Within the meter 130, voltage and current provided by the grid 110 to the electrical service 140 is measured, or metered, by measuring devices 135, for example, voltage transformers and current transformers. Power delivered to the electrical service 140 may be calculated based on the voltage and current measurements. The conventional meter socket 120 and meter 130 do not accommodate the additional connections required for a DER device.
Currently there is no standard method for connecting DER devices to the grid. Existing methods are often complicated and present an unaesthetic solution attached on the side of a wall, for example at a customer's residence. Many electricity markets require that power produced by DER devices be metered so that the utility can get credit for meeting an acceptable threshold of energy produced using renewable resources or for other reasons. A disconnect switch is required to disconnect the electrical power output of the DER device from the meter or meter socket to permit a technician to work on the electrical meter or meter socket. A circuit breaker is required in-line with the DER device to protect against surge and other events.
In addition to delivering power, the grid may also accept power generated by DER devices, collectively referred to herein as distributed generation devices, at customer premises. Various definitions of DER device have been used. For the purpose of this disclosure, a DER device is defined as any resource on the electric distribution system (i.e., the grid) that produces or stores electricity that can be sold back to the distribution system, or any large load device that can be controlled in order to manage overall peak load of the distribution system. The specific case of a DER device that is most prevalent is a residential solar installation, with or without local battery storage. The devices used to connect DER devices to the grid are separate and distinct from the utility meter located at the customer premises. They require additional installation and wiring and increase the complexity of the connections to the grid.
Various aspects of the present disclosure provide a simple, aesthetic method to connect a DER device to the electric distribution system via the meter socket and meter. Some aspects may include integration of the DER metering into the meter and/or the disconnect switch and circuit breaker into the meter socket. In accordance with various aspects of the present disclosure, methods of connecting a DER devices to a meter through a meter socket are provided.
An ANSI standard 2S form meter and meter socket are installed at most US residences. A 2S meter form has 4 connections, L1 and L2 from the line side (i.e., the electric distribution system), and L1 and L2 from the load side (i.e., the residential or commercial electrical service). In accordance with various aspects of the present disclosure, the mechanical form of any of ANSI standard 14S/15S/16S form meters may be repurposed (i.e., modified) to physically connect three additional connections from the DER device, i.e., L1, L2, and Neutral to enable connection of the DER device to the electric meter through the meter socket.
One of ordinary skill in the art will appreciate that while ANSI standard 14S/15S/16S and 5S form meters and meter sockets are mentioned, these are merely exemplary and other meter and meter socket forms may be used, modified, or created to perform the intended functions without departing from the scope of the present disclosure.
In accordance with various aspects of the present disclosure, the neutral wire connection may be formed within the meter socket.
The connection points may provide electrical connections to corresponding receptacles within the meter socket 340. For example, the connection points for the lines L1 and L2 from the grid 310 may be electrically connected to corresponding receptacles. The lines L1 and L2 from the grid 310 may provide voltages having different electrical phases. Similarly, the lines L1 and L2 from the DER device 320 and the lines L1 and L2 to the electrical service 330 may be electrically connected to corresponding receptacles. The lines L1 and L2 from the DER device 320 may provide voltages having different electrical phases. The connection point for the neutral wire N may also be electrically connected to a corresponding receptacle.
The receptacles included in the meter socket 340 may accommodate insertion of mating connectors, for example, but not limited to, blade connectors, on the first electric meter 350 to form electrical connections between the meter socket 340 and the first electric meter 350. As illustrated in
In addition, when the connectors of the first electric meter 350 are inserted into the receptacles of the meter socket 340, an electrical connection may be formed between the neutral wire N in the meter socket 340 and the first electric meter 350. The electrical connection of the neutral wire N into the meter socket 340 and the first electric meter 350 may provide an electrical reference point to enable voltage measurements from L1 to neutral and L2 to neutral at the meter. The ability to perform these voltage measurements at the meter may allow for more advanced and higher fidelity metering than is possible with a standard 2S meter form, which only has L1 and L2 connections available (i.e., no neutral N connection) and therefore can only measure line to line voltage (i.e., from L1 to L2). The first electric meter 350 may be configured to perform current measurements on the L1 and L2 lines from the grid 310, the DER device 320 and the electrical service 330. The ability to perform L1 to neutral and L2 to neutral at the meter voltage measurements at the meter as well as the current measurements may enable implementation of various applications, for example, but not limited to, load disaggregation algorithms.
The L1 and L2 lines from the grid 310 may provide line voltages having different electrical phases. The different electrical phases be generated by a local distribution transformer (e.g., a pole-mounted transformer located near the meter) or may be different electrical phases generated at a substation. Similarly, the L1 and L2 lines from the DER device 320 may provide line voltages having different electrical phases. The electrical phases on the line voltage provided by the DER device may be synchronized with the electrical phases of the line voltages provided by the DER device. Embodiments of meter sockets and meters in accordance with the present disclosure may include more or less connection points and/or receptacles corresponding to different phases of line voltages. For example, when only one line voltage phase is connected (e.g., phase A) fewer connection points and receptacles may be included in the meter socket. Similarly, when three line voltage phases are connected (e.g., phases A, B, and C) additional connection points and receptacles may be included in the meter socket.
As illustrated in
Referring again to
The first controllable electrical disconnect switch 344 may include a processor (not shown) and a communications module (not shown). The first controllable electrical disconnect switch 344 may operate automatically to disconnect the DER device 320 from the grid 310, for example, when a high load is detected or when disconnected from the meter. In some embodiments, the first controllable electrical disconnect switch 344 may operate automatically to disconnect the DER device 320 from the grid 310 based on a command received from the first electric meter 350 or another device. The first controllable electrical disconnect switch 344 may enable connecting the DER device 320 to the first electric meter 350 to measure the DER device 320 power production/consumption as a separate value to the energy consumed from or sent back to the electric distribution system (i.e., the grid 310) thereby providing billable data. The billable data (consumption from the grid or production fed back to the grid) may be metered within the electricity meter using “net metering” or similar methods.
The first electric meter 350 may measure and control the electricity delivered to the electrical service 330 via the grid 310 and/or the DER device 320. The first electric meter 350 may include a communications module (not shown) and a processor (not shown). The processor may be a microprocessor; however, embodiments in accordance with the present disclosure are not limited to this implementation. For example, the processor may be a microprocessor, microcomputer, computer, microcontroller, programmable controller, or other programmable device. One of ordinary skill in the art will appreciate that other variations may be implemented without departing from the scope of the present disclosure.
The communications module may communicate via RF, cellular, PLC, or any other suitable communications technology. The communications module may receive communications via a network that include instructions for controlling the controllable electrical disconnect switch. The communications module may transmit information related to the operation of the meter and the measurements performed by the measurement devices in the meter to other devices on the network or a to central system.
The second electric meter 380 may further include a second controllable electrical disconnect switch 385. The second controllable electrical disconnect switch 385 may be configured similarly to the first controllable electrical disconnect switch 344 to perform similar functions and therefore will not be further described here. The second controllable electrical disconnect switch 385 may be configured to disconnect the second electric meter 380 from the L1 and L2 connections to the grid 310. The ability to disconnect the second electric meter 380 from the grid 310 may enable “islanding,” i.e., disconnecting from the grid 320 and supplying power only from the DER device 320. The second electric meter 380 may also provide voltage measurement capability from L1 to neutral and L2 to neutral on the grid 310 side of the second controllable electrical disconnect switch 385. The ability to measure L1 to neutral and L2 to neutral voltages on the grid 310 side of the second controllable electrical disconnect switch 385 may enable phase synchronization of the grid 310 voltages and the DER device voltages when the second electric meter 380 is reconnected to the grid 310.
While
In accordance with various aspects of the present disclosure, where the DER device consists of some form of electricity generator, for example, but not limited to, solar, wind, etc., and a storage device, the meter may use information about the electric distribution system. The information, may include, for example, but not limited to, real-time electricity pricing or other information, to make decisions and to control the DER system. For example, the meter may use information to determine whether the DER system/device should send energy to the grid (e.g., from solar or battery storage, where battery storage could include batteries within an electric vehicle or similar), whether the DER system/device should consume energy from the grid (e.g., to charge storage or allow large loads such as water heaters, pool pumps, etc., to run), and/or whether the DER system/device should disconnect from the grid, i.e., not consume energy from the grid or send energy to the grid. Appropriate control actions may be initiated by the meter based on the determination. One or ordinary skill in the art will appreciate that the above examples of decisions and control are not exhaustive and that other decisions and control operations may be performed without departing from the scope of the present disclosure.
In accordance with various aspects of the present disclosure, methods similar to those described above may be employed to add DER device switching and measurement capability to a meter socket having ANSI 1S, 3S, 4S, 5S, and/or 12S, meter forms or other meter forms.
An ANSI standard 2S form meter socket and meter are installed at most US residences.
Referring to
The third electric meter 550 may also include a terminal block 560, for example, but not limited to, a screw-type terminal block or another type of terminal block. The terminal block 560 may be configured to form a mechanical and electrical connection to L1 and L2 voltage wires of the DER device and the neutral wire contained in the pigtail wiring harness 520 of the modified 2S form meter socket 510.
In accordance with various aspects of the present disclosure, DER device metering may occur as a separate small form factor device external to the electric meter, either within the meter socket or external to the meter socket.
Embodiments in accordance with the present disclosure may provide numerous advantages over conventional techniques. Installation is simpler than alternative methods, for example, a neutral connection from the collar to the electrical panel is not required. The neutral connection is now one of the connections in the meter socket allowing the neutral wire to run with the rest of the wires in the conduit to the electrical panel. No power connections are made directly to a collar or meter so no conduit is required on top of the meter base. Thus, homeowners/solar installers/DER device installers can swap out their existing meter socket for the meter socket described herein that contains the additional connectors to connect the DER device. A meter according to the various embodiments may then be connected.
Embodiments in accordance with the present disclosure are more aesthetically pleasing than alternative installations since it has the same look and the same number of high level components at the meter as the non-DER solution. A second meter is not required and is not mounted on the customer's wall. Redundant components and circuitry are eliminated as compared with alternative installations. By integrating all metering and processing into a single meter, a second processor, power supply, and communications device can be eliminated, and cost to the customer may also be reduced.
In accordance with various aspects of the present disclosure, integrating metering and processing into a single meter may form a basis for utilization of the meter as a home energy controller to manage all energy aspects of a residential home or commercial building. For example, embodiments according to the present disclosure may be suitable for implementing load disaggregation algorithms for the electrical service.
The examples and embodiments described herein are for illustrative purposes only. Various modifications or changes in light thereof will be apparent to persons skilled in the art. These are to be included within the spirit and purview of this application, and the scope of the appended claims, which follow.
This application is a continuation of U.S. patent application Ser. No. 16/244,701, filed Jan. 10, 2019, entitled “Methods And Systems For Connecting And Metering Distributed Energy Resource Devices,” the full disclosure of which is hereby incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4463311 | Kobayashi | Jul 1984 | A |
4977482 | Langdon et al. | Dec 1990 | A |
5572396 | Robinson | Nov 1996 | A |
6188145 | Stewart | Feb 2001 | B1 |
6420801 | Seefeldt | Jul 2002 | B1 |
7274305 | Luttrell | Sep 2007 | B1 |
7298134 | Weikel et al. | Nov 2007 | B2 |
7648389 | Scott et al. | Jan 2010 | B1 |
8784130 | Scott et al. | Jul 2014 | B2 |
9318861 | Fulton et al. | Apr 2016 | B2 |
9391414 | Seals | Jul 2016 | B2 |
9437986 | Knauer et al. | Sep 2016 | B2 |
9484653 | Chen | Nov 2016 | B1 |
9595815 | Knauer et al. | Mar 2017 | B2 |
9620305 | Miller et al. | Apr 2017 | B2 |
9627861 | Cruz | Apr 2017 | B2 |
9995768 | Parks et al. | Jun 2018 | B2 |
10132838 | Parks et al. | Nov 2018 | B2 |
20020075622 | Robinson | Jun 2002 | A1 |
20030034693 | Wareham et al. | Feb 2003 | A1 |
20040036362 | Beck et al. | Feb 2004 | A1 |
20050027464 | Jonker et al. | Feb 2005 | A1 |
20080091625 | Kremen | Apr 2008 | A1 |
20090121705 | Rzehak | May 2009 | A1 |
20100003848 | Scott et al. | Jan 2010 | A1 |
20100105226 | Gong et al. | Apr 2010 | A1 |
20100225305 | Reineccius | Sep 2010 | A1 |
20100306027 | Haugh | Dec 2010 | A1 |
20130106397 | Fulton et al. | May 2013 | A1 |
20130123997 | King et al. | May 2013 | A1 |
20130226485 | Pietrowicz et al. | Aug 2013 | A1 |
20140218010 | Fulton et al. | Aug 2014 | A1 |
20150061644 | Parks et al. | Mar 2015 | A1 |
20150233980 | Umetsu et al. | Aug 2015 | A1 |
20150285844 | May | Oct 2015 | A1 |
20150309075 | Parks et al. | Oct 2015 | A1 |
20160056571 | Hamaoka et al. | Feb 2016 | A1 |
20160061870 | Vaculik et al. | Mar 2016 | A1 |
20160141784 | Hashiguchi | May 2016 | A1 |
20160181752 | Parks et al. | Jun 2016 | A1 |
20160320427 | Bautista et al. | Nov 2016 | A1 |
20160380413 | Cruz | Dec 2016 | A1 |
20170168516 | King | Jun 2017 | A1 |
20170212160 | Fulton et al. | Jul 2017 | A1 |
20170214225 | Ramachandran et al. | Jul 2017 | A1 |
20170229827 | Michelmann et al. | Aug 2017 | A1 |
20170346296 | Schamber et al. | Nov 2017 | A1 |
20180246150 | Cook | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
1403825 | Mar 2003 | CN |
201467023 | May 2010 | CN |
201623651 | Nov 2010 | CN |
101976854 | Feb 2011 | CN |
202110217 | Jan 2012 | CN |
102882237 | Jan 2013 | CN |
103138291 | Jun 2013 | CN |
103187735 | Jul 2013 | CN |
203368046 | Dec 2013 | CN |
103545926 | Jan 2014 | CN |
105242087 | Jan 2016 | CN |
06153527 | May 1994 | JP |
2001090296 | Apr 2001 | JP |
2011204045 | Oct 2011 | JP |
2012228043 | Nov 2012 | JP |
2012244665 | Dec 2012 | JP |
2014230454 | Dec 2014 | JP |
2003014748 | Feb 2003 | WO |
2011124657 | Oct 2011 | WO |
2014002798 | Jan 2014 | WO |
2014192015 | Dec 2014 | WO |
2017205724 | Nov 2017 | WO |
Entry |
---|
U.S. Appl. No. 16/244,701, Non-Final Office Action, dated Jul. 23, 2020, 12 pages. |
U.S. Appl. No. 16/244,701, Notice of Allowance, dated Oct. 28, 2020, 7 pages. |
Unpublished U.S. Patent Application filed May 31, 2019. In accordance with the Waiver of the Copy Requirements in 37 CFR1.98 for cited pending U.S. Patent Applications, 1287 O.G. 163 (Oct. 19, 2004), cited unpublished US patent application is available in the IFW and therefore, not provided. |
International Patent Application No. PCT/US2017/034653, International Search Report and Written Opinion, dated Aug. 10, 2017, 12 pages. |
International Patent Application No. PCT/US2020/012485, International Search Report and Written Opinion, dated Apr. 20, 2020, 12 pages. |
U.S. Appl. No. 17/038,930, Non-Final Office Action dated Jun. 7, 2021, 21 pages. |
Number | Date | Country | |
---|---|---|---|
20210148949 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16244701 | Jan 2019 | US |
Child | 17158508 | US |