1. Field of the Invention
The present invention relates generally to medical methods and apparatus. More particularly, the present invention relates to methods and devices for restricting spinal flexion in patients having back pain or other spinal conditions.
A major source of chronic low back pain is discogenic pain, also known as internal disc disruption. Patients suffering from discogenic pain tend to be young, otherwise healthy individuals who present with pain localized to the back. Discogenic pain usually occurs at the discs located at the L4-L5 or L5-S1 junctions of the spine (
This pain experienced by patients with discogenic low back pain can be thought of as flexion instability, and is related to flexion instability that is manifested in other conditions. The most prevalent of these is spondylolisthesis, a spinal condition in which abnormal segmental translation is exacerbated by segmental flexion. The device described here should as such also be useful for these other spinal disorders associated with segmental flexion, for which the prevention or control of spinal segmental flexion is desired.
Current treatment alternatives for patients diagnosed with chronic discogenic pain are quite limited. Many patients follow a conservative treatment path, such as physical therapy, massage, anti-inflammatory and analgesic medications, muscle relaxants, and epidural steroid injections, but typically continue to suffer with a significant degree of pain. Other patients elect to undergo spinal fusion surgery, which commonly requires discectomy (removal of the disk) together with fusion of adjacent vertebra. Fusion is not usually recommended for discogenic pain because it is irreversible, costly, associated with high morbidity, and of questionable effectiveness. Despite its drawbacks, however, spinal fusion for discogenic pain remains common due to the lack of viable alternatives.
Recently, a less invasive and potentially more effective treatment for discogenic pain has been proposed. A spinal implant has been designed which inhibits spinal flexion while allowing substantially unrestricted spinal extension. The implant is placed over one or more adjacent pairs of spinal processes and provides an elastic restraint to the spreading apart of the spinal processes which occurs during flexion. Such devices and methods for their use are described in U.S. Patent Publication No. 2005/0216017A1, published on Sep. 29, 2005, (now U.S. Pat. No. 7,458,981) and having common inventors with the present application. The entire contents of U.S. Patent Publication No. 2005/0216017 A1 are incorporated herein by reference.
As illustrated in
Although providing significant benefits, the system illustrated in
For these reasons, it would be desirable to provide improved spinal implants, implant systems, and methods for their use for limiting flexion in two or more successive spinal segments. It would be particularly desirable if the implants, systems, and methods permitted the spinous processes of three or more adjacent vertebral bodies, or two adjacent vertebral bodies and the sacrum, to be elastically coupled using a single implant structure which can constrain multiple adjacent spinal features. At least some of these objectives will be met by the inventions described hereinbelow.
2. Description of the Background Art
US 2005/0216017A1 has been described above. Other patents and published applications of interest include: U.S. Pat. Nos. 4,966,600; 5,011,494; 5,092,866; 5,116,340; 5,282,863; 5,395,374; 5,415,658; 5,415,661; 5,449,361; 5,456,722; 5,462,542; 5,496,318; 5,540,698; 5,609,634; 5,645,599; 5,725,582; 5,902,305; Re. 36,221; 5,928,232; 5,935,133; 5,964,769; 5,989,256; 6,053,921; 6,312,431; 6,364,883; 6,378,289; 6,391,030; 6,468,309; 6,436,099; 6,451,019; 6,582,433; 6,605,091; 6,626,944; 6,629,975; 6,652,527; 6,652,585; 6,656,185; 6,669,729; 6,682,533; 6,689,140; 6,712,819; 6,689,168; 6,695,852; 6,716,245; 6,761,720; 6,835,205; Published U.S. Patent Application Nos. US 2002/0151978; US 2004/0024458; US 2004/0106995; US 2004/0116927; US 2004/0117017; US 2004/0127989; US 2004/0172132; US 2005/0033435; US 2005/0049708; US 2006/0069447; Published PCT Application Nos. WO 01/28442 A1; WO 02/03882 A2; WO 02/051326 A1; WO 02/071960 A1; WO 03/045262 A1; WO 2004/052246 A1; WO 2004/073532 A1; and Published Foreign Application Nos. EP 0322334 A1; and FR 2 681 525 A1.
The present invention provides spinal implants, implant systems, and methods for constraining spinous processes to elastically limit flexion of two or more adjacent spinal segments. As used herein, the phrase “spinal segment” is synonymous with the phrase “functional spinal unit (FSU)” and intended to mean the smallest physiological motion unit of the spine that exhibits biomechanical characteristics similar to those of the entire spine. A spinal segment or FSU consists of two adjacent vertebrae, the intervertebral disc and all adjoining ligaments between them and excludes other connecting tissues such as muscles. The three-joint complex that results is sometimes referred to as the “articular triad.” Another term for the FSU is spinal motion segment. These definitions are taken from White A A, Panjabi M M. (1990), Clinical Biomechanics of the Spine, Philadelphia, J B Lippincott. The methods comprise placing a tether structure over the spinous processes of at least three adjacent vertebral bodies, or over the spinous processes of two adjacent vertebral bodies and a sacrum, wherein the structure elastically couples the at least two non-adjacent spinous processes or one spinous process and a non-adjacent sacrum. The spinous processes and optionally a sacrum can be interconnected and elastically coupled in a variety of ways.
In a first exemplary pattern, the tether structure elastically couples an upper spinous process to a lower spinous process, or to the sacrum, with at least one intermediate spinous process being free from coupling. In an alternative pattern, the tether structure elastically couples an upper spinous process and a lower spinous process or sacrum, as well as the at least one intermediate spinous process. The spinous processes and optionally the sacrum may be elastically coupled by a single contiguous tether structure, or in other embodiments may be elastically connected by two or more contiguous tether structures. In the case of two or more contiguous tether structures, the tether structures may further be interconnected, coupled, or linked in order to provide desired elastic restraint characteristics. The spinous processes being connected will typically be in the lumbar region, most typically being at the lower levels of the lumbar, and even more particularly being at L3, L4, L5 and the sacrum. In most instances, the spinous processes, and optionally the sacrum, are elastically coupled to inhibit flexion with the spaces between the adjacent vertebral bodies being free from structure which would substantially limit or inhibit extension of the spinal segments being treated. A first portion and a second portion of the tether structure may extend between the upper spinous process and the lower spinous process or the sacrum. The first and second portions of the tether structure may be disposed symmetrically on opposite sides of the spinous processes and they also may be parallel to one another.
In another aspect of the present invention, a spinal implant comprises a contiguous tether structure adapted to circumscribe at least two non-adjacent spinous processes, or in other instances, to an anchor location on the sacrum and one non-adjacent spinous process. At least a portion of the tether structure will provide an elastic resistance to elongation in response to an elongation force which results from flexion of the spinal segments between the non-adjacent spinous processes and/or between the one non-adjacent spinous process and the sacrum. The tether structure limits flexion therebetween without substantially limiting extension therebetween. A first portion and a second portion of the tether structure may extend between the non-adjacent spinous processes or between the one non-adjacent spinous process and the sacrum. The first and second portions of the tether structure may be disposed symmetrically on opposite sides of the spinous processes and they also may be parallel to one another. Often, the implant will include at least two compliance members positioned as part of the tether structure such that they will lie symmetrically on opposite sides of the spinous processes when implanted. In still other embodiments, the contiguous tether structures will include at least four such compliance members. The compliance members will typically be coupled to non-compliant and/or cable components of the tether structure so that it is the compliance members which provide most or all of the compliance or elasticity in the implants. Exemplary compliance structures are illustrated in U.S. Patent Publication No. 2005/02161017 A1 (now U.S. Pat. No. 7,458,981).
In some embodiments, the contiguous tether structure will be continuous so that the structure forms a loop which may be placed over the non-adjacent spinous processes. Such continuous “loop” tether structures will usually be maintained on the spinous processes by friction and interference fit, but in some cases could be modified to permit further attachment by stapling, welding, gluing, suturing, or the like. In other embodiments, the contiguous tether structure will be discontinuous and will have two ends which are adapted for anchoring for direct attachment to the bone. Such discontinuous tether structures will be suitable for anchoring in the sacrum.
In a third aspect of the present invention, systems comprising a spinal implant as generally described above further include at least one additional contiguous tether structure. The additional tether structure will usually be adapted to circumscribe two adjacent or non-adjacent spinous processes or a sacrum. The additional contiguous tether structures may be continuous so that they can be looped over the spinous processes, or in other instances may be discontinuous and have two ends adapted for anchoring directly in the bone. The additional contiguous tether structure may be interconnected with the primary tether structure but will frequently be formed separately.
In still another aspect of the present invention, a method for constraining spinous processes to elastically limit flexion of two or more adjacent spinal segments comprises placing a first tether structure over a superior spinous process and an inferior spinous process of a first spinal segment. The first tether structure elastically couples the superior spinous process and the inferior spinous process so as to limit flexion therebetween without substantially limiting extension thereof. A first portion of the first tether structure extends between the superior spinous process and the inferior spinous process of the first spinal segment, and a second portion of the first tether structure extends between the superior spinous process and the inferior spinous process of the first spinal segment. The first and the second portions are disposed symmetrically on opposite sides of the spinous processes, and they are substantially parallel to one another. The method also comprises placing a second tether structure over a superior spinous process and an inferior spinous process or a sacrum of a second spinal segment. The second tether structure elastically couples the superior spinous process and the inferior spinous process or the sacrum of the second spinal segment so as to limit flexion therebetween without substantially limiting extension thereof. A first portion of the second tether structure extends between the superior spinous process and the inferior spinous process or the sacrum of the second spinal segment, and a second portion of the second tether structure extends between the superior spinous process and the inferior spinous process or the sacrum of the second spinal segment. The first and the second portions are disposed symmetrically on opposite sides of the spinous processes, and they are substantially parallel to one another. The first spinal segment is adjacent and superior to the second spinal segment, and one of the first or second tether structures is positioned anteriorly relative to the other tether structure.
In some embodiments, the tether structure may be disposed around a first surface of the a spinous process and a second tether structure may be positioned around a second surface of the spinous process, opposite the first surface. The two tethers may be positioned on the spinous process such that one tether is anteriorly disposed on the spinous process relative to the other tether structure.
In other embodiments, the tether structure may have a first compliance member with a first elasticity and a second compliance member with a second elasticity different than the first elasticity. The tether structure may also comprise a first pair of compliance members and a second pair of compliance members. Each of the first pair may have a first elasticity and each of the second pair may have a second elasticity. The first elasticity may be the same or different than the second elasticity. The first pair of compliance members may be superior to the second pair of compliance members.
In preferred embodiments, the tether structure inhibits or limits flexion of a spinal segment without substantially limiting extension therebetween. Thus, in some embodiments, the tether structure may have an elastic stiffness in compression below 3 N/mm and in other embodiments the elastic stiffness in compression may be below 0.5 N/mm.
In still other embodiments, the tether structure may be positioned over an upper spinous process, a lower spinous process and an intermediate spinous process disposed therebetween. The tether structure may comprise a first loop encircling the lower spinous process and the intermediate spinous process so as to substantially prevent flexion therebetween, and the tether structure may also comprise a second loop superior to the first loop. The second loop may have one or more compliance members and may be disposed over the upper spinous process and coupled with the first loop so as to provide a force resistant to flexion of a superior spinal segment relative to the inferior spinal segment.
These and other embodiments are described in further detail in the following description related to the appended drawing figures.
The present invention provides methods, devices, and systems for constraining the flexion of two or more adjacent spinal segments by elastically restraining two or more spinous processes or at least one spinous process and an anchor region on a sacrum. Such restraint is achieved using a tether structure which spans at least three spinous processes or a pair of spinous processes and the sacrum (more specifically, the spinous processes on L4 and L5 as well as an anchor region on the sacrum). The tethers used will typically be in the form of a contiguous tether structure. By “contiguous” it means that the tether may comprise one or more elongate component(s), such as strap(s), cable(s), ribbon(s), or the like, which may be constructed or modified to provide for a desired elastic coupling of one or more spinous processes and optionally an anchor location on the sacrum. Alternatively, the “contiguous” tether structures may comprise a plurality of components, such as the straps, bands, cables, or the like, as mentioned above, together with compliance structures which provide for the desired elastic coupling. In the latter case, the straps, etc., will typically be non-compliant, effecting little or no elongation in response to tension, while the compliance members will provide the desired level of elastically coupling. Combinations of compliant elongate components and separate compliance members will also be possible.
The contiguous tether structures may be continuous or discontinuous. The “continuous” contiguous tether structures will typically be formed into a loop so that the loop may be placed over a pair of spinous processes, typically non-adjacent spinous processes separated by at least one intermediate spinous process. The “discontinuous” contiguous tether structures, in contrast, will have at least two free ends adapted with anchor structures for anchoring to bone, typically to anchor regions on a sacrum.
Referring now to
Referring now to
The continuous tether structures of the present invention may be formed in multiple interconnected loops, as shown, for example, in
For example, in
Continuous tether structure 40, as shown in
A more complex continuous tether structure 60 including one external loop and two internal loops is illustrated in
A multiple loop tether structure 70 having a more simple configuration is shown in
The contiguous tether structures of the present invention will not always have a continuous structure. As shown in
In each of the embodiments disclosed herein, the tether structure limits flexion of a spinal segment. Additionally, because the tether structure is flexible and has a low elastic stiffness in compression, it does not substantially limit extension of the spinal segment. Any of the embodiments may utilize tether structures that have an elastic stiffness in compression below 3 Newtons per millimeter (N/mm). In some embodiments the elastic stiffness in compression may be below 0.5 N/mm.
It will be appreciated that numerous other combinations of continuous tether structures and discontinuous tether structures could be provided in order to effect the controlled application of elastic restraint on adjacent spinal segments in the lumbar region of the spine. Thus, the examples set forth above are not meant to be limiting on the breadth of the invention as set forth in the following claims.
The present application is a continuation-in-part of U.S. Patent Application No. PCT/US2007/081822 filed Oct. 18, 2007, which claims priority to U.S. Provisional Patent Application No. 60/862,085 filed Oct. 19, 2006. The present application also is a non-provisional of, and claims the benefit of U.S. Provisional Patent Application No. 61/158,892 filed Mar. 10, 2009. The entire contents of each of the above applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3648691 | Lumb et al. | Mar 1972 | A |
4246660 | Wevers | Jan 1981 | A |
4643178 | Nastari et al. | Feb 1987 | A |
4708132 | Silvestrini | Nov 1987 | A |
4743260 | Burton | May 1988 | A |
4772286 | Goble et al. | Sep 1988 | A |
4776851 | Bruchman et al. | Oct 1988 | A |
4794916 | Porterfield et al. | Jan 1989 | A |
4870957 | Goble et al. | Oct 1989 | A |
4955910 | Bolesky | Sep 1990 | A |
4966600 | Songer et al. | Oct 1990 | A |
5002574 | May et al. | Mar 1991 | A |
5011484 | Breard | Apr 1991 | A |
5011494 | von Recum et al. | Apr 1991 | A |
5030220 | Howland | Jul 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5108433 | May et al. | Apr 1992 | A |
5116340 | Songer et al. | May 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5180393 | Commarmond | Jan 1993 | A |
5282863 | Burton | Feb 1994 | A |
5354917 | Sanderson et al. | Oct 1994 | A |
5366455 | Dove et al. | Nov 1994 | A |
5387213 | Breard et al. | Feb 1995 | A |
5395374 | Miller et al. | Mar 1995 | A |
5415658 | Kilpela et al. | May 1995 | A |
5415661 | Holmes | May 1995 | A |
5449361 | Preissman | Sep 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5458601 | Young, Jr. et al. | Oct 1995 | A |
5462542 | Alesi, Jr. | Oct 1995 | A |
5496318 | Howland et al. | Mar 1996 | A |
5540698 | Preissman | Jul 1996 | A |
5562737 | Graf | Oct 1996 | A |
5593407 | Reis | Jan 1997 | A |
5609634 | Voydeville | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5645084 | McKay | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5707379 | Fleenor et al. | Jan 1998 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5810815 | Morales | Sep 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5902305 | Beger et al. | May 1999 | A |
RE36221 | Breard et al. | Jun 1999 | E |
5928232 | Howland et al. | Jul 1999 | A |
5933452 | Eun | Aug 1999 | A |
5935133 | Wagner et al. | Aug 1999 | A |
5964769 | Wagner et al. | Oct 1999 | A |
5989256 | Kuslich et al. | Nov 1999 | A |
6053921 | Wagner et al. | Apr 2000 | A |
6193721 | Michelson | Feb 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6248106 | Ferree | Jun 2001 | B1 |
6283996 | Chervitz et al. | Sep 2001 | B1 |
6287308 | Betz et al. | Sep 2001 | B1 |
6290724 | Marino | Sep 2001 | B1 |
6296643 | Hopf et al. | Oct 2001 | B1 |
6312431 | Asfora | Nov 2001 | B1 |
6322279 | Yamamoto et al. | Nov 2001 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6378289 | Trudeau et al. | Apr 2002 | B1 |
6391030 | Wagner et al. | May 2002 | B1 |
6395018 | Castaneda | May 2002 | B1 |
6427080 | Radak | Jul 2002 | B1 |
6436099 | Drewry et al. | Aug 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6468309 | Lieberman | Oct 2002 | B1 |
6517578 | Hein | Feb 2003 | B2 |
6558389 | Clark et al. | May 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6589246 | Hack et al. | Jul 2003 | B1 |
6605091 | Iwanski | Aug 2003 | B1 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6626944 | Taylor | Sep 2003 | B1 |
6629975 | Kilpela et al. | Oct 2003 | B1 |
6652527 | Zucherman et al. | Nov 2003 | B2 |
6652585 | Lange | Nov 2003 | B2 |
6656185 | Gleason et al. | Dec 2003 | B2 |
6669729 | Chin | Dec 2003 | B2 |
6682533 | Dinsdale et al. | Jan 2004 | B1 |
6689140 | Cohen | Feb 2004 | B2 |
6689168 | Lieberman | Feb 2004 | B2 |
6695852 | Gleason | Feb 2004 | B2 |
6712819 | Zucherman et al. | Mar 2004 | B2 |
6716245 | Pasquet et al. | Apr 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6828357 | Martin et al. | Dec 2004 | B1 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6899716 | Cragg et al. | May 2005 | B2 |
6989011 | Paul et al. | Jan 2006 | B2 |
7029475 | Panjabi | Apr 2006 | B2 |
7163558 | Senegas et al. | Jan 2007 | B2 |
7201751 | Zucherman et al. | Apr 2007 | B2 |
7335203 | Winslow et al. | Feb 2008 | B2 |
7413576 | Sybert et al. | Aug 2008 | B2 |
7452351 | Miller et al. | Nov 2008 | B2 |
7458981 | Fielding et al. | Dec 2008 | B2 |
7520887 | Maxy et al. | Apr 2009 | B2 |
7524324 | Winslow | Apr 2009 | B2 |
7553320 | Molz, IV et al. | Jun 2009 | B2 |
7591837 | Goldsmith | Sep 2009 | B2 |
7909853 | Zucherman et al. | Mar 2011 | B2 |
8029549 | Malandain et al. | Oct 2011 | B2 |
20010007073 | Zucherman et al. | Jul 2001 | A1 |
20020095154 | Atkinson et al. | Jul 2002 | A1 |
20020147449 | Yun | Oct 2002 | A1 |
20020151978 | Zacouto et al. | Oct 2002 | A1 |
20020161446 | Bryan et al. | Oct 2002 | A1 |
20030023241 | Drewry et al. | Jan 2003 | A1 |
20030050700 | Kihara | Mar 2003 | A1 |
20030088251 | Braun et al. | May 2003 | A1 |
20040024458 | Senegas et al. | Feb 2004 | A1 |
20040034351 | Sherman et al. | Feb 2004 | A1 |
20040082954 | Teitelbaum et al. | Apr 2004 | A1 |
20040106995 | Le Couedic et al. | Jun 2004 | A1 |
20040116927 | Graf | Jun 2004 | A1 |
20040117017 | Pasquet et al. | Jun 2004 | A1 |
20040127989 | Dooris et al. | Jul 2004 | A1 |
20040143268 | Falahee | Jul 2004 | A1 |
20040167520 | Zucherman et al. | Aug 2004 | A1 |
20040172132 | Ginn | Sep 2004 | A1 |
20040215341 | Sybert et al. | Oct 2004 | A1 |
20040243239 | Taylor | Dec 2004 | A1 |
20050033435 | Belliard et al. | Feb 2005 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050123581 | Ringeisen et al. | Jun 2005 | A1 |
20050131405 | Molz, IV et al. | Jun 2005 | A1 |
20050154390 | Biedermann et al. | Jul 2005 | A1 |
20050192581 | Molz et al. | Sep 2005 | A1 |
20050203624 | Serhan et al. | Sep 2005 | A1 |
20050216017 | Fielding et al. | Sep 2005 | A1 |
20050228383 | Zucherman et al. | Oct 2005 | A1 |
20050267470 | McBride | Dec 2005 | A1 |
20050267518 | Wright et al. | Dec 2005 | A1 |
20060036324 | Sachs et al. | Feb 2006 | A1 |
20060041259 | Paul et al. | Feb 2006 | A1 |
20060064166 | Zucherman et al. | Mar 2006 | A1 |
20060069447 | DiSilvestro et al. | Mar 2006 | A1 |
20060084976 | Borgstrom et al. | Apr 2006 | A1 |
20060106381 | Ferree et al. | May 2006 | A1 |
20060106397 | Lins | May 2006 | A1 |
20060136060 | Taylor | Jun 2006 | A1 |
20060142760 | McDonnell | Jun 2006 | A1 |
20060149230 | Kwak et al. | Jul 2006 | A1 |
20060195102 | Malandain | Aug 2006 | A1 |
20060217726 | Maxy et al. | Sep 2006 | A1 |
20060240533 | Sengupta et al. | Oct 2006 | A1 |
20060241610 | Lim et al. | Oct 2006 | A1 |
20060271055 | Thramann | Nov 2006 | A1 |
20070010822 | Zalenski et al. | Jan 2007 | A1 |
20070073293 | Martz et al. | Mar 2007 | A1 |
20070083200 | Gittings et al. | Apr 2007 | A1 |
20070173818 | Hestad et al. | Jul 2007 | A1 |
20070213829 | Le Couedic et al. | Sep 2007 | A1 |
20070233096 | Garcia-Bengochea | Oct 2007 | A1 |
20070270828 | Bruneau et al. | Nov 2007 | A1 |
20070299445 | Shadduck et al. | Dec 2007 | A1 |
20080009866 | Alamin et al. | Jan 2008 | A1 |
20080021466 | Shadduck et al. | Jan 2008 | A1 |
20080027435 | Zucherman et al. | Jan 2008 | A1 |
20080033552 | Lee et al. | Feb 2008 | A1 |
20080045949 | Hunt et al. | Feb 2008 | A1 |
20080051784 | Gollogly | Feb 2008 | A1 |
20080097431 | Vessa | Apr 2008 | A1 |
20080108993 | Bennett et al. | May 2008 | A1 |
20080114357 | Allard et al. | May 2008 | A1 |
20080125780 | Ferree | May 2008 | A1 |
20080177264 | Alamin et al. | Jul 2008 | A1 |
20080177298 | Zucherman et al. | Jul 2008 | A1 |
20080183209 | Robinson et al. | Jul 2008 | A1 |
20080262549 | Bennett et al. | Oct 2008 | A1 |
20080281423 | Sheffer et al. | Nov 2008 | A1 |
20080312693 | Trautwein et al. | Dec 2008 | A1 |
20080319487 | Fielding et al. | Dec 2008 | A1 |
20090030457 | Janowski et al. | Jan 2009 | A1 |
20090082820 | Fielding et al. | Mar 2009 | A1 |
20090118766 | Park et al. | May 2009 | A1 |
20090182296 | Fielding et al. | Jul 2009 | A1 |
20090198282 | Fielding et al. | Aug 2009 | A1 |
20090264929 | Alamin et al. | Oct 2009 | A1 |
20090270918 | Attia et al. | Oct 2009 | A1 |
20100004701 | Malandain et al. | Jan 2010 | A1 |
20100023060 | Bennett et al. | Jan 2010 | A1 |
20100036424 | Fielding et al. | Feb 2010 | A1 |
20100234890 | Alamin et al. | Sep 2010 | A1 |
20100234894 | Alamin et al. | Sep 2010 | A1 |
20100249839 | Alamin et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
0 322 334 | Jun 1989 | EP |
0 743 045 | Nov 1996 | EP |
0743045 | Dec 1996 | EP |
1 994 901 | Nov 2008 | EP |
2 681 525 | Mar 1993 | FR |
2693364 | Jan 1994 | FR |
2 714 591 | Jul 1995 | FR |
2 717 675 | Sep 1995 | FR |
2722980 | Feb 1996 | FR |
2 828 398 | Feb 2003 | FR |
2 851 154 | Aug 2004 | FR |
2 874 167 | Feb 2006 | FR |
2 884 136 | Oct 2006 | FR |
WO 9942051 | Aug 1999 | WO |
WO 0128442 | Apr 2001 | WO |
WO 0203882 | Jan 2002 | WO |
WO 0203882 | May 2002 | WO |
WO 02051326 | Jul 2002 | WO |
WO 02071960 | Sep 2002 | WO |
WO 03045262 | Jun 2003 | WO |
WO 03045262 | Jun 2003 | WO |
WO 2004052246 | Jun 2004 | WO |
WO 2004073532 | Sep 2004 | WO |
WO 2004073533 | Sep 2004 | WO |
WO 2005037150 | Apr 2005 | WO |
WO 2005110258 | Nov 2005 | WO |
WO 2008051423 | May 2008 | WO |
WO 2008051801 | May 2008 | WO |
WO 2008051802 | May 2008 | WO |
WO 2008051806 | May 2008 | WO |
WO 2008051802 | Jul 2008 | WO |
WO 2008051806 | Jul 2008 | WO |
WO 2008051801 | Aug 2008 | WO |
WO 2009149407 | Dec 2009 | WO |
WO 2009149407 | Dec 2009 | WO |
WO 2010028165 | Mar 2010 | WO |
WO 2010028165 | Oct 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20090264932 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
60862085 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2007/081822 | Oct 2007 | US |
Child | 12426119 | US |