Technical Field
The present disclosure relates generally to the field of combustion furnaces and methods of use to produce glass, and more specifically to methods and systems to control bubble size and/or foam decay rate in glass handling equipment downstream of a submerged combustion melter.
Background Art
A submerged combustion melter (SCM) may be employed to melt glass batch materials to produce molten glass by passing oxygen, oxygen-enriched mixtures, or air along with a liquid or gaseous fuel, or particulate fuel in the glass batch, directly into a molten pool of glass usually through burners submerged in a glass melt pool. The introduction of high flow rates of products of combustion of the oxidant and fuel into the molten glass, and the expansion of the gases cause rapid melting of the glass batch and much turbulence, and possibly foaming.
While traditional, non-submerged combustion melters may to a lesser degree suffer from the problems discussed herein (and therefore may benefit from one or more aspects of this disclosure), molten glass produced by an SCM is typically about 30 percent void fraction or more with small bubbles that may have a range of sizes distributed throughout the molten mass of glass. These are referred to herein as “entrained bubbles.” This void fraction is much higher than molten glass produced by traditional, non-submerged combustion melters. For good glass fiber production from an SCM or other melter, it is preferred that the bubbles be allowed to coalesce and rise to the surface giving good, clean, well-defined molten glass in lower regions of downstream channels and forehearths to be delivered to a forming operation, such as for continuous e-glass fibers. With regard to SCMs, attempts to reduce the foam through SCM process adjustments, such as use of helium and steam to scavenge and consolidate bubbles, sonic methods to consolidate bubbles, vacuum to increase bubble size, and centrifugal force have not met with complete success in reducing foam from an SCM to an acceptable amount. Certain SCMs and/or flow channels may employ one or more high momentum burners, for example, to impinge on portions of a foam layer. High momentum burners are disclosed Applicant's U.S. application Ser. No. 13/268,130, filed Oct. 7, 2011. Various methods and systems for de-stabilizing the foam layer in equipment downstream of an SCM are proposed in Applicant's U.S. application Ser. No. 13/044,058, now U.S. Pat. No. 9,492,831 and Ser. No. 13/644,104, now U.S. Pat. No. 9,096,452, both filed Oct. 3, 2012. On the other hand, for production of foam glass products from an SCM, it may be preferred to maintain the bubbles in their entrained state.
It would be an advance in the glass manufacturing art if foams produced during melting of glass-forming materials, and in particular foams produced during submerged combustion melting of glass-forming materials, could be controlled in equipment downstream of the SCM.
In accordance with the present disclosure, methods and systems are described that allow foams produced during submerged combustion melting of glass-forming materials to be controlled in equipment downstream of the SCM. While the methods and systems of the present disclosure may also be applicable to non-submerged combustion melters, the highly turbulent molten foamed glass formed in SCMs is a particular target of the methods and systems of the present disclosure.
A first aspect of the disclosure is a method comprising:
flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, and a sidewall structure connecting the floor and roof, the foamed glass having glass foam comprising glass foam bubbles on at least a portion of a top surface of the foamed glass, the downstream apparatus defining a space for a gaseous atmosphere above and in contact with the glass foam;
heating or maintaining temperature of the foamed glass in the downstream apparatus; and
controlling bubble size of the glass foam bubbles in the foamed glass by controlling composition of the atmosphere above the glass foam in the downstream apparatus.
A second aspect of the disclosure is a method comprising:
heating or maintaining temperature of the foamed glass using only combustion heating comprising one or more non-submerged oxy-fuel combustion burners positioned in the sidewall structure and/or the roof of the downstream apparatus, the non-submerged oxy-fuel combustion burners contributing to production of the atmosphere above the glass foam; and
controlling bubble size of the glass foam bubbles by bubbling a composition comprising an oxygenated sulfur compound and optionally oxygen below a level of the foamed glass in the downstream apparatus, thereby stabilizing size of the glass foam bubbles and a foam decay rate, with the proviso that if oxygen is present in the composition, the molar ratio of oxygenated sulfur compound to oxygen ranges from about 3:1 to about 0.5:1.
A third aspect of the disclosure is a method comprising:
flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, and a sidewall structure connecting the floor and the roof, the foamed glass having glass foam comprising glass foam bubbles on at least a portion of a top surface of the foamed glass, the downstream apparatus defining a space for a gaseous atmosphere above and in contact with the glass foam;
heating or maintaining temperature of the foamed glass in the downstream apparatus; and
controlling a foam decay rate of the glass foam bubbles by:
A fourth aspect of the disclosure is a method comprising:
flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, and a sidewall structure connecting the floor and roof, the foamed glass having glass foam comprising glass foam bubbles on at least a portion of a top surface of the foamed glass, the downstream apparatus defining a space for a gaseous atmosphere above and in contact with the glass foam;
heating or maintaining temperature of the foamed glass in the downstream apparatus using only combustion heating comprising one or more non-submerged oxy-fuel combustion burners positioned in corresponding apertures in the sidewall structure and/or the roof of the downstream apparatus, the non-submerged oxy-fuel combustion burners producing combustion products contributing to formation of the atmosphere above the glass foam; and
increasing foam decay rate of the glass foam bubbles by dropping a mixture of alkali metal chalcogen particles and glass particles through the gaseous atmosphere and onto at least a portion of the glass foam from one or more sources outside of and fluidly connected to the downstream apparatus, the glass particles having same or similar composition as the foamed glass.
A fifth aspect of the disclosure is a method comprising:
flowing a molten mass of foamed glass comprising molten glass and bubbles entrained therein into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, and a sidewall structure connecting the floor and roof, the foamed glass having glass foam comprising glass foam bubbles on at least a portion of a top surface of the foamed glass, the downstream apparatus defining a space for a gaseous atmosphere above and in contact with the glass foam:
heating or maintaining temperature of the foamed glass in the downstream apparatus using only combustion heating comprising one or more non-submerged oxy-fuel combustion burners positioned in corresponding apertures in the sidewall structure and/or the roof of the downstream apparatus, the non-submerged oxy-fuel combustion burners producing combustion products contributing to formation of the atmosphere above the glass foam; and
increasing foam decay rate of the glass foam bubbles by fully saturating the gaseous atmosphere with water by injecting a water vapor spray and/or steam from a first source outside of and fluidly connected to the downstream apparatus, and dripping water through the gaseous atmosphere and onto at least a portion of the glass foam from a second source outside of and fluidly connected to the downstream apparatus.
Other aspects of the disclosure include systems for carrying out the above methods.
Methods and systems of this disclosure will become more apparent upon review of the brief description of the drawings, the detailed description of the disclosure, and the claims that follow.
The manner in which the objectives of the disclosure and other desirable characteristics can be obtained is explained in the following description and attached drawings in which:
It is to be noted, however, that the appended drawings of
In the following description, numerous details are set forth to provide an understanding of the disclosed systems and methods. However, it will be understood by those skilled in the art that the systems and methods covered by the claims may be practiced without these details and that numerous variations or modifications from the specifically described embodiments may be possible and are deemed within the claims. All U.S. published patent applications and U.S. patents referenced herein are hereby explicitly incorporated herein by reference. In the event definitions of terms in the referenced patents and applications conflict with how those terms are defined in the present application, the definitions for those terms that are provided in the present application shall be deemed controlling.
As explained briefly in the Background, molten glass produced by an SCM is typically about 30 percent void fraction or more with small bubbles distributed throughout the molten mass of glass, and this void fraction is much higher than molten glass produced by traditional, non-submerged combustion melters. Attempts to reduce the foam through SCM process adjustments, for example to produce good glass fibers from an SCM, have not met with complete success in reducing foam from an SCM to an acceptable amount. On the other hand, for production of foam glass products from an SCM, it may be preferred to maintain the bubbles in their entrained state.
The inventors herein have discovered that the size of bubbles collecting at the top surface of the molten glass from an SCM forming a foam layer, and the rate at which the bubbles burst upon reaching a clearly discernable glass surface, referred to herein as the “foam decay rate”, may be controlled in apparatus downstream of the SCM. To produce glass products having low or no voids, and for good heat penetration from heat sources over the foam and into the molten glass, the foam decay rate is controlled in apparatus downstream of the SCM to be as fast as possible. On the other hand, for production of foam glass products from an SCM, the foam decay rate in apparatus downstream of the SCM is controlled to be slow and the size of the bubbles within the foam may be influenced or controlled. A slower foam decay rate insures production of a foam glass product, all other parameters being equal, and control of the bubble size within the foam may enable production of foam glass products of specific strength, insulating properties, and/or density.
Various terms are used throughout this disclosure. “Submerged” as used herein means that combustion gases emanate from a combustion burner exit that is under the level of the molten glass, and “non-submerged” means that combustion gases do not emanate from combustion burner exits under the level of molten glass, whether in the SCM or downstream apparatus. Both submerged and non-submerged burners may be roof-mounted, floor-mounted, wall-mounted, or any combination thereof (for example, two floor mounted burners and one wall mounted burner). “SC” as used herein means “submerged combustion” unless otherwise specifically noted, and “SCM” means submerged combustion melter unless otherwise specifically noted.
The term “composition” includes one or more gases, one or more liquids or solids that may evolve a gas or become gaseous under the high temperature conditions associated with submerged combustion melting, one or more particulate solids, and combinations of thereof, including slurries, mixtures of a gas and solid particles, and the like.
The terms “foam” and “foamy” include froths, spume, suds, heads, fluffs, fizzes, lathers, effervesces, layer and the like. The term “bubble” means a thin, shaped, gas-filled film of molten glass. The shape may be spherical, hemispherical, rectangular, polyhedral, ovoid, and the like. The gas or “bubble atmosphere” in the gas-filled SC bubbles may comprise oxygen or other oxidants, nitrogen, combustion products (including but not limited to, carbon dioxide, carbon monoxide. NOx, SOx, H2S, and water), reaction products of glass-forming ingredients (for example, but not limited to, sand (primarily SiO2), clay, limestone (primarily CaCO3), burnt dolomitic lime, borax and boric acid, and the like. Bubbles may include solids particles, for example soot particles, either in the film, the gas inside the film, or both. The term “glass foam” means foam where the liquid film comprises molten glass. “Glass level” means the distance measured from the bottom of a downstream apparatus to the upper liquid level of the molten glass, and “foam level” means the distance measured from the top of the atmosphere above the foam layer to the upper surface of the foam layer. “Foam height” (equivalent to foam thickness) is the distance measured between the glass level and foam level.
As used herein the term “combustion” means deflagration-type combustion unless other types of combustion are specifically noted, such as detonation-type combustion. Deflagration is sub-sonic combustion that usually propagates through thermal conductivity; hot burning material heats the next layer of cold material and ignites it. Detonation is supersonic and primarily propagates through shock. As used herein the terms “combustion gases” and “combustion products” means substantially gaseous mixtures of combusted fuel, any excess oxidant, and combustion products, such as oxides of carbon (such as carbon monoxide, carbon dioxide), oxides of nitrogen, oxides of sulfur, and water, whether from deflagration, detonation, or combination thereof. Combustion products may include liquids and solids, for example soot and unburned or non-combusted fuels.
“Oxidant” as used herein includes air and gases having the same molar concentrations of oxygen and nitrogen as air (synthetic air), oxygen-enriched air (air having oxygen concentration greater than 21 mole percent), and “pure” oxygen, such as industrial grade oxygen, food grade oxygen, and cryogenic oxygen. Oxygen-enriched air may have 50 mole percent or more oxygen, and in certain embodiments may be 90 mole percent or more oxygen.
The term “fuel”, according to this disclosure, means a combustible composition comprising a major portion of, for example, methane, natural gas, liquefied natural gas, propane, hydrogen, steam-reformed natural gas, atomized hydrocarbon oil, combustible powders and other flowable solids (for example coal powders, carbon black, soot, and the like), and the like. Fuels useful in the disclosure may comprise minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid or particulate fuels. As used herein the term “fuel” includes gaseous fuels, liquid fuels, flowable solids, such as powdered carbon or particulate material, waste materials, slurries, and mixtures or other combinations thereof.
The sources of oxidant and fuel may be one or more conduits, pipelines, storage facility, cylinders, or, in embodiments where the oxidant is air, ambient air. Oxygen-enriched oxidants may be supplied from a pipeline, cylinder, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit such as a vacuum swing adsorption unit.
The term “downstream apparatus” means a container, channel or conduit defined at least by a floor and a wall structure extending upwards from the floor to form a space in which molten glass may be present, whether flowing or not. In certain embodiments the downstream apparatus will include a roof and a wall structure connecting the floor and roof. The downstream apparatus may have any operable cross-sectional shape (for example, but not limited to, rectangular, oval, circular, trapezoidal, hexagonal, and the like) and any flow path shape (for example, but not limited to, straight, zigzag, curved, and combinations thereof). In certain systems and methods the downstream apparatus may be a flow channel selected from the group consisting of a conditioning channel, a distribution channel, and a forehearth.
Downstream apparatus, as well as conduits used in burners and devices for delivery of compositions useful in systems and methods of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like. Suitable materials for the glass-contact refractory, which may be present in SC melters and flow channels, and refractory burner blocks (if used), include fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The particular system and method, downstream apparatus, burner geometry, composition delivery system, and type of glass to be produced may all dictate the choice of a particular material, among other parameters.
Certain submerged and non-submerged combustion burners, certain components in and/or protruding through one or more of the floor, roof, and sidewall structure configured to heat or maintaining temperature of the foamed glass, certain apparatus for delivering a composition through one or more apertures in the sidewall structure and/or the roof for admitting one or more compositions into the atmosphere, and certain portions of the sources of the compositions fluidly connected to the apertures useful in systems and methods of this disclosure may be fluid-cooled, and may include first and second (or more) concentric conduits. In the case of burners, the first conduit may be fluidly connected at one end to a source of fuel, the second conduit may be fluidly connected to a source of oxidant, and a third substantially concentric conduit may connect to a source of cooling fluid.
Certain systems of this disclosure may comprise one or more non-submerged burners. Suitable non-submerged combustion burners may comprise a fuel inlet conduit having an exit nozzle, the conduit and nozzle inserted into a cavity of a ceramic burner block, the ceramic burner block in turn inserted into either the roof or the wall structure, or both the roof and wall structure of the downstream apparatus.
In certain systems, one or more burners may be adjustable with respect to direction of flow of the combustion products. Adjustment may be via automatic, semi-automatic, or manual control. Certain system embodiments may comprise a burner mount that mounts the burner in the wall structure, roof, or floor of the downstream apparatus comprising a refractory, or refractory-lined ball joint. Other burner mounts may comprise rails mounted in slots in the wall or roof. In yet other embodiments the burners may be mounted outside of the downstream apparatus, on supports that allow adjustment of the combustion products flow direction. Useable supports include those comprising ball joints, cradles, rails, and the like.
In certain systems and methods of the present disclosure, the downstream apparatus may comprise a flow channel comprising a series of sections, and may comprise one or more skimmers and/or impingement (high momentum) burners, such as described in assignee's U.S. application Ser. No. 13/268,130, filed Oct. 7, 2011, now U.S. Pat. No. 9,021,838, and Ser. No. 13/493,170, now U.S. Pat. No. 8,707,739, filed Jun. 11, 2012. Certain systems and methods of the present disclosure may utilize measurement and control schemes such as described in assignee's application Ser. No. 13/493,219, filed Jun. 11, 2012, now U.S. Pat. No. 9,096,453, and/or feed batch densification systems and methods as described in assignee's application Ser. No. 13/540,704, filed Jul. 3, 2012, now U.S. Pat. No. 9,643,869. Certain systems and methods of the present disclosure may utilize one or more retractable devices for delivery of treating compositions such as disclosed in assignee's application Ser. No. 13/633,998, filed Oct. 3, 2012, now U.S. Pat. No. 8,973,405. Certain systems and methods of the present disclosure may utilize one or more nozzles for delivery of treating compositions such as disclosed in assignee's application Ser. No. 13/644,058, filed Oct. 3, 2012, now U.S. Pat. No. 9,492,831.
Certain systems and methods of this disclosure may be controlled by one or more controllers. For example, burner (flame) temperature may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, temperature of the effluent, pressure of the primary oxidant entering the burner, humidity of the oxidant, burner geometry, combustion ratio, and combinations thereof. Certain systems and methods of this disclosure may also measure and/or monitor feed rate of batch or other feed materials, such as glass batch, cullet, mat or wound roving and treatment compositions, mass of feed, and use these measurements for control purposes. Exemplary systems and methods of the disclosure may comprise a controller which receives one or more input parameters selected from temperature of melt, composition of bubbles and/or foam, height of foam layer, glass level, foam level, and combinations thereof, and may employ a control algorithm to control combustion temperature, flow rate and/or composition of compositions to control foam decay rate and/or glass foam bubble size, and other output parameters based on one or more of these input parameters.
Specific non-limiting system and method embodiments in accordance with the present disclosure will now be presented in conjunction with the attached drawing figures. The same numerals are used for the same or similar features in the various figures. In the views illustrated in the drawing figures, it will be understood in each case that the figures are schematic in nature, and certain conventional features may not be illustrated in all embodiments in order to illustrate more clearly the key features of each embodiment. The geometry of the downstream apparatus is illustrated generally the same in the various embodiments, but that of course is not necessary. Certain systems and methods may be described as comprising an SCM and one or more downstream apparatus receiving flow of molten glass and foam from the SCM.
Turning now to
In embodiments such as embodiments 400 and 500, the chemical may be added to the water vapor spray as a slurry, emulsion, or dissolved in the water, or the chemical may be added to a flow of steam. The chemical may comprise one or more compounds selected from the group consisting of alkali metal chalcogens, alkali metal carbonates, and alkaline earth carbonates. Alums are not preferred for glass chemistry reasons. The addition of a trivalent metal would not serve well in the quick incorporation into the glass structure and could have a large chemical reducing effect on the glass.
Turning now to
Method embodiment 1000 of
Method embodiment 1100 illustrated in
Method embodiment 1200 illustrated in
Method embodiment 1300 illustrated in
SC burners in an SCM produce a turbulent melt comprising bubbles having a bubble atmosphere. In general the atmosphere of the bubbles is about the same from bubble to bubble, but that is not necessarily so. One or more burners in SCM 2 may be oxy-fuel burners. SCM 2 may receive numerous feeds through one or more inlet ports, and batch feeders maybe provided. Other feeds are possible, such as glass mat waste, wound roving, waste materials, and the like, such as disclosed in assignee's U.S. Pat. No. 8,650,914.
Many of the system and method embodiments of the present disclosure may include valves and appropriate valve controls (not illustrated) to pulse or oscillate flow of fuel and/or oxidant to burners. The pulsing may be random or non-random, and may provide certain benefits, such as reduced NOx emissions. The principle and the various methods of implementation are broadly described in U.S. Pat. Nos. 4,846,665, 5,302,111, and 5,522,721 and U.S. Publication No. 2006/0177785. The main idea is to pulse the flow of fuel, or oxidant being supplied to at least one burner of the furnace, to generate successive fuel-rich and fuel-lean zones in a flame. In certain embodiments, the flow rate of a main or primary oxidant is controlled by a main oxidant flow rate control unit, and oscillating combustion is generated by oscillating the fuel flow with an oscillating valve and combusting the oscillating fuel with the main oxidant adjacent the burner to produce combustion products.
In embodiments employing water vapor injectors and/or steam lances, and embodiments where gaseous, liquid, or solid compositions, or mixtures thereof, are injected (not dropped) into atmosphere 18, one or more nozzles may extend through respective apertures in the downstream apparatus, and be supplied by respective supply conduits. Suitable nozzles for use in systems of the present disclosure include single-fluid nozzles and multiple-fluid nozzles, and representative examples are schematically illustrated in Applicant's application Ser. No. 13/644,058, filed Oct. 3, 2012, now U.S. Pat. No. 9,492,831. Suitable single-fluid nozzles may include, but are not limited to, plain orifice type nozzles, which includes a nozzle body defining a cavity, and having an exit end comprising an orifice. Suitable single-fluid nozzles may also include shaped orifice nozzles comprising a nozzle body and cavity, and further comprising a shaped body portion defining a central passage leading fluid or slurry to a hemispherical inlet that expands into a V-notch exit, which then routes fluid or slurry through a cylindrical region, and finally out exit end. The hemispherical shaped inlet and a “V” notched outlet to cause the flow to spread out on the axis of the V notch and produce a relatively flat fan spray.
Other suitable single-fluid nozzles may include surface impingement fluid nozzles comprising two or more simple orifices which route fluid or slurry to impinge on a conical impact surface or other shaped impact surface and form a conical spray. A surface impingement nozzle causes a stream of liquid to impinge on a surface resulting in a sheet of liquid that breaks up into drops. Yet other suitable single-fluid nozzles may include pressure-swirl spray nozzles comprising a central conduit more or less concentric with a nozzle body and forming there between a nozzle annulus. A nozzle insert includes one or more-small diameter passages that route fluid or slurry into a central chamber defined by a nozzle head. One or more swirl plates provide a swirling action to the fluid or slurry passing through this nozzle as the fluid or slurry passes through an exit orifice. The spray formed may be a more focused spray than that formed from other nozzles. Pressure-swirl spray nozzles are high-performance (small drop size) devices. The stationary core induces a rotary fluid motion that causes the swirling of the fluid in the swirl chamber. A film is discharged from the perimeter of the outlet orifice producing a characteristic hollow cone spray pattern. Air or other surrounding gas is drawn inside the swirl chamber to form an air core within the swirling liquid. Many configurations of fluid inlets are used to produce this hollow cone pattern depending on the nozzle capacity and materials of construction. A spill-return pressure-swirl single-fluid nozzle is one variety of pressure swirl nozzle includes a controlled return of fluid from the swirl chamber to the feed system. This allows the nozzle pressure drop to remain high while allowing a wide range of operating rates. Solid cone nozzles produce a “solid” cone spray of fluid or slurry by employing a vane-shaped internal region. A swirling liquid motion is induced with the vane structure, however; the discharge flow fills the entire outlet orifice. For the same capacity and pressure drop, a full cone nozzle will produce a larger drop size than a hollow cone nozzle. The coverage is the desired feature for such a nozzle, which is often used for applications to distribute fluid over an area. Compound nozzles, which include two or more types of nozzles, may also be suitable. Compound nozzles allow control of drop size and spray coverage angle.
Suitable multiple-fluid nozzles include both internal-mix multiple fluid nozzles and external-mix multiple-fluid nozzles. One example of an internal-mix multiple fluid nozzle comprises a nozzle body, a central conduit, forming there between a nozzle annulus through which flows a first fluid or slurry. A second fluid or slurry flows though a central passage of the central conduit. The central conduit includes a tapered section, followed by a cylindrical end section that forms an exit for the central passage. The nozzle body also has a tapered section, which forces the first fluid or slurry to change course and mix with the second fluid or slurry in an internal mixing region. Suitable external-mix multiple-fluid nozzles have similar structure to internal-mix multiple-fluid nozzles, except that central conduit is moved so that its exit orifice is generally co-planar with the exit end of nozzle body, forming an external mixing zone where the first and second fluids or slurries may mix.
As used herein the term “nozzle” includes atomizers, and suitable atomizers that may be used in systems and methods of the present disclosure include, but are not limited to, rotary atomizers, electrostatic atomizers, and ultrasonic atomizers. One example of a rotary atomizer is described in U.S. Pat. No. 6,578,779. Rotary atomizers use a high speed rotating disk, cup or wheel to discharge liquid at high speed to the perimeter, forming a hollow cone spray. The rotational speed controls the drop size. Electrostatic charging of sprays may be useful for high transfer efficiency. The charging is typically at high voltage (20 to 40 kV) but low current. An example of such a device is illustrated is U.S. Pat. No. 5,011,086.
Ultrasonic atomizer spray nozzles utilize high frequency (20 kHz to 50 kHz) vibration to produce narrow drop-size distribution and low velocity spray from a liquid. The vibration of a piezoelectric crystal causes capillary waves on the nozzle surface liquid film. An example of such a device illustrated schematically in U.S. Pat. No. 4,723,708.
Fluids or slurries may be supplied from one or more supply tanks or containers which are fluidly and mechanically connected to the downstream apparatus via one or more conduits, which may or may not include flow control valves. One or more of the conduits may be flexible metal hoses, but they may also be solid metal, ceramic, or ceramic-lined metal conduits. Any or all of the conduits may include a flow control valve, which may be adjusted to shut off flow through a particular conduit.
In order to determine which of the many foam embodiments may work best for any given situation to stabilize or de-stabilize bubbles in the glass foam may take a small amount of experimentation, but the degree of experimentation is not considered to be extensive or undue. Basically, the molten mass of glass and foam is allowed to enter the downstream apparatus, and one or more of the glass foam stabilization or de-stabilization techniques begun soon thereafter, and tuned to achieve the greatest stabilization or de-stabilization effect on the foam.
In systems and methods employing dropping of particulate solids onto the glass foam, such as embodiment 700 of
Certain systems and methods of the present disclosure may be combined with other strategies for foam de-stabilization, if that is the desired end. For example, adding nitrogen as a treating composition to the molten mass of glass and bubbles in the downstream apparatus may tend to make bubbles in glass foam 16 less stable when there is the presence of a high moisture atmosphere in the downstream apparatus. A high moisture atmosphere may exist in the downstream apparatus for example when one or more high momentum burners (whether oxy/fuel or not) are used as impingement burners in the downstream apparatus to impinge on glass foam 16. The use of one or more high momentum impingement burners (whether oxy/fuel or not) in a downstream flow channel is described in assignee's U.S. Pat. No. 8,707,739.
Measuring effectiveness of the foam stabilization or de-stabilization systems and methods described herein may generally be made by taking samples of the molten mass of glass and counting bubbles and their size in the molten mass, or a solidified or partially solidified sample thereof, using the naked eye. Another naked eye measurement may simply be comparing an acceptable glass to a glass sample made using a system and method of the present disclosure, and making a naked eye comparison. More sophisticated methods and equipment may certainly be used, such as image analysis using computers to measure size, size distribution and quantity of bubbles (or other parameters) within a high-resolution photograph or micrograph of the material to be analyzed. For example, companies such as Glass Service market methods and equipment for such measurements. The glass melting method, as well as phenomena within the melt, may be continuously observed, recorded and evaluated using a high temperature observation furnace equipped with a special silica observation crucible. This equipment may be further coupled with image analysis equipment to provide easy manipulation of recorded data. For example, in a “melt test”, the objective is to evaluate the fining characteristics of differing batch compositions. The area of the recorded images occupied by inhomogeneities (bubbles), bubble size distribution, bubble number, as well as bubble growth rates vs. melting time, may be evaluated to provide comparison between individual batches. The records of the melting course may be provided in the form of video files, which may be displayed on a personal computer, handheld computer, or other viewer. Bubble growth rate, or shrinkage rate, or rate of disappearance measurements may be based on direct observation and recording of bubble sizes depending on time. It is possible to keep bubbles suspended in the melt for hours by the developed “shuttle” method.
In embodiments of the present disclosure, a reduction of 5 percent, or 10 percent, or 20 percent, or 30 percent or more of foam may be acceptable. In other embodiments, nothing short of complete or substantially complete foam or bubble removal will suffice, in other words 90 percent, or 95 percent, or 99 percent, or even 99.9 percent reduction in foam and bubbles.
The downstream apparatus may include one or more bushings (not illustrated) for example when producing glass fiber (not illustrated). Downstream apparatus for use in systems and methods of the present disclosure may comprise a roof, floor and sidewall structure comprised of an outer metal shell, non-glass-contact brick or other refractory wall, and glass-contact refractory for those portions expected to be in contact with molten glass. Downstream apparatus may include several sections arranged in series, each section having a roof, floor, and sidewall structure connecting its roof and floor, and defining a flow channel for conditioning molten glass flowing there through. The sections may be divided by a series of skimmers, each extending generally substantially vertically downward a portion of a distance between the roof and floor of the channel, with a final skimmer positioned between a last channel section and a forehearth. The number of sections and the number of skimmers may each be more or less than two. The downstream apparatus may be rectangular as illustrated in the various figures, or may be a shape such as a generally U-shaped or V-shaped channel or trough of refractory material supported by a metallic superstructure.
The flow rate of the molten glass through the downstream apparatus (unless it is a holding container without flow) will depend on many factors, including the geometry and size of the SCM and downstream apparatus, temperature of the melt, viscosity of the melt, and like parameters, but in general the flow rate of molten glass may range from about 0.5 lb./min to about 5000 lbs./min or more (about 0.23 kg/min to about 2300 kg/min or more), or from about 10 lbs./min to about 500 lbs./min (from about 4.5 kg/min to about 227 kg/min), or from about 100 lbs./min to 300 lbs./min (from about 45 kg/min to about 136 kg/min).
Certain embodiment may use low momentum burners. Low momentum burners useful in systems and methods of this disclosure may include some of the features of those disclosed in assignee's U.S. Pat. No. 9,021,838. For low momentum burners using natural gas as fuel, the burners may have a fuel firing rate ranging from about 0.4 to about 40 scfh (from about 11 L/hr. to about 1,120 L/hr.); an oxygen firing rate ranging from about 0.6 to about 100 scfh (from about 17 L/hr. to about 2,840 L/hr.); a combustion ratio ranging from about 1.5 to about 2.5; nozzle velocity ratio (ratio of velocity of fuel to oxygen at the fuel nozzle tip) ranging from about 0.5 to about 2.5; a fuel velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second) and an oxidant velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second).
Those of skill in this art will readily understand the need for, and be able to construct suitable fuel supply conduits and oxidant supply conduits, as well as respective flow control valves, threaded fittings, quick connect/disconnect fittings, hose fittings, and the like.
Submerged combustion melters may be fed a variety of feed materials. The initial raw material may include any material suitable for forming molten glass such as, for example, limestone, glass, sand, soda ash, feldspar and mixtures thereof. A glass composition for producing glass fibers known as “E-glass” typically includes 52-56% SiO2, 12-16% Al2O3, 0-0.8% Fe2O3, 16-25% CaO, 0-6% MgO, 0-10% B2O3, 0-2% Na2O+K2O, 0-1.5% TiO2 and 0-1% F2. Other glass compositions may be used, such as those described in assignee's published U.S. applications 20070220922 and 20080276652. The initial raw material to provide these glass compositions can be calculated in known manner from the desired concentrations of glass components, molar masses of glass components, chemical formulas of batch components, and the molar masses of the batch components. Typical E-glass batches include those reproduced in Table 1, borrowed from the 20070220922 application. Notice that during glass melting, carbon dioxide (from lime) and water (borax) evaporate. The initial raw material can be provided in any form such as, for example, relatively small particles.
SCMs may also be fed by one or more roll stands, which in turn supports one or more rolls of glass mat, as described in assignee's U.S. Pat. No. 8,650,914, incorporated herein by reference. In certain embodiments powered nip rolls may include cutting knives or other cutting components to cut or chop the mat (or roving, in those embodiments processing roving) into smaller length pieces prior to entering the SCM. Also provided in certain embodiments may be a glass batch feeder. Glass batch feeders are well-known in this art and require no further explanation.
Downstream apparatus may include refractory fluid-cooled panels. Liquid-cooled panels may be used, having one or more conduits or tubing therein, supplied with liquid through one conduit, with another conduit discharging warmed liquid, routing heat transferred from inside the melter to the liquid away from the melter. Liquid-cooled panels may also include a thin refractory liner, which minimizes heat losses from the melter, but allows formation of a thin frozen glass shell to form on the surfaces and prevent any refractory wear and associated glass contamination. Other useful cooled panels include air-cooled panels, comprising a conduit that has a first, small diameter section, and a large diameter section. Warmed air transverses the conduits such that the conduit having the larger diameter accommodates expansion of the air as it is warmed. Air-cooled panels are described more fully in U.S. Pat. No. 6,244,197. In certain embodiments, the refractory fluid cooled-panels are cooled by a heat transfer fluid selected from the group consisting of gaseous, liquid, or combinations of gaseous and liquid compositions that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for air treated to remove moisture), inert inorganic gases, such as nitrogen, argon, and helium, inert organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from inert liquids that may be organic, inorganic, or some combination thereof; for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include steam (if cooler than the oxygen manifold temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons.
Certain embodiments may comprise a method control scheme for the downstream apparatus. For example, as explained in U.S. Pat. No. 8,650,914, a master method controller may be configured to provide any number of control logics, including feedback control, feed-forward control, cascade control, and the like. The disclosure is not limited to a single master method controller, as any combination of controllers could be used. The term “control”, used as a transitive verb, means to verify or regulate by comparing with a standard or desired value. Control may be closed loop, feedback, feed-forward, cascade, model predictive, adaptive, heuristic and combinations thereof. The term “controller” means a device at least capable of accepting input from sensors and meters in real time or near-real time, and sending commands directly to one or more foam de-stabilization elements, and/or to local devices associated with foam de-stabilization elements able to accept commands. A controller may also be capable of accepting input from human operators; accessing databases, such as relational databases; sending data to and accessing data in databases, data warehouses or data marts; and sending information to and accepting input from a display device readable by a human. A controller may also interface with or have integrated therewith one or more software application modules, and may supervise interaction between databases and one or more software application modules. The controller may utilize Model Predictive Control (MPC) or other advanced multivariable control methods used in multiple input/multiple output (MIMO) systems. As mentioned previously, the methods of assignee's U.S. Pat. No. 8,973,400, using the vibrations and oscillations of the melter itself, may prove useful predictive control inputs.
The downstream apparatus floors and sidewall structures may include a glass-contact refractory lining. The glass-contact lining may be 1 centimeter, 2 centimeters, 3 centimeters or more in thickness, however, greater thickness may entail more expense without resultant greater benefit. The refractory lining may be one or multiple layers. Glass-contact refractory used in downstream apparatus described herein may be cast concretes such as disclosed in U.S. Pat. No. 4,323,718. Two cast concrete layers are described in the '718 patent, the first being a hydraulically setting insulating composition (for example, that known under the trade designation CASTABLE BLOC-MIX-G, a product of Fleischmann Company, Frankfurt/Main, Federal Republic of Germany). This composition may be poured in a form of a wall section of desired thickness, for example a layer 5 cm thick, or 10 cm, or greater. This material is allowed to set, followed by a second layer of a hydraulically setting refractory casting composition (such as that known under the trade designation RAPID BLOCK RG 158, a product of Fleischmann company, Frankfurt/Main, Federal Republic of Germany) may be applied thereonto. Other suitable materials for the downstream apparatus, components that require resistance to high temperatures, such as particle guns, rotating blades and paddles, and refractory block burners (if used) are fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The choice of a particular material is dictated among other parameters by the geometry of the downstream apparatus and the foam de-stabilization equipment used, and the type of glass to be produced.
Laboratory testing was carried out to evaluate use of atmospheres of different compositions to influence the foam decay rate and the size of the bubbles within the glass foam layer of glass compositions produced from an SCM. Nine trial conditions were tested, the details of which are detailed herein. Videos were made of all trials and bubble size measurements were made of the noted trials.
The experiments were conducted by placing 20 grams of SCM melter discharge (E-glass) into a quartz tube and placing the tube into a pre-heated furnace at 1375° C. The atmosphere inside of the tube, considered to be a reasonable simulation of the conditions inside the atmosphere of an apparatus downstream of an SCM, was controlled by adding gases of specific mixture from a gas mixing and flow control station to the top of the tube. The tube was sealed with a high temperature refractory fiber so that the ambient air was sealed outside the tube and only the gases from the mixing and flow control station were allowed into the tube. The gases were discharged from the quartz tube through a small ceramic tube inserted through the fiber seal. Solid chemicals were added to (dropped onto) the foam surface through the gas discharge tube for the experiments for adding a solid to the foam surface.
The nine experimental cases are shown in Table 2.
Experiment 1, called the Base Case, simulated the expected atmosphere above the SCM glass in a refractory channel downstream of the SCM, where the channel is heated with oxy-fuel firing with natural gas, providing an atmosphere of CO2, O2, and water vapor in the concentrations indicated in Table 2. Videos were made of each experimental trial case and measurements completed for the amount of clear glass at the bottom of the glass and the height of foam on top of the glass. Changes in these measurements over the duration of each test give the rate of fining and foam decay rate. Bubbling SO2 gas through the glass or adding SO2 to the atmosphere above the glass had little effect on the foam decay, and therefore was deemed to stabilize the foam FIGS. 16A-F, 17A-C, and 18A-E illustrate graphically some experimental results in accordance with these experiments.
Example 1 (Dry Air), referencing
Example 2 (Wet Air), referencing
Example 7 (Base Case/fully saturated), referencing
Examples 3 and 4, Influence of Sulfur Dioxide Gas, referencing
Examples 5 and 6, Influence of Sodium Sulfate and Cullet, referencing
In Example 6, where cullet was first applied to the foam, then sodium sulfate, the following observations were made: 1) the addition of cullet resulted in disturbance of the foam, and the foam level decreased; 2) with addition of pure sodium sulfate the foam disappeared almost instantaneously (within 2-3 minutes, perhaps after melting of the sodium sulfate, compare
Those having ordinary skill in this art will appreciate that there are many possible variations of the systems and methods described herein, and will be able to devise alternatives and improvements to those described herein that are nevertheless considered to be within the claims.
This application is a division of U.S. application Ser. No. 13/644,039, now U.S. Pat. No. 8,991,215, incorporated herein by reference, and may be related to Applicant's United States non-provisional patent applications which are all incorporated by reference herein: application Ser. No. 12/817,754, filed Jun. 17, 2010, now U.S. Pat. No. 8,769,992; application Ser. No. 13/267,990, now U.S. Pat. No. 8,997,525, Ser. No. 13/268,028, now U.S. Pat. No. 8,875,544, Ser. No. 13/268,098, now U.S. Pat. No. 8,707,740, and Ser. No. 13/268,130, now U.S. Pat. No. 9,021,838, all four filed Oct. 7, 2011; application Ser. No. 13/458,211, filed Apr. 27, 2012, now U.S. Pat. No. 9,145,319; application Ser. No. 13/493,170, now U.S. Pat. No. 8,707,739 and Ser. No. 13/493,219, now U.S. Pat. No. 9,096,453, both filed Jun. 11, 2012; application Ser. No. 13/540,771, filed Jul. 3, 2012, now U.S. Pat. No. 9,032,760; application Ser. No. 13/644,058, filed Oct. 3, 2012, now U.S. Pat. No. 9,492,831; application Ser. No. 13/644,104, filed Oct. 3, 2012, now U.S. Pat. No. 9,096,452; application Ser. No. 13/633,979, filed Oct. 3, 2012, now U.S. Pat. No. 9,533,905; and application Ser. No. 13/633,998, filed Oct. 3, 2012, now U.S. Pat. No. 8,973,405.
Number | Name | Date | Kind |
---|---|---|---|
1716433 | McKelvey et al. | Jun 1929 | A |
1989103 | McKelvey et al. | Jan 1935 | A |
2174533 | See et al. | Oct 1939 | A |
2118479 | McCaskey | Jan 1940 | A |
2269459 | Kleist | Jan 1942 | A |
2432942 | See et al. | Dec 1947 | A |
2455907 | Slayter | Jan 1948 | A |
2679749 | Poole | Jun 1954 | A |
2718096 | Henry et al. | Sep 1955 | A |
2773545 | Petersen | Dec 1956 | A |
2781756 | Kobe | Feb 1957 | A |
2878644 | Fenn | Mar 1959 | A |
2890166 | Heinze | Jun 1959 | A |
2902029 | Hill | Sep 1959 | A |
2981250 | Stewart | Apr 1961 | A |
3020165 | Davis | Feb 1962 | A |
3056283 | Tiede | Oct 1962 | A |
3073683 | Switzer et al. | Jan 1963 | A |
3084392 | Labino | Apr 1963 | A |
3088812 | Bitterlich et al. | May 1963 | A |
3104947 | Switzer et al. | Sep 1963 | A |
3160578 | Saxton et al. | Dec 1964 | A |
3165452 | Williams | Jan 1965 | A |
3170781 | Keefer | Feb 1965 | A |
3174820 | See et al. | Mar 1965 | A |
3215189 | Bauer | Nov 1965 | A |
3224855 | Plumat | Dec 1965 | A |
3237929 | Plumat et al. | Mar 1966 | A |
3241548 | See et al. | Mar 1966 | A |
3245769 | Eck et al. | Apr 1966 | A |
3248205 | Dolf et al. | Apr 1966 | A |
3260587 | Dolf et al. | Jul 1966 | A |
3268313 | Burgman et al. | Aug 1966 | A |
3285834 | Guerrieri et al. | Nov 1966 | A |
3294512 | Penberthy | Dec 1966 | A |
3325298 | Brown | Jun 1967 | A |
3385686 | Plumat et al. | May 1968 | A |
3402025 | Garrett et al. | Sep 1968 | A |
3407805 | Bougard | Oct 1968 | A |
3407862 | Mustian, Jr. | Oct 1968 | A |
3421873 | Burgman et al. | Jan 1969 | A |
3432399 | Schutt | Mar 1969 | A |
3445214 | Oremesher | May 1969 | A |
3498779 | Hathaway | Mar 1970 | A |
3510393 | Burgman et al. | May 1970 | A |
3519412 | Clink | Jul 1970 | A |
3525674 | Barnebey | Aug 1970 | A |
3533770 | Adler et al. | Oct 1970 | A |
3563683 | Hess | Feb 1971 | A |
3592151 | Webber | Jul 1971 | A |
3592623 | Shepherd | Jul 1971 | A |
3606825 | Johnson | Sep 1971 | A |
3617234 | Hawkins et al. | Nov 1971 | A |
3627504 | Johnson et al. | Dec 1971 | A |
3692017 | Glachant et al. | Sep 1972 | A |
3717139 | Guillet et al. | Feb 1973 | A |
3738792 | Feng | Jun 1973 | A |
3746527 | Knavish et al. | Jul 1973 | A |
3747588 | Booth | Jul 1973 | A |
3754879 | Phaneuf | Aug 1973 | A |
3756800 | Phaneuf | Sep 1973 | A |
3763915 | Perry et al. | Oct 1973 | A |
3764287 | Brocious | Oct 1973 | A |
3771988 | Starr | Nov 1973 | A |
3818893 | Kataoka et al. | Jun 1974 | A |
3835909 | Douglas et al. | Sep 1974 | A |
3840002 | Douglas et al. | Oct 1974 | A |
3856496 | Nesbitt et al. | Dec 1974 | A |
3885945 | Rees et al. | May 1975 | A |
3907585 | Francel et al. | Sep 1975 | A |
3913560 | Lazarre et al. | Oct 1975 | A |
3951635 | Rough | Apr 1976 | A |
3976464 | Wardlaw | Aug 1976 | A |
4001001 | Knavish et al. | Jan 1977 | A |
4004903 | Daman et al. | Jan 1977 | A |
4083711 | Jensen | Apr 1978 | A |
4110098 | Mattmuller | Aug 1978 | A |
4153438 | Stream | May 1979 | A |
4185982 | Schwenninger | Jan 1980 | A |
4203761 | Rose | May 1980 | A |
4205966 | Horikawa | Jun 1980 | A |
4226564 | Takahashi et al. | Oct 1980 | A |
4238226 | Sanzenbacher et al. | Dec 1980 | A |
4249927 | Fukuzaki et al. | Feb 1981 | A |
4270740 | Sanzenbacher et al. | Jun 1981 | A |
4282023 | Hammel et al. | Aug 1981 | A |
4303435 | Sleighter | Dec 1981 | A |
4309204 | Brooks | Jan 1982 | A |
4323718 | Buhring et al. | Apr 1982 | A |
4349376 | Dunn et al. | Sep 1982 | A |
4360373 | Pecoraro | Nov 1982 | A |
4397692 | Ramge et al. | Aug 1983 | A |
4406683 | Demarest | Sep 1983 | A |
4413882 | Bailey et al. | Nov 1983 | A |
4424071 | Steitz et al. | Jan 1984 | A |
4432780 | Propster et al. | Feb 1984 | A |
4488537 | Laurent | Dec 1984 | A |
4539034 | Hanneken | Sep 1985 | A |
4542106 | Sproull | Sep 1985 | A |
4545800 | Won et al. | Oct 1985 | A |
4626199 | Bounini | Dec 1986 | A |
4632687 | Kunkle et al. | Dec 1986 | A |
4634461 | Demarest, Jr. et al. | Jan 1987 | A |
4657586 | Masterson et al. | Apr 1987 | A |
4723708 | Berger et al. | Feb 1988 | A |
4735642 | Jensen et al. | Apr 1988 | A |
4738938 | Kunkle et al. | Apr 1988 | A |
4758259 | Jensen | Jul 1988 | A |
4798616 | Knavish et al. | Jan 1989 | A |
4814387 | Donat | Mar 1989 | A |
4816056 | Tsai et al. | Mar 1989 | A |
4877436 | Sheinkop | Oct 1989 | A |
4882736 | Pieper | Nov 1989 | A |
4886539 | Gerutti et al. | Dec 1989 | A |
4919700 | Pecoraro et al. | Apr 1990 | A |
4927886 | Backderf et al. | May 1990 | A |
4953376 | Merlone | Sep 1990 | A |
5011086 | Sonnleitner | Apr 1991 | A |
5032230 | Shepherd | Jul 1991 | A |
5052874 | Johanson | Oct 1991 | A |
5062789 | Gitman | Nov 1991 | A |
5097802 | Clawson | Mar 1992 | A |
5168109 | Backderf et al. | Dec 1992 | A |
5169424 | Grinnen et al. | Dec 1992 | A |
5199866 | Joshi et al. | Apr 1993 | A |
5204082 | Schendel | Apr 1993 | A |
5299929 | Yap | Apr 1994 | A |
5360171 | Yap | Nov 1994 | A |
5374595 | Dumbaugh et al. | Dec 1994 | A |
5405082 | Brown et al. | Apr 1995 | A |
5449286 | Snyder et al. | Sep 1995 | A |
5473885 | Hunter, Jr. et al. | Dec 1995 | A |
5483548 | Coble | Jan 1996 | A |
5490775 | Joshi et al. | Feb 1996 | A |
5522721 | Drogue et al. | Jun 1996 | A |
5545031 | Joshi et al. | Aug 1996 | A |
5575637 | Slavejkov et al. | Nov 1996 | A |
5606965 | Panz et al. | Mar 1997 | A |
5613994 | Muniz et al. | Mar 1997 | A |
5615668 | Panz et al. | Apr 1997 | A |
5636623 | Panz et al. | Jun 1997 | A |
5672827 | Jursich | Sep 1997 | A |
5713668 | Lunghofer et al. | Feb 1998 | A |
5718741 | Hull et al. | Feb 1998 | A |
5736476 | Warzke et al. | Apr 1998 | A |
5743723 | Iatrides et al. | Apr 1998 | A |
5765964 | Calcote et al. | Jun 1998 | A |
5814121 | Travis | Sep 1998 | A |
5829962 | Drasek et al. | Nov 1998 | A |
5833447 | Bodelin et al. | Nov 1998 | A |
5849058 | Takeshita et al. | Dec 1998 | A |
5863195 | Feldermann | Jan 1999 | A |
5887978 | Lunghofer et al. | Mar 1999 | A |
5944864 | Hull et al. | Aug 1999 | A |
5954498 | Joshi et al. | Sep 1999 | A |
5975886 | Phillippe | Nov 1999 | A |
5979191 | Jian | Nov 1999 | A |
5984667 | Phillippe et al. | Nov 1999 | A |
5993203 | Koppang | Nov 1999 | A |
6029910 | Joshi et al. | Feb 2000 | A |
6036480 | Hughes et al. | Mar 2000 | A |
6039787 | Edlinger | Mar 2000 | A |
6045353 | VonDrasek et al. | Apr 2000 | A |
6068468 | Phillipe et al. | May 2000 | A |
6071116 | Phillipe et al. | Jun 2000 | A |
6074197 | Philippe | Jun 2000 | A |
6077072 | Marin et al. | Jun 2000 | A |
6085551 | Pieper et al. | Jul 2000 | A |
6109062 | Richards | Aug 2000 | A |
6113389 | Joshi et al. | Sep 2000 | A |
6116896 | Joshi et al. | Sep 2000 | A |
6123542 | Joshi et al. | Sep 2000 | A |
6126438 | Joshi et al. | Oct 2000 | A |
6154481 | Sorg et al. | Nov 2000 | A |
6156285 | Adams et al. | Dec 2000 | A |
6171100 | Joshi et al. | Jan 2001 | B1 |
6178777 | Chenoweth | Jan 2001 | B1 |
6183848 | Turner et al. | Feb 2001 | B1 |
6210151 | Joshi et al. | Apr 2001 | B1 |
6210703 | Novich | Apr 2001 | B1 |
6237369 | LeBlanc et al. | May 2001 | B1 |
6241514 | Joshi et al. | Jun 2001 | B1 |
6244197 | Coble | Jun 2001 | B1 |
6244857 | VonDrasek et al. | Jun 2001 | B1 |
6247315 | Marin et al. | Jun 2001 | B1 |
6250136 | Igreja | Jun 2001 | B1 |
6250916 | Phillippe et al. | Jun 2001 | B1 |
6274164 | Novich | Aug 2001 | B1 |
6276924 | Joshi et al. | Aug 2001 | B1 |
6276928 | Joshi et al. | Aug 2001 | B1 |
6293277 | Panz et al. | Sep 2001 | B1 |
6314760 | Chenoweth | Nov 2001 | B1 |
6314896 | Marin et al. | Nov 2001 | B1 |
6332339 | Kawaguchi et al. | Dec 2001 | B1 |
6338337 | Panz et al. | Jan 2002 | B1 |
6344747 | Lunghofer et al. | Feb 2002 | B1 |
6357264 | Richards | Mar 2002 | B1 |
6386271 | Kawamoto et al. | May 2002 | B1 |
6418755 | Chenoweth | Jul 2002 | B2 |
6422041 | Simpson et al. | Jul 2002 | B1 |
6454562 | Joshi et al. | Sep 2002 | B1 |
6460376 | Jeanvoine et al. | Oct 2002 | B1 |
6536238 | Kawaguchi et al. | Mar 2003 | B2 |
6536651 | Ezumi et al. | Mar 2003 | B2 |
6558606 | Kulkarni et al. | May 2003 | B1 |
6578779 | Dion | Jun 2003 | B2 |
6660106 | Babel et al. | Dec 2003 | B1 |
6694791 | Johnson et al. | Feb 2004 | B1 |
6701617 | Li et al. | Mar 2004 | B2 |
6705118 | Simpson et al. | Mar 2004 | B2 |
6708527 | Ibarlucea et al. | Mar 2004 | B1 |
6711942 | Getman et al. | Mar 2004 | B2 |
6715319 | Barrow et al. | Apr 2004 | B2 |
6722161 | LeBlanc | Apr 2004 | B2 |
6736129 | Smith | May 2004 | B1 |
6739152 | Jeanvoine et al. | May 2004 | B2 |
6796147 | Borysowicz et al. | Sep 2004 | B2 |
6797351 | Kulkarni et al. | Sep 2004 | B2 |
6854290 | Hayes et al. | Feb 2005 | B2 |
6857999 | Jeanvoine | Feb 2005 | B2 |
6883349 | Jeanvoine | Apr 2005 | B1 |
6918256 | Gutmark et al. | Jul 2005 | B2 |
7027467 | Baev et al. | Apr 2006 | B2 |
7116888 | Aitken et al. | Oct 2006 | B1 |
7134300 | Hayes | Nov 2006 | B2 |
7168395 | Engdahl | Jan 2007 | B2 |
7231788 | Karetta et al. | Jun 2007 | B2 |
7273583 | Rue et al. | Sep 2007 | B2 |
7330634 | Aitken et al. | Feb 2008 | B2 |
7383698 | Ichinose et al. | Jun 2008 | B2 |
7392668 | Adams et al. | Jul 2008 | B2 |
7428827 | Maugendre et al. | Sep 2008 | B2 |
7441686 | Odajima et al. | Oct 2008 | B2 |
7448231 | Jeanvoine et al. | Nov 2008 | B2 |
7454925 | DeAngelis et al. | Nov 2008 | B2 |
7509819 | Baker et al. | Mar 2009 | B2 |
7565819 | Jeanvoine et al. | Jul 2009 | B2 |
7578988 | Jacques et al. | Aug 2009 | B2 |
7581948 | Borders et al. | Sep 2009 | B2 |
7622677 | Barberree et al. | Nov 2009 | B2 |
7624595 | Jeanvoine et al. | Dec 2009 | B2 |
7748592 | Koga et al. | Jul 2010 | B2 |
7767606 | McGinnis et al. | Aug 2010 | B2 |
7778290 | Sacks et al. | Aug 2010 | B2 |
7781562 | Crawford et al. | Aug 2010 | B2 |
7802452 | Borders et al. | Sep 2010 | B2 |
7832365 | Hannum et al. | Nov 2010 | B2 |
7845314 | Smith | Dec 2010 | B2 |
7855267 | Crawford et al. | Dec 2010 | B2 |
8033254 | Hannum et al. | Oct 2011 | B2 |
8279899 | Kitabayashi | Oct 2012 | B2 |
8285411 | Hull et al. | Oct 2012 | B2 |
20020086077 | Noller et al. | Jul 2002 | A1 |
20020134112 | Barrow et al. | Sep 2002 | A1 |
20020152770 | Becher et al. | Oct 2002 | A1 |
20020162358 | Jeanvoine et al. | Nov 2002 | A1 |
20020166343 | LeBlanc | Nov 2002 | A1 |
20030015000 | Hayes et al. | Jan 2003 | A1 |
20030029197 | Jeanvoine et al. | Feb 2003 | A1 |
20030037571 | Kobayashi et al. | Feb 2003 | A1 |
20040131988 | Baker et al. | Jul 2004 | A1 |
20040168474 | Jeanvoine et al. | Sep 2004 | A1 |
20040224833 | Jeanvoine et al. | Nov 2004 | A1 |
20050039491 | Maugendre et al. | Feb 2005 | A1 |
20050103323 | Engdal | May 2005 | A1 |
20050236747 | Rue et al. | Oct 2005 | A1 |
20060000239 | Jeanvoine et al. | Jan 2006 | A1 |
20060174655 | Kobayashi et al. | Aug 2006 | A1 |
20060233512 | Aitken et al. | Oct 2006 | A1 |
20060257097 | Aitken et al. | Nov 2006 | A1 |
20060287482 | Crawford et al. | Dec 2006 | A1 |
20060293494 | Crawford et al. | Dec 2006 | A1 |
20060293495 | Crawford et al. | Dec 2006 | A1 |
20070106054 | Crawford et al. | May 2007 | A1 |
20070122332 | Jacques et al. | May 2007 | A1 |
20070130994 | Boratav et al. | Jun 2007 | A1 |
20070212546 | Jeanvoine et al. | Sep 2007 | A1 |
20080035078 | Li | Feb 2008 | A1 |
20080227615 | McGinnis et al. | Sep 2008 | A1 |
20080256981 | Jacques et al. | Oct 2008 | A1 |
20080276652 | Bauer et al. | Nov 2008 | A1 |
20080293857 | Crawford et al. | Nov 2008 | A1 |
20090042709 | Jeanvoine et al. | Feb 2009 | A1 |
20090220899 | Spangelo et al. | Sep 2009 | A1 |
20100064732 | Jeanvoine et al. | Mar 2010 | A1 |
20100087574 | Crawford et al. | Apr 2010 | A1 |
20100089383 | Cowles | Apr 2010 | A1 |
20100120979 | Crawford et al. | May 2010 | A1 |
20100126218 | Shelestak | May 2010 | A1 |
20100143601 | Hawtof et al. | Jun 2010 | A1 |
20100227971 | Crawford et al. | Sep 2010 | A1 |
20100236323 | D'Angelico et al. | Sep 2010 | A1 |
20100300153 | Zhang et al. | Dec 2010 | A1 |
20100304314 | Rouchy et al. | Dec 2010 | A1 |
20100307196 | Richardson | Dec 2010 | A1 |
20100326137 | Rouchy et al. | Dec 2010 | A1 |
20110054091 | Crawford et al. | Mar 2011 | A1 |
20110061642 | Rouchy et al. | Mar 2011 | A1 |
20110088432 | Pumode et al. | Apr 2011 | A1 |
20110107670 | Galley et al. | May 2011 | A1 |
20110236846 | Rue et al. | Sep 2011 | A1 |
20110308280 | Huber | Dec 2011 | A1 |
20120077135 | Charbonneau | Mar 2012 | A1 |
20130072371 | Jansen | Mar 2013 | A1 |
20130086944 | Shock et al. | Apr 2013 | A1 |
20130086949 | Charbonneau | Apr 2013 | A1 |
20130086950 | Huber et al. | Apr 2013 | A1 |
20130086951 | Charbonneau et al. | Apr 2013 | A1 |
20130086952 | Charbonneau et al. | Apr 2013 | A1 |
20140090419 | Charbonneau et al. | Apr 2014 | A1 |
20140090423 | Charbonneau et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
44 24 814 | Jan 1996 | DE |
100 29 983 | Sep 2003 | DE |
10 2005 033330 | Aug 2006 | DE |
0 181 248 | Oct 1989 | EP |
1 337 789 | Dec 2004 | EP |
2 133 315 | Dec 2009 | EP |
1 986 966 | Apr 2010 | EP |
1 667 934 | Feb 2011 | EP |
2 397 446 | Dec 2011 | EP |
2 433 911 | Mar 2012 | EP |
2 578 548 | Apr 2013 | EP |
2 740 860 | Sep 1997 | FR |
191301772 | Jan 1914 | GB |
191407633 | Mar 1914 | GB |
164073 | May 1921 | GB |
1449439 | Sep 1976 | GB |
1208172 | Jul 1989 | IT |
2000 0050572 | May 2000 | KR |
114827 | Jul 1999 | RO |
9855411 | Dec 1998 | WO |
2008103291 | Aug 2008 | WO |
2009091558 | Jul 2009 | WO |
2010011701 | Jan 2010 | WO |
2010045196 | Apr 2010 | WO |
Entry |
---|
“Glass Technologies—The Legacy of a Successful Public-Private Partnership”, 2007, U.S. Department of Energy, pp. 1-32. |
Rue, “Energy-Efficient Glass Melting—The Next Generation Melter”, Gas Technology Institute, Project No. 20621 Final Report, 2008. |
“Glass Industry of the Future”, Sep. 30, 2008, United States Department of Energy, report 02-GA501 13-03. pp. 1-17. |
Stevenson, “Foam Engineering: Fundamentals and Applications”, Published 2012, Chapter 16, John Wiley & Sons, Ltd. |
Clare et al., “Density and Surface Tension of Borate Containing Silicate Glass Melts”, Glass Technology, 2003, 44(2), pp. 59-62. |
Seward, T.P., “Modeling of Glass Making Processes for Improved Efficiency”, DE-FG07-96EE41262, Final Report, Mar. 31, 2003. |
Conradt et al, Foaming behaviour on glass melts, Giastechniche Berichte 60 (1987) Nr. 6, S. 189-201 Abstract Fraunhofer ISC. |
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Isothermal Conditions”, Journal of the American Ceramic Society, 1991, 74(3), pp. 551-555. |
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Ramp Heating Conditions”, Journal of the American Ceramic Society, 1992, 75(11 ), pp. 2959-2963. |
Kim et al., “Effect of Furnace Atmosphere on E-glass Foaming”, Journal of Non-Crystalline Solids, 2006, 352(50/51 ), pp. 5287-5295. |
Van Limpt, et al., “Modelling the evaporation of boron species, Alkali-free borosilicate glass melts”, Glass Technology—European Journal of Glass Science and Technology, Part 1, Jun. 2011, 52(3), pp. 77-87. |
“AccuTru Temperature Measurement,” AccuTru International Corporation, 2003. |
“Glass Melting Technology—A Technical and Economic Assessment,” 2004, U.S. Department of Energy, pp. 1-292. |
“Canty Process Technology” brochure, date unknown, received in Apr. 2012 at American Institute of Chemical Engineers, Spring Meeting, Houston, TX. |
Olabin, V.M. et al, “Submerged Combustion Furnace for Glass Melts,” Ceramic Engineering and Science Proceedings, Jan. 1, 1996, pp. 84-92, vol. 17—No. 2, American Ceramic Society Inc., US. |
Higley, BA, Glass Melter System Technologies for Vitrification of High-Sodium Content Low-Level, Radioactive, Liquid Wastes—Phase I: SBS Demonstration With Simulated Low-Level Waste—Final Test Report, Westinghouse Hanford Company, 1995. |
Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet Apr. 2009, Department of Energy Environmental Management Consolidated Business Center by THOR Treatment Technologies, LLC. |
Number | Date | Country | |
---|---|---|---|
20150197440 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13644039 | Oct 2012 | US |
Child | 14625455 | US |