The present disclosure relates generally to turbine systems and, more particularly, to cooling transition nozzles that may be used with a turbine system.
At least some known gas turbine systems include a combustor that is distinct and separate from a turbine. During operation, some such turbine systems may develop leakages between the combustor and the turbine that may impact the emissions capability (i.e., NOx) of the combustor and/or may decrease the performance and/or efficiency of the turbine system.
To reduce such leakages, at least some known turbine systems include a plurality of seals between the combustor and the turbine. Over time, however, operating at increased temperatures may weaken the seals between the combustor and turbine. Maintaining such seals may be tedious, time-consuming, and/or cost-inefficient.
Additionally or alternatively, to increase emissions capability, at least some known turbine systems increase an operating temperature of the combustor. For example, flame temperatures within some known combustors may be increased to temperatures in excess of about 3900° F. However, increased operating temperatures may adversely limit a useful life of the combustor and/or turbine system.
In one aspect, a transition nozzle for use with a turbine assembly is provided. The transition nozzle includes a liner defining a combustion chamber therein, a wrapper circumscribing the liner such that a cooling duct is defined between the wrapper and the liner, a cooling fluid inlet configured to supply a cooling fluid to the cooling duct, and a plurality of ribs coupled between the liner and the wrapper such that a plurality of cooling channels are defined in the cooling duct.
In another aspect, a turbine assembly is provided. The turbine assembly includes a fuel nozzle configured to mix fuel and air to create a fuel and air mixture, and a transition nozzle oriented to receive the fuel and air mixture from the fuel nozzle. The transition nozzle includes a liner defining a combustion chamber therein, a wrapper circumscribing the liner such that a cooling duct is defined between the wrapper and the liner, a cooling fluid inlet configured to supply a cooling fluid to the cooling duct, and a plurality of ribs coupled between the liner and the wrapper such that a plurality of cooling channels are defined in the cooling duct.
In yet another aspect, a method of assembling a turbine assembly is provided. The method includes coupling a fuel nozzle to a transition nozzle, the transition nozzle including a liner defining a combustion chamber therein and a wrapper circumscribing the liner such that a cooling duct is defined between the wrapper and the liner, coupling a cooling fluid source in flow communication with a cooling fluid inlet configured to supply a cooling fluid to the cooling duct, and coupling a plurality of ribs between the liner and the wrapper such that a plurality of cooling channels are defined in the cooling duct.
The features, functions, and advantages described herein may be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments, further details of which may be seen with reference to the following description and drawings.
The systems and methods described herein facilitate cooling a transition nozzle. The transition nozzle includes a cooling duct defined between a liner and a wrapper. A cooling fluid source supplies a cooling fluid, such as steam, to the cooling duct. A plurality of ribs coupled between the liner and the wrapper define a plurality of cooling channels in the wrapper. As the cooling fluid flows through the cooling channels, it facilitates cooling the transition nozzle.
As used herein, the terms “axial” and “axially” refer to directions and orientations extending substantially parallel to a longitudinal axis of a combustor. As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention or the “exemplary embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
During operation, in the exemplary embodiment, ambient air is channeled through an air inlet (not shown) towards compressor 104. The ambient air is compressed by compressor 104 prior it to being directed towards combustor assembly 106. In the exemplary embodiment, compressed air is mixed with fuel, and the resulting fuel-air mixture is ignited within combustor assembly 106 to generate combustion gases that are directed towards turbine 108. Moreover, in the exemplary embodiment, turbine 108 extracts rotational energy from the combustion gases and rotates rotor shaft 110 to drive compressor 104. Furthermore, in the exemplary embodiment, turbine assembly 100 drives a load 112, such as a generator, coupled to rotor shaft 110. In the exemplary embodiment, load 112 is downstream of turbine assembly 100. Alternatively, load 112 may be upstream from turbine assembly 100.
In the exemplary embodiment, transition nozzle 200 includes a combustion liner portion 202, a transition portion 204, and a turbine nozzle portion 206. In the exemplary embodiment, at least transition portion 204 and nozzle portion 206 are integrated into a single, or unitary, component. Further, liner portion 202, transition portion 204, and nozzle portion 206 may all be integrated into a single, or unitary, component. For example, in one embodiment, transition nozzle 200 is cast and/or forged as a single piece.
In the exemplary embodiment, liner portion 202 defines a combustion chamber 208 therein. More specifically, in the exemplary embodiment, liner portion 202 is oriented to receive fuel and/or air at a plurality of different locations (not shown) spaced along an axial length of liner portion 202 to enable fuel flow to be locally controlled for each combustor (not shown) of combustor assembly 106. Thus, localized control of each combustor facilitates combustor assembly 106 to operate with a substantially uniform fuel-to-air ratio within combustion chamber 208. For example, in the exemplary embodiment, liner portion 202 receives a fuel and air mixture from at least one fuel nozzle 210 and receives fuel from a second stage fuel injector 212 that is downstream from fuel nozzle 210. In another embodiment, a plurality of individually-controllable nozzles are spaced along the axial length of liner portion 202. Alternatively, the fuel and air may be mixed within chamber 208.
In the exemplary embodiment, the fuel and air mixture is ignited within chamber 208 to generate hot combustion gases. In the exemplary embodiment, transition portion 204 is oriented to channel the hot combustion gases downstream towards nozzle portion 206. In one embodiment, transition portion 204 includes a throttled end (not shown) that is oriented to channel hot combustion gases at a desired angle towards a turbine bucket (not shown). In such an embodiment, the throttled end functions as a nozzle. Additionally or alternatively, transition portion 204 may include an extended shroud (not shown) that substantially circumscribes the nozzle in an orientation that enables the extended shroud and the nozzle to direct the hot combustion gases at a desired angle towards the turbine bucket. A wrapper 214 circumscribes liner portion 202. In the exemplary embodiment, wrapper 214 is metal. Alternatively, wrapper 214 may be manufactured from any material that enables transition nozzle 200 to function as described herein.
A cooling fluid inlet 230 supplies cooling fluid to cooling duct 216. In the exemplary embodiment, the cooling fluid is steam. Alternatively, the cooling fluid is any fluid that facilitates cooling of transition portion 204. For example, in some embodiments, cooling fluid is liquid water. The cooling fluid facilitates cooling liner portion 202 and wrapper 214 as it flows through cooling duct 216.
In the exemplary embodiment, ribs 220 extend circumferentially around cooling duct 216 such that cooling channels 222 are axially spaced. A first cooling channel 234 in flow communication with cooling fluid inlet 230 is separated axially from a second cooling channel 236 by a first rib 238. Similarly, second cooling channel 236 is separated axially from a third cooling channel 240 by a second rib 242, and third cooling channel 240 is separated axially from a fourth cooling channel 244 by a third rib 246. Fourth cooling channel 244 is in flow communication with a cooling fluid outlet 248.
Although cooling channels 234, 236, 240, and 244 are axially separated from one another, cooling channels 234, 236, 240, and 244 are in flow communication with one another circumferentially. That is, first cooling channel 234 is in flow communication with second cooling channel 236, second cooling channel 236 is in flow communication with third cooling channel 240, and third cooling channel is in flow communication with fourth cooling channel 244. Further, first rib 238 is coupled to second rib 242, and second rib 242 is coupled to third rib 246. Accordingly, in the exemplary embodiment cooling duct 216 has a spiral-shaped configuration that wraps around liner portion 202.
Alternatively, in some embodiments, first cooling channel 234, second cooling channel 236, third cooling channel 240, and fourth cooling channel 244 are not in flow communication. In such embodiments, each cooling channel 234, 236, 240, and 244 has an individual cooling fluid inlet and outlet (neither shown). Notably, cooling channels 234, 236, 240, and 244 may have any configuration of fluid communication between one another that enables cooling duct 216 to function as described herein, with all, none, or only a portion of cooling channels 234, 236, 240, and 244 being in flow communication with one another (e.g., each pair of adjacent cooling channels 234, 236, 240, and 244 may be in flow communication via a respective communication port 243).
While cooling duct 216 includes three ribs 220 and four cooling channels 222 in the exemplary embodiment, cooling duct 216 may include any number of ribs and/or cooling channels that enable cooling duct 216 to function as described herein. Cooling channels 234, 236, 240, and 244 may also include one or more surface enhancements (not shown), such as turbulators, dimples, and/or fins. The surface enhancements may have any geometry, orientation, and/or configuration that further facilitates cooling transition portion 204. For example, cooling channels 234, 236, 240, and 244 may include chevron-shaped, slanted, and/or straight turbulators.
In the exemplary embodiment, each cooling channel 330 includes a cooling fluid inlet 340 and a cooling fluid outlet 342 defined in wrapper 214. Cooling fluid flows from a cooling fluid source (not shown) through inlet 340 into cooling channel 330. As cooling fluid flows through cooling channels 330, cooling fluid facilitates cooling liner portion 202 and wrapper 214.
While an exemplary cooling channel 330 is shown in
At least one cooling channel 330 includes a cooling aperture 350 defined in liner portion 202. Accordingly at least a portion of cooling fluid flows through cooling aperture 350 into combustion chamber 208. While cooling duct 316 includes six ribs 320 and six cooling channels 330 in the exemplary embodiment, cooling duct 316 may include any number of ribs and/or cooling channels that enable cooling duct 316 to function as described herein.
The configuration of the ribs and cooling channels are not limited to the specific embodiments described herein. For example, the cooling channels are not limited to spiral channels and axially extending channels, but may include, for example, sinusoidal-shaped channels. Further, the ribs may have any suitable dimensions, spacing, and/or orientation that enable the cooling fluid to facilitate cooling components of a transition portion.
The embodiments described herein facilitate cooling a transition nozzle. The transition nozzle includes a cooling duct defined between a liner and a wrapper. A cooling fluid source supplies a cooling fluid, such as steam, to the cooling duct. A plurality of ribs coupled between the liner and the wrapper define a plurality of cooling channels in the wrapper. As the cooling fluid flows through the cooling channels, it facilitates cooling the transition nozzle.
As compared to at least some known turbine assemblies, the methods and systems described herein facilitate increased cooling of a transition nozzle. Cooling fluid flows through a plurality of cooling channels defined between a liner and a wrapper by a plurality of ribs. As the cooling fluid flows through the cooling channels, it cools components of the turbine assembly. The position and orientation of the ribs may be adjusted to create different cooling configurations, providing a more flexible cooling system than those included in at least some known turbine assemblies.
The exemplary systems and methods are not limited to the specific embodiments described herein, but rather, components of each system and/or steps of each method may be utilized independently and separately from other components and/or method steps described herein. Each component and each method step may also be used in combination with other components and/or method steps.
This written description uses examples to disclose certain embodiments of the invention, including the best mode, and also to enable any person skilled in the art to practice those certain embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
2910828 | Meyer et al. | Nov 1959 | A |
3344606 | Abernethy | Oct 1967 | A |
3584972 | Bratkovich et al. | Jun 1971 | A |
4195474 | Bintz et al. | Apr 1980 | A |
4314442 | Rice | Feb 1982 | A |
4437418 | Guillaume et al. | Mar 1984 | A |
4507914 | Rice | Apr 1985 | A |
4543781 | Rice | Oct 1985 | A |
4928478 | Maslak | May 1990 | A |
5724816 | Ritter et al. | Mar 1998 | A |
5933699 | Ritter et al. | Aug 1999 | A |
6341485 | Liebe | Jan 2002 | B1 |
6463742 | Mandai et al. | Oct 2002 | B2 |
6772581 | Ojiro et al. | Aug 2004 | B2 |
6890148 | Nordlund | May 2005 | B2 |
7310938 | Marcum et al. | Dec 2007 | B2 |
7401682 | Proscia et al. | Jul 2008 | B2 |
7827801 | Dawson et al. | Nov 2010 | B2 |
8727714 | Snider et al. | May 2014 | B2 |
20060130484 | Marcum et al. | Jun 2006 | A1 |
20100316492 | Charron et al. | Dec 2010 | A1 |
20120121381 | Charron et al. | May 2012 | A1 |
20120121408 | Lee et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
101307723 | Nov 2008 | CN |
101799029 | Aug 2010 | CN |
101832555 | Sep 2010 | CN |
102562309 | Jul 2012 | CN |
1143201 | Oct 2001 | EP |
Entry |
---|
China Office Action for related Application No. 201310003291.5 dated Oct. 29, 2015; 13 pages. |
Number | Date | Country | |
---|---|---|---|
20130167543 A1 | Jul 2013 | US |