Methods and systems for cooling buildings with large heat loads using desiccant chillers

Information

  • Patent Grant
  • 9506697
  • Patent Number
    9,506,697
  • Date Filed
    Wednesday, December 4, 2013
    11 years ago
  • Date Issued
    Tuesday, November 29, 2016
    8 years ago
Abstract
A system for providing cooling to a building includes a cooling tower for transferring waste heat from the building to the atmosphere and a liquid desiccant system for dehumidifying an air stream entering the cooling tower to increase cooling efficiency of the cooling tower. The liquid desiccant system includes a conditioner and a regenerator. The conditioner utilizes a liquid desiccant for dehumidifying the air stream entering the cooling tower. The regenerator is connected to the conditioner for receiving dilute liquid desiccant from the conditioner, concentrating the dilute liquid desiccant using waste heat from the building, and returning concentrated liquid desiccant to the conditioner.
Description
BACKGROUND

The present application relates generally to the use of liquid desiccants to dehumidify an air stream entering a cooling tower. More specifically, the application relates to a cooling system construction that operates using a 2- or 3-way liquid desiccant mass and heat exchanger that can dehumidify an air stream entering a cooling tower, wherein the desiccant is absorbing moisture from the air stream in such a way that the cooling tower experiences a much higher temperature drop than is normally the case, and wherein the desiccant is subsequently regenerated using a waste heat source, which—if available—can be waste heat from the building itself, to which cooling is provided.


Datacenters are an example of buildings that contain a large amount of equipment that generates a large amount of sensible heat. Other examples include semiconductor manufacturing facilities, plastics processing facilities, industrial facilities, and other buildings where large internal sensible heat loads need to be dissipated. Datacenters typically do not have a large number of people in their space, so there is typically no need to bring in a lot of outside air, and therefore the outside air (which in other buildings can be as much as 60% of the overall heat- and moisture-load of a building) does generally not constitute a large load for a datacenter and neither is there a large humidity (latent) heat-load in the datacenter itself. Oftentimes the sensible heat that is generated in these buildings by computers and the like is rejected to a chilled water or cooling water loop that is connected to a central chiller facility, which in turn rejects its heat to a cooling tower. The problem with cooling towers is that in hot, humid climates, the cooling tower is unable to evaporate a lot of water and thus the temperature drop in the cooling water is not very large. This means that either the cooling tower has to be oversized or other means of heat rejection have to be employed. Most of the heat in a datacenter is rejected to a chilled water loop and some is rejected to the air in the datacenter which is replenished with outside air. Datacenters in effect use a lot of electricity and reject the heat that the electrical consumption generates to a chiller plant and eventually to a cooling tower. It could be very desirable if the datacenter's waste heat could be used for other purposes, in particular if the heat could be used for more efficient cooling of the datacenter itself.


Liquid desiccants have been used parallel to conventional vapor compression HVAC equipment to help reduce humidity in spaces, particularly in spaces that require large amounts of outdoor air or that have large humidity loads inside the building space itself. Humid climates, such as for example Miami, Fla. require a lot of energy to properly treat (dehumidify and cool) the fresh air that is required for a space's occupant comfort. Liquid desiccant systems are however not very common on datacenters and the like, simply because datacenters have large sensible loads internally and not large latent loads, nor do datacenter use large amounts of outside air. However, the cooling towers that support a datacenter do have large latent loads since they take in outside air. It would therefore be desirable to supply these cooling towers with dry air to improve their efficiency.


Liquid desiccant systems have been used for many years and are generally quite efficient at removing moisture from an air stream. However, liquid desiccant systems generally use concentrated salt solutions such as ionic solutions of LiCl, LiBr, or CaCl2 and water. Such brines are strongly corrosive, even in small quantities, so numerous attempts have been made over the years to prevent desiccant carry-over to the air stream that is to be treated. In recent years efforts have begun to eliminate the risk of desiccant carry-over by employing micro-porous membranes to contain the desiccant. An example of such as membrane is the EZ2090 poly-propylene, microporous membrane manufactured by Celgard, LLC, 13800 South Lakes Drive Charlotte, N.C. 28273. The membrane is approximately 65% open area and has a typical thickness of about 20 μm. This type of membrane is structurally very uniform in pore size (100 nm) and is thin enough to not create a significant thermal barrier. It has been shown that these membranes are effective in inhibiting desiccant carry-over.


Liquid desiccant systems generally have two separate components. The conditioning side of the system provides conditioning of air to the required conditions, which are typically set using thermostats or humidistats. The regeneration side of the system provides a reconditioning function of the liquid desiccant most often using heat, so that it can be re-used on the conditioning side. Liquid desiccant is typically pumped between the two sides through a heat exchanger so as to prevent a large heat load from the regenerator on the conditioner.


There thus remains a need to provide a cooling system for datacenters and other buildings with high heat loads, wherein the datacenter's internally generated heat could be used for a more efficient cooling of the datacenter itself.


BRIEF SUMMARY

In accordance with one or more embodiments, a system is provided for providing cooling to a building. The system includes a cooling tower for transferring waste heat from the building to the atmosphere and a liquid desiccant system for dehumidifying an air stream entering the cooling tower to increase cooling efficiency of the cooling tower. The liquid desiccant system includes a conditioner and a regenerator. The conditioner utilizes a liquid desiccant for dehumidifying the air stream entering the cooling tower. The regenerator is connected to the conditioner for receiving dilute liquid desiccant from the conditioner, concentrating the dilute liquid desiccant using waste heat from the building, and returning concentrated liquid desiccant to the conditioner.


Provided herein are methods and systems used for the efficient dehumidification of an air stream using a liquid desiccant. In accordance with one or more embodiments, the liquid desiccant is running down the face of a support plate as a falling film. In accordance with one or more embodiments, the desiccant is contained by a microporous membrane and the air stream is directed in a primarily vertical orientation over the surface of the membrane and whereby both latent and sensible heat are absorbed from the air stream into the liquid desiccant. In accordance with one or more embodiments, the support plate is filled with a heat transfer fluid that ideally is flowing in a direction counter to the air stream. In accordance with one or more embodiments, the system comprises a conditioner that removes latent and sensible heat through the liquid desiccant and a regenerator that removes the latent and sensible heat from the system. In accordance with one or more embodiments, the heat transfer fluid in the conditioner is cooled by an external source of cold heat transfer fluid. In accordance with one or more embodiments, the regenerator is heated an external source of hot heat transfer fluid.


In accordance with one or more embodiments, the liquid desiccant conditioner is providing treated air to a cooling tower thereby making the cooling tower a more efficient device. In one or more embodiments, the treated air is cooler than the air would have been without a liquid desiccant dehumidifier. In one or more embodiments, the treated air is drier than the air would have been without a liquid desiccant dehumidifier. In one or more embodiments, the conditioner contains membranes to contain the liquid desiccant. In accordance with one or more embodiments the liquid desiccant conditioner is receiving cold water from the same cooling tower. In one or more embodiments, the cold water is delivered by a chiller system.


In accordance with one or more embodiments, the liquid desiccant regenerator is provided a warm air stream by directing a warm air stream from a building with high internal heat loads to the regenerator. In one or more embodiments, the regenerator receives hot waste water from the building. In one or more embodiments, the hot waste water and/or hot waste air is used to concentrate a desiccant.


In accordance with one or more embodiments, the external sources of cold and hot heat transfer fluid are idled while heat is transferred from the building with high heat load to the liquid desiccant side of the system. In one or more embodiments, the regenerator functions as a replacement for a cooling tower. In one or more embodiments, the conditioner and regenerator are both acting like a cooling tower. In one or more embodiments, the cooling tower and chiller are bypassed and the liquid desiccant system is actively cooling the datacenter. In one or more embodiments, the compressor of the chiller system is bypassed and liquid refrigerant is pumped without the use of a compressor.


In no way is the description of the applications intended to limit the disclosure to these applications. Many construction variations can be envisioned to combine the various elements mentioned above each with its own advantages and disadvantages. The present disclosure in no way is limited to a particular set or combination of such elements.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a 3-way liquid desiccant air conditioning system using a chiller or external heating or cooling sources.



FIG. 2 shows a flexibly configurable membrane module that incorporates 3-way liquid desiccant plates.



FIG. 3 illustrates an example of a single membrane plate in the liquid desiccant membrane module of FIG. 2.



FIG. 4 shows a typical datacenter cooling system setup.



FIG. 5 shows the integration between a liquid desiccant system and the datacenter cooling system from FIG. 4 in accordance with one or more embodiments.



FIG. 6 illustrates the psychrometric processes of FIGS. 4 and 5 in accordance with one or more embodiments.





DETAILED DESCRIPTION


FIG. 1 depicts a new type of liquid desiccant system as described in further detail in U.S. patent application Ser. No. 13/115,736, filed on May 25, 2011, which is incorporated by reference herein. A conditioner 501 comprises a set of plate structures that are internally hollow. A cold heat transfer fluid is generated in cold source 507 and entered into the plates. Liquid desiccant solution at 514 is brought onto the outer surface of the plates and runs down the outer surface of each of the plates. The liquid desiccant runs behind a thin membrane that is located between the air flow and the surface of the plates. Outside air 503 is now blown through the set of wavy plates. The liquid desiccant on the surface of the plates attracts the water vapor in the air flow and the cooling water inside the plates helps to inhibit the air temperature from rising. The treated air 504 is put into a building space.


The liquid desiccant is collected at the bottom of the wavy plates at 511 and is transported through a heat exchanger 513 to the top of the regenerator 502 to point 515 where the liquid desiccant is distributed across the wavy plates of the regenerator. Return air or optionally outside air 505 is blown across the regenerator plate, and water vapor is transported from the liquid desiccant into the leaving air stream 506. An optional heat source 508 provides the driving force for the regeneration. The hot transfer fluid 510 from the heat source can be put inside the wavy plates of the regenerator similar to the cold heat transfer fluid on the conditioner. Again, the liquid desiccant is collected at the bottom of the wavy plates 502 without the need for either a collection pan or bath so that also on the regenerator the air can be vertical. An optional heat pump 516 can be used to provide cooling and heating of the liquid desiccant. It is also possible to connect a heat pump between the cold source 507 and the hot source 508, which is thus pumping heat from the cooling fluids rather than the desiccant.



FIG. 2 describes a 3-way heat exchanger as described in further detail in U.S. patent application Ser. Nos. 13/915,199 filed on Jun. 11, 2013, 13/915,222 filed on Jun. 11, 2013, and No. 13/915,262 filed on Jun. 11, 2013, which are all incorporated by reference herein. A liquid desiccant enters the structure through ports 304 and is directed behind a series of membranes as described in FIG. 1. The liquid desiccant is collected and removed through ports 305. A cooling or heating fluid is provided through ports 306 and runs counter to the air stream 301 inside the hollow plate structures, again as described in FIG. 1 and in more detail in FIG. 3. The cooling or heating fluids exit through ports 307. The treated air 302 is directed to a space in a building or is exhausted as the case may be.



FIG. 3 describes a 3-way heat exchanger as described in more detail in U.S. Provisional Patent Application Ser. No. 61/771,340 filed on Mar. 1, 2013, which is incorporated by reference herein. The air stream 251 flows counter to a cooling fluid stream 254. Membranes 252 contain a liquid desiccant 253 that is falling along the wall 255 that contain a heat transfer fluid 254. Water vapor 256 entrained in the air stream is able to transition the membrane 252 and is absorbed into the liquid desiccant 253. The heat of condensation of water 258 that is released during the absorption is conducted through the wall 255 into the heat transfer fluid 254. Sensible heat 257 from the air stream is also conducted through the membrane 252, liquid desiccant 253 and wall 255 into the heat transfer fluid 254.



FIG. 4 shows a high level schematic of a typical datacenter cooling system setup. The datacenter itself 401 comprises a large number of computer racks 404 that are cooled by fans 406 that blow building air (“BA”) 405 through the computer racks 404 or the computer racks 404 are cooled by heat transfer fluid (oftentimes cooling water) 419. Some of the air recirculates 418 in the space itself; however some of the air 407 (“RA”) is exhausted. The exhausted air 407 is made up by an external outside air intake 425 (“OA”). The computer racks 404 are powered by electricity feeds 417 and the heat that is generated by the electrical consumption is rejected to the cooling water 420, the exhaust air 407 and the recirculating air 418. The chiller system 402 receives the cooling water 420 which is pumped through an evaporator heat exchanger 409 that is the evaporator of the chiller system 402 with compressor 408 compressing a refrigerant 421. The heat of compression is rejected to condenser heat exchanger 410. The heat exchanger 410 is then coupled to a cooling tower 403 that includes a fan 413 that blows outside air (“OA”) 412 through a filter media 411 which is then exhausted at near fully saturated conditions 414 (“EA1”). Cooling water 423 is sprayed on top of the filter media 411 where a portion of the cooling water evaporates. This causes a cooling effect in the water and the cooled water 422 is pumped back to the heat exchanger 410. Make-up water 424 is provided to the cooling tower to replace the water that is lost through evaporation. It is possible to not compress the refrigerant using compressor 408, but instead to use a refrigerant pump 426 to create a refrigerant bypass loop 427 that can be used in part-load conditions, which can lead to substantial energy savings. It is also possible to use a cooling fluid bypass loop 428 and return cooling fluid loop 429 that bypasses the chiller section entirely. The electrical consumption of the complete system comprises primarily of electrical power 417 provided to the datacenter 401, which largely turns into sensible heating of the building air 405 and cooling water 419. Other electrical consumption comprises electrical power 416 for the chiller plant 402 and primarily the compressors 408 inside that plant and electrical power 415 for the cooling tower 403, which is relatively small compared to the datacenter electrical power 417 and chiller plant electrical power 416.



FIG. 5 illustrates the integration of the datacenter cooling system of FIG. 4 with a liquid desiccant cooling system. The liquid desiccant system 601 comprises a 3-way conditioner 607 (shown in FIG. 1 as 501) and a 3-way regenerator 610 (shown in FIG. 1 as 502). The conditioner 607 receives cold water 605 from the cooling tower. Concentrated liquid desiccant 611 is supplied to the 3-way conditioner 607. Outside air 603 (“OA”) is supplied to the conditioner 607 as well, which results in a much cooler and drier air stream 604 (“SA”) supplied to the cooling tower 403. The liquid desiccant 611 absorbs moisture in the air stream 603 while simultaneously cooling the air stream. The supply air 604 (“SA”) to the cooling tower is thus drier and cooler then the outside air was. The warmer cooling water 606 is returned to the cooling tower. Diluted desiccant 609 is pumped through a heat exchanger 608 to the 3-way regenerator 610. The regenerator 610 receives hot water 612 from the chiller's condenser heat exchanger 410 which is used as a heat source for desiccant regeneration. The somewhat cooler water 613 coming from the regenerator 610 is subsequently directed to the cooling tower 403 or back towards the condenser heat exchanger 410. Warm return air 407 (“RA”) from the data center 401 is directed to the regenerator 610. An outside air stream 614 can optionally be mixed in with the return air to create a mixed air condition 602. The dilute desiccant 609 is directed over the regenerator plates and is thus re-concentrated by the heat from the datacenter. The regenerator exhausts a much higher temperature and humidity air stream 615 (“EA3”), which contains the water vapor that was removed at the conditioner 607. Like the system of FIG. 4, it is possible to not compress the refrigerant using compressor 408, but instead to use a refrigerant pump 426 to create a refrigerant bypass loop 427 that can be used in part-load conditions, which can lead to substantial energy savings. It is also possible to use a cooling fluid bypass loop 428 and return cooling fluid loop 429 that bypasses the chiller section entirely. The refrigerant bypass loop and cooling fluid bypass loops have been omitted from the figure for clarity.



FIG. 6 illustrates the psychometric processes in the system of FIGS. 4 and 5. In a conventional cooling tower (as illustrated in FIG. 4) the outside air (labeled “OA”) is subjected to an adiabatic humidification process (line segment OA to EA1) and the air leaves the cooling tower at a slightly lower temperature but more humid (point EA1). However, with a desiccant conditioner the outside air (“OA”) is cooled and dehumidified (line segment OA to SA) and the cooler and drier air SA is supplied to the cooling tower, wherein the air undergoes an adiabatic humidification process (line segment SA to EA2). This results in a much more efficient cooling process since the temperature of EA2 is significantly below the temperature of EA1. In essence the waste heat air 407 of the datacenter has been used to create a concentrated desiccant, which otherwise would have been rejected without getting used. The regenerator process is shown as well: the building air 405 (“BA”) is heated by the equipment 404 in the space to a higher sensible temperature but without adding any significant water vapor. The resulting waste heat air 407 (“RA”) is then directed through the regenerator plates where both heat and moisture are added resulting in an exhaust air stream


Having thus described several illustrative embodiments, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to form a part of this disclosure, and are intended to be within the spirit and scope of this disclosure. While some examples presented herein involve specific combinations of functions or structural elements, it should be understood that those functions and elements may be combined in other ways according to the present disclosure to accomplish the same or different objectives. In particular, acts, elements, and features discussed in connection with one embodiment are not intended to be excluded from similar or other roles in other embodiments. Additionally, elements and components described herein may be further divided into additional components or joined together to form fewer components for performing the same functions. Accordingly, the foregoing description and attached drawings are by way of example only, and are not intended to be limiting.

Claims
  • 1. A system for providing cooling to a building, comprising: a cooling tower for transferring waste heat from the building to the atmosphere; anda liquid desiccant system for dehumidifying an air stream entering the cooling tower to increase cooling efficiency of the cooling tower, said liquid desiccant system comprising: a conditioner utilizing a liquid desiccant for dehumidifying the air stream entering the cooling tower, wherein the conditioner is connected to the cooling tower through a first heat transfer fluid loop such that cooled heat transfer fluid from the tower flows through the conditioner to cool the liquid desiccant in the conditioner; anda regenerator connected to the conditioner for receiving dilute liquid desiccant from the conditioner, concentrating the dilute liquid desiccant using waste heat from the building, and returning concentrated liquid desiccant to the conditioner.
  • 2. The system of claim 1, wherein the liquid desiccant in the regenerator is heated by hot waste heat from the building.
  • 3. The system of claim 1, further comprising a chiller system connected to the building by a second heat transfer fluid loop, wherein heat from the building is rejected to the chiller system through the second heat transfer fluid loop; and wherein the cooling tower is connected to the chiller system by a third heat transfer fluid loop, wherein heat from the chiller system is rejected to the cooling tower through the third heat transfer fluid loop.
  • 4. The system of claim 3, wherein the regenerator is also connected to the chiller system through the third heat transfer fluid loop to heat liquid desiccant in the regenerator.
  • 5. The system of claim 4, wherein the regenerator is connected to the cooling tower such that heat transfer fluid in the third heat transfer fluid loop flows from the regenerator to the cooling tower.
  • 6. The system of claim 1, wherein the conditioner comprises a plurality of structures arranged in a substantially vertical orientation, each structure having at least one surface across which the liquid desiccant in the conditioner can flow, wherein the air stream flows through or between the structures such that the liquid desiccant dehumidifies and cools the air stream.
  • 7. The system of claim 6, wherein each of the plurality of structures includes a passage through which a heat transfer fluid can flow.
  • 8. The system of claim 7, wherein the liquid desiccant and the heat transfer fluid flow in generally opposite directions in the conditioner.
  • 9. The system of claim 6, further comprising a sheet of material positioned proximate to the at least one surface of each structure between the liquid desiccant and the air stream, said sheet of material permitting transfer of water vapor between the liquid desiccant and the air stream.
  • 10. The system of claim 9, wherein the sheet of material comprises a microporous membrane.
  • 11. The system of claim 1, wherein the regenerator includes a plurality of structures arranged in a substantially vertical orientation, each structure having at least one surface across which the liquid desiccant in the regenerator can flow, wherein an air stream flows through or between the structures causing the liquid desiccant to desorb water to the air stream.
  • 12. The system of claim 11, wherein each of the plurality of structures in the regenerator includes a passage through which a heat transfer fluid can flow.
  • 13. The system of claim 12, wherein the liquid desiccant and the heat transfer fluid flow in generally opposite directions in the regenerator.
  • 14. The system of claim 11, further comprising a sheet of material positioned proximate to the at least one surface of each structure between the liquid desiccant and the air stream, said sheet of material permitting transfer of water vapor between the liquid desiccant and the air stream.
  • 15. The system of claim 14, wherein the sheet of material comprises a microporous membrane.
  • 16. The system of claim 1, wherein the building comprises a data center or an industrial manufacturing or processing facility.
  • 17. A method for providing cooling to a building, comprising: transferring waste heat from the building to a cooling tower to be released into the atmosphere; anddehumidifying an air stream entering the cooling tower to increase cooling efficiency of the cooling tower using a liquid desiccant system by: utilizing a liquid desiccant in a conditioner for dehumidifying the air stream entering the cooling tower, wherein the conditioner is connected to the cooling tower through a first heat transfer fluid loop such that cooled heat transfer fluid from the tower flows through the conditioner to cool the liquid desiccant in the conditioner; andreceiving dilute liquid desiccant from the conditioner at a regenerator, concentrating the dilute liquid desiccant using waste heat from the building, and returning concentrated liquid desiccant to the conditioner.
  • 18. The method of claim 17, further comprising heating the liquid desiccant in the regenerator using hot waste heat from the building.
  • 19. The method of claim 17, wherein transferring waste heat from the building to the cooling tower comprises rejecting heat from the building to a chiller system through a second heat transfer fluid loop, and rejecting heat from the chiller system to the cooling tower through a third heat transfer fluid loop.
  • 20. The method of claim 19, wherein the regenerator is connected to the chiller system through the third heat transfer fluid loop to heat liquid desiccant in the regenerator.
  • 21. The method of claim 20, wherein the regenerator is connected to the cooling tower such that heat transfer fluid in the third heat transfer fluid loop flows from the regenerator to the cooling tower.
  • 22. The method of claim 17, wherein the conditioner comprises a plurality of structures arranged in a substantially vertical orientation, each structure having at least one surface across which the liquid desiccant in the conditioner can flow, wherein method further comprises flowing the air stream flows through or between the structures such that the liquid desiccant dehumidifies and cools the air stream.
  • 23. The method of claim 22, wherein each of the plurality of structures includes a passage through which a heat transfer fluid can flow.
  • 24. The method of claim 23, wherein the liquid desiccant and the heat transfer fluid flow in generally opposite directions in the conditioner.
  • 25. The method of claim 22, further comprising a sheet of material positioned proximate to the at least one surface of each structure between the liquid desiccant and the air stream, said sheet of material permitting transfer of water vapor between the liquid desiccant and the air stream.
  • 26. The method of claim 15, wherein the sheet of material comprises a microporous membrane.
  • 27. The method of claim 17, wherein the regenerator includes a plurality of structures arranged in a substantially vertical orientation, each structure having at least one surface across which the liquid desiccant in the regenerator can flow, wherein the method further comprises flowing an air stream through or between the structures causing the liquid desiccant to desorb water to the air stream.
  • 28. The method of claim 27, wherein each of the plurality of structures in the regenerator includes a passage through which a heat transfer fluid can flow.
  • 29. The method of claim 28, wherein the liquid desiccant and the heat transfer fluid flow in generally opposite directions in the regenerator.
  • 30. The method of claim 27, further comprising a sheet of material positioned proximate to the at least one surface of each structure between the liquid desiccant and the air stream, said sheet of material permitting transfer of water vapor between the liquid desiccant and the air stream.
  • 31. The method of claim 27, wherein the sheet of material comprises a microporous membrane.
  • 32. The method of claim 17, wherein the building comprises a data center or an industrial manufacturing or processing facility.
  • 33. A system for providing cooling to a building, comprising: a water cooling tower utilizing water for transferring waste heat from the building to the atmosphere; anda liquid desiccant system for dehumidifying an air stream from outside the building, said liquid desiccant system connected to the cooling tower such that the air stream dehumidified by the liquid desiccant system is provided to the cooling tower to increase cooling efficiency of the cooling tower, said liquid desiccant system comprising: a conditioner utilizing a liquid desiccant for dehumidifying the air stream provided to the cooling tower; anda regenerator connected to the conditioner for receiving dilute liquid desiccant from the conditioner, said regenerator configured to concentrate the dilute liquid desiccant using waste heat from the building and return concentrated liquid desiccant to the conditioner.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Patent Application No. 61/733,209 filed on Dec. 4, 2012 entitled DESICCANT SYSTEMS and U.S. Provisional Patent Application No. 61/787,948 filed on Mar. 15, 2013 entitled METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH LARGE HEAT LOADS USING DESICCANT CHILLERS, which are both hereby incorporated by reference.

US Referenced Citations (207)
Number Name Date Kind
1791086 Sperr Feb 1931 A
2221787 Downs et al. Nov 1940 A
2235322 Martin Mar 1941 A
2433741 Crawford Dec 1947 A
2988171 Arnold et al. Jun 1961 A
3718181 Reilly et al. Feb 1973 A
4100331 Fletcher et al. Jul 1978 A
4176523 Rousseau Dec 1979 A
4205529 Ko Jun 1980 A
4209368 Coker et al. Jun 1980 A
4222244 Meckler Sep 1980 A
4235221 Murphy Nov 1980 A
4239507 Benoit et al. Dec 1980 A
4259849 Griffiths Apr 1981 A
4324947 Dumbeck Apr 1982 A
4399862 Hile Aug 1983 A
4429545 Steinberg Feb 1984 A
4435339 Kragh Mar 1984 A
4444992 Cox, III Apr 1984 A
4583996 Sakata et al. Apr 1986 A
4607132 Jarnagin Aug 1986 A
4612019 Langhorst Sep 1986 A
4649899 Moore Mar 1987 A
4691530 Meckler Sep 1987 A
4703629 Moore Nov 1987 A
4786301 Rhodes Nov 1988 A
4832115 Albers et al. May 1989 A
4882907 Brown, II Nov 1989 A
4887438 Meckler Dec 1989 A
4900448 Bonne et al. Feb 1990 A
4910971 McNab Mar 1990 A
4939906 Spatz et al. Jul 1990 A
4941324 Peterson et al. Jul 1990 A
4955205 Wilkinson Sep 1990 A
4979965 Sannholm Dec 1990 A
4984434 Peterson Jan 1991 A
4987750 Meckler Jan 1991 A
5005371 Yonezawa et al. Apr 1991 A
5181387 Meckler Jan 1993 A
5182921 Yan Feb 1993 A
5186903 Cornwell Feb 1993 A
5191771 Meckler Mar 1993 A
5221520 Cornwell Jun 1993 A
5351497 Lowenstein Oct 1994 A
5375429 Tokizaki et al. Dec 1994 A
5462113 Wand Oct 1995 A
5471852 Meckler Dec 1995 A
5528905 Scarlatti Jun 1996 A
5534186 Walker et al. Jul 1996 A
5582026 Barto, Sr. Dec 1996 A
5595690 Filburn et al. Jan 1997 A
5605628 Davidson et al. Feb 1997 A
5638900 Lowenstein et al. Jun 1997 A
5641337 Arrowsmith et al. Jun 1997 A
5661983 Groten et al. Sep 1997 A
5685152 Sterling Nov 1997 A
5685485 Mock et al. Nov 1997 A
5797272 James Aug 1998 A
5832993 Ohata et al. Nov 1998 A
5860284 Goland et al. Jan 1999 A
5860285 Tulpule Jan 1999 A
5928808 Eshraghi Jul 1999 A
5933702 Goswami Aug 1999 A
6018954 Assaf Feb 2000 A
6083387 LeBlanc et al. Jul 2000 A
6103969 Bussey Aug 2000 A
6156102 Conrad et al. Dec 2000 A
6171374 Barton et al. Jan 2001 B1
6216483 Potnis et al. Apr 2001 B1
6244062 Prado Jun 2001 B1
6247604 Taskis et al. Jun 2001 B1
6266975 Assaf Jul 2001 B1
6417423 Koper et al. Jul 2002 B1
6442951 Maeda et al. Sep 2002 B1
6463750 Assaf Oct 2002 B2
6487872 Forkosh et al. Dec 2002 B1
6488900 Call et al. Dec 2002 B1
6497107 Maisotsenko et al. Dec 2002 B2
6497749 Kesten et al. Dec 2002 B2
6502807 Assaf et al. Jan 2003 B1
6514321 Lehto et al. Feb 2003 B1
6539731 Kesten et al. Apr 2003 B2
6546746 Forkosh et al. Apr 2003 B2
6557365 Dinnage et al. May 2003 B2
6660069 Sato et al. Dec 2003 B2
6684649 Thompson Feb 2004 B1
6739142 Korin May 2004 B2
6745826 Lowenstein et al. Jun 2004 B2
6766817 da Silva et al. Jul 2004 B2
6854278 Maisotsenko et al. Feb 2005 B2
6854279 Digiovanni et al. Feb 2005 B1
6918404 Dias da Silva et al. Jul 2005 B2
6938434 Fair Sep 2005 B1
6976365 Forkosh et al. Dec 2005 B2
6986428 Hester et al. Jan 2006 B2
7066586 da Silva et al. Jun 2006 B2
RE39288 Assaf Sep 2006 E
7143597 Hyland et al. Dec 2006 B2
7191821 Gronwall et al. Mar 2007 B2
7197887 Maisotsenko et al. Apr 2007 B2
7269966 Lowenstein et al. Sep 2007 B2
7279215 Hester et al. Oct 2007 B2
7306650 Slayzak et al. Dec 2007 B2
7337615 Reidy Mar 2008 B2
7430878 Assaf Oct 2008 B2
7758671 Kesten et al. Jul 2010 B2
7938888 Assaf May 2011 B2
8337590 Herencia et al. Dec 2012 B2
8353175 Wohlert Jan 2013 B2
8496732 Culp et al. Jul 2013 B2
8500960 Ehrenberg et al. Aug 2013 B2
8623210 Manabe et al. Jan 2014 B2
8641806 Claridge et al. Feb 2014 B2
8695363 Tang et al. Apr 2014 B2
8696805 Chang et al. Apr 2014 B2
8769971 Kozubal et al. Jul 2014 B2
8790454 Lee et al. Jul 2014 B2
8800308 Vandermeulen et al. Aug 2014 B2
8876943 Gottlieb et al. Nov 2014 B2
8881806 Xie et al. Nov 2014 B2
8968945 Fasold et al. Mar 2015 B2
20010015500 Shimanuki et al. Aug 2001 A1
20020023740 Lowenstein et al. Feb 2002 A1
20020026797 Sundhar Mar 2002 A1
20020098395 Shimanuki et al. Jul 2002 A1
20020104439 Komkova et al. Aug 2002 A1
20020139245 Kesten et al. Oct 2002 A1
20020139320 Shimanuki et al. Oct 2002 A1
20020148602 Nakamura Oct 2002 A1
20030000230 Kopko Jan 2003 A1
20030029185 Kopko Feb 2003 A1
20030051498 Sanford Mar 2003 A1
20030106680 Serpico et al. Jun 2003 A1
20030230092 Lowenstein et al. Dec 2003 A1
20040061245 Maisotsenko et al. Apr 2004 A1
20040109798 Chopard et al. Jun 2004 A1
20040134212 Lee et al. Jul 2004 A1
20040168462 Assaf Sep 2004 A1
20040194944 Hendricks et al. Oct 2004 A1
20040211207 Forkosh et al. Oct 2004 A1
20040231512 Slayzak et al. Nov 2004 A1
20050109052 Albers et al. May 2005 A1
20050133082 Konold et al. Jun 2005 A1
20050210907 Gillan et al. Sep 2005 A1
20050218535 Maisotsenko et al. Oct 2005 A1
20050257551 Landry Nov 2005 A1
20060042295 Assaf Mar 2006 A1
20060156750 Lowenstein et al. Jul 2006 A1
20060278089 Theilow Dec 2006 A1
20070175234 Pruitt Aug 2007 A1
20070234743 Assaf Oct 2007 A1
20080127965 Burton Jun 2008 A1
20080156471 Han et al. Jul 2008 A1
20080196758 McGuire Aug 2008 A1
20080203866 Chamberlain Aug 2008 A1
20080302357 DeNault Dec 2008 A1
20090000732 Jacobine et al. Jan 2009 A1
20090095162 Hargis et al. Apr 2009 A1
20090173096 Wohlert Jul 2009 A1
20090200022 Bravo et al. Aug 2009 A1
20090238685 Santa Ana Sep 2009 A1
20100000247 Bhatti et al. Jan 2010 A1
20100018322 Neitzke et al. Jan 2010 A1
20100051083 Boyk Mar 2010 A1
20100084120 Yin et al. Apr 2010 A1
20100170776 Ehrenberg et al. Jul 2010 A1
20100319370 Kozubal et al. Dec 2010 A1
20110100618 Carlson May 2011 A1
20110101117 Miyauchi May 2011 A1
20110126885 Kokotov et al. Jun 2011 A1
20120052785 Nagamatsu et al. Mar 2012 A1
20120114527 Hoglund et al. May 2012 A1
20120118148 Culp et al. May 2012 A1
20120118155 Claridge et al. May 2012 A1
20120125020 Vandermeulen et al. May 2012 A1
20120125021 Vandermeulen May 2012 A1
20120131937 Vandermeulen et al. May 2012 A1
20120131939 Vandermeulen et al. May 2012 A1
20120132513 Vandermeulen et al. May 2012 A1
20120152318 Kee Jun 2012 A1
20130056177 Coutu et al. Mar 2013 A1
20130101909 Fasold et al. Apr 2013 A1
20130186121 Erb et al. Jul 2013 A1
20130199220 Ma et al. Aug 2013 A1
20130227982 Forkosh Sep 2013 A1
20130255287 Forkosh Oct 2013 A1
20130340449 Kozubal et al. Dec 2013 A1
20140054004 LePoudre et al. Feb 2014 A1
20140054013 LePoudre et al. Feb 2014 A1
20140150481 Vandermeulen Jun 2014 A1
20140150656 Vandermeulen Jun 2014 A1
20140150657 Vandermeulen et al. Jun 2014 A1
20140150662 Vandermeulen et al. Jun 2014 A1
20140223947 Ranjan et al. Aug 2014 A1
20140245769 Vandermeulen et al. Sep 2014 A1
20140250935 Prochaska et al. Sep 2014 A1
20140260367 Coutu et al. Sep 2014 A1
20140260369 LePoudre Sep 2014 A1
20140260371 Vandermeulen Sep 2014 A1
20140260398 Kozubal et al. Sep 2014 A1
20140260399 Vandermeulen Sep 2014 A1
20140262125 Erb et al. Sep 2014 A1
20140262144 Erb et al. Sep 2014 A1
20140264968 Erb et al. Sep 2014 A1
20140360373 Peacos et al. Dec 2014 A1
20140366567 Vandermeulen Dec 2014 A1
20150338140 Vandermeulen Nov 2015 A1
Foreign Referenced Citations (31)
Number Date Country
202229469 May 2012 CN
1120609 Aug 2001 EP
1563229 Aug 2005 EP
1781995 May 2007 EP
2256434 Dec 2010 EP
2306100 Apr 2011 EP
02306067 Dec 1990 JP
H08-105669 Apr 1996 JP
H11-351700 Dec 1999 JP
2002206834 Jul 2002 JP
2006-263508 Oct 2006 JP
2006-529022 Dec 2006 JP
04273555 Jun 2009 JP
2009-293831 Dec 2009 JP
2010-247022 Nov 2010 JP
2011-163682 Aug 2011 JP
20040026242 Mar 2004 KR
10-0510774 Aug 2005 KR
2014-0022785 Feb 2014 KR
9922180 May 1999 WO
0011426 Mar 2000 WO
0055546 Sep 2000 WO
03004937 Jan 2003 WO
2004046618 Jun 2004 WO
2006006177 Jan 2006 WO
2008037079 Apr 2008 WO
2009094032 Jul 2009 WO
2009144880 Dec 2009 WO
2011062808 May 2011 WO
2011161547 Dec 2011 WO
2012082093 Jun 2012 WO
Non-Patent Literature Citations (19)
Entry
Open Absorption System for Cooling and Air Conditioning using Membrane Contactors—Annual Report 2005, Publication No. Publication 260097, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Jan. 31, 2006, Author: Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering.
Open Absorption System for Cooling and Air Conditioning using Membrane Contactors—Annual, Report 2006, Publication No. Publication 260098, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Nov. 14, 2006, Author: Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering.
Open Absorption System for Cooling and Air Conditioning Using Membrane Contactors—Final Report, Publication No. Publication 280139, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Jul. 8, 2008, Author: Viktor Dorer, Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering.
Conde-Petit, M. 2007. Liquid Desiccant-Based Air-Conditioning Systems—LDACS, Proc. of the 1st European Conference on Polygeneration—Technologies and Applications, 217-234, A. Coronas, ed., Tarragona—Spain, Oct. 16-17, Published by CREVER—Universitat Rovira I Virgili, Tarragona, Spain.
Conde-Petit, M. 2008. Open Absorption Systems for Air-Conditioning using Membrane Contactors,Proceedings ‘15. Schweizerisches Status-Seminar <<Energie—und Umweltforschung im Bauwesen>>’, Sep. 11-12—ETH Zurich, Switzerland. Published by BRENET—Eggwilstr. 16a, CH-9552 Bronschhofen—Switzerland (brenet@vogel-tech.ch).
Third Party Observations for PCT/US2011/037936, dated Sep. 24, 2012.
Ashrae, et al., “Desiccant Dehumidification and Pressue Drying Equipment,” 2012 ASHRAE Handbook—HVAC Systems and Equipment, Chapter 24, pp. 24.1-24.12.
Beccali, et al., “Energy and Economic Assessment of Desiccant Cooling,” Solar Energy, Issue 83, pp. 1828-1846, Aug. 2009.
Fimbres-Weihs, et al., “Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules,” Chemical Engineering and Processing 49 (2010) pp. 759-781.
Li, F., et al., “Novel spacers for mass transfer enhancement in membrane separations,” Journal of Membrane Science, 253 (2005), pp. 1-12.
Li, Y., et al., “CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions,” Desalination 233 (2008) pp. 351-358.
Liu, et al., “Research Progress in Liquid Desiccant Air Conditioning Devices and Systems,” Frontiers of Energy and Power Engineering in China, vol. 4, Issue 1, pp. 55-65, Feb. 2010.
Lowenstein, “A Solar Liquid-Desiccant Air Conditioner,” Solar 2003, Proceedings of the 32nd ASES Annual Conference, Austin, TX, Jul. 2003.
Mathioulakis, “Desalination by Using Alternative Energy,” Desalination, Issue 203, pp. 346-365, 2007.
Russell, et al., “Optimization of Photovolatic Thermal Collector Heat Pump Systems,” ISES International Solar Energy Conference, Atlanta, GA, vol. 3, pp. 1870-1874, May 1979.
Welty, “Liquid Desiccant Dehumidification,” Engineered Systems, May 2010, vol. 27 Issue 5, p. 34.
“Siphon.” Encyclopedia Americana. Grolier Online, 2015. Web. Apr. 3, 2015. 1 page.
International Search Report and Written Opinion for PCT/US2013/073030, dated Mar. 13, 2014.
European Search Report for EP13860583.7, dated Jun. 23, 2016.
Related Publications (1)
Number Date Country
20140150481 A1 Jun 2014 US
Provisional Applications (2)
Number Date Country
61787948 Mar 2013 US
61733209 Dec 2012 US