This application may be related to the following United States non-provisional patent applications assigned to the assignee of the present application which are all incorporated by reference herein: Ser. No. 12/817,754, filed Jun. 17, 2010 (now U.S. Pat. No. 8,769,992); Ser. No. 13/267,990 (now U.S. Pat. No. 8,997,525), Ser. No. 13/268,028 (now U.S. Pat. No. 8,875,544), Ser. No. 13/268,098 (now U.S. Pat. No. 8,707,740), and Ser. No. 13/268,130 (now U.S. Pat. No. 9,021,838), all four filed Oct. 7, 2011; Ser. No. 13/458,211, filed Apr. 27, 2012; Ser. No. 13/493,170 (now U.S. Pat. No. 8,707,739) and Ser. No. 13/493,219, both filed Jun. 11, 2012; Ser. No. 13/540,771, filed Jul. 3, 2012 (now U.S. Pat. No. 9,032,760); and Ser. No. 13/633,998 now U.S. Pat. No. 8,973,405); Ser. Nos. 13/633,979; 13/644,039 (now U.S. Pat. No. 8,991,215); and Ser. No. 13/644,104, all filed Oct. 3, 2012.
Technical Field
The present disclosure relates generally to the field of combustion furnaces and methods of use to produce glass, and more specifically to methods and systems to destabilize foam in glass handling equipment downstream of a submerged combustion melter.
Background Art
A submerged combustion melter (SCM) may be employed to melt glass batch materials to produce molten glass by passing oxygen, oxygen-enriched mixtures, or air along with a liquid, gaseous fuel, or particulate fuel in the glass batch, directly into a molten pool of glass usually through burners submerged in a glass melt pool. The introduction of high flow rates of oxidant and fuel into the molten glass, and the expansion of the gases cause rapid melting of the glass batch and much turbulence, and possibly foaming. Submerged combustion has been proposed in several patents and patents for application in commercial glass melting, including U.S. Pat. Nos. 4,539,034; 3,170,781; 3,237,929; 3,260,587; 3,606,825; 3,627,504; 3,738,792; 3,764,287; 6,460,376; 6,739,152; 6,854,290; 6,857,999; 6,883,349; 7,273,583; 7,428,827; 7,448,231; and 7,565,819; and U.S. Publication Nos. 2004/0168474; 2004/0224833; 2007/0212546; 2006/0000239; 2002/0162358; 2009/0042709; 2008/0256981; 2008/0276652; 2007/0122332; 2004/0168474; 2004/0224833; 2007/0212546; 2011/0308280; and 2012/0077135. Certain SCMs and/or flow channels may employ one or more high momentum burners, for example, to impinge on portions of a foam layer. High momentum burners are disclosed assignee's patent application U.S. Ser. No. 13/268,130, filed Oct. 7, 2011. “High momentum” combustion burners means burners configured to have a fuel velocity ranging from about 150 ft./second to about 1000 ft./second (about 46 meters/second to about 305 meters/second) and an oxidant velocity ranging from about 150 ft./second to about 1000 ft./second (about 46 meters/second to about 305 meters/second).
Often it is a primary goal to melt batch or other feed materials in an SCM as quickly and with as small a footprint SCM as possible. Although this is still desired for the most part, one drawback to this strategy in known submerged combustion systems and methods of melting glass-forming materials using an SCM is the tendency of the foam formed in the SCM to be resistant to destruction or even reduction. This may cause one or more problems in equipment downstream of the SCM, for example, glass conditioning and transport may be hindered as the foam layer may serve as an insulator and may limit the amount of energy capable of being transferred to the molten glass to maintain its temperature. Foam found in (or on top of) glasses typically exists as stable tetrahedral bubbles which need an outside influence to de-stabilize them and therefore break the foam, allowing heat transfer into the glass from burners located above the glass line. In addition, the foam may be destructive of forehearth heating systems and construction materials. In extreme cases, the foam may cause systems to require shutdown, maintenance and may result in a process upset. Attempts to reduce the foam through process adjustments, summarized in “Glass Industry of the Future”, U.S. Dept. of Energy, Report 02-GA50113-03, Sep. 30, 2008, such as use of helium and steam to scavenge and consolidate bubbles, sonic methods to consolidate bubbles, vacuum to increase bubble size, and centrifugal force have not met with complete success in reducing foam to an acceptable amount.
It would be an advance in the glass manufacturing art if foam produced during submerged combustion melting of glass-forming materials could be de-stabilized, reduced, or even completely destroyed in equipment downstream of the SCM.
In accordance with the present disclosure, methods and systems are described which reduce or overcome one or more of the above problems.
A first aspect of the disclosure is a method comprising:
flowing a molten mass of glass and bubbles into an apparatus downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof and a wall connecting the floor and roof, the downstream apparatus devoid of submerged combustion burners and other components that would increase turbulence of the molten mass, the molten mass having foam on at least a portion of a top surface of the molten mass; and
directly impinging an impinging composition comprising a majority of gas onto at least a portion of the foam in the downstream apparatus, the impinging composition produced by a process selected from the group consisting of:
A second aspect of the disclosure is a system comprising:
an apparatus configured to be fluidly connected downstream of a submerged combustion melter, the downstream apparatus comprising a floor, a roof, a wall structure connecting the floor and roof, the floor, roof, and wall structure defining an internal space configured to contain a flowing or non-flowing molten mass of glass and foam, the apparatus devoid of submerged combustion burners and other components that would increase turbulence of the molten mass, the molten mass having foam on at least a portion of a top surface of the molten mass; and
one or more foam direct impingement components for directing an impinging composition comprising a majority of gas onto at least a portion of the foam in the apparatus, the direct impingement components selected from the group consisting of:
Methods and systems of this disclosure will become more apparent upon review of the brief description of the drawings, the detailed description of the disclosure, and the claims that follow.
The manner in which the objectives of the disclosure and other desirable characteristics can be obtained is explained in the following description and attached drawings in which:
It is to be noted, however, that the appended drawings are not to scale and illustrate only typical embodiments of this disclosure, and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
In the following description, numerous details are set forth to provide an understanding of the disclosed systems and methods. However, it will be understood by those skilled in the art that the systems and methods covered by the claims may be practiced without these details and that numerous variations or modifications from the specifically described embodiments may be possible and are deemed within the claims. All U.S. published patent applications and U.S. Patents referenced herein are hereby explicitly incorporated herein by reference. In the event definitions of terms in the referenced patents and applications conflict with how those terms are defined in the present application, the definitions for those terms that are provided in the present application shall be deemed controlling.
As explained briefly in the Background, one drawback to present submerged combustion melting systems and methods is that the foam formed in the SCM may cause one or more problems in equipment downstream of the SCM, for example, glass conditioning and transport may be hindered as the foam layer may serve as an insulator and may limit the amount of energy capable of being transferred to the molten glass to maintain its temperature. Foam found in (or on top of) molten glasses typically exists as stable tetrahedral bubbles which need an outside influence to de-stabilize them and therefore break the foam.
Applicants have discovered certain methods and systems that may reduce or eliminate such shortcomings.
Various terms are used throughout this disclosure. “Submerged” as used herein means that combustion gases emanate from a combustion burner exit that is under the level of the molten glass; and “non-submerged” means that combustion gases do not emanate from combustion burner exits under the level of molten glass. Both submerged and non-submerged burners may be roof-mounted, floor-mounted, wall-mounted, or any combination thereof (for example, two floor mounted burners and one wall mounted burner). “SC” as used herein means “submerged combustion” unless otherwise specifically noted, and “SCM” means submerged combustion melter unless otherwise specifically noted.
The phrase “low momentum” as used in the contexts of “low momentum combustion burners” and “low momentum combustion products” means combustion burners configured to have a fuel velocity ranging from about 6 ft./second or less to about 40 ft./second (about 2 meters/second to about 12 meters/second) and an oxidant velocity ranging from about 6 ft./second or less to about 40 ft./second (about 2 meters/second to about 12 meters/second).
The term “composition” includes one or more gases, one or more liquids or solids that may evolve a gas or become gaseous under the high temperature conditions associated with submerged combustion melting, one or more particulate solids, and combinations of thereof, including slurries, mixtures of a gas and solid particles, and the like.
The terms “foam” and “foamy” include froths, spume, suds, heads, fluffs, fizzes, lathers, effervesces, layer and the like. The term “bubble” means a thin, shaped, gas-filled film of molten glass. The shape may be spherical, hemispherical, rectangular, polyhedral, ovoid, and the like. The gas or “bubble atmosphere” in the gas-filled SC bubbles may comprise oxygen or other oxidants, nitrogen, combustion products (including but not limited to, carbon dioxide, carbon monoxide, NOx, SOx, H2S, and water), reaction products of glass-forming ingredients (for example, but not limited to, sand (primarily SiO2), clay, limestone (primarily CaCO3), burnt dolomitic lime, borax and boric acid, and the like. Bubbles may include solids particles, for example soot particles, either in the film, the gas inside the film, or both.
As used herein the term “combustion” means deflagration-type combustion unless other types of combustion are specifically noted, such as detonation-type combustion. Deflagration is sub-sonic combustion that usually propagates through thermal conductivity; hot burning material heats the next layer of cold material and ignites it. Detonation is supersonic and primarily propagates through shock. As used herein the terms “combustion gases” and “combustion products” means substantially gaseous mixtures of combusted fuel, any excess oxidant, and combustion products, such as oxides of carbon (such as carbon monoxide, carbon dioxide), oxides of nitrogen, oxides of sulfur, and water, whether from deflagration, detonation, or combination thereof. Combustion products may include liquids and solids, for example soot and unburned or non-combusted fuels.
“Oxidant” as used herein includes air and gases having the same molar concentration of oxygen as air, oxygen-enriched air (air having oxygen concentration greater than 21 mole percent), and “pure” oxygen, such as industrial grade oxygen, food grade oxygen, and cryogenic oxygen. Oxygen-enriched air may have 50 mole percent or more oxygen, and in certain embodiments may be 90 mole percent or more oxygen.
The term “fuel”, according to this disclosure, means a combustible composition comprising a major portion of, for example, methane, natural gas, liquefied natural gas, propane, hydrogen, steam-reformed natural gas, atomized hydrocarbon oil, combustible powders and other flowable solids (for example coal powders, carbon black, soot, and the like), and the like. Fuels useful in the disclosure may comprise minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid or particulate fuels. As used herein the term “fuel” includes gaseous fuels, liquid fuels, flowable solids, such as powdered carbon or particulate material, waste materials, slurries, and mixtures or other combinations thereof.
The sources of oxidant and fuel may be one or more conduits, pipelines, storage facility, cylinders, or, in embodiments where the oxidant is air, ambient air. Oxygen-enriched oxidants may be supplied from a pipeline, cylinder, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit such as a vacuum swing adsorption unit.
The term “downstream apparatus” means a container, channel or conduit defined at least by a floor and a wall structure extending upwards from the floor to form a space in which molten glass may be present, whether flowing or not. In certain embodiments the downstream apparatus will include a roof and a wall structure connecting the floor and roof. The downstream apparatus may have any operable cross-sectional shape (for example, but not limited to, rectangular, oval, circular, trapezoidal, hexagonal, and the like) and any flow path shape (for example, but not limited to, straight, zigzag, curved, and combinations thereof). In certain systems and methods the downstream apparatus may be a flow channel selected from the group consisting of a conditioning channel, a distribution channel, and a forehearth.
Conduits used in burners and devices for delivery of compositions useful in systems and methods of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like. Suitable materials for the glass-contact refractory, which may be present in SC melters and flow channels, and refractory burner blocks (if used), include fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The particular system and method, downstream apparatus, burner geometry, foam de-stabilization apparatus, and type of glass to be produced may all dictate the choice of a particular material, among other parameters.
Certain submerged and non-submerged combustion burners and foam de-stabilization apparatus useful in systems and methods of this disclosure may be fluid-cooled, and may include first and second (or more) concentric conduits. In the case of burners, the first conduit may be fluidly connected at one end to a source of fuel, the second conduit may be fluidly connected to a source of oxidant, and a third substantially concentric conduit may connect to a source of cooling fluid.
Certain systems of this disclosure may comprise one or more non-submerged burners. Suitable non-submerged combustion burners may comprise a fuel inlet conduit having an exit nozzle, the conduit and nozzle inserted into a cavity of a ceramic burner block, the ceramic burner block in turn inserted into either the roof or the wall structure, or both the roof and wall structure of the downstream apparatus.
In certain systems, one or more burners may be adjustable with respect to direction of flow of the combustion products. Adjustment may be via automatic, semi-automatic, or manual control. Certain system embodiments may comprise a burner mount that mounts the burner in the wall structure, roof, or floor of the downstream apparatus comprising a refractory or refractory-lined ball joint. Other burner mounts may comprise rails mounted in slots in the wall or roof. In yet other embodiments the burners may be mounted outside of the downstream apparatus, on supports that allow adjustment of the combustion products flow direction. Useable supports include those comprising ball joints, cradles, rails, and the like.
In certain systems and methods of the present disclosure, the downstream apparatus may comprise a flow channel comprising a series of sections, and may comprise one or more skimmers and/or impingement (high momentum) burners, such as described in assignee's co-pending U.S. application Ser. No. 13/268,130, filed Oct. 7, 2011 (now U.S. Pat. No. 9,021,838), and Ser. No. 13/493,170, filed Jun. 11, 2012 (now U.S. Pat. No. 8,707,739). Certain systems and methods of the present disclosure may utilize measurement and control schemes such as described in assignee's co-pending application Ser. No. 13/493,219, filed Jun. 11, 2012, and/or feed batch densification systems and methods as described in assignee's co-pending application Ser. No. 13/540,704, filed Jul. 3, 2012. Certain systems and methods of the present disclosure may utilize devices for delivery of treating compositions such as disclosed in assignee's co-pending application Ser. No. 13/633,998, filed Oct. 3, 2012 (now U.S. Pat. No. 8,973,405).
Certain system and method embodiments of this disclosure may be controlled by one or more controllers. For example, burner or pulsed detonation device combustion (flame) temperature may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, temperature of the effluent, pressure of the primary oxidant entering the burner, humidity of the oxidant, burner geometry, combustion ratio, and combinations thereof. Certain systems and methods of this disclosure may also measure and/or monitor feed rate of batch or other feed materials, such as glass batch, cullet, mat or wound roving and treatment compositions, mass of feed, and use these measurements for control purposes. Exemplary systems and methods of the disclosure may comprise a controller which receives one or more input parameters selected from temperature of melt, composition of bubbles and/or foam, height of foam layer, and combinations thereof, and may employ a control algorithm to control combustion temperature, flow rate and/or composition of foam de-stabilization compositions, and other output parameters based on one or more of these input parameters.
Specific non-limiting system and method embodiments in accordance with the present disclosure will now be presented in conjunction with the attached drawing figures. The same numerals are used for the same or similar features in the various figures. In the views illustrated in the drawing figures, it will be understood in each case that the figures are schematic in nature, and certain conventional features may not be illustrated in all embodiments in order to illustrate more clearly the key features of each embodiment. The geometry of forehearth 4 or other downstream apparatus is illustrated generally the same in the various embodiments, but that of course is not necessary.
SC burners in SCM 2 produce a turbulent melt comprising bubbles having a bubble atmosphere. In general the atmosphere of the bubbles is about the same from bubble to bubble, but that is not necessarily so. The bubbles form bubble layer 18 in downstream apparatus 4. One or more SC burners in SCM 2 may be oxy/fuel burners. SCM 2 may receive numerous feeds through one or more inlet ports, and batch feeders maybe provided. Other feeds are possible, such as glass mat waste, wound roving, waste materials, and the like, such as disclosed in assignee's application U.S. Ser. No. 12/888,970, filed Sep. 23, 2010 (published as U.S. Publication No. 2012/0077135 on Mar. 29, 2012).
Still referring to
Another feature of embodiment 100, and which may be included in many of the system and method embodiments of the present disclosure, is the provision of valves 36, 38 and appropriate valve controls (not illustrated) to pulse or oscillate flow of fuel and/or oxidant to low momentum non-submerged burners 22. The pulsing may be random or non-random, and may provide certain benefits, such as reduced NOx emissions. The principle and the various methods of implementation are broadly described in U.S. Pat. Nos. 4,846,665, 5,302,111, 5,522,721, and U.S. Publication No. 200610177785. The main idea is to pulse the flow of fuel, or oxidant being supplied to at least one burner of the furnace, to generate successive fuel-rich and fuel-lean zones in a flame. In certain embodiments, the flow rate of a main or primary oxidant is controlled by a main oxidant flow rate control unit, and oscillating combustion is generated by oscillating the fuel flow with an oscillating valve and combusting the oscillating fuel with the main oxidant adjacent the burner to produce combustion products. A post-combustion oxidant may also be injected into the combustion products, and a post-combustion oxidant flow rate control unit may control the injection rate of the post-combustion oxidant. The combustion products and the injected post-combustion oxidant are combusted. A rate of the fuel flow may be predetermined. A controller is provided that is operatively associated with the main oxidant flow rate control unit, the oscillating valve, and the post-combustion oxidant flow rate control unit. A value or values associated with one or more combustion parameters (including a rate of flow of the main oxidant, a rate of flow of the post-combustion oxidant, a frequency of the oscillating fuel flow, an amplitude of the oscillating fuel flow, a duty cycle of the oscillating fuel flow) may be determined. The combustion parameter associated with the determined value or values may then be adjusted. The determined value or values may be based upon the predetermined fuel flow rate. The determining step may be performed by the controller.
Referring now to
Suitable nozzles for use in systems such as illustrated in
Yet other suitable single-fluid nozzles may include pressure-swirl spray nozzles such as illustrated schematically in
Compound nozzles, such as illustrated in
Suitable multiple-fluid nozzles include both internal-mix multiple fluid nozzles and external-mix multiple-fluid nozzles. One example of an internal-mix multiple fluid nozzle is illustrated schematically in
As used herein the term “nozzle” includes atomizers, and suitable atomizers that may be used in systems and methods of the present disclosure include, but are not limited to, rotary atomizers (such as illustrated in
Tube 122 includes a plurality of radially spaced axial conductive pins 156 which are connected to a conductive tubular element 158 by suitable means including soldering or screws. The conductive tubular element 158 surrounds the body 160 of the non-conductive deflector 126 and a conductive coil spring 162 electrically connects the body 164 of the center electrode to the inlet tube 122 as best shown in
As set forth above, tube 122 is threadably connected to the rotary bearing of an atomizer body, and the rotary bearing is connected to a source of electric current (not shown) that typically impresses a voltage of between 50 to 90 KV on tube 122. As set forth above, the central axially extending electrode 148 is electrically connected to tube 122 and thus the tip portion 152 of the central electrode is electrostatically charged to generate a central axially extending electrostatic field. Further, the rotary bell element includes an annular electrostatically charged surface adjacent the end surface of the bell element, which generates an annular electrostatic field. As will be understood by those skilled in this art, the annular electrostatically charged surface of bell element 120 may be selected from the annular distal end 170 of the rear distribution member 140, wherein the rear housing 134 may be formed integrally with the rear distribution member 140. However, in certain embodiments, both the rear and front distribution members 140 and 144, respectively, may be formed of a conductive polymer, such as polytetrafluoroethylene, having a conductive filler and the annular distal end portion 178 is electrostatically charged by the tubular portion 158 of tube 122 and which is closest to the foam 18 and generates the annular electrostatic field. In certain embodiments, the annular surface 178 is essentially co-planar with the planar surface of the end face 132 as illustrated in
In use, a fluid or slurry enters tube 122 as illustrated in
Electrostatic charging of sprays may be useful for high transfer efficiency. The charging is typically at high voltage (20 to 40 kV) but low current. An example of such a device illustrated schematically in
An electrode arrangement 212 is supported by a ring 214 from electrically insulating material, which ring concentrically surrounds the spray device 205. The downstream end 216 of the ring 214 has a distance 220 from the downstream end 218 of the rotary body 207, which distance may range between 0 mm and 50 mm. The radial distance between the outside edge 211 of the rotary body 207 and the radial center 224 on the downstream end of the ring 214 is marked 226 and may range between 50 mm and 250 mm. A number of electrodes 228 protrude out of the ring 214, on its downstream end 216, by a length 230. The length 230 may range from 0 mm to 50 mm. The electrodes 228 are arranged around the periphery of the ring 214, on its downstream end 216, at a uniform distribution and extend essentially axially parallel with the axis of rotation 232 of the rotary body 207. The ring 214 connects by way of strips 234 from electrically insulating material with the stationary part 236 of the rotary atomizer 205.
In accordance with the embodiment illustrated schematically in
Formed in the gas guide ring 242, axially parallel with the axis of rotation 232, is a number of first gas channels 252 corresponding to the number of electrodes 228. These each contain one of the electrodes 228, are arranged at a symmetric distribution around the ring-shaped gas guide ring 242 and each extend from an angular groove 47 in the upstream front 276 up to the downstream end 216 of the gas ring 242. The angular groove 247 contains a ring-shaped electrical conductor 280 to which the electrodes 228 are connected and which forms between itself and the bottom of the angular groove 247 a first angular channel 278 that is connected to at least one first gas feed line 249. An electrical high voltage line 290 is connected to the electrical conductor 280. The electrodes 228 are swept by the gas passing through the gas channels 252. The gas guide ring 242 is installed in an angular groove 244 on the downstream side of the mounting ring 240, leaving between both parts a second angular channel 246, which is connected to at least one gas feed line 248 that is located on the upstream side 250 of the ring 214. A second gas channel 256, which may have the shape of an angular slot or be a number of small ring-shaped openings, extends from the angular groove 244 on the downstream side 258 of the mounting ring 240 to a radially outer surface 260 of the gas guide ring 242. The gas flows through the second gas channel 252 from the second angular channel 246 at the radially outer outside surface 260 and across it to the downstream end 216, where the gas flows across the protruding end sections 262 of the electrodes 228 and mixes with the gas from the first gas channels 252. Both gas flows pick up electrical charges from the electrodes 228 and transfer them to the particles of the atomized, electrically conductive coating liquid in the spray cloud area 209. A third gas channel 266, which may have the form of a ring-shaped slot or of openings arranged in ring fashion, extends from the second angular channel 246 down to the downstream side 258 of the mounting ring 240 on the radially inner outside surface 268 of the gas guide ring 242. The gas of this third gas channel 256 flows as well across the protruding end sections 262 of the electrodes 228, mixes with the other gas and transfers together with it electrical charges from the electrodes 228 to the particles of the atomized coating liquid. A high charge of electrical energy is transferred thereby from the electrodes to the particles of the atomized electrically conductive coating liquid, and the outside surfaces 260 and 268 of the gas guide ring 242 are thus kept clean of gas by preventing particles of the coating liquid to proceed on these outside surfaces. The gas prevents a backflow of particles of the coating liquid, upstream from the spray cloud area 209 toward the electrode arrangement 212, so that the outside surfaces 270 of the mounting ring 240 cannot become contaminated either by coating liquid.
As can be seen from
The separate gas feed lines 249 and 247 enable a separate adjustment and control of the gas supplied to the first gas channels 278, 252 and the second and third gas channels 256 and 266.
The ring 214 has a shape which in a direction downstream from the spray head 207 diminishes cross-sectionally in the form of a wedge, in that the mounting ring has a considerably shorter axial dimension than the gas guide ring 242 and the gas guide ring has in axial section a triangular shape, as can be seen specifically from
Ultrasonic atomizer spray nozzles utilize high frequency (20 kHz to 50 kHz) vibration to produce narrow drop-size distribution and low velocity spray from a liquid. The vibration of a piezoelectric crystal causes capillary waves on the nozzle surface liquid film. An example of such a device illustrated schematically in
Except for a narrow circumferential flange 328 at the rear end of the front section, the outer diameter of the transducer is equal to the diameters of the front and rear sections. These sections are clamped against the driving element 313 with a predetermined compressive stress by a central tubular bolt 329 that is formed as an enlarged threaded stud on the end of a liquid feed tube 330. The tubular bolt engages an internally threaded enlarged portion 331 of an axial passage 332 that extends through the transducer from the rear end of the rear dummy section 314 to open onto the atomizing surface 327 at the tip of the probe 325. To prevent liquid flowing through the delivery tube 330 into the passage 332 from penetrating past the threaded portion of the front section and contacting the internal surfaces of the piezoelectric disks, an O-ring seal 333 is provided between a smooth sealing surface 334 machined on the front end of the central bolt 329 and the inner surface of the passage 332. As illustrated, the O-ring is fitted into a circumferential groove machined into the wall of the passage to assure that the O-ring is properly located with respect to the sealing surface 334. The groove could equally well be formed on the end of the bolt, or any other conventional sealing arrangement could be used between the end of the bolt and the inner surface of the passage in the front section. An additional O-ring 335 is provided to seal between the outer circumference of the feed tube 330 and the inner circumference of the axial passage. This second O-ring prevents ingress of moisture from the environment surrounding the atomizer. Because there are no clamping flanges on the transducer body to provide an annular area for a compressed ring gasket around the outside of the driving element, the outer peripheries of the piezoelectric disks are protected by an enclosed shell 336. This shell is in the form of a cylindrical cup 337 having a screw cap 338. The cup 337 has an end wall provided with an opening 340, which receives the cylindrical portion 322 of the front section of the transducer. This opening is sealed by a radially compressed O-ring 341 disposed between the outer circumference of the cylindrical portion 322 and a counterbore in the opening 340. Screw cap 338 has an end wall 343 with a similar but smaller opening 344. An O-ring 345 in a counterbore 346 seals this opening in the same way as O-ring 341 seals the front opening. As illustrated, O-ring 345 is radially compressed between the counterbore 346 and a cylindrical collar 347 extending from the end 321 of the rear dummy section. The procedure for assembling the transducer, mounting the atomizer, and connecting liquid delivery conduits is further discussed in the U.S. Pat. No. 4,723,708. Liquid may be delivered to the rear of the unit via a flexible hose (not shown) connected to the delivery tube 330 by the standard coupling connectors 352 (see
Those skilled in this art will readily recognize after having read this disclosure that systems and methods comprising combinations of any two or more of the various embodiments described herein may be combined. For example, systems and methods where one or more low momentum non-submerged burners impinge on foam, such as in embodiment 100, may also include one or more nozzles delivering other compositions, as in embodiment 200.
In order to determine which of the many foam de-stabilization apparatus and techniques may work best for any given situation may take a small amount of experimentation, but the degree of experimentation is not considered to be extensive or undue. Basically, the molten mass of glass and foam is allowed to enter the downstream apparatus and one or more of the foam de-stabilization techniques described herein begun soon thereafter, and tuned to achieve the greatest de-stabilization effect on the foam. If the foam for some reason is so stable as to not be affected at all by the particular de-stabilization apparatus or method, it may simply be discontinued.
Systems and methods of the present disclosure may be combined with other strategies for foam de-stabilization. Systems and methods of the present disclosure decrease bubble stability when used separately or in conjunction with one or more downstream methods. For example, adding nitrogen as a treating composition to the molten mass of glass and bubbles in the downstream apparatus may tend to make bubbles in foam 18 less stable when there is the presence of a high moisture atmosphere in the downstream apparatus. A high moisture atmosphere may exist in the downstream apparatus for example when one or more high momentum burners (whether oxy/fuel or not) are used as impingement burners in the downstream apparatus to impinge on foam 18. The use of one or more high momentum impingement burners (whether oxy/fuel or not) in a downstream flow channel is described in assignee's co-pending application Ser. No. 13/493,170, filed Jun. 11, 2012, (now U.S. Pat. No. 8,707,739.
Measuring effectiveness of the foam de-stabilization systems and methods described herein may generally be made by taking samples of the molten mass of glass and counting bubbles and their size in the molten mass, or a solidified or partially solidified sample thereof, using the naked eye. Another naked eye measurement may simply be comparing an acceptable glass to a glass sample made using a system and method of the present disclosure, and making a naked eye comparison. Another method would be to simply observe the height of foam or bubbles within a channel or other downstream apparatus, using graduated marks on refractory materials to serve as a ruler, or use of known heights of construction materials for the sidewalls to access the height of the foam. More sophisticated methods and equipment may certainly be used, such as image analysis using computers to measure size, size distribution and quantity of bubbles (or other parameters) within a high-resolution photograph or micrograph of the material to be analyzed. For example, companies such as Glass Service market methods and equipment for such measurements. The glass melting method, as well as phenomena within the melt, may be continuously observed, recorded and evaluated using a high temperature observation furnace equipped with a special silica observation crucible. This equipment may be further coupled with image analysis equipment to provide easy manipulation of recorded data. For example, in a “melt test”, the objective is to evaluate the fining characteristics of differing batch compositions. The area of the recorded images occupied by inhomogeneities (bubbles), bubble size distribution, bubble number, as well as bubble growth rates vs. melting time, may be evaluated to provide comparison between individual batches. The records of the melting course may be provided in the form of video files, which may be displayed on a personal computer, handheld computer, or other viewer. Bubble growth rate, or shrinkage rate, or rate of disappearance measurements may be based on direct observation and recording of bubble sizes depending on time. It is possible to keep bubbles suspended in the melt for hours by the developed “shuttle” method.
In embodiments of the present disclosure, a reduction of 5 percent, or 10 percent, or 20 percent, or 30 percent or more of foam may be acceptable. In other embodiments, nothing short of complete or substantially complete foam or bubble removal will suffice, in other words 90 percent, or 95 percent, or 99 percent, or even 99.9 percent reduction in foam and bubbles.
The downstream apparatus 4 may include one or more bushings (not illustrated) for example when producing glass fiber (not illustrated). Downstream apparatus for use in systems and methods of the present disclosure may comprise a roof, floor and sidewall structure comprised of an outer metal shell, non-glass-contact brick or other refractory wall, and glass-contact refractory for those portions expected to be in contact with molten glass. Downstream apparatus may include several sections arranged in series, each section having a roof, floor, and sidewall structure connecting its roof and floor, and defining a flow channel for conditioning molten glass flowing there through. The sections may be divided by a series of skimmers, each extending generally substantially vertically downward a portion of a distance between the roof and floor of the channel, with a final skimmer positioned between a last channel section and a forehearth. The number of sections and the number of skimmers may each be more or less than two. The downstream apparatus may be rectangular as illustrated in the various figures, or may be a shape such as a generally U-shaped or V-shaped channel or trough of refractory material supported by a metallic superstructure.
The flow rate of the molten glass through downstream apparatus 4 (unless it is a holding container without flow) will depend on many factors, including the geometry and size of the SCM and downstream apparatus, temperature of the melt, viscosity of the melt, and like parameters, but in general the flow rate of molten glass may range from about 0.5 lb./min to about 5000 lbs./min or more (about 0.23 kg/min to about 2300 kg/min or more), or from about 10 lbs./min to about 500 lbs./min (from about 4.5 kg/min to about 227 kg/min), or from about 100 lbs./min to 300 lbs./min (from about 45 kg/min to about 136 kg/min).
Low momentum non-submerged burners useful in systems and methods of this disclosure may include some of the features of those disclosed in assignee's U.S. Ser. No. 13/268,130, filed Oct. 7, 2011. For low momentum burners using natural gas as fuel, the burners may have a fuel firing rate ranging from about 0.4 to about 40 scfh (from about 11 L/hr. to about 1,120 L/hr.); an oxygen firing rate ranging from about 0.6 to about 100 scfh (from about 17 L/hr. to about 2,840 L/hr.); a combustion ratio ranging from about 1.5 to about 2.5; nozzle velocity ratio (ratio of velocity of fuel to oxygen at the fuel nozzle tip) ranging from about 0.5 to about 2.5; a fuel velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second) and an oxidant velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second).
Those of skill in this art will readily understand the need for, and be able to construct suitable fuel supply conduits and oxidant supply conduits, as well as respective flow control valves, threaded fittings, quick connect/disconnect fittings, hose fittings, and the like.
Submerged combustion melters may be fed a variety of feed materials. The initial raw material may include any material suitable for forming molten glass such as, for example, limestone, glass, sand, soda ash, feldspar and mixtures thereof. A glass composition for producing glass fibers known as “E-glass” typically includes 52-56% SiO2, 12-16% Al2O3, 0-0.8% Fe2O3, 16-25% CaO, 0-6% MgO, 0-10% B2O3, 0-2% Na2O+K2O, 0-1.5% TiO2 and 0-1% F2. Other glass compositions may be used, such as those described in assignee's published U.S. Publication Nos. 2007/0220922 and 2008/0276652. The initial raw material to provide these glass compositions can be calculated in known manner from the desired concentrations of glass components, molar masses of glass components, chemical formulas of batch components, and the molar masses of the batch components. Typical E-glass batches include those reproduced in Table 1 borrowed from U.S. Publication No. 2007/0220922. Notice that during glass melting, carbon dioxide (from lime) and water (borax) evaporate. The initial raw material can be provided in any form such as, for example, relatively small particles.
SCMs may also be fed by one or more roll stands, which in turn supports one or more rolls of glass mat, as described in assignee's co-pending application U.S. Ser. No. 12/888,970, filed Sep. 23, 2010, incorporated herein by reference. In certain embodiments powered nip rolls may include cutting knives or other cutting components to cut or chop the mat (or roving, in those embodiments processing roving) into smaller length pieces prior to entering melter 602. Also provided in certain embodiments may be a glass batch feeder. Glass batch feeders are well-known in this art and require no further explanation.
Downstream apparatus may include refractory fluid-cooled panels. Liquid-cooled panels may be used, having one or more conduits or tubing therein, supplied with liquid through one conduit, with another conduit discharging warmed liquid, routing heat transferred from inside the melter to the liquid away from the melter. Liquid-cooled panels may also include a thin refractory liner, which minimizes heat losses from the melter, but allows formation of a thin frozen glass shell to form on the surfaces and prevent any refractory wear and associated glass contamination. Other useful cooled panels include air-cooled panels, comprising a conduit that has a first, small diameter section, and a large diameter section. Warmed air transverses the conduits such that the conduit having the larger diameter accommodates expansion of the air as it is warmed. Air-cooled panels are described more fully in U.S. Pat. No. 6,244,197. In certain embodiments, the refractory fluid cooled-panels are cooled by a heat transfer fluid selected from the group consisting of gaseous, liquid, or combinations of gaseous and liquid compositions that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for air treated to remove moisture), inert inorganic gases, such as nitrogen, argon, and helium, inert organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from inert liquids that may be organic, inorganic, or some combination thereof, for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include steam (if cooler than the oxygen manifold temperature), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons.
Certain embodiments may comprise a method control scheme for the downstream apparatus. For example, as explained in the '970 application, a master method controller may be configured to provide any number of control logics, including feedback control, feed-forward control, cascade control, and the like. The disclosure is not limited to a single master method controller, as any combination of controllers could be used. The term “control”, used as a transitive verb, means to verify or regulate by comparing with a standard or desired value. Control may be closed loop, feedback, feed-forward, cascade, model predictive, adaptive, heuristic and combinations thereof. The term “controller” means a device at least capable of accepting input from sensors and meters in real time or near-real time, and sending commands directly to one or more foam de-stabilization elements, and/or to local devices associated with foam de-stabilization elements able to accept commands. A controller may also be capable of accepting input from human operators; accessing databases, such as relational databases; sending data to and accessing data in databases, data warehouses or data marts; and sending information to and accepting input from a display device readable by a human. A controller may also interface with or have integrated therewith one or more software application modules, and may supervise interaction between databases and one or more software application modules. The controller may utilize Model Predictive Control (MPC) or other advanced multivariable control methods used in multiple input/multiple output (MIMO) systems. As mentioned previously, the methods of assignee's co-pending application U.S. Ser. No. 13/268,065, filed Oct. 7, 2011, using the vibrations and oscillations of the melter itself, may prove useful predictive control inputs.
The downstream apparatus floors and sidewall structures may include a glass-contact refractory lining. The glass-contact lining may be 1 centimeter, 2 centimeters, 3 centimeters or more in thickness, however, greater thickness may entail more expense without resultant greater benefit. The refractory lining may be one or multiple layers. Glass-contact refractory used in downstream apparatus described herein may be cast concretes such as disclosed in U.S. Pat. No. 4,323,718. Two cast concrete layers are described in the '718 patent, the first being a hydraulically setting insulating composition (for example, that known under the trade designation CASTABLE BLOC-MIX-G, a product of Fleischmann Company, Frankfurt/Main, Federal Republic of Germany). This composition may be poured in a form of a wall section of desired thickness, for example a layer 5 cm thick, or 10 cm, or greater. This material is allowed to set, followed by a second layer of a hydraulically setting refractory casting composition (such as that known under the trade designation RAPID BLOCK RG 158, a product of Fleischmann company, Frankfurt/Main, Federal Republic of Germany) may be applied thereonto. Other suitable materials for the downstream apparatus, components that require resistance to high temperatures, such as particle guns, rotating blades and paddles, and refractory block burners (if used) are fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The choice of a particular material is dictated among other parameters by the geometry of the downstream apparatus and the foam de-stabilization equipment used, and the type of glass to be produced.
Those having ordinary skill in this art will appreciate that there are many possible variations of the systems and methods described herein, and will be able to devise alternatives and improvements to those described herein that are nevertheless considered to be within the claims.
Number | Name | Date | Kind |
---|---|---|---|
1716433 | McKelvey et al. | Jun 1929 | A |
1989103 | McKelvey et al. | Jan 1935 | A |
2174533 | See et al. | Oct 1939 | A |
2118479 | McCaskey | Jan 1940 | A |
2269459 | Kleist | Jan 1942 | A |
2432942 | See et al. | Dec 1947 | A |
2455907 | Slayter | Jan 1948 | A |
2597585 | Howard | May 1952 | A |
2679749 | Poole | Jun 1954 | A |
2718096 | Henry et al. | Sep 1955 | A |
2773545 | Petersen | Dec 1956 | A |
2781756 | Kobe | Feb 1957 | A |
2878644 | Fenn | Mar 1959 | A |
2890166 | Heinze | Jun 1959 | A |
2902029 | Hill | Sep 1959 | A |
2981250 | Stewart | Apr 1961 | A |
3020165 | Davie | Feb 1962 | A |
3056283 | Tiede | Oct 1962 | A |
3073683 | Switzer et al. | Jan 1963 | A |
3084392 | Labino | Apr 1963 | A |
3088812 | Bitterlich et al. | May 1963 | A |
3104947 | Switzer et al. | Sep 1963 | A |
3160578 | Saxton et al. | Dec 1964 | A |
3165452 | Williams | Jan 1965 | A |
3170781 | Keefer | Feb 1965 | A |
3174820 | See et al. | Mar 1965 | A |
3215188 | Bauer | Nov 1965 | A |
3224855 | Plumat | Dec 1965 | A |
3237929 | Plumat et al. | Mar 1966 | A |
3241548 | See et al. | Mar 1966 | A |
3245769 | Eck et al. | Apr 1966 | A |
3248205 | Dolf et el | Apr 1966 | A |
3260587 | Dolf at al | Jul 1966 | A |
3268313 | Burgman at al | Aug 1966 | A |
3285834 | Guerrieri et al. | Nov 1966 | A |
3294512 | Penberthy | Dec 1966 | A |
3325298 | Brown | Jun 1967 | A |
3385686 | Plumat et al. | May 1968 | A |
3402026 | Garrett et ai | Sep 1968 | A |
3407805 | Bougard | Oct 1968 | A |
3407962 | Mustian, Jr. | Oct 1968 | A |
3421873 | Burgman et al. | Jan 1969 | A |
3432399 | Schutt | Mar 1969 | A |
3445214 | Oremesher | May 1969 | A |
3498779 | Hathaway | Mar 1970 | A |
3510393 | Burgman et al. | May 1970 | A |
3519412 | Olink | Jul 1970 | A |
3525674 | Barnebey | Aug 1970 | A |
3533770 | Adler et al. | Oct 1970 | A |
3563683 | Hess | Feb 1971 | A |
3592151 | Webber | Jul 1971 | A |
3592623 | Shepherd | Jul 1971 | A |
3606825 | Johnson | Sep 1971 | A |
3617234 | Hawkins et al. | Nov 1971 | A |
3627504 | Johnson et al. | Dec 1971 | A |
3649235 | Harris | Mar 1972 | A |
3692017 | Glachant et al. | Sep 1972 | A |
3717139 | Guillet et al. | Feb 1973 | A |
3738792 | Feng | Jun 1973 | A |
3746527 | Knavish et al. | Jul 1973 | A |
3747588 | Malmin | Jul 1973 | A |
3754879 | Phaneuf | Aug 1973 | A |
3756800 | Phaneur | Sep 1973 | A |
3763915 | Perry et al. | Oct 1973 | A |
3764287 | Brocious | Oct 1973 | A |
3771988 | Starr | Nov 1973 | A |
3818893 | Kataoka et al. | Jun 1974 | A |
3835909 | Douglas et al. | Sep 1974 | A |
3840002 | Douglas et al. | Oct 1974 | A |
3856496 | Nesbitt et al. | Dec 1974 | A |
3885945 | Rees et al. | May 1975 | A |
3907585 | Francel et al. | Sep 1975 | A |
3913560 | Lazarre et al. | Oct 1975 | A |
3951635 | Rough | Apr 1976 | A |
3976464 | Wardlaw | Aug 1976 | A |
4001001 | Knavish et al. | Jan 1977 | A |
4004903 | Daman et al. | Jan 1977 | A |
4083711 | Jensen | Apr 1978 | A |
4110098 | Mattmuller | Aug 1978 | A |
4153438 | Stream | May 1979 | A |
4185982 | Schwenninger | Jan 1980 | A |
4203761 | Rose | May 1980 | A |
4205966 | Horikawa | Jun 1980 | A |
4226564 | Takahashi et al. | Oct 1980 | A |
4238226 | Sanzenbacher et al. | Dec 1980 | A |
4249927 | Fakuzaki et al. | Feb 1981 | A |
4270740 | Sanzenbacher et al. | Jun 1981 | A |
4282023 | Hammel et al. | Aug 1981 | A |
4303435 | Sleighter | Dec 1981 | A |
4309204 | Brooks | Jan 1982 | A |
4323718 | Buhring et al. | Apr 1982 | A |
4349376 | Dunn et al. | Sep 1982 | A |
4360373 | Pecoraro | Nov 1982 | A |
4397692 | Ramge et al. | Aug 1983 | A |
4406683 | Demarest | Sep 1983 | A |
4413882 | Bailey et al. | Nov 1983 | A |
4424071 | Steitz et al. | Jan 1984 | A |
4432780 | Propster et al. | Feb 1984 | A |
4488537 | Laurent | Dec 1984 | A |
4539034 | Hanneken | Sep 1985 | A |
4542106 | Sproull | Sep 1985 | A |
4545800 | Won et al. | Oct 1985 | A |
4599100 | Demarest, Jr. | Jul 1986 | A |
4626199 | Bounini | Dec 1986 | A |
4632687 | Kunkle et al. | Dec 1986 | A |
4634461 | Demarest, Jr. et al. | Jan 1987 | A |
4657586 | Masterson et al. | Apr 1987 | A |
4723708 | Berger et al. | Feb 1988 | A |
4735642 | Jensen et al. | Apr 1988 | A |
4738938 | Kunkle et al. | Apr 1988 | A |
4758259 | Jensen | Jul 1988 | A |
4780122 | Schwenninger et al. | Oct 1988 | A |
4798616 | Knavish et al. | Jan 1989 | A |
4814387 | Donat | Mar 1989 | A |
4816056 | Tsai et al. | Mar 1989 | A |
4877436 | Sheinkop | Oct 1989 | A |
4882736 | Pieper | Nov 1989 | A |
4886539 | Gerutti et al. | Dec 1989 | A |
4919700 | Pecoraro et al. | Apr 1990 | A |
4927886 | Backderf et al. | May 1990 | A |
4953376 | Merlone | Sep 1990 | A |
4973346 | Kobayashi | Nov 1990 | A |
5011086 | Sonnleitner | Apr 1991 | A |
5032230 | Shepherd | Jul 1991 | A |
5052874 | Johanson | Oct 1991 | A |
5062789 | Gitman | Nov 1991 | A |
5097802 | Clawson | Mar 1992 | A |
5168109 | Backderf et al. | Dec 1992 | A |
5169424 | Grinnen et al. | Dec 1992 | A |
5199866 | Joshi et al. | Apr 1993 | A |
5204082 | Schendel | Apr 1993 | A |
5299929 | Yap | Apr 1994 | A |
5360171 | Yap | Nov 1994 | A |
5374595 | Dumbaugh, Jr. et al. | Dec 1994 | A |
5405082 | Brown et al. | Apr 1995 | A |
5449286 | Snyder et al. | Sep 1995 | A |
5473885 | Hunter, Jr. et al. | Dec 1995 | A |
5483548 | Coble | Jan 1996 | A |
5490775 | Joshi et al. | Feb 1996 | A |
5522721 | Drogue et al. | Jun 1996 | A |
5545031 | Joshi et al. | Aug 1996 | A |
5575637 | Slavejkov et al. | Nov 1996 | A |
5606965 | Panz et al. | Mar 1997 | A |
5613994 | Muniz et al. | Mar 1997 | A |
5615668 | Panz et al. | Apr 1997 | A |
5636623 | Panz et al. | Jun 1997 | A |
5672827 | Jursich | Sep 1997 | A |
5713668 | Lunghofer et al. | Feb 1998 | A |
5718741 | Hull et al. | Feb 1998 | A |
5736476 | Warzke et al. | Apr 1998 | A |
5743723 | Iatrides et al. | Apr 1998 | A |
5765964 | Calcote et al. | Jun 1998 | A |
5814121 | Travis | Sep 1998 | A |
5829962 | Drasek et al. | Nov 1998 | A |
5833447 | Bodelin et al. | Nov 1998 | A |
5849058 | Takeshita et al. | Dec 1998 | A |
5863195 | Feldermann | Jan 1999 | A |
5887978 | Lunghofer et al. | Mar 1999 | A |
5944864 | Hull et al. | Aug 1999 | A |
5954498 | Joshi et al. | Sep 1999 | A |
5975886 | Phillippe | Nov 1999 | A |
5979191 | Jian | Nov 1999 | A |
5984667 | Phillippe et al. | Nov 1999 | A |
5993203 | Koppang | Nov 1999 | A |
6029910 | Joshi et al. | Feb 2000 | A |
6036480 | Hughes et al. | Mar 2000 | A |
6039787 | Edlinger | Mar 2000 | A |
6045353 | VonDrasek et al. | Apr 2000 | A |
6068468 | Phillipe et al. | May 2000 | A |
6071116 | Phillipe et al. | Jun 2000 | A |
6074197 | Phillippe | Jun 2000 | A |
6077072 | Marin et al. | Jun 2000 | A |
6085551 | Pieper et al. | Jul 2000 | A |
6109062 | Richards | Aug 2000 | A |
6113389 | Joshi et al. | Sep 2000 | A |
6116896 | Joshi et al. | Sep 2000 | A |
6123542 | Joshi et al. | Sep 2000 | A |
6126438 | Joshi et al. | Oct 2000 | A |
6154481 | Sorg et al. | Nov 2000 | A |
6156285 | Adams et al. | Dec 2000 | A |
6171100 | Joshi et al. | Jan 2001 | B1 |
6178777 | Chenoweth | Jan 2001 | B1 |
6183848 | Turner et al. | Feb 2001 | B1 |
6210151 | Joshi et al. | Apr 2001 | B1 |
6210703 | Novich | Apr 2001 | B1 |
6237369 | LeBlanc et al. | May 2001 | B1 |
6241514 | Joshi et al. | Jun 2001 | B1 |
6244197 | Coble | Jun 2001 | B1 |
6244857 | VonDrasek et al. | Jun 2001 | B1 |
6247315 | Marin et al. | Jun 2001 | B1 |
6250136 | Igreja | Jun 2001 | B1 |
6250916 | Phillippe et al. | Jun 2001 | B1 |
6274164 | Novich | Aug 2001 | B1 |
6276924 | Joshi et al. | Aug 2001 | B1 |
6276928 | Joshi et al. | Aug 2001 | B1 |
6293277 | Panz et al. | Sep 2001 | B1 |
6314760 | Chenoweth | Nov 2001 | B1 |
6314896 | Marin et al. | Nov 2001 | B1 |
6318126 | Takei et al. | Nov 2001 | B1 |
6332339 | Kawaguchi et al. | Dec 2001 | B1 |
6338337 | Panz et al. | Jan 2002 | B1 |
6344747 | Lunghofer et al. | Feb 2002 | B1 |
6357264 | Richards | Mar 2002 | B1 |
6386271 | Kawamoto et al. | May 2002 | B1 |
6398547 | Joshi et al. | Jun 2002 | B1 |
6418755 | Chenoweth | Jul 2002 | B2 |
6422041 | Simpson et al. | Jul 2002 | B1 |
6454562 | Joshi et al. | Sep 2002 | B1 |
6460376 | Jeanvoine et al. | Oct 2002 | B1 |
6470710 | Takei et al. | Oct 2002 | B1 |
6536238 | Kawaguchi et al. | Mar 2003 | B2 |
6536651 | Ezumi et al. | Mar 2003 | B2 |
6558606 | Kulkarni et al. | May 2003 | B1 |
6578779 | Dion | Jun 2003 | B2 |
6660106 | Babel et al. | Dec 2003 | B1 |
6694791 | Johnson et al. | Feb 2004 | B1 |
6701617 | Li et al. | Mar 2004 | B2 |
6705118 | Simpson et al. | Mar 2004 | B2 |
6708527 | Ibarlucea et al. | Mar 2004 | B1 |
6711942 | Getman et al. | Mar 2004 | B2 |
6715319 | Barrow et al. | Apr 2004 | B2 |
6722161 | LeBlanc | Apr 2004 | B2 |
6736129 | Sjith | May 2004 | B1 |
6739152 | Jeanvoine et al. | May 2004 | B2 |
6796147 | Borysowicz et al. | Sep 2004 | B2 |
6797351 | Kulkarni et al. | Sep 2004 | B2 |
6854290 | Hayes et al. | Feb 2005 | B2 |
6857999 | Jeanvoine | Feb 2005 | B2 |
6883349 | Jeanvoine | Apr 2005 | B1 |
6918256 | Gutmark et al. | Jul 2005 | B2 |
7027467 | Baev et al. | Apr 2006 | B2 |
7116888 | Aitken et al. | Oct 2006 | B1 |
7134300 | Hayes et al. | Nov 2006 | B2 |
7168395 | Engdahl | Jan 2007 | B2 |
7231788 | Karetta et al. | Jun 2007 | B2 |
7273583 | Rue et al. | Sep 2007 | B2 |
7330634 | Aitken et al. | Feb 2008 | B2 |
7383698 | Ichinose et al. | Jun 2008 | B2 |
7392668 | Adams et al. | Jul 2008 | B2 |
7428827 | Maugendre et al. | Sep 2008 | B2 |
7441686 | Odajima et al. | Oct 2008 | B2 |
7448231 | Jeanvoine et al. | Nov 2008 | B2 |
7454925 | DeAngelis et al. | Nov 2008 | B2 |
7509819 | Baker et al. | Mar 2009 | B2 |
7565819 | Jeanvoine et al. | Jul 2009 | B2 |
7578988 | Jacques et al. | Aug 2009 | B2 |
7581948 | Borders et al. | Sep 2009 | B2 |
7622677 | Barberree et al. | Nov 2009 | B2 |
7624595 | Jeanvoine et al. | Dec 2009 | B2 |
7748592 | Koga et al. | Jul 2010 | B2 |
7767606 | McGinnis et al. | Aug 2010 | B2 |
7778290 | Sacks et al. | Aug 2010 | B2 |
7781562 | Crawford et al. | Aug 2010 | B2 |
7802452 | Borders et al. | Sep 2010 | B2 |
7832365 | Hannum et al. | Nov 2010 | B2 |
7845314 | Smith | Dec 2010 | B2 |
7855267 | Crawford et al. | Dec 2010 | B2 |
8033254 | Hannum et al. | Oct 2011 | B2 |
8279899 | Kitabayashi | Oct 2012 | B2 |
8285411 | Hull et al. | Oct 2012 | B2 |
20010039813 | Simpson et al. | Nov 2001 | A1 |
20020086077 | Noller et al. | Jul 2002 | A1 |
20020134112 | Barrow et al. | Sep 2002 | A1 |
20020152770 | Becher et al. | Oct 2002 | A1 |
20020162358 | Jeanvoine et al. | Nov 2002 | A1 |
20020166343 | LeBlanc | Nov 2002 | A1 |
20030015000 | Hayes et al. | Jan 2003 | A1 |
20030029197 | Jeanvoine et al. | Feb 2003 | A1 |
20030037571 | Kobayashi et al. | Feb 2003 | A1 |
20030054301 | Borders | Mar 2003 | A1 |
20040131988 | Baker et al. | Jul 2004 | A1 |
20040168474 | Jeanvoine et al. | Sep 2004 | A1 |
20040224833 | Jeanvoine et al. | Nov 2004 | A1 |
20050039491 | Maugendre et al. | Feb 2005 | A1 |
20050103323 | Engdahl | May 2005 | A1 |
20050236747 | Rue et al. | Oct 2005 | A1 |
20060000239 | Jeanvoine et al. | Jan 2006 | A1 |
20060174655 | Kobayashi et al. | Aug 2006 | A1 |
20060177785 | Varagani et al. | Aug 2006 | A1 |
20060233512 | Aitken et al. | Oct 2006 | A1 |
20060257097 | Aitken et al. | Nov 2006 | A1 |
20060287482 | Crawford et al. | Dec 2006 | A1 |
20060293494 | Crawford et al. | Dec 2006 | A1 |
20060293495 | Crawford et al. | Dec 2006 | A1 |
20070106054 | Crawford et al. | May 2007 | A1 |
20070122332 | Jacques et al. | May 2007 | A1 |
20070130994 | Boratav et al. | Jun 2007 | A1 |
20070212546 | Jeanvoine et al. | Sep 2007 | A1 |
20070220922 | Bauer et al. | Sep 2007 | A1 |
20080035078 | Li | Feb 2008 | A1 |
20080227615 | McGinnis et al. | Sep 2008 | A1 |
20080256981 | Jacques et al. | Oct 2008 | A1 |
20080276652 | Bauer et al. | Nov 2008 | A1 |
20080293857 | Crawford et al. | Nov 2008 | A1 |
20090042709 | Jeanvoine et al. | Feb 2009 | A1 |
20090220899 | Spangelo et al. | Sep 2009 | A1 |
20100064732 | Jeanvoine et al. | Mar 2010 | A1 |
20100087574 | Crawford et al. | Apr 2010 | A1 |
20100089383 | Cowles | Apr 2010 | A1 |
20100120979 | Crawford et al. | May 2010 | A1 |
20100143601 | Hawtof et al. | Jun 2010 | A1 |
20100227971 | Crawford et al. | Sep 2010 | A1 |
20100236323 | D'Angelico et al. | Sep 2010 | A1 |
20100300153 | Zhang et al. | Dec 2010 | A1 |
20100304314 | Rouchy et al. | Dec 2010 | A1 |
20100307196 | Richardson | Dec 2010 | A1 |
20100326137 | Rouchy et al. | Dec 2010 | A1 |
20110054091 | Crawford et al. | Mar 2011 | A1 |
20110061642 | Rouchy et al. | Mar 2011 | A1 |
20110088432 | Purnode et al. | Apr 2011 | A1 |
20110107670 | Galley et al. | May 2011 | A1 |
20110236846 | Rue et al. | Sep 2011 | A1 |
20110308280 | Huber | Dec 2011 | A1 |
20120077135 | Charbonneau | Mar 2012 | A1 |
20130086944 | Shock et al. | Apr 2013 | A1 |
20130086949 | Charbonneau | Apr 2013 | A1 |
20130086950 | Huber et al. | Apr 2013 | A1 |
20130086951 | Charbonneau et al. | Apr 2013 | A1 |
20130086952 | Charbonneau et al. | Apr 2013 | A1 |
20140090421 | Shock et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
44 24 814 | Jan 1996 | DE |
100 29 963 | Sep 2003 | DE |
10 2005 033330 | Aug 2006 | DE |
0 181 248 | Oct 1989 | EP |
1 337 789 | Dec 2004 | EP |
2 133 315 | Dec 2009 | EP |
1 986 966 | Apr 2010 | EP |
1 667 934 | Feb 2011 | EP |
2 397 446 | Dec 2011 | EP |
2 433 911 | Mar 2012 | EP |
2 578 548 | Apr 2013 | EP |
2 740 860 | Sep 1997 | FR |
191301772 | Jan 1914 | GB |
191407633 | Jan 1914 | GB |
164073 | May 1921 | GB |
959 895 | Jun 1964 | GB |
1449439 | Sep 1976 | GB |
2 424 644 | Oct 2006 | GB |
1208172 | Jul 1989 | IT |
2000 0050572 | May 2000 | KR |
114827 | Jul 1999 | RO |
9855411 | Dec 1998 | WO |
2008103291 | Aug 2008 | WO |
2009091558 | Jul 2009 | WO |
2010011701 | Jan 2010 | WO |
2010045196 | Apr 2010 | WO |
2012125665 | Sep 2012 | WO |
2013188167 | Dec 2013 | WO |
Entry |
---|
“Glass Technologies—The Legacy of a Successful Public-Private Partnership”, 2007, U.S. Department of Energy, pp. 1-32. |
Rue, “Energy-Efficient Glass Melting—The Next Generation Melter”, Gas Technology Institute, Project No. 20621 Final Report, 2008. |
U.S. Appl. No. 12/817,754, filed Jun. 17, 2010, Huber. |
U.S. Appl. No. 12/888,970, field Sep. 23, 2010, Charbonneau. |
U.S. Appl. No. 13/267,990, filed Oct. 7, 2010, Shock et al. |
U.S. Appl. No. 13/268,028, filed Oct. 7, 2010, Charbonneau. |
U.S. Appl. No. 13/268,065, filed Oct. 7, 2010, Charbonneau et al. |
U.S. Appl. No. 13/268,098, filed Oct. 7, 2010, Huber et al. |
U.S. Appl. No. 13/268,130, filed Oct. 7, 2010, Charbonneau et al. |
U.S. Appl. No. 13/458,211, filed Apr. 27, 2012, Mobley et al. |
U.S. Appl. No. 13/493,170, filed Jun. 11, 2012, Huber et al. |
U.S. Appl. No. 13/493,219, filed Jun. 11, 2012, Charbonneau. |
“Glass Industry of the Future”, Sep. 30, 2008, United States Department of Energy, report 20-GA50113-03, pp. 1-17. |
Stevenson, “Foam Engineering: Fundamentals and Applications”, Published 2012, Chapter 16, John Wiley & Sons, Ltd. |
Clare et al., “Density and Surface Tension of Borate Containing Silicate Melts”, Glass Technology, 2003, 44(2), pp. 59-62. |
Seward, T.P., “Modeling of Glass Making Processes for Improved Efficiency”, DE-FG07-96EE41262, Final Report, Mar. 31, 2003. |
Conradt et al, Foaming behaviour on glass melts, Glastechniche Berichte 60 (1987) Nr. 6, S. 189-201 Abstract Fraunhofer ISC. |
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Isothermal Conditions”, Journal of the American Ceramic Society, 1991, 74(3), pp. 551-555. |
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Ramp Heating Conditions”, Journal of the American Ceramic Society, 1992, 75(11), pp. 2959-2963. |
Kim et al., “Effect of Furnace Atmosphere of E-glass Foaming”, Journal of Non-Crystalline Solids, 2006, 352(50/51), pp. 5287-5295. |
Van Limpt, et al., “Modelling the evaporation of boron species. Alkali-free borosilicate glass melts”, Glass Technology—European Journal of Glass Science and Technology, Part 1, Jun. 2011, 52(3), pp. 77-87. |
U.S. Appl. No. 13/540,771, filed Jul. 3, 2012, Charbonneau et al. |
U.S. Appl. No. 13/633,998, filed Oct. 3, 2012, Charbonneau et al. |
U.S. Appl. No. 13/633,979, filed Oct. 3, 2012, Charbonneau et al. |
U.S. Appl. No. 13/644,104, filed Oct. 3, 2012, Charbonneau et al. |
U.S. Appl. No. 13/644,039, filed Oct. 3, 2012, Shock et al. |
“AccuTru Temperature Measurement,” AccuTru International Corporation, 2003. |
“Glass Melting Technology—A Technical and Economic Assessment,” 2004, U.S. Department of Energy, pp. 1-292. |
“Canty Process Technology” brochure, date unknown, Apr. 2012 at American Institute of Chemical Engineers, Spring Meeting, Houston, TX. |
Olabin, V.M. et al. “Submerged Combustion Furnace for Glass Melts,” Ceramic Engineering and Science Proceedings, Jan. 1, 1996, pp. 84-92, vol. 17—No. 2, American Ceramic Society Inc., US. |
Higley, BA, Glass Melter System Technologies for Vitrification of High-Sodium Content Low-Level, Radioactive, Liquid Wastes—Phase I: SBS Demonstration With Simulated Low-Level Waste—Final Test Report, Westinghouse Hanford Company, release date, 1995. |
Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet Apr. 2009, Department of Energy Environmental Managment Consolidated Business Center by THOR Treatment Technologies, LLC. |
Number | Date | Country | |
---|---|---|---|
20140090422 A1 | Apr 2014 | US |