METHODS AND SYSTEMS FOR DETECTING CORONAVIRUS

Information

  • Patent Application
  • 20220206001
  • Publication Number
    20220206001
  • Date Filed
    October 21, 2021
    3 years ago
  • Date Published
    June 30, 2022
    2 years ago
Abstract
Provided herein are methods and systems for detecting coronavirus. Methods and systems as described herein comprise using antibodies with improved specificity and sensitivity for accurately detecting coronavirus.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 30, 2021, is named 44854-810_201_SL.txt and is 2,287,083 bytes in size.


BACKGROUND

Coronaviruses like severe acute respiratory coronavirus 2 (SARS-CoV-2) can cause severe respiratory problems. Accurate and timely detection of infection is important for diagnosis and identifying effective treatments. Antibodies possess the capability to bind with high specificity and affinity to biological targets and be incorporated in systems and devices for detecting coronavirus.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


BRIEF SUMMARY

Provided herein are devices for detecting a virus in a sample comprising: a) a sample application pad for receiving the sample; and b) a membrane substrate comprising a first test line, the first test line comprising an immobilized antibody or antibody fragment, wherein the immobilized antibody or antibody fragment comprises a predetermined number of variants within a complementarity determining region (CDR) relative to a reference antibody or antibody fragment, and wherein the immobilized antibody or antibody fragment comprises at least a 2.5× higher binding affinity than a binding affinity of the reference antibody or antibody fragment. Further provided herein are devices, wherein the device is a lateral flow immunoassay. Further provided herein are devices, wherein the immobilized antibody comprises a light chain variable domain comprising at least about 80% sequence identity to any one of SEQ ID NOs: 1, 3, 5, 7, 9, 11, or 13. Further provided herein are devices, wherein the immobilized antibody comprises a heavy chain variable domain comprising at least about 80% sequence identity to any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, or 15. Further provided herein are devices, wherein the immobilized antibody comprises a heavy chain variable domain CDR comprising at least about 80% sequence identity to any one of SEQ ID NOs: 16-39. Further provided herein are devices, wherein the immobilized antibody comprises a light chain variable domain CDR comprising at least about 80% sequence identity to any one of SEQ ID NOs: 40-60. Further provided herein are devices, wherein the CDR comprises at least one variant relative to the reference antibody or antibody fragment. Further provided herein are devices, wherein the CDR comprises at least two variants relative to the reference antibody or antibody fragment. Further provided herein are devices, wherein the immobilized antibody or antibody fragment comprises at least 5× higher binding affinity than a binding affinity of the reference antibody or antibody fragment. Further provided herein are devices, wherein the immobilized antibody or antibody fragment comprises at least 25× higher binding affinity than a binding affinity of the reference antibody or antibody fragment. Further provided herein are devices, wherein the CDR is a CDR1, CDR2, and CDR3 on a heavy chain. Further provided herein are devices, wherein the CDR is a CDR1, CDR2, and CDR3 on a light chain. Further provided herein are devices, wherein the immobilized antibody comprises an EC50 of less than about 5 nM. Further provided herein are devices, wherein the immobilized antibody comprises an EC50 of less than about 1 nM. Further provided herein are devices, wherein the immobilized antibody comprises a binding affinity of less than about 100 nM. Further provided herein are devices, wherein the immobilized antibody comprises a binding affinity of less than about 25 nM. Further provided herein are devices, wherein the immobilized antibody comprises a binding affinity of less than about 1 nM. Further provided herein are devices, wherein the virus is a respiratory virus. Further provided herein are devices, wherein the respiratory virus is a coronavirus. Further provided herein are devices, wherein the coronavirus is SARS, MERS, COVID-19, bovine, norovirus, orthoreoviruses (reoviruses), human rotaviruses, human coronaviruses, herpesvirus, or adenoviruses. Further provided herein are devices, wherein the immobilized antibody detects SARS-CoV-2. Further provided herein are devices, wherein the sample comprises saliva, blood, semen, vaginal fluid, or urine. Further provided herein are devices, wherein the sample comprises saliva. Further provided herein are devices, wherein the membrane substrate further comprises at least one control line. Further provided herein are devices, wherein the device further comprises a backing. Further provided herein are devices, wherein the device further comprises a wicking pad. Further provided herein are devices, wherein the device comprises a sensitivity of at least about 70% for detecting the virus. Further provided herein are devices, wherein the device detects viral titers in a range of about 103 to about 104 viral particles. Further provided herein are devices, wherein the device comprises a specificity of at least about 70% for detecting the virus as compared to another virus. Further provided herein are devices, wherein the device is specific for detecting SARS-CoV-2. Further provided herein are devices, wherein the device comprises a limit of detection of at least about 103 copies/mL.


Provided herein are methods of detecting a virus, the method comprising: a) contacting a sample comprising the virus with a device described herein; and b) detecting the virus if the first test line undergoes a color change. Further provided herein are methods, wherein the method detects the virus in at most about 20 minutes. Further provided herein are methods, wherein the method detects the virus in at most about 15 minutes.


Provided herein are kits comprising: a) a device described herein, and b) instructions for use thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an exemplary lateral flow assay device.



FIG. 2 presents a diagram of steps demonstrating an exemplary process workflow for gene synthesis as disclosed herein.



FIG. 3 illustrates an example of a computer system.



FIG. 4 is a block diagram illustrating an architecture of a computer system.



FIG. 5 is a diagram demonstrating a network configured to incorporate a plurality of computer systems, a plurality of cell phones and personal data assistants, and Network Attached Storage (NAS).



FIG. 6 is a block diagram of a multiprocessor computer system using a shared virtual address memory space.



FIGS. 7A-7K are graphs showing antibody binding using surface plasmon resonance (SPR, Carterra LSA) to either recombinant SARS-CoV-2 S1 monomer, stabilized SARS-CoV-2 S Trimer, or SARS-CoV S1 monomer.



FIGS. 7L-7M show gel and electropherograms of Ab-1 analysis (FIG. 7L) and Ab-8 (FIG. 7M).



FIG. 8 are graphs of Ab-1 capturing either S trimer from Acro Biosystems (left panel) or S Spike Protein (right panel) using Ab-7, Ab-4, or CR3022 detection.



FIG. 9 shows images of a lateral flow antibody test.



FIG. 10A shows graphs of data from the lateral flow antibody test using a dry capture.



FIG. 10B is an image of test strips from the lateral flow antibody test.



FIG. 10C is an image of test strips from the lateral flow antibody test showing the spike trimer passing through the device.



FIG. 11A shows an image of test trips testing inactivated virus.



FIG. 11B shows data from live virus on swabs.



FIG. 12 is a schema for a rapid antigen detection (RAD) assay for detecting SARS-CoV-2.



FIGS. 13A-13B are images of test strips using the lateral flow device as compared to data from PCR.



FIGS. 13C-13E are images of test strips for detecting SARS-CoV-2 in SARS-CoV-2 positive saliva samples.



FIGS. 14A-14E are images of the lateral flow assays and detection cassettes.



FIGS. 15A-15B are a schema for detection of SARS-CoV-2 using the integrated cassette.



FIGS. 16A-16B are a schema for detection of SARS-CoV-2 using the open well cassette.



FIG. 17 depicts lateral flow assays used to detect SARS-CoV-2 at different concentrations.



FIGS. 18A-18D are lateral flow assay cassettes used to detect different concentrations of SARS-CoV-2.



FIG. 19 is a representative lateral flow assay cassette used in the clinical trial.



FIGS. 20A-20C depict the effects of single and double purification of saliva samples on nonspecific binding.



FIG. 21 depicts a lateral flow strip tested at a pH of 4 and a pH of 10.



FIG. 22 depicts a lateral flow assay using Ab-10 as a detector antibody Ab-10 and Ab-9 as a capture antibody.



FIG. 23A compares pairs of 7 conjugate detector antibodies with 5 capture antibodies targeting nucleocapsid.



FIG. 23B depicts a comparison of two candidate detector antibodies against 5 capture antibodies targeting nucleocapsid.



FIG. 23C-23D depicts the effects of an optimized buffer on nucleocapsid and spike binding and detection.



FIGS. 24A-24B depicts the results of different rations of capture and detector antibodies on nonspecific binding.



FIG. 25 depicts positive results of a clinical trial to detect SARS-CoV-2.



FIG. 26 depicts the results of buffer optimization on nonspecific binding.



FIG. 27 depicts the results of purification of saliva samples on nonspecific binding.



FIG. 28 depicts the ability of the nucleocapsid and spike assay to detect virus in diluted inactivated virus and nasopharyngeal samples.



FIG. 29 compares the ability to detect dilutions of inactivated virus in saliva of the nucleocapsid+spike lateral flow assay to the spike lateral flow assay.



FIG. 30 compares the ability to detect dilutions of virus in nasopharyngeal samples of the nucleocapsid+spike lateral flow assay to the spike lateral flow assay.



FIG. 31 depicts the effect of adding mucolytic agents to saliva samples on nonspecific binding.





DETAILED DESCRIPTION

The present disclosure employs, unless otherwise indicated, conventional molecular biology techniques, which are within the skill of the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art.


Definitions

Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure, unless the context clearly dictates otherwise.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.


As used herein the terms “individual,” “patient,” or “subject” are used interchangeably and refer to individuals diagnosed with, suspected of being afflicted with, or at-risk of developing at least one disease for which the described systems and devices are useful for detecting. In embodiments the individual is a mammal. In embodiments, the mammal is a mouse, rat, rabbit, dog, cat, horse, cow, sheep, pig, goat, llama, alpaca, or yak. In embodiments, the individual is a human.


As used herein, the terms “polypeptide”, “protein” and “peptide” are used interchangeably and refer to a polymer of amino acid residues linked via peptide bonds and which may be composed of two or more polypeptide chains. The terms “polypeptide”, “protein” and “peptide” refer to a polymer of at least two amino acid monomers joined together through amide bonds. An amino acid may be the L-optical isomer or the D-optical isomer. More specifically, the terms “polypeptide”, “protein” and “peptide” refer to a molecule composed of two or more amino acids in a specific order; for example, the order as determined by the base sequence of nucleotides in the gene or RNA coding for the protein. In some cases, a protein is a portion of the protein, for example, a domain, a subdomain, or a motif of the protein. In some cases, a protein is a variant (or mutation) of the protein, wherein one or more amino acid residues are inserted into, deleted from, and/or substituted into the naturally occurring (or at least a known) amino acid sequence of the protein. A protein or a variant thereof can be naturally occurring or recombinant.


Unless specifically stated, as used herein, the term “nucleic acid” encompasses double- or triple-stranded nucleic acids, as well as single-stranded molecules. In double- or triple-stranded nucleic acids, the nucleic acid strands need not be coextensive (i.e., a double-stranded nucleic acid need not be double-stranded along the entire length of both strands). Nucleic acid sequences, when provided, are listed in the 5′ to 3′ direction, unless stated otherwise. Methods described herein provide for the generation of isolated nucleic acids. Methods described herein additionally provide for the generation of isolated and purified nucleic acids. A “nucleic acid” as referred to herein can comprise at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, or more bases in length. Moreover, provided herein are methods for the synthesis of any number of polypeptide-segments encoding nucleotide sequences, including sequences encoding non-ribosomal peptides (NRPs), sequences encoding non-ribosomal peptide-synthetase (NRPS) modules and synthetic variants, polypeptide segments of other modular proteins, such as antibodies, polypeptide segments from other protein families, including non-coding DNA or RNA, such as regulatory sequences e.g. promoters, transcription factors, enhancers, siRNA, shRNA, RNAi, miRNA, small nucleolar RNA derived from microRNA, or any functional or structural DNA or RNA unit of interest. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, intergenic DNA, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, short interfering RNA (siRNA), short-hairpin RNA (shRNA), micro-RNA (miRNA), small nucleolar RNA, ribozymes, complementary DNA (cDNA), which is a DNA representation of mRNA, usually obtained by reverse transcription of messenger RNA (mRNA) or by amplification; DNA molecules produced synthetically or by amplification, genomic DNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. cDNA encoding for a gene or gene fragment referred herein may comprise at least one region encoding for exon sequences without an intervening intron sequence in the genomic equivalent sequence. cDNA described herein may be generated by de novo synthesis.


Systems and Devices for Detecting Coronavirus


Provided herein are methods, devices, and systems comprising antibodies that comprise high affinity and high specificity. In some embodiments, the antibodies detect SARS-CoV, MERS-CoV, CoV-229E, HCoV-NL63, HCoV-OC43, or HCoV-HKU1. In some embodiments, the antibodies detect SARS-CoV-2. In some embodiments, the antibodies detect a receptor that binds to the coronavirus. In some embodiments, the receptor of the coronavirus is ACE2 or dipeptidyl peptidase 4 (DPP4). In some embodiments, the antibodies detect angiotensin-converting enzyme 2 (ACE2). The antibodies as described herein may be optimized using methods as described herein to have improved specificity, sensitivity, accuracy, and reliability.


The antibodies as described herein may be used for a device for detecting SARS-CoV-2. FIG. 1 shows an example of a virus being captured and detected using a device with respect to some embodiments disclosed herein. The device 100 is a lateral flow device. In some instances the device comprises a backing 101. In some instances, the backing is a solid backing. The solid backing may comprise any suitable material including, but not limited to, plastic, fiber, and glass. In some instances, the backing comprises an adhesive. A sample 103 is applied to the sample application pad 105. In some instances, the sample is a biological sample. In some instances, the biological sample is a fluid (e.g., bodily fluid) sample. In some instances, the fluid is saliva, blood, semen, vaginal fluid, or urine. In some instances, the fluid is saliva. The sample then travels to the membrane substrate 107 and the capture and detection process occurs on a test line 109. The test line may comprise an immobilized antibody. In some instances, the immobilized antibody is an antibody to detect SARS-CoV, MERS-CoV, CoV-229E, HCoV-NL63, HCoV-OC43, or HCoV-HKU1. In some embodiments, the antibody detects SARS-CoV-2. In some embodiments, the antibody detects a receptor that binds to the coronavirus. In some embodiments, the receptor of the coronavirus is ACE2 or dipeptidyl peptidase 4 (DPP4). In some instances, the antibodies are conjugated with latex via Amide Beads. The membrane substrate also includes a control line 111. The device may further comprise a wicking pad 113. Wicking pads may prevent backflow. In some instances, the wicking pad comprises a cellulose filter. Results from the test line and the control line may be visible, for example, as a color or a color change. In some instances, the results from the test line and the control line are compared. Results from the device may then be transferred. In some instances, the results are transferred, wirelessly or through a cable, to a computerized device to process and display the information. In some embodiments, the result is transmitted to a software program on a computerized device, where the computerized device has a graphical user interface that displays the assay results. In some instances, the results are transferred to a database. In some instances, the results from the database are used for bioinformatics applications such as functional genomics and homology searching.


Described herein are methods and devices for detecting SARS-CoV-2, wherein the device can comprise a sample application pad for receiving the sample. In some instances, the sample application pad further comprises a buffer, or pH calibrator, a peptide, or an antibody. In some instances, the buffer is a running/chase buffer. The running buffer is a component of lateral flow assay and may depend upon the choice of the conjugate conditions, membrane selection criteria, sample matrix, and sample pad material. The running buffer may facilitate the flow of the fluid in the detection and diagnostic device. In some cases, the sample application pad comprises a phosphate-buffered saline, blocking buffer (e.g., casein or Tween reagent), a surfactant, additives, and other reagents to increase sensitivity of the assay. In some instances, the running buffer comprises phosphate buffer comprising casein, BSA, and Tween 20. In some instances, the running buffer comprises 1×PBS, 0.25% Casein, 0.5% BSA, and 2% Tween20. In some instances, the buffer is a citrate buffer.


Various types of samples can be used with the methods and devices described herein. In some instances, the sample is a biological sample. In some instances, the biological sample is a fluid (e.g., bodily fluid). In some instances, the fluid is saliva, blood, semen, vaginal fluid, or urine. In some instances, the fluid is saliva. In some instances, the sample is collected from a human subject or an animal subject. In some cases, the sample is collected by means including but not limited to spitting, wiping saliva, nasal swab, mouth swab, or urinating. The sample may then be transferred to the sample pad. In some cases, the sample is directly collected on the sample application pad such as by spitting on the sample application pad.


A small volume of sample is required to practice the systems and devices as described herein. In some embodiments, a suitable amount of sample applied to the sample pad is about 5 uL to about 50 uL. In some embodiments, a suitable amount of sample applied to the sample pad is at least about 5 uL. In some embodiments, a suitable amount of sample applied to the sample pad is at most about 500 uL. In some embodiments, a suitable amount of sample applied to the sample pad is about 500 uL, 1000 uL, 1500 uL, 2000 uL, 2500 uL, 3000 uL, 3500 uL, 4000 uL, 4500 uL, or 5000 uL. In some embodiments, a suitable amount of sample applied to the sample pad is about 500 uL to about 1000 uL, about 500 uL to about 1500 uL, about 500 uL to about 2000 uL, about 500 uL to about 2500 uL, about 500 uL to about 3000 uL, about 500 uL to about 2500 uL, about 500 uL to about 4000 uL, about 500 uL to about 4500 uL, about 500 uL to about 5000 uL, about 1000 uL to about 1500 uL, about 1000 uL to about 2000 uL, about 1000 uL to about 2500 uL, about 1000 uL to about 3000 uL, about 1000 uL to about 2500 uL, about 1000 uL to about 4000 uL, about 1000 uL to about 4500 uL, about 1000 uL to about 5000 uL, about 1500 uL to about 2000 uL, about 1500 uL to about 2500 uL, about 1500 uL to about 3000 uL, about 1500 uL to about 2500 uL, about 1500 uL to about 4000 uL, about 1500 uL to about 4500 uL, about 1500 uL to about 5000 uL, about 2000 uL to about 2500 uL, about 2000 uL to about 3000 uL, about 2000 uL to about 2500 uL, about 2000 uL to about 4000 uL, about 2000 uL to about 4500 uL, about 2000 uL to about 5000 uL, about 2500 uL to about 3000 uL, about 2500 uL to about 2500 uL, about 2500 uL to about 4000 uL, about 2500 uL to about 4500 uL, about 2500 uL to about 5000 uL, about 3000 uL to about 2500 uL, about 3000 uL to about 4000 uL, about 3000 uL to about 4500 uL, about 3000 uL to about 5000 uL, about 2500 uL to about 4000 uL, about 2500 uL to about 4500 uL, about 2500 uL to about 5000 uL, about 4000 uL to about 4500 uL, about 4000 uL to about 5000 uL, or about 4500 uL to about 5000 uL.


Following application of the sample to the sample application pad, the virus is detected on a membrane. In some instances, the membrane comprises woven mesh, cellulose filters, glass fiber, mixed glass fiber and cellulose, synthetic fiber, mixed fiber, surface modified plastic (polyester, polypropylene, or polyethylene), graded density polyethersulfone (PES), or combinations thereof. In some aspects, the membrane comprises nitrocellulose.


The membrane substrate can comprise any suitable form. In some instances, the membrane is in a form of a strip. In some instances, the membrane is in a form of a circle.


The membrane substrate may be modified into a predefined dimension to control the speed and accuracy of the test. In some instances, the membrane substrate is about 4 millimeters (mm) to about 100 mm. In some instances, the membrane substrate is at least about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, or more than 60 mm by about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, or more than 60 mm. In some instances, the membrane substrate is at least about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, or more than 60 mm in width. the membrane substrate is at least about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, or more than 60 mm in length. In some instances, the membrane substrate is at least about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, or more than 60 mm in thickness. In some aspects, the membrane substrate is about 8 mm in thickness.


In some instances, at least a portion of the membrane is supported by a solid backing. The solid backing may comprise any suitable material including, but not limited to, plastic, fiber, and glass. In some instances, the backing comprises an adhesive.


In some instances, the membrane comprises a first test location on the membrane. In some instances, the first test location is a surface that is amenable to antibody immobilization. In some instances, the first test location comprises a reagent that binds to an analyte in the sample. The analyte may be a virus. In some instances, the analyte is SARS-CoV-2. The reagent that binds to the analyte, in some instances, is an antibody.


As used herein, the term antibody will be understood to include proteins having the characteristic two-armed, Y-shape of a typical antibody molecule as well as one or more fragments of an antibody that retain the ability to specifically bind to an antigen. Exemplary antibodies include, but are not limited to, a monoclonal antibody, a polyclonal antibody, a bi-specific antibody, a multispecific antibody, a grafted antibody, a human antibody, a humanized antibody, a synthetic antibody, a chimeric antibody, a camelized antibody, a single-chain Fvs (scFv) (including fragments in which the VL and VH are joined using recombinant methods by a synthetic or natural linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules, including single chain Fab and scFab), a single chain antibody, a Fab fragment (including monovalent fragments comprising the VL, VH, CL, and CH1 domains), a F(ab′)2 fragment (including bivalent fragments comprising two Fab fragments linked by a disulfide bridge at the hinge region), a Fd fragment (including fragments comprising the VH and CH1 fragment), a Fv fragment (including fragments comprising the VL and VH domains of a single arm of an antibody), a single-domain antibody (dAb or sdAb) (including fragments comprising a VH domain), an isolated complementarity determining region (CDR), a diabody (including fragments comprising bivalent dimers such as two VL and VH domains bound to each other and recognizing two different antigens), a fragment comprised of only a single monomeric variable domain, disulfide-linked Fvs (sdFv), an intrabody, an anti-idiotypic (anti-Id) antibody, or ab antigen-binding fragments thereof. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an antibody, wherein the antibody is a Fv antibody, including Fv antibodies comprised of the minimum antibody fragment which contains a complete antigen-recognition and antigen-binding site. In some embodiments, the Fv antibody consists of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association, and the three hypervariable regions of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. In some embodiments, the six hypervariable regions confer antigen-binding specificity to the antibody. In some embodiments, a single variable domain (or half of an Fv comprising only three hypervariable regions specific for an antigen, including single domain antibodies isolated from camelid animals comprising one heavy chain variable domain such as VHH antibodies or nanobodies) has the ability to recognize and bind antigen. In some instances, the libraries disclosed herein comprise nucleic acids encoding for an antibody, wherein the antibody is a single-chain Fv or scFv, including antibody fragments comprising a VH, a VL, or both a VH and VL domain, wherein both domains are present in a single polypeptide chain. In some embodiments, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains allowing the scFv to form the desired structure for antigen binding. In some instances, a scFv is linked to the Fc fragment or a VHH is linked to the Fc fragment (including minibodies). In some instances, the antibody comprises immunoglobulin molecules and immunologically active fragments of immunoglobulin molecules, e.g., molecules that contain an antigen binding site. Immunoglobulin molecules are of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1, IgG 2, IgG 3, IgG 4, IgA 1 and IgA 2) or subclass.


Methods and systems as described herein may comprise various test lines. In some instances, the first test line comprises at least one immobilized antibody coupled to the membrane. In some instances, the first test line comprises at least two immobilized antibodies coupled to the membrane. In some instances, an immobilized antibody targets or detects a coronavirus. In some instances, the immobilized antibody targets or detects a structural protein of a virus, or a fragment of a viral protein. In some instances, the immobilized antibody targets or detects a spike protein, a membrane protein, an envelope protein, a nucleocapsid protein, or combinations thereof. In some instances, the immobilized antibody targets or detects an angiotensin converting enzyme 2. In some instances, the at least two immobilized antibodies detect a spike protein and a nucleocapsid protein.


In some instances, the second test line is a control line. In some embodiments, the control line comprises an antibody or antibody fragment. In some instances, the antibody is a mouse, rat, rabbit, cat, dog, goat, chicken, bovine, horse, llama, camel, dromedary, shark, non-human primate, human, or humanized antibody. In some instances, the first test line is placed upstream of the control line. In some instances, the first line is placed downstream of the control line. In some instances, the control line is compared to the first test line.


Antibodies described herein for use with the test device for detecting SARS-CoV-2 may be optimized by the design of in-silico libraries comprising variant sequences of an input antibody sequence. Input sequences are in some instances modified in-silico with one or more mutations to generate libraries of optimized sequences. In some instances, such libraries are synthesized, cloned into expression vectors, and translation products (antibodies) evaluated for activity. In some instances, fragments of sequences are synthesized and subsequently assembled. In some instances, expression vectors are used to display and enrich desired antibodies, such as phage display. Selection pressures used during enrichment in some instances includes, but is not limited to, binding affinity, toxicity, immunological tolerance, stability, receptor-ligand competition, or developability. Such expression vectors allow antibodies with specific properties to be selected (“panning”), and subsequent propagation or amplification of such sequences enriches the library with these sequences. Panning rounds can be repeated any number of times, such as 1, 2, 3, 4, 5, 6, 7, or more than 7 rounds. Sequencing at one or more rounds is in some instances used to identify which sequences have been enriched in the library.


Described herein are methods and systems of in-silico library design. For example, an antibody or antibody fragment sequence is used as input. In some instances, the antibody sequence used as input is an antibody or antibody fragment sequence that binds SARS-CoV-2. In some instances, the input is an antibody or antibody fragment sequence that binds a protein of SARS-CoV-2. In some instances, the protein is a spike glycoprotein, a membrane protein, an envelope protein, a nucleocapsid protein, or combinations thereof. In some instances, the protein is a spike glycoprotein of SARS-CoV-2. In some instances, the protein is a receptor binding domain of SARS-CoV-2. In some instances, the input sequence is an antibody or antibody fragment sequence that binds angiotensin-converting enzyme 2 (ACE2). In some instances, the input sequence is an antibody or antibody fragment sequence that binds an extracellular domain of the angiotensin-converting enzyme 2 (ACE2).


In some instances, the antibodies described herein are optimized by assaying for functional activity, structural stability (e.g., thermal stable or pH stable), expression, specificity, or a combination thereof. In some instances, the antibodies are assayed for antibody capable of folding. In some instances, a region of the antibody is assayed for functional activity, structural stability, expression, specificity, folding, or a combination thereof.


Antibodies to be used with the methods and systems as described herein may comprise a sequence set forth in Table 1 or Tables 9-14. In some embodiments, the sequence comprises at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 80, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141. In some instances, the sequence comprises at least or about 95% homology to any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 80, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141. In some instances, the sequence comprises at least or about 97% homology to any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 80, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141. In some instances, the sequence comprises at least or about 99% homology to any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 80, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141. In some instances, the sequence comprises at least or about 100% homology to any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 80, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141. In some instances, the sequence comprises at least a portion having at least or about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, or more than 110 amino acids of any one of SEQ ID NOs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 80, 81, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, or 141.









TABLE 1







SARS-CoV-2 Variant Light Chain (LC) Variable Domain and Heavy


Chain (HC) Variable Domain Sequences









Construct

SEQ ID


Description
Amino Acid Sequence
NO:





Ab-1 LC
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKA
  1



PKLLIYAASALASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSYSAPPYTFGQGTKVEIK






Ab-1 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYPMNWVRQAPG
  2



KGLEWVSTISGSGGNTFYADSVKGRFTISRDNSKNTLYLQMNS




LRAEDTAVYYCVRHDEYSFDYWGQGTLVTVSS






Ab-2 LC
QSALTQPASVSGSPGQSITISCTGTSSDVGHYNLVSWYQQHPG
  3



KAPKLMIYEGTKRPSGVSNRFSGSKSGNTASLTISGLQAEDEA




DYYCCSYAGSSSFVVFGGGTKLTVL






Ab-2 HC
EVQLLESGGGLVQPGGSLRLSCAASGITFSSYAMSWVRQAPG
  4



KGLEWVSGISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNS




LRAEDTAVYYCAKHGSGTIFGVVIAKYYFDYWGQGTLVTVSS






Ab-3 LC
DIQMTQSPSSLSASVGDRVTITCRASQTINTFLNWYQQKPGKA
  5



PKLLIYSASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSYSTFTFGGGTKVEIK






Ab-3 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNVVVRQAPG
  6



KGLEWVSGITGSGDETYYADSVKGRFTISRDNSKNTLYLQMN




SLKAEDTAVYYCARDLPASYYDSSGYYWHNGMDVWGQGTL




VTVSS






Ab-4 LC
DIQMTQSPSSLSASVGDRVTITCRASQTINTYLNWYQQKPGKA
  7



PKLLIYSASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSYSTFTFGQGTKVEIK






Ab-4 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNWVRQAPG
  8



KGLEWVSGISGSGDETYYADSVKGRFTISRDNSKNTLYLQMN




SLRAEDTAVYYCARDLPASYYDSSGYYWHNGMDVWGQGTL




VTVSS






Ab-5 LC
QSALTQPASVSGSPGQSITISCTGTSSDVGSYYLVSWYQQHPG
  9



KAPKLMIYEGDKRPSGVSNRFSGSKSGNTASLTISGLQAEDEA




DYYCCSHAGRYPYVFGGGTKLTVL






Ab-5 HC
EVQLLESGGGLVQPGGSLRLSCAASGFMFSSYAMSWVRQAPG
 10



KGLEWVSAISGSGGSTYYTDSVKGRFTISRDNSKNTLYLQMNS




LRAEDTAVYYCAKDGASGWPNWHFDLWGQGTLVTVSS






Ab-6 LC
QSALTQPASVSGSPGQSITISCTGTSSDVGSYSLVSWYQQHPGK
 11



APKLMIYEGTKRPSGVSNRFSGSKSGNTASLTISGLQAEDEAD




YYCCSYAGSYSYVVFGGGTKLTVL






Ab-6 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPG
 12



KGLEWVSDISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNS




LRAEDTAVYYCVKGTIPIFGVIRSAFDYWGQGTLVTVSS






Ab-7 LC
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKA
 13



PKLLIYAASALASGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC




QQSYSAPPYTFGQGTKVEIK






Ab-7 HC
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPG
 14



KGLEWVSAISGSGDITYYADSVKGRFTISRDNSKNTLYLQMNS




LRAEDTAVYYCAREADGLHSPWHFDLWGQGTLVTVSS






Ab-8 HC
EVQLVESGGGLVQPGGSLRLSCAASGFNVNDYAMGWFRQAP
 15



GKEREFVAGITSSVGVTNYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAADIFFVNVVGRGTLVTVSS






Ab-9 HC
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAMGWFRQAP
 61



GKEREFVAAINWSGDNTHYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCARAPFYCTTTKCQDNYYYMDVWGQGTLV




TVSS






Ab-10 HC
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPG
 62



KEREFVAAISWDGGATAYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS






Ab-11
EVQLVESGGGLVQPGGSLRLSCAASGFTLGDYVMGWFRQAP
 63



GKEREFVAAIHSGGSTYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAKEYGGTRRYDRAYNWGQGTLVTVSS






Ab-12
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAP
 64



GKERELVAAISSGGSTNYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-13
EVQLVESGGGLVQPGGSLRLSCAASGRTYSISAMGWFRQAPG
 65



KEREFVAAISMSGDDSAYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTLVTVSS






Ab-14
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYPMGWFRQAPG
 66



KEREFVAAITSDGSTLYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAATDYNKAYAREGRRYDWGQGTLVTVSS






Ab-15
EVQLVESGGGLVQPGGSLRLSCAASGSIFRINAMGWFRQAPGK
 67



EREFVAAIHWSGSSTRYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAQDRRRGDYYTFDYHWGQGTLVTVSS






Ab-16
EVQLVESGGGLVQPGGSLRLSCAASGGTFNNYAMGWFRQAP
 68



GKERELVAAITSGGSTDYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-17
EVQLVESGGGLVQPGGSLRLSCAASGTIVNINVMGWFRQAPG
 69



KEREFVAAIHWSGGLKAYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAMNRAGIYEWGQGTLVTVSS






Ab-18
EVQLVESGGGLVQPGGSLRLSCAASGSTFSNYAMGWFRQAPG
 70



KERELVAAITSGGSTSYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-19
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDYVMGWFRQAPG
 71



KEREFVAAISRSGNLKSYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAAKEYGGTRRYDRAYNWGQGTLVTVSS






Ab-20
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSTVMGWFRQAPG
 72



KEREFVAAVIGSSGITDYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-21
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDAGMGWFRQAPG
 73



KEREFVAAISRSGNLKAYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAVQVNGTWAWGQGTLVTVSS






Ab-22
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAMGWFRQAP
 74



GKERELVAAISWNGGSTSYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-23
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYVMGWFRQAPG
 75



KEREFVAAISWSGESTLYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAADLMYGVDRRYDWGQGTLVTVSS






Ab-24
EVQLVESGGGLVQPGGSLRLSCAASGISSSKRNMGWFRQAPG
 76



KEREFVAGISWTGGITYYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAIAGRGRWGQGTLVTVSS






Ab-25
EVQLVESGGGLVQPGGSLRLSCAASGRRFSAYGMGWFRQAPG
 77



KEREFVAVISRSGTLTRYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCASSGPADARNGERWHWGQGTLVTVSS






Ab-26
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSFVMGWFRQAPG
 78



KEREFVAAISSNGGSTRYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAAKEYGGTRRYDRAYNWGQGTLVTVSS






Ab-27
EVQLVESGGGLVQPGGSLRLSCAASGTVFSISAMGWFRQAPG
 79



KEREFVAAISMSGDDTAYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTLVTVSS






Ab-28
EVQLVESGGGLVQPGGSLRLSCAASGSIFSPNVMGWFRQAPG
 80



KEREFVAAITNGGSTKYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAQRWRGGSYEWGQGTLVTVSS






Ab-29
EVQLVESGGGLVQPGGSLRLSCAASGIPASIRVMGWFRQAPGK
 81



EREFVAAIHWSGSSTRYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCALSRAIVPGDSEYDYRWGQGTLVTVSS






Ab-30
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMSAMGWFRQAPG
 82



KEREFVSAISWSGGSTLYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTLVTVSS






Ab-31
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYAMGWFRQAPG
 83



KERELVAAITSGGSTDYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-32
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYAMGWFRQAPG
 84



KERELVAAISTGGSTYYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-33
EVQLVESGGGLVQPGGSLRLSCAASGRSFSSVGMGWFRQAPG
 85



KEREFVAVISRSGASTAYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCASAGPADARNGERWAWGQGTLVTVSS






Ab-34
EVQLVESGGGLVQPGGSLRLSCAASGRAFRRYTMGWFRQAPG
 86



KERELIAVINWSGDRRYYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAATLAKGGGRWGQGTLVTVSS






Ab-35
EVQLVESGGGLVQPGGSLRLSCAAMAWAGFARRRAKNAKW
 87



WRALPRGGPTYADSVKGRFTISADNSKNTAYLQMNSLKPEDT




AVYYCAAGGMWYGSSLYVRFDLLEDGMDWGQGTLVTVSS






Ab-36
EVQLVESGGGLVQPGGSLRLSCAASGSISSINGMGWFRQAPGK
 88



ERELVALISRSGGTTYYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCASAGPADARNGERWAWGQGTLVTVSS






Ab-37
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNNVMGWFRQAPG
 89



KERELVAAAISGGSTYYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-38
EVQLVESGGGLVQPGGSLRLSCAASGRTFSISAMGWFRQAPG
 90



KEREFVAAISRSGTTMYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTLVTVSS






Ab-39
EVQLVESGGGLVQPGGSLRLSCAASGGTFSYYDLAAMGWFR
 91



QAPGKEREFVAAISWSQYNTKYADSVKGRFTISADNSKNTAY




LQMNSLKPEDTAVYYCAARVVVRTAHGFEDNWGQGTLVTVSS






Ab-40
EVQLVESGGGLVQPGGSLRLSCAASGRTFNNYGMGWFRQAP
 92



GKEREFVAVISRSGSLKAYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCASDPTYGSGRWTWGQGTLVTVSS






Ab-41
EVQLVESGGGLVQPGGSLRLNCAASGFTLDDYVMGWFRQTP
 93



GKEREFVAAISSSGALTSYADSVKGRFTISADNSKNTAYLQMN




SLKPEDAAVYYCAAKEYGGTRRYDRAYNWGQGTLVTVSS






Ab-42
EVQLVESGGGLVQPGGSLRLSCAASGRTFNAMGWFRQAPGKE
 94



REFVAAIRWSGDMSVYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAQDRRRGDYYTFDYHWGQGTLVTVSS






Ab-43
EVQLVESGGGLVQPGGSLRLSCAASGLTFSTYAMGWFRQAPG
 95



KEREFVAAITSGGSTDYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-44
EVQLVESGGGLVQPGGSLRLSCAASGSIFTINAMGWFRQAPGK
 96



EREGVAAIGSDGSTSYADSVKGRFTISADNSKNTAYLQMNSLK




PEDTAVYYCAVVRWGADWGQGTLVTVSS






Ab-45
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSYAMGWFRQAPG
 97



KERELVAAITSSSGSTPAYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-46
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGK
 98



EREFVAAISWSQYNTKYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAARHWGMFSRSENDYNWGQGTLVTVSS






Ab-47
EVQLVESGGGLVQPGGSLRLSCAASGRSRFSTYVMGWFRQAP
 99



GKEREFVAAISWSQYNTKYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAAGNGGRNYGHSRARYDWGQGTLVTVSS






Ab-48
EVQLVESGGGLVQPGGSLRLSCAASGLTLSSYGMGWFRQAPG
100



KEREYVAVISRSGSLKAYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCATRADAEGWWDWGQGTLVTVSS






Ab-49
EVQLVESGGGLVQPGGSLRLSCAASGSIFRVNVMGWFRQAPG
101



KEREFVAAINNFGTTKYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAADLPSRWGQGTLVTVSS






Ab-50
EVQLVESGGGLVQPGGSLRLSCAASGRTFRNYAMGWFRQAP
102



GKERELVAAISSGGSTDYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-51
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSFAMGWFRQAPG
103



KERELVAAISSGGSTNYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-52
EVQLVESGGGLVQPGGSLRLSCAASGTTFRINAMGWFRQAPG
104



KEREFVAAMNWSGGSTKYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAAQDRRRGDYYTFDYHWGQGTLVTVSS






Ab-53
EVQLVESGGGLVQPGGSLRLSCAASGFTLGDYVMGWFRQAP
105



GKEREFVAAIHSGGSTLYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAAKEYGGTRRYDRTYNWGQGTLVTVSS






Ab-54
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRSAMGWFRQAPG
106



KERELVAGILSSGATVYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAKAPRDWGQGTLVTVSS






Ab-55
EVQLVESGGGLVQPGGSLRLSCAASGRTFNNYAMGWFRQAP
107



GKERELVAAITSGGSTDYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-56
EVQLVESGGGLVQPGGSLRLSCAASGFTFRSYPMGWFRQAPG
108



KEREFVAAINNFGTTKYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAAKGIGVYGWGQGTLVTVSS






Ab-57
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPG
109



KEREFVAAIHWNGDSTKYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAAGSNIGGSRWRYDWGQGTLVTVSS






Ab-58
EVQLVESGGGLVQPGGSLRLSCAASGRTISRYTMGWFRQAPG
110



KERELVAAIKWSGASTVYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQGTLVTVSS






Ab-59
EVQLVESGGGLVQPGGSLRLSCAASGFRFSSYGMGWFRQAPG
111



KEREFVAIITSGGLTVYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAARKTFYFGTSSYPNDYAWGQGTLVTVSS






Ab-60
EVQLVESGGGLVQPGGSLRLSCAASGRTFDNHAMGWFRQAP
112



GKEREGVAAIGSDGSTSYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAVVRWGVDWGQGTLVTVSS






Ab-61
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSHAMGWFRQAPG
113



KEREFVAGISWSGESTLTRYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCADVNGDWGQGTLVTVSS






Ab-62
EVQLVESGGGLVQPGGSLRLSCAASGMTFRLYAMGWFRQAP
114



GKEREFVAAISWSQYNTKYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAAQLGYESGYSLTYDYDWGQGTLVTVSS






Ab-63
EVQLVESGGGLVQPGGSLRLSCAASGGTFRKLAMGWFRQAPG
115



KEREFVAVISWTGGSSYYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCARLTSFATWGQGTLVTVSS






Ab-64
EVQLVESGGGLVQPGGSLRLSCAASGRTFSANGMGWFRQAPG
116



KEREFVAAISASGTLRAYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAARSPMSPTWDWGQGTLVTVSS






Ab-65
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSTVMGWFRQAPG
117



KEREFVAAISWTGESTLYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCATGPYRSYFARSYLWGQGTLVTVSS






Ab-66
EVQLVESGGGLVQPGGSLRLSCAASGGTFDYSGMGWFRQAPG
118



KEREFVAVVSQSGRTTYYADSVKGLFTITADNSKNTAYLQMN




LLKPEDTAVYYCPTATRPGEWDGGQGTLVTVSR






Ab-67
EVQLVESGGGLVQPGGSLRLSCAASGVFGPIRAMGWFRQAPG
119



KERELVALMGNDGSTYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAIGWRWGQGTLVTVSS






Ab-68
EVQLVESGGGLVQPGGSLRLSCAASGFNFNWYPMGWFRQAP
120



GKEREFVAAIRWSGGITYYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCATGPYRSYFARSYLWGQGTLVTVSS






Ab-69
EVQLVESGGGLVQPGGSLRLSCAASGMTFHRYVMGWFRQAP
121



GKERELVASITTGGTPNYADSVKGRFTIITDNNKNTAYLLMINL




QPEDTAVYYCCKVPYIWGQGTLGTVGT






Ab-70
EVQLVESGGGLVQPGGSLRLSCAASGISTMGWFRQAPGKERE
122



FVAAINNFGTTKYADSVKGRFTISADNSKNTAYLQMNSLKPED




TAVYYCAAASQSGSGYDWGQGTLVTVSS






Ab-71
EVQLVESGGGLVQPGGSLRLSCAASGRAFNTRAMGWFRQAP
123



GKERELVALMGNDGSTYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAAIGWRWGQGTLVTVSS






Ab-72
EVQLVESGGGLVQPGGSLRLSCAASGLTDRRYTMGWFRQAPG
124



KEREFVAAINSGGSTLYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAAGNGGRTYGHSRARYEWGQGTLVTVSS






Ab-73
EVQLVESGGGLVQPGGSLRLSCAASGRTFNVMGWFRQAPGKE
125



RELVALMGNDGSTYADSVKGRFTISADNSKNTAYLQMNSLKP




EDTAVYYCAAVRWGVDWGQGTLVTVSS






Ab-74
EVQLVESGGGLVQPGGSLRLSCAASGRAFNTRAMGWFRQAP
126



GKERELVALMGNDGSTNYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAAIGWRWGQGTLVTVSS






Ab-75
EVQVVESGGGVVHPGGSVRMRCAASGVTVDYSGMGWFGQA
127



PGKEREFVAVVSQSARTTYYADSVKGRFTISADNSKNTEYLQ




MNSMKPEDTAVYYCATATRPGEWDWGQGTLVTVSS






Ab-76
EVQLVESGGGLVQPGGSLRLSCAASGRTPRLGAMGWFRQAPG
128



KEREFVAAISRSGGLTSYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAAQLVGSNIGGSRWRYDWGQGTLVTVSS






Ab-77
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPG
129



KEREFVAAITSGGSTLYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGHGTLVTESS






Ab-78
EVQLVESGGGLVQPGGSLRLSCAASGGRTFSDLAMGWFRQAP
130



GKEREFVALITRSGGTTFYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAIGRGSWGQGTLVTVSS






Ab-79
EVQLVESGGGLVQPGGSLRLSCAASGFTFGEYAMGWFRQAPG
131



KEREFVAAVSSLGPFTRYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAAVLDGYSGSWGQGTLVTVSS






Ab-80
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYGMGWFRQAPG
132



KEREFVAAISWSGVRSGVSAIYADSVKGRFTISADNSKNTAYL




QMNSLKPEDTAVYYCTTDLTGDLWYFDLWGQGTLVTVSS






Ab-81
EVQLVESGGGLVQPGGSLRLSCAASGLTAGTYAMCWFRQAP
133



GKEREGVACASSTDGSTAYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAAVRTYGSATYDWGQGTLVTVSS






Ab-82
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDYVMGWFRQAP
134



GKERELVAAVSSLGPFTRYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAAKEYGGTRRYDRAYNWGQGTLVTVSS






Ab-83
EVQLVESGGGLVQPGGSLRLSCAASGPTLGSYVMGWFRQAPG
135



KEREFVAAISWSQYNTKYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAAQRWRGGSYEWGQGTLVTVSS






Ab-84
EVQLVESGGGLVQPGGSLRLSCAASGPTFSSYVMGWFRQAPG
136



KEREFVAAISWSQYNTKYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAAASRSGSGYDWGQGTLVTVSS






Ab-85
EVQLVESGGGLVQPGGSLRLSCAASGYLYSKDCMGWFRQAP
137



GKEREGVATICTGDGSTAYADSVKGRFTISADNSKNTAYLQM




NSLKPEDTAVYYCAVIAYEEGVYRWDWGQGTLVTVSS






Ab-86
EVQLVESGGGLVQPGGSLRLSCAASGFTIDDYAMGWFRQAPG
138



KEREGVAAISGSGDDTYYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAKLPYVSGDYWGQGTLVTVSS






Ab-87
EVQLVESGGGLVQPGGSLRLSCAASGGRFSDYGMGWFRQAP
139



GKERELVALISRSGNLKSYADSVKGRFTISADNSKNTAYLQMN




SLKPEDTAVYYCAAKTGTSFVWGQGTLVTVSS






Ab-88
EVQLVESGGGLVQPGGSLRLSCAASGLSFSNYAMGWFRQAPG
140



KERELVAAITSGGSTDYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCARGDWRYGWGQGTLVTVSS






Ab-89
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPG
141



KEREFVALINRSGGSQFYADSVKGRFTISADNSKNTAYLQMNS




LKPEDTAVYYCAIGRGSWGQGTLVTVSS









In some embodiments, the sequence comprises at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 1-4212. In some instances, the sequence comprises at least or about 95% homology to any one of SEQ ID NOs: 1-4212. In some instances, the sequence comprises at least or about 97% homology to any one of SEQ ID NOs: 1-4212. In some instances, the sequence comprises at least or about 99% homology to any one of SEQ ID NOs: 1-4212. In some instances, the sequence comprises at least or about 100% homology to any one of SEQ ID NOs: 1-4212. In some instances, the sequence comprises at least a portion having at least or about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, or more than 110 amino acids of any one of SEQ ID NOs: 1-4212.


Described herein, in some embodiments, are antibodies or antibody fragments comprising a variable domain, heavy chain region (VH) and a variable domain, light chain region (VL), wherein the VH comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2927-3998, and wherein the VL comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 3999-4174. In some instances, the antibodies or antibody fragments comprise VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 2927-3998, and VL comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 3999-4174.


Described herein, in some embodiments, are antibodies or antibody fragments comprising a variable domain, heavy chain region (VH), wherein the VH comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 2927-3998. In some instances, the antibodies or antibody fragments comprise VH comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 2927-3998.


Described herein, in some embodiments, are antibodies or antibody fragments comprising a variable domain, light chain region (VL), wherein the VL comprises an amino acid sequence at least about 90% identical to a sequence as set forth in any one of SEQ ID NOs: 3999-4174. In some instances, the antibodies or antibody fragments comprise VL comprising at least or about 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to any one of SEQ ID NOs: 3999-4174.


In some instances, an antibody described herein comprises a heavy chain variable domain complementarity determining region (CDRH) sequence as listed in Table 2. In some instances, an antibody described herein comprises a CDRH1 sequence of any one of SEQ ID NOs: 16, 19, 22, 25, 28, 31, 34, 37, 142 or 146. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRH1 sequence of any one of SEQ ID NOs: 16, 19, 22, 25, 28, 31, 34, 37, 142 or 146. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRH1 sequence of any one of SEQ ID NOs: 16, 19, 22, 25, 28, 31, 34, 37, 142 or 146. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRH1 sequence of any one of SEQ ID NOs: 16, 19, 22, 25, 28, 31, 34, 37, 142 or 146. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRH1 sequence of any one of SEQ ID NOs: 16, 19, 22, 25, 28, 31, 34, 37, 142 or 146. In some instances, an antibody described herein comprises a CDRH2 sequence of any one of SEQ ID NOs: 17, 20, 23, 26, 29, 32, 35, 38, 143 or 146. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRH2 sequence of any one of SEQ ID NOs: 17, 20, 23, 26, 29, 32, 35, 38, 143 or 146. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRH2 sequence of any one of SEQ ID NOs: 17, 20, 23, 26, 29, 32, 35, 38, 143 or 146. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRH2 sequence of any one of SEQ ID NOs: 17, 20, 23, 26, 29, 32, 35, 38, 143 or 146. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRH2 sequence of any one of SEQ ID NOs: 17, 20, 23, 26, 29, 32, 35, 38, 143 or 146. In some instances, an antibody described herein comprises a CDRH3 sequence of any one of SEQ ID NOs: 18, 21, 24, 27, 30, 33, 36, 39, 144 or 147. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRH3 sequence of any one of SEQ ID NOs: 18, 21, 24, 27, 30, 33, 36, 39, 144 or 147. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRH3 sequence of any one of SEQ ID NOs: 18, 21, 24, 27, 30, 33, 36, 39, 144 or 147. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRH3 sequence of any one of SEQ ID NOs: 18, 21, 24, 27, 30, 33, 36, 39, 144 or 147. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRH3 sequence of any one of SEQ ID NOs: 18, 21, 24, 27, 30, 33, 36, 39, 144 or 147.









TABLE 2







SARS-CoV-2 Variant Heavy Chain Variable Domain


Complementarity Determining Regions (CDR)









Construct
Amino Acid
SEQ ID


Description
Sequence
NO:





Ab-1 CDRH1
FTFSNYPMN
 16


Ab-1 CDRH2
STISGSGGNTFYA
 17


Ab-1 CDRH3
CVRHDEYSFDYW
 18


Ab-2 CDRH1
ITFSSYAMS
 19


Ab-2 CDRH2
SGISGSGGSTYYA
 20


Ab-2 CDRH3
CAKHGSGTIFGVVIAKYYFDYW
 21


Ab-3 CDRH1
FTFSRHAMN
 22


Ab-3 CDRH2
SGITGSGDETYYA
 23


Ab-3 CDRH3
CARDLPASYYDSSGYYWHNGMDVW
 24


Ab-4 CDRH1
FTFSRHAMN
 25


Ab-4 CDRH2
SGISGSGDETYYA
 26


Ab-4 CDRH3
CARDLPASYYDSSGYYWHNGMDVW
 27


Ab-5 CDRH1
FMFSSYAMS
 28


Ab-5 CDRH2
SAISGSGGSTYYT
 29


Ab-5 CDRH3
CAKDGASGWPNWHFDLW
 30


Ab-6 CDRH1
FTFSNYAMS
 31


Ab-6 CDRH2
SDISGSGGSTYYA
 32


Ab-6 CDRH3
CVKGTIPIFGVIRSAFDYW
 33


Ab-7 CDRH1
FTFSDFAMA
 34


Ab-7 CDRH2
SAISGSGDITYYA
 35


Ab-7 CDRH3
CAREADGLHSPWHFDLW
 36


Ab-8 CDRH1
FNVNDYAMG
 37


Ab-8 CDRH2
AGITSSVGVTNYA
 38


Ab-8 CDRH3
CAADIFFVNW
 39


Ab-9 CDRH1
FTLDYYAMG
142


Ab-9 CDRH2
AAINWSGDNTHYA
143


Ab-9 CDRH3
CARAPFYCTTTKCQDNYYYMDVW
144


 Ab-10 CDRH1
GTFSSIGMG
145


 Ab-10 CDRH2
AAISWDGGATAYA
146


  Ab-10 CDR-H3
CAKEDVGKPFDW
147









In some instances, an antibody described herein comprises a heavy chain variable domain complementarity determining region (CDRH) sequence as listed in Table 2. In some instances, an antibody described herein comprises a CDRH1 sequence of any one of SEQ ID NOs: 148-882. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRH1 sequence of any one of SEQ ID NOs: 148-882. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRH1 sequence of any one of SEQ ID NOs: 148-882. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRH1 sequence of any one of SEQ ID NOs: 148-882. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRH1 sequence of any one of SEQ ID NOs: 148-882. In some instances, an antibody described herein comprises a CDRH2 sequence of any one of SEQ ID NOs: 883-1617. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRH2 sequence of any one of SEQ ID NOs: 883-1617. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRH2 sequence of any one of SEQ ID NOs: 883-1617. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRH2 sequence of any one of SEQ ID NOs: 883-1617. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRH2 sequence of any one of SEQ ID NOs: 883-1617. In some instances, an antibody described herein comprises a CDRH3 sequence of any one of SEQ ID NOs: 1618-2416 or 4177-4212. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRH3 sequence of any one of SEQ ID NOs: 1618-2416 or 4177-4212. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRH3 sequence of any one of SEQ ID NOs: 1618-2416 or 4177-4212. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRH3 sequence of any one of SEQ ID NOs: 1618-2416 or 4177-4212. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRH3 sequence of any one of SEQ ID NOs: 1618-2416 or 4177-4212.


In some instances, an antibody described herein comprises a light chain variable domain complementarily determining region (CDRL) sequence as listed in Table 3. In some instances, an antibody described herein comprises a CDRL1 sequence of any one of SEQ ID NOs: 40, 43, 46, 49, 52, 55, or 58. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRL1 sequence of any one of SEQ ID NOs: 40, 43, 46, 49, 52, 55, or 58. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRL1 sequence of any one of SEQ ID NOs: 40, 43, 46, 49, 52, 55, or 58. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRL1 sequence of any one of SEQ ID NOs: 40, 43, 46, 49, 52, 55, or 58. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRL1 sequence of any one of SEQ ID NOs: 40, 43, 46, 49, 52, 55, or 58. In some instances, an antibody described herein comprises a CDRL2 sequence of any one of SEQ ID NOs: 41, 44, 47, 50, 53, 56, or 59. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRL2 sequence of any one of SEQ ID NOs: 41, 44, 47, 50, 53, 56, or 59. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRL2 sequence of any one of SEQ ID NOs: 41, 44, 47, 50, 53, 56, or 59. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRL2 sequence of any one of SEQ ID NOs: 41, 44, 47, 50, 53, 56, or 59. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRL2 sequence of any one of SEQ ID NOs: 41, 44, 47, 50, 53, 56, or 59. In some instances, an antibody described herein comprises a CDRL3 sequence of any one of SEQ ID NOs: 42, 45, 48, 51, 54, 57, or 60. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRL3 sequence of any one of SEQ ID NOs: 42, 45, 48, 51, 54, 57, or 60. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRL3 sequence of any one of SEQ ID NOs: 42, 45, 48, 51, 54, 57, or 60. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRL3 sequence of any one of SEQ ID NOs: 42, 45, 48, 51, 54, 57, or 60. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRL3 sequence of any one of SEQ ID NOs: 42, 45, 48, 51, 54, 57, or 60.









TABLE 3







SARS-CoV-2 S1 Variant Light Chain Variable


Domain Complementarity Determining Regions (CDR)









Construct

SEQ ID


Description
Amino Acid Sequence
NO:





Ab-1 CDRL1
RASQSIGNYLN
40


Ab-1 CDRL2
GVSSLQS
41


Ab-1 CDRL3
CQQSHSAPLTF
42


Ab-2 CDRL1
TGTSSDVGHYNLVS
43


Ab-2 CDRL2
EGTKRPS
44


Ab-2 CDRL3
CCSYAGSSSFVVF
45


Ab-3 CDRL1
RASQTINTFLN
46


Ab-3 CDRL2
SASTLQS
47


Ab-3 CDRL3
CQQSYSTFTF
48


Ab-4 CDRL1
RASQTINTYLN
49


Ab-4 CDRL2
SASTLQS
50


Ab-4 CDRL3
CQQSYSTFTF
51


Ab-5 CDRL1
TGTSSDVGSYYLVS
52


Ab-5 CDRL2
EGDKRPS
53


Ab-5 CDRL3
CCSHAGRYPYVF
54


Ab-6 CDRL1
TGTSSDVGSYSLVS
55


Ab-6 CDRL2
EGTKRPS
56


Ab-6 CDRL3
CCSYAGSYSYVVF
57


Ab-7 CDRL1
RASQSIHTYLN
58


Ab-7 CDRL2
AASALAS
59


Ab-7 CDRL3
CQQSYSAPPYTF
60









In some instances, an antibody described herein comprises a light chain variable domain complementarity determining region (CDRL) sequence as listed in Table 3. In some instances, an antibody described herein comprises a CDRL1 sequence of any one of SEQ ID NOs: 2417-2586. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2417-2586. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2417-2586. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2417-2586. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRL1 sequence of any one of SEQ ID NOs: 2417-2586. In some instances, an antibody described herein comprises a CDRL2 sequence of any one of SEQ ID NOs: 2587-2756. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2587-2756. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2587-2756. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2587-2756. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRL2 sequence of any one of SEQ ID NOs: 2587-2756. In some instances, an antibody described herein comprises a CDRL3 sequence of any one of SEQ ID NOs: 2757-2926. In some instances, an antibody described herein comprises a sequence that is at least 80% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2757-2926. In some instances, an antibody described herein comprises a sequence that is at least 85% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2757-2926. In some instances, an antibody described herein comprises a sequence that is at least 90% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2757-2926. In some instances, an antibody described herein comprises a sequence that is at least 95% identical to a CDRL3 sequence of any one of SEQ ID NOs: 2757-2926.


The term “sequence identity” means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term “percentage of sequence identity” is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as EMBOSS MATCHER, EMBOSS WATER, EMBOSS STRETCHER, EMBOSS NEEDLE, EMBOSS LALIGN, BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.


In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows: 100 times the fraction X/Y, where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program.


The term “homology” or “similarity” between two proteins is determined by comparing the amino acid sequence and its conserved amino acid substitutes of one protein sequence to the second protein sequence. Similarity may be determined by procedures which are well-known in the art, for example, a BLAST program (Basic Local Alignment Search Tool at the National Center for Biological Information).


The terms “complementarity determining region,” and “CDR,” which are synonymous with “hypervariable region” or “HVR,” are known in the art to refer to non-contiguous sequences of amino acids within antibody variable regions, which confer antigen specificity and/or binding affinity. In general, there are three CDRs in each heavy chain variable region (CDRH1, CDRH2, CDRH3) and three CDRs in each light chain variable region (CDRL1, CDRL2, CDRL3). “Framework regions” and “FR” are known in the art to refer to the non-CDR portions of the variable regions of the heavy and light chains. In general, there are four FRs in each full-length heavy chain variable region (FR-H1, FR-H2, FR-H3, and FR-H4), and four FRs in each full-length light chain variable region (FR-L1, FR-L2, FR-L3, and FR-L4). The precise amino acid sequence boundaries of a given CDR or FR can be readily determined using any of a number of well-known schemes, including those described by Kabat et al. (1991), “Sequences of Proteins of Immunological Interest,” 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (“Kabat” numbering scheme), Al-Lazikani et al., (1997) JMB 273, 927-948 (“Chothia” numbering scheme); MacCallum et al., J. Mol. Biol. 262:732-745 (1996), “Antibody-antigen interactions: Contact analysis and binding site topography,” J. Mol. Biol. 262, 732-745.” (“Contact” numbering scheme); Lefranc M P et al., “IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains,” Dev Comp Immunol, 2003 January; 27(1):55-77 (“IMGT” numbering scheme); Honegger A and Plückthun A, “Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool,” J Mol Biol, 2001 Jun. 8; 309(3):657-70, (“Aho” numbering scheme); and Whitelegg N R and Rees A R, “WAM: an improved algorithm for modelling antibodies on the WEB,” Protein Eng. 2000 December; 13(12):819-24 (“AbM” numbering scheme. In certain embodiments the CDRs of the antibodies described herein can be defined by a method selected from Kabat, Chothia, IMGT, Aho, AbM, or combinations thereof.


The boundaries of a given CDR or FR may vary depending on the scheme used for identification. For example, the Kabat scheme is based on structural alignments, while the Chothia scheme is based on structural information. Numbering for both the Kabat and Chothia schemes is based upon the most common antibody region sequence lengths, with insertions accommodated by insertion letters, for example, “30a,” and deletions appearing in some antibodies. The two schemes place certain insertions and deletions (“indels”) at different positions, resulting in differential numbering. The Contact scheme is based on analysis of complex crystal structures and is similar in many respects to the Chothia numbering scheme.


Antibodies used with the devices and systems as described herein may comprise improved binding affinity. In some instances, the SARS-CoV-2 antibody comprises a binding affinity (e.g., KD) to SARS-CoV-2 of less than 1 nM, less than 1.2 nM, less than 2 nM, less than 5 nM, less than 10 nM, less than 11 nm, less than 13.5 nM, less than 15 nM, less than 20 nM, less than 25 nM, or less than 30 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 1 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 1.2 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 2 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 5 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 10 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 13.5 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 15 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 20 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 25 nM. In some instances, the SARS-CoV-2 antibody comprises a KD of less than 30 nM.


In some instances, the ACE2 antibody comprises a binding affinity (e.g., KD) to ACE2 of less than 1 nM, less than 1.2 nM, less than 2 nM, less than 5 nM, less than 10 nM, less than 11 nm, less than 13.5 nM, less than 15 nM, less than 20 nM, less than 25 nM, or less than 30 nM. In some instances, the ACE2 antibody comprises a KD of less than 1 nM. In some instances, the ACE2 antibody comprises a KD of less than 1.2 nM. In some instances, the ACE2 antibody comprises a KD of less than 2 nM. In some instances, the ACE2 antibody comprises a KD of less than 5 nM. In some instances, the ACE2 antibody comprises a KD of less than 10 nM. In some instances, the ACE2 antibody comprises a KD of less than 13.5 nM. In some instances, the ACE2 antibody comprises a KD of less than 15 nM. In some instances, the ACE2 antibody comprises a KD of less than 20 nM. In some instances, the ACE2 antibody comprises a KD of less than 25 nM. In some instances, the ACE2 antibody comprises a KD of less than 30 nM.


In some embodiments, the systems and devices as described herein comprise one or more test lines. In some embodiments, the systems and devices comprise at least 1, 2, 3, 4, 5, 6, or more than 6 test lines. In some embodiments, the one or more test lines comprise the same antibody. In some embodiments, the one or more test lines comprise different antibodies. In some embodiments, the one or more test lines comprise one or more different antibodies. In some embodiments, the one or more test lines comprise at least 2, 3, 4, 5, 6, or more than 6 different antibodies.


The virus may be too small to be seen by the naked eye, or even with assisted vision such as with a light microscope. In some cases, a reagent comprising large particles (e.g. nanobeads, microbeads, colored dyes) is conjugated to the virus to develop a detectible signal. In some cases, the conjugate pad further comprises a conjugate reagent. The conjugate reagent may be used to detect an infectious agent by binding to a region of the target virus. In some cases, the conjugate reagent is coupled to a polypeptide that has affinity to a region of the target. In some cases, the polypeptide is a protein or an antibody as described herein. In some cases, the conjugate reagent provides a signal. The signal may then be detected by a device or in some cases the signal is visible such a color change or a visible band.


In some instances, the conjugate reagent is conjugated to an antibody. In some instances, the conjugate reagent is used for detecting the presence of the virus and generating a detectible signal. In some instances, the signal is a visible band, a fluorescent color, or a colored band. In some instances, the signal is detectible with assisted vision such as with a microscope.


The conjugate reagent can comprise various materials. In some instances, the conjugate reagent is selected from the group consisting of colloidal gold, latex particles, enzymes, colored dyes, paramagnetic particles, gold nanoparticles, gold nanoshells, and fluorescent particles. In some aspects, the conjugate reagent comprises gold nanoparticles, gold nanoshells, or combinations thereof.


Described herein are systems and devices for detecting a virus, wherein the device can be a lateral flow assay (LFA) device.


Devices as described herein can comprise varying dimensions. In some embodiments, the device is at least about 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, or more than 20 mm by about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, or more than 100 mm. In some instances, the device is at least about 5 mm by about 70 mm. In some instances, the membrane substrate is at least about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, or more than 60 mm in width. the membrane substrate is at least about 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm, 12 mm, 16 mm, 18 mm, 20 mm, 24 mm, 26 mm, 28 mm, 30 mm, 40 mm, 50 mm, 60 mm, 70 mm, 80 mm, 90 mm, 100 mm, or more than 100 mm.


In some embodiments, the device further comprises a housing. In some instances, the housing covers at least a portion of the device. In some instances, the housing comprises a sample application port to allow sample application upstream from or to the test locations and an optic opening around the test locations to allow signal detection at the test locations. The housing can comprise any suitable material. For example, the housing can comprise a plastic material. In some instances, the housing comprises an opaque, translucent, or transparent material.


Systems and devices as described herein can detect the virus in a quick and reliable manner. In some instances, the device is a point of care device. In some instances, the device is a LFA device. In some instances, the device provides a read out in about 9 seconds (s) to about 30 minutes (min). In some instances, the device provides a read out in at least about 9 s, 10 s, 11 s, 12 s, 13 s, 14 s, 15 s, 20 s, 30 s, 40 s, 50 s, 1 min, 1.5 min, 2 min, 3 min, 4 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, or more. In some cases, the device provides a read out in at most about 30 min, 25 min, 20 min, 15 min, 10 min, 5 min, 4 min, 3 min, 2 min, 1.5 min, 1 min, 50 s, 40 s, 30 s, 20 s, 15 s, 14 s, 13 s, 12 s, 11 s, 10 s, 9 s, or less. In some aspects, the device provides a read out in at most about 20 seconds.


In some instances, a fragment of a virus is captured and detected. In some cases, a first portion of the fragment of the virus is detected by a first antibody and a second portion of the fragment of the virus is detected by a second antibody. In some instances, the fragment of the virus comprises a spike protein, a membrane protein, an envelope protein, a nucleocapsid protein, or combinations thereof


Methods of Use


Provided herein are methods of using the systems and devices as described herein for detecting or diagnosing a microbial infection. In some embodiments, the microbial infection is caused by a virus. In some embodiments, the microbial infection is caused by a bacteria. In some embodiments, the microbial infection is caused by a fungus. In some embodiments, the microbial infection is caused by a bacteria.


Described herein are methods for testing a sample to determine the presence of a virus in a sample. In some embodiments, the sample is a biological sample. In some instances, the biological sample is collected from a subject. In some instances, the sample is collected from a human subject or an animal subject. In some instances, the sample is a fluid (e.g., bodily fluid). In some instances, the fluid is saliva, blood, semen, vaginal fluid, or urine.


Provided herein are methods and systems to analyze a biological sample for the presence of a virus comprising improved sensitivity, specificity, reliability, and accuracy. In some instances, the virus is a respiratory virus. In some aspects, the virus is a coronavirus. In some instances, the coronavirus is SARS or MERS. In some aspects, the SARS coronavirus is COVID-19. In some instances, the virus is a human virus, a bovine virus, a swine virus, a feline virus, an avian virus, or an equine virus.


Methods and systems as described herein may have a sensitivity of at least about 70% of detecting the virus. In some instances, the methods and systems as described herein are at least about 75%, 80%, 85%. 90%, 95% or more than 95% sensitive in detecting the virus. In some instances, the methods and systems detect viral titers in a range of about 103 to about 104 viral particles. In some instances, the methods and systems detect viral titers of about 101, 102, 103, 104, 105, 106, 107, 108, 109, or more than 109 particles. In some instances, the methods and systems detect at least or about 0.25, 0.5, 1, 2.5, 5, 10, 15, 20, 25, 30, 40, 50, or more than 50 ng/mL of virus or viral protein. In some instances, the methods and systems detect at least or about 10 ng/mL of virus or viral protein. In some instances, the viral protein is SARS-CoV-2 spike trimer protein. In some instances, the viral protein is SARS-CoV-2 nucleocapsid protein.


Methods and systems as described herein may have a specificity of at least about 70% for detecting the virus as compared to another virus. In some instances, the methods and systems as described herein are at least about 75%, 80%, 85%. 90%, 95% or more than 95% specific for detecting the virus as compared to another virus. In some instances, the methods and systems as described herein are specific for detecting SARS-CoV-2. In some instances, the methods and systems as described herein distinguish between SARS-CoV, MERS-CoV, CoV-229E, HCoV-NL63, HCoV-OC43, or HCoV-HKU1. In some embodiments, some instances, the methods and systems as described herein distinguish SARS-CoV-2 from SARS-CoV.


Methods and systems as described herein may have an accuracy of at least about 70% of detecting the virus. In some instances, the methods and systems as described herein are at least about 75%, 80%, 85%. 90%, 95% or more than 95% accuracy in detecting the virus.


Methods and systems as described herein may have a reliability of at least about 70% of detecting the virus. In some instances, the methods and systems as described herein are at least about 75%, 80%, 85%. 90%, 95% or more than 95% reliable in detecting the virus.


Sensitivity, specificity, accuracy, and reliability may be improved as compared to a comparable test. In some instances, the test is a PCR-based test. In some instances, the test is RT-PCR, isothermal nucleic acid amplification, a CRISPR-based assay, rolling circle amplification, a nucleic acid hybridization assay (e.g., microarray), a sequencing assay, or immunoassay. In some instances, the immunoassay is an Enzyme-Linked Immunosorbent Assay (ELISA), lateral flow immunoassay, a neutralization assay, a luminescent immunoassay, a biosensor test, or a rapid antigen test.


Methods and systems as described herein may have an improved limit of detection. In some instances, the methods and systems as described herein has a limit of detection of at least about 103 copies/mL. In some instances, the methods and systems detect viral titers of about 101, 102, 103, 104, 105, 106, 107, 108, 109, or more than 109 copies/mL.


In some instances, the testing methods are performed outside of a laboratory, in a patient's home, in a hospital. In some instances, the testing is performed in the laboratory. The methods can be applied in a handheld device such as a portable microfluidics device. In some aspects, the methods are applied in a portable hand-held device.


In some instances, the device provides a read out in about 1 minute to 30 minutes. In some instances, the device provides a read out in at least about 30 seconds, 40 seconds, 50 seconds, 1 minute, 1.5 minutes, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, 30 minutes, or more. In some cases, the device provides a read out in at most about 30 minutes, 25 minutes, 20 minutes, 15 minutes, 10 minutes, 5 minutes, 4 minutes, 3 minutes, 2 minutes, 1.5 minutes, 1 minutes, or less. In some aspects, the device provides a read out in a range of about 1 minute to about 30 minutes, about 2 minutes to about 25 minutes, about 5 minutes to about 20 minutes, or about 10 minutes to about 15 minutes.


Further described herein are examples of the steps that may be involved in detecting a virus in the systems and devices described herein. In some instances, a sample or fluid is loaded on the sample application pad. In some instances, a running buffer is applied to the sample application pad.


The sample fluid may migrate to the conjugate pad within a predefined period of time, via capillary action. The predefined period of time that it may take for the sample fluid to travel from the sample pad to the conjugate pad may be about 0.5 minutes (min) to 5 min. In some is the sample fluid travel time through the sample pad is at least 0.1 min, 0.2 min, 0.3 min, 0.4 min, 0.5 min, 1 min, 1.5 min, 2 min, 2.5 min, 3 min, 3.5 min, 4 min, 4.5 min, 5 min, or more. In some instances, the travel time is at most 5 min, 4.5 min, 4 min, 3.5 min, 3 min, 2.5 min, 2 min, 1.5 min, 1 min, 0.5 min, 0.4 min, 0.3 min, 0.2 min, 0.1 min, or less.


In some instances, the conjugate reagent on the conjugate pad and the sample fluid comes in contact at the conjugate pad. In some instances, the sample fluid rehydrates the conjugate reagents on the conjugate pad. In some instances, the sample fluid travels through (across) the conjugate pad for a predefined period of time. The predefined period of time for the fluid to travel across the conjugate pad to reach the membrane substrate may be about 0.5 minutes (min) to 5 min. In some instances, the fluid travel time through the conjugate pad is at least 0.1 min, 0.2 min, 0.3 min, 0.4 min, 0.5 min, 1 min, 1.5 min, 2 min, 2.5 min, 3 min, 3.5 min, 4 min, 4.5 min, 5 min, or more. In some instances, the fluid travel time across the conjugate pad is at most 5 min, 4.5 min, 4 min, 3.5 min, 3 min, 2.5 min, 2 min, 1.5 min, 1 min, 0.5 min, 0.4 min, 0.3 min, 0.2 min, 0.1 min, or less. If the sample contains the target for the conjugate reagent or the antibody coupled to the conjugate reagent at the conjugate pad, then the target-conjugate reagent complexes may be formed.


In some instances, the sample or fluid migrates through the membrane substrate towards the first test line. In some instances, the target-conjugate reagent complexes reach the first test line and are captured by immobilized antibodies described herein that are coupled to the first test line. In some aspects, the captured target-conjugate reagent complexes form a visible band at the first test line. In some instances, the fluid migrates across the first test line for a predefined period of time. The predefined period of time that it may take for the fluid to travel across the first test line may be about 0.5 minutes (min) to 5 min. In some instances, the fluid travel time across the first test line is at least 0.1 min, 0.2 min, 0.3 min, 0.4 min, 0.5 min, 1 min, 1.5 min, 2 min, 2.5 min, 3 min, 3.5 min, 4 min, 4.5 min, 5 min, or more. In some instances, the fluid travel time across the first test line is at most 5 min, 4.5 min, 4 min, 3.5 min, 3 min, 2.5 min, 2 min, 1.5 min, 1 min, 0.5 min, 0.4 min, 0.3 min, 0.2 min, 0.1 min, or less. In some instances, the fluid continues to migrate to the second test line.


In some instances, the sample or fluid migrates through the membrane substrate to a second test line. In some embodiments, the second test line is a control line. A visible readout may be included at the first test line, the second test line, or both. In some instances, the visible readout is a visible band, a fluorescent color, or a colored band. In some instances, the signal is a color change. In some aspects, based on the intensity or the color of the signal and/or detectible band indicates the presence, quantity, or potency of the virus. In some instances, the control line is compared to the first test line to determine presence, quantity, or potency of the virus (e.g., SARS-Cov-2).


Results from the device may then be transferred. In some instances, the results are transferred, wirelessly or through a cable, to a computerized device to process and display the information. In some embodiments, the result is transmitted to a software program on a computerized device, where the computerized device has a graphical user interface that displays the assay results.


In some instances, the results are transferred to a database. In some instances, the results from the database are used for bioinformatics applications such as functional genomics and homology searching.


Kits


Devices as described herein may be included in a kit. In some instances, kits are provided to an administering physician, other health care professional, a patient, or a caregiver. In some instances, a kit comprises a container which contains a testing device and instructions for using the device. In some instances, the container contains more than one testing device. The container may contain at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, 30, 40, 50, or more testing devices.


The assay kit can also include an amount of a chase buffer, e.g., PBS, sufficient to enable proper flow of the tracer reagent on each of the first and second test lines to the control line. The kit may comprise solutions, agents, and chase buffers that may be required to operate the device.


Additional kit components can include, e.g., an instrument for sample collection, e.g., a sharp instrument for drawing blood, or a swab for collecting saliva, urine, semen, or vaginal fluid, and an instrument for applying the sample to the sample pad, e.g., a dropper.


The kit can optionally also contain one or more other testing devices and diagnostic tools. The kit may also optionally contain therapeutic or other agents. In some cases, the kit comprises an assisted vision tool to help visually observe the readout such as a light source, a light filter, or a magnifier.


The assay kit can further include instructions for use, which can comprise a description of test pattern interpretation, and recommendations for patient action based on the result obtained. In embodiments, the patient is encouraged to seek a confirmatory test should the rapid test of the invention indicate early or intermediate virus infection. In embodiments, contact information for a suitable test facility is provided.


In some embodiments, the instructions for use include a cautionary warning based on the result interpretation. In embodiments, a mobile phone application is made available to the user, so that test results is provided to a practitioner and/or epidemiologist.


Highly Parallel Nucleic Acid Synthesis


Provided herein is a platform approach utilizing miniaturization, parallelization, and vertical integration of the end-to-end process from polynucleotide synthesis to gene assembly within nanowells on silicon to create a revolutionary synthesis platform. Devices described herein provide, with the same footprint as a 96-well plate, a silicon synthesis platform is capable of increasing throughput by a factor of up to 1,000 or more compared to traditional synthesis methods, with production of up to approximately 1,000,000 or more polynucleotides, or 10,000 or more genes in a single highly-parallelized run.


In some embodiments, a drug itself can be optimized using methods described herein. For example, to improve a specified function of an antibody, a variant polynucleotide library encoding for a portion of the antibody is designed and synthesized. A variant nucleic acid library for the antibody can then be generated by processes described herein (e.g., PCR mutagenesis followed by insertion into a vector). The antibody is then expressed in a production cell line and screened for enhanced activity. Example screens include examining modulation in binding affinity to an antigen, stability, or effector function (e.g., ADCC, complement, or apoptosis). Exemplary regions to optimize the antibody include, without limitation, the Fc region, Fab region, variable region of the Fab region, constant region of the Fab region, variable domain of the heavy chain or light chain (VH or VL), and specific complementarity-determining regions (CDRs) of VH or VL.


Substrates


Devices used as a surface for polynucleotide synthesis may be in the form of substrates which include, without limitation, homogenous array surfaces, patterned array surfaces, channels, beads, gels, and the like. Provided herein are substrates comprising a plurality of clusters, wherein each cluster comprises a plurality of loci that support the attachment and synthesis of polynucleotides. In some instances, substrates comprise a homogenous array surface. For example, the homogenous array surface is a homogenous plate. The term “locus” as used herein refers to a discrete region on a structure which provides support for polynucleotides encoding for a single predetermined sequence to extend from the surface. In some instances, a locus is on a two dimensional surface, e.g., a substantially planar surface. In some instances, a locus is on a three-dimensional surface, e.g., a well, microwell, channel, or post. In some instances, a surface of a locus comprises a material that is actively functionalized to attach to at least one nucleotide for polynucleotide synthesis, or preferably, a population of identical nucleotides for synthesis of a population of polynucleotides. In some instances, polynucleotide refers to a population of polynucleotides encoding for the same nucleic acid sequence. In some cases, a surface of a substrate is inclusive of one or a plurality of surfaces of a substrate. The average error rates for polynucleotides synthesized within a library described here using the systems and methods provided are often less than 1 in 1000, less than about 1 in 2000, less than about 1 in 3000 or less often without error correction.


Provided herein are surfaces that support the parallel synthesis of a plurality of polynucleotides having different predetermined sequences at addressable locations on a common support. In some instances, a substrate provides support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical polynucleotides. In some cases, the surfaces provide support for the synthesis of more than 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2,000; 5,000; 10,000; 20,000; 50,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more polynucleotides encoding for distinct sequences. In some instances, at least a portion of the polynucleotides have an identical sequence or are configured to be synthesized with an identical sequence. In some instances, the substrate provides a surface environment for the growth of polynucleotides having at least 80, 90, 100, 120, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500 bases or more.


Provided herein are methods for polynucleotide synthesis on distinct loci of a substrate, wherein each locus supports the synthesis of a population of polynucleotides. In some cases, each locus supports the synthesis of a population of polynucleotides having a different sequence than a population of polynucleotides grown on another locus. In some instances, each polynucleotide sequence is synthesized with 1, 2, 3, 4, 5, 6, 7, 8, 9 or more redundancy across different loci within the same cluster of loci on a surface for polynucleotide synthesis. In some instances, the loci of a substrate are located within a plurality of clusters. In some instances, a substrate comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters. In some instances, a substrate comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a substrate comprises about 10,000 distinct loci. The amount of loci within a single cluster is varied in different instances. In some cases, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci. Alternatively or in combination, polynucleotide synthesis occurs on a homogenous array surface.


In some instances, the number of distinct polynucleotides synthesized on a substrate is dependent on the number of distinct loci available in the substrate. In some instances, the density of loci within a cluster or surface of a substrate is at least or about 1, 10, 25, 50, 65, 75, 100, 130, 150, 175, 200, 300, 400, 500, 1,000 or more loci per mm2. In some cases, a substrate comprises 10-500, 25-400, 50-500, 100-500, 150-500, 10-250, 50-250, 10-200, or 50-200 mm2. In some instances, the distance between the centers of two adjacent loci within a cluster or surface is from about 10-500, from about 10-200, or from about 10-100 um. In some instances, the distance between two centers of adjacent loci is greater than about 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some instances, the distance between the centers of two adjacent loci is less than about 200, 150, 100, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, each locus has a width of about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 um. In some cases, each locus has a width of about 0.5-100, 0.5-50, 10-75, or 0.5-50 um.


In some instances, the density of clusters within a substrate is at least or about 1 cluster per 100 mm2, 1 cluster per 10 mm2, 1 cluster per 5 mm2, 1 cluster per 4 mm2, 1 cluster per 3 mm2, 1 cluster per 2 mm2, 1 cluster per 1 mm2, 2 clusters per 1 mm2, 3 clusters per 1 mm2, 4 clusters per 1 mm2, 5 clusters per 1 mm2, 10 clusters per 1 mm2, 50 clusters per 1 mm2 or more. In some instances, a substrate comprises from about 1 cluster per 10 mm2 to about 10 clusters per 1 mm2. In some instances, the distance between the centers of two adjacent clusters is at least or about 50, 100, 200, 500, 1000, 2000, or 5000 um. In some cases, the distance between the centers of two adjacent clusters is between about 50-100, 50-200, 50-300, 50-500, and 100-2000 um. In some cases, the distance between the centers of two adjacent clusters is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some cases, each cluster has a cross section of about 0.5 to about 2, about 0.5 to about 1, or about 1 to about 2 mm. In some cases, each cluster has a cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm. In some cases, each cluster has an interior cross section of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm.


In some instances, a substrate is about the size of a standard 96 well plate, for example between about 100 and about 200 mm by between about 50 and about 150 mm. In some instances, a substrate has a diameter less than or equal to about 1000, 500, 450, 400, 300, 250, 200, 150, 100 or 50 mm. In some instances, the diameter of a substrate is between about 25-1000, 25-800, 25-600, 25-500, 25-400, 25-300, or 25-200 mm. In some instances, a substrate has a planar surface area of at least about 100; 200; 500; 1,000; 2,000; 5,000; 10,000; 12,000; 15,000; 20,000; 30,000; 40,000; 50,000 mm2 or more. In some instances, the thickness of a substrate is between about 50-2000, 50-1000, 100-1000, 200-1000, or 250-1000 mm.


Surface Materials


Substrates, devices, and reactors provided herein are fabricated from any variety of materials suitable for the methods, compositions, and systems described herein. In certain instances, substrate materials are fabricated to exhibit a low level of nucleotide binding. In some instances, substrate materials are modified to generate distinct surfaces that exhibit a high level of nucleotide binding. In some instances, substrate materials are transparent to visible and/or UV light. In some instances, substrate materials are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of a substrate. In some instances, conductive materials are connected to an electric ground. In some instances, the substrate is heat conductive or insulated. In some instances, the materials are chemical resistant and heat resistant to support chemical or biochemical reactions, for example polynucleotide synthesis reaction processes. In some instances, a substrate comprises flexible materials. For flexible materials, materials can include, without limitation: nylon, both modified and unmodified, nitrocellulose, polypropylene, and the like. In some instances, a substrate comprises rigid materials. For rigid materials, materials can include, without limitation: glass; fuse silica; silicon, plastics (for example polytetrafluoroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like); metals (for example, gold, platinum, and the like). The substrate, solid support or reactors can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.


Surface Architecture


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates have a surface architecture suitable for the methods, compositions, and systems described herein. In some instances, a substrate comprises raised and/or lowered features. One benefit of having such features is an increase in surface area to support polynucleotide synthesis. In some instances, a substrate having raised and/or lowered features is referred to as a three-dimensional substrate. In some cases, a three-dimensional substrate comprises one or more channels. In some cases, one or more loci comprise a channel. In some cases, the channels are accessible to reagent deposition via a deposition device such as a material deposition device. In some cases, reagents and/or fluids collect in a larger well in fluid communication one or more channels. For example, a substrate comprises a plurality of channels corresponding to a plurality of loci with a cluster, and the plurality of channels are in fluid communication with one well of the cluster. In some methods, a library of polynucleotides is synthesized in a plurality of loci of a cluster.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates are configured for polynucleotide synthesis. In some instances, the structure is configured to allow for controlled flow and mass transfer paths for polynucleotide synthesis on a surface. In some instances, the configuration of a substrate allows for the controlled and even distribution of mass transfer paths, chemical exposure times, and/or wash efficacy during polynucleotide synthesis. In some instances, the configuration of a substrate allows for increased sweep efficiency, for example by providing sufficient volume for a growing polynucleotide such that the excluded volume by the growing polynucleotide does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing the polynucleotide. In some instances, a three-dimensional structure allows for managed flow of fluid to allow for the rapid exchange of chemical exposure.


Provided herein are substrates for the methods, compositions, and systems described herein, wherein the substrates comprise structures suitable for the methods, compositions, and systems described herein. In some instances, segregation is achieved by physical structure. In some instances, segregation is achieved by differential functionalization of the surface generating active and passive regions for polynucleotide synthesis. In some instances, differential functionalization is achieved by alternating the hydrophobicity across the substrate surface, thereby creating water contact angle effects that cause beading or wetting of the deposited reagents.


Employing larger structures can decrease splashing and cross-contamination of distinct polynucleotide synthesis locations with reagents of the neighboring spots. In some cases, a device, such as a material deposition device, is used to deposit reagents to distinct polynucleotide synthesis locations. Substrates having three-dimensional features are configured in a manner that allows for the synthesis of a large number of polynucleotides (e.g., more than about 10,000) with a low error rate (e.g., less than about 1:500, 1:1000, 1:1500, 1:2,000, 1:3,000, 1:5,000, or 1:10,000). In some cases, a substrate comprises features with a density of about or greater than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 features per mm2.


A well of a substrate may have the same or different width, height, and/or volume as another well of the substrate. A channel of a substrate may have the same or different width, height, and/or volume as another channel of the substrate. In some instances, the diameter of a cluster or the diameter of a well comprising a cluster, or both, is between about 0.05-50, 0.05-10, 0.05-5, 0.05-4, 0.05-3, 0.05-2, 0.05-1, 0.05-0.5, 0.05-0.1, 0.1-10, 0.2-10, 0.3-10, 0.4-10, 0.5-10, 0.5-5, or 0.5-2 mm. In some instances, the diameter of a cluster or well or both is less than or about 5, 4, 3, 2, 1, 0.5, 0.1, 0.09, 0.08, 0.07, 0.06, or 0.05 mm. In some instances, the diameter of a cluster or well or both is between about 1.0 and 1.3 mm. In some instances, the diameter of a cluster or well, or both is about 1.150 mm. In some instances, the diameter of a cluster or well, or both is about 0.08 mm. The diameter of a cluster refers to clusters within a two-dimensional or three-dimensional substrate.


In some instances, the height of a well is from about 20-1000, 50-1000, 100-1000, 200-1000, 300-1000, 400-1000, or 500-1000 um. In some cases, the height of a well is less than about 1000, 900, 800, 700, or 600 um.


In some instances, a substrate comprises a plurality of channels corresponding to a plurality of loci within a cluster, wherein the height or depth of a channel is 5-500, 5-400, 5-300, 5-200, 5-100, 5-50, or 10-50 um. In some cases, the height of a channel is less than 100, 80, 60, 40, or 20 um.


In some instances, the diameter of a channel, locus (e.g., in a substantially planar substrate) or both channel and locus (e.g., in a three-dimensional substrate wherein a locus corresponds to a channel) is from about 1-1000, 1-500, 1-200, 1-100, 5-100, or 10-100 um, for example, about 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the diameter of a channel, locus, or both channel and locus is less than about 100, 90, 80, 70, 60, 50, 40, 30, 20 or 10 um. In some instances, the distance between the center of two adjacent channels, loci, or channels and loci is from about 1-500, 1-200, 1-100, 5-200, 5-100, 5-50, or 5-30, for example, about 20 um.


Surface Modifications


Provided herein are methods for polynucleotide synthesis on a surface, wherein the surface comprises various surface modifications. In some instances, the surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a substrate surface or a selected site or region of a substrate surface. For example, surface modifications include, without limitation, (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.


In some cases, the addition of a chemical layer on top of a surface (referred to as adhesion promoter) facilitates structured patterning of loci on a surface of a substrate. Exemplary surfaces for application of adhesion promotion include, without limitation, glass, silicon, silicon dioxide and silicon nitride. In some cases, the adhesion promoter is a chemical with a high surface energy. In some instances, a second chemical layer is deposited on a surface of a substrate. In some cases, the second chemical layer has a low surface energy. In some cases, surface energy of a chemical layer coated on a surface supports localization of droplets on the surface. Depending on the patterning arrangement selected, the proximity of loci and/or area of fluid contact at the loci are alterable.


In some instances, a substrate surface, or resolved loci, onto which nucleic acids or other moieties are deposited, e.g., for polynucleotide synthesis, are smooth or substantially planar (e.g., two-dimensional) or have irregularities, such as raised or lowered features (e.g., three-dimensional features). In some instances, a substrate surface is modified with one or more different layers of compounds. Such modification layers of interest include, without limitation, inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like.


In some instances, resolved loci of a substrate are functionalized with one or more moieties that increase and/or decrease surface energy. In some cases, a moiety is chemically inert. In some cases, a moiety is configured to support a desired chemical reaction, for example, one or more processes in a polynucleotide synthesis reaction. The surface energy, or hydrophobicity, of a surface is a factor for determining the affinity of a nucleotide to attach onto the surface. In some instances, a method for substrate functionalization comprises: (a) providing a substrate having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule. Methods and functionalizing agents are described in U.S. Pat. No. 5,474,796, which is herein incorporated by reference in its entirety.


In some instances, a substrate surface is functionalized by contact with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the substrate surface, typically via reactive hydrophilic moieties present on the substrate surface. Silanization generally covers a surface through self-assembly with organofunctional alkoxysilane molecules. A variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g., for lowering or increasing surface energy. The organofunctional alkoxysilanes are classified according to their organic functions.


Polynucleotide Synthesis


Methods of the current disclosure for polynucleotide synthesis may include processes involving phosphoramidite chemistry. In some instances, polynucleotide synthesis comprises coupling a base with phosphoramidite. Polynucleotide synthesis may comprise coupling a base by deposition of phosphoramidite under coupling conditions, wherein the same base is optionally deposited with phosphoramidite more than once, i.e., double coupling. Polynucleotide synthesis may comprise capping of unreacted sites. In some instances, capping is optional. Polynucleotide synthesis may also comprise oxidation or an oxidation step or oxidation steps. Polynucleotide synthesis may comprise deblocking, detritylation, and sulfurization. In some instances, polynucleotide synthesis comprises either oxidation or sulfurization. In some instances, between one or each step during a polynucleotide synthesis reaction, the device is washed, for example, using tetrazole or acetonitrile. Time frames for any one step in a phosphoramidite synthesis method may be less than about 2 min, 1 min, 50 sec, 40 sec, 30 sec, 20 sec and 10 sec.


Polynucleotide synthesis using a phosphoramidite method may comprise a subsequent addition of a phosphoramidite building block (e.g., nucleoside phosphoramidite) to a growing polynucleotide chain for the formation of a phosphite triester linkage. Phosphoramidite polynucleotide synthesis proceeds in the 3′ to 5′ direction. Phosphoramidite polynucleotide synthesis allows for the controlled addition of one nucleotide to a growing nucleic acid chain per synthesis cycle. In some instances, each synthesis cycle comprises a coupling step. Phosphoramidite coupling involves the formation of a phosphite triester linkage between an activated nucleoside phosphoramidite and a nucleoside bound to the substrate, for example, via a linker. In some instances, the nucleoside phosphoramidite is provided to the device activated. In some instances, the nucleoside phosphoramidite is provided to the device with an activator. In some instances, nucleoside phosphoramidites are provided to the device in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition of a nucleoside phosphoramidite, the device is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate. In some instances, a polynucleotide synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the device is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).


Following coupling, phosphoramidite polynucleotide synthesis methods optionally comprise a capping step. In a capping step, the growing polynucleotide is treated with a capping agent. A capping step is useful to block unreacted substrate-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of polynucleotides with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole may react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I2/water, this side product, possibly via O6-N7 migration, may undergo depurination. The apurinic sites may end up being cleaved in the course of the final deprotection of the polynucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during polynucleotide synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound polynucleotide with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the device is optionally washed.


In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the device bound growing nucleic acid is oxidized. The oxidation step comprises the phosphite triester is oxidized into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some instances, oxidation of the growing polynucleotide is achieved by treatment with iodine and water, optionally in the presence of a weak base (e.g., pyridine, lutidine, collidine). Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for device drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the device and growing polynucleotide is optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain polynucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).


In order for a subsequent cycle of nucleoside incorporation to occur through coupling, the protected 5′ end of the device bound growing polynucleotide is removed so that the primary hydroxyl group is reactive with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound polynucleotide and thus reduces the yield of the desired full-length product. Methods and compositions of the disclosure described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some instances, the device bound polynucleotide is washed after deblocking. In some instances, efficient washing after deblocking contributes to synthesized polynucleotides having a low error rate.


Methods for the synthesis of polynucleotides typically involve an iterating sequence of the following steps: application of a protected monomer to an actively functionalized surface (e.g., locus) to link with either the activated surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it is reactive with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation or sulfurization. In some instances, one or more wash steps precede or follow one or all of the steps.


Methods for phosphoramidite-based polynucleotide synthesis comprise a series of chemical steps. In some instances, one or more steps of a synthesis method involve reagent cycling, where one or more steps of the method comprise application to the device of a reagent useful for the step. For example, reagents are cycled by a series of liquid deposition and vacuum drying steps. For substrates comprising three-dimensional features such as wells, microwells, channels and the like, reagents are optionally passed through one or more regions of the device via the wells and/or channels.


Methods and systems described herein relate to polynucleotide synthesis devices for the synthesis of polynucleotides. The synthesis may be in parallel. For example, at least or about at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 10000, 50000, 75000, 100000 or more polynucleotides can be synthesized in parallel. The total number polynucleotides that may be synthesized in parallel may be from 2-100000, 3-50000, 4-10000, 5-1000, 6-900, 7-850, 8-800, 9-750, 10-700, 11-650, 12-600, 13-550, 14-500, 15-450, 16-400, 17-350, 18-300, 19-250, 20-200, 21-150, 22-100, 23-50, 24-45, 25-40, 30-35. Those of skill in the art appreciate that the total number of polynucleotides synthesized in parallel may fall within any range bound by any of these values, for example 25-100. The total number of polynucleotides synthesized in parallel may fall within any range defined by any of the values serving as endpoints of the range. Total molar mass of polynucleotides synthesized within the device or the molar mass of each of the polynucleotides may be at least or at least about 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 25000, 50000, 75000, 100000 picomoles, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at least or about at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 300, 400, 500 nucleotides, or more. The length of each of the polynucleotides or average length of the polynucleotides within the device may be at most or about at most 500, 400, 300, 200, 150, 100, 50, 45, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 nucleotides, or less. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall from 10-500, 9-400, 11-300, 12-200, 13-150, 14-100, 15-50, 16-45, 17-40, 18-35, 19-25. Those of skill in the art appreciate that the length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range bound by any of these values, for example 100-300. The length of each of the polynucleotides or average length of the polynucleotides within the device may fall within any range defined by any of the values serving as endpoints of the range.


Methods for polynucleotide synthesis on a surface provided herein allow for synthesis at a fast rate. As an example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more are synthesized. Nucleotides include adenine, guanine, thymine, cytosine, uridine building blocks, or analogs/modified versions thereof. In some instances, libraries of polynucleotides are synthesized in parallel on substrate. For example, a device comprising about or at least about 100; 1,000; 10,000; 30,000; 75,000; 100,000; 1,000,000; 2,000,000; 3,000,000; 4,000,000; or 5,000,000 resolved loci is able to support the synthesis of at least the same number of distinct polynucleotides, wherein polynucleotide encoding a distinct sequence is synthesized on a resolved locus. In some instances, a library of polynucleotides is synthesized on a device with low error rates described herein in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less. In some instances, larger nucleic acids assembled from a polynucleotide library synthesized with low error rate using the substrates and methods described herein are prepared in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less.


In some instances, methods described herein provide for generation of a library of nucleic acids comprising variant nucleic acids differing at a plurality of codon sites. In some instances, a nucleic acid may have 1 site, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites 18 sites, 19 sites, 20 sites, 30 sites, 40 sites, 50 sites, or more of variant codon sites.


In some instances, the one or more sites of variant codon sites may be adjacent. In some instances, the one or more sites of variant codon sites may not be adjacent and separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more codons.


In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein all the variant codon sites are adjacent to one another, forming a stretch of variant codon sites. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein none the variant codon sites are adjacent to one another. In some instances, a nucleic acid may comprise multiple sites of variant codon sites, wherein some the variant codon sites are adjacent to one another, forming a stretch of variant codon sites, and some of the variant codon sites are not adjacent to one another.


Referring to the Figures, FIG. 2 illustrates an exemplary process workflow for synthesis of nucleic acids (e.g., genes) from shorter nucleic acids. The workflow is divided generally into phases: (1) de novo synthesis of a single stranded nucleic acid library, (2) joining nucleic acids to form larger fragments, (3) error correction, (4) quality control, and (5) shipment. Prior to de novo synthesis, an intended nucleic acid sequence or group of nucleic acid sequences is preselected. For example, a group of genes is preselected for generation.


Once large nucleic acids for generation are selected, a predetermined library of nucleic acids is designed for de novo synthesis. Various suitable methods are known for generating high density polynucleotide arrays. In the workflow example, a device surface layer is provided. In the example, chemistry of the surface is altered in order to improve the polynucleotide synthesis process. Areas of low surface energy are generated to repel liquid while areas of high surface energy are generated to attract liquids. The surface itself may be in the form of a planar surface or contain variations in shape, such as protrusions or microwells which increase surface area. In the workflow example, high surface energy molecules selected serve a dual function of supporting DNA chemistry, as disclosed in International Patent Application Publication WO/2015/021080, which is herein incorporated by reference in its entirety.


In situ preparation of polynucleotide arrays is generated on a solid support and utilizes single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device 201, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 202. In some instances, polynucleotides are cleaved from the surface at this stage. Cleavage includes gas cleavage, e.g., with ammonia or methylamine.


The generated polynucleotide libraries are placed in a reaction chamber. In this exemplary workflow, the reaction chamber (also referred to as “nanoreactor”) is a silicon coated well, containing PCR reagents and lowered onto the polynucleotide library 203. Prior to or after the sealing 204 of the polynucleotides, a reagent is added to release the polynucleotides from the substrate. In the exemplary workflow, the polynucleotides are released subsequent to sealing of the nanoreactor 205. Once released, fragments of single stranded polynucleotides hybridize in order to span an entire long range sequence of DNA. Partial hybridization 205 is possible because each synthesized polynucleotide is designed to have a small portion overlapping with at least one other polynucleotide in the pool.


After hybridization, a PCA reaction is commenced. During the polymerase cycles, the polynucleotides anneal to complementary fragments and gaps are filled in by a polymerase. Each cycle increases the length of various fragments randomly depending on which polynucleotides find each other. Complementarity amongst the fragments allows for forming a complete large span of double stranded DNA 206.


After PCA is complete, the nanoreactor is separated from the device 207 and positioned for interaction with a device having primers for PCR 208. After sealing, the nanoreactor is subject to PCR 209 and the larger nucleic acids are amplified. After PCR 210, the nanochamber is opened 211, error correction reagents are added 212, the chamber is sealed 213 and an error correction reaction occurs to remove mismatched base pairs and/or strands with poor complementarity from the double stranded PCR amplification products 214. The nanoreactor is opened and separated 215. Error corrected product is next subject to additional processing steps, such as PCR and molecular bar coding, and then packaged 222 for shipment 223.


In some instances, quality control measures are taken. After error correction, quality control steps include for example interaction with a wafer having sequencing primers for amplification of the error corrected product 216, sealing the wafer to a chamber containing error corrected amplification product 217, and performing an additional round of amplification 218. The nanoreactor is opened 219 and the products are pooled 220 and sequenced 221. After an acceptable quality control determination is made, the packaged product 222 is approved for shipment 223.


In some instances, a nucleic acid generate by a workflow such as that in FIG. 2 is subject to mutagenesis using overlapping primers disclosed herein. In some instances, a library of primers are generated by in situ preparation on a solid support and utilize single nucleotide extension process to extend multiple oligomers in parallel. A deposition device, such as a material deposition device, is designed to release reagents in a step wise fashion such that multiple polynucleotides extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 202.


Computer Systems


Any of the systems described herein, may be operably linked to a computer and may be automated through a computer either locally or remotely. In various instances, the methods and systems of the disclosure may further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the disclosure. The computer systems may be programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.


The computer system 300 illustrated in FIG. 3 may be understood as a logical apparatus that can read instructions from media 311 and/or a network port 305, which can optionally be connected to server 309 having fixed media 312. The system, such as shown in FIG. 3 can include a CPU 301, disk drives 303, optional input devices such as keyboard 315 and/or mouse 316 and optional monitor 307. Data communication can be achieved through the indicated communication medium to a server at a local or a remote location. The communication medium can include any means of transmitting and/or receiving data. For example, the communication medium can be a network connection, a wireless connection or an internet connection. Such a connection can provide for communication over the World Wide Web. It is envisioned that data relating to the present disclosure can be transmitted over such networks or connections for reception and/or review by a party 322 as illustrated in FIG. 3.



FIG. 4 is a block diagram illustrating a first example architecture of a computer system 400 that can be used in connection with example instances of the present disclosure. As depicted in FIG. 4, the example computer system can include a processor 402 for processing instructions. Non-limiting examples of processors include: Intel Xeon™ processor, AMD Opteron™ processor, Samsung 32-bit RISC ARM 1176JZ(F)-S v1.0™ processor, ARM Cortex-A8 Samsung S5PC100™ processor, ARM Cortex-A8 Apple A4™ processor, Marvell PXA 930™ processor, or a functionally-equivalent processor. Multiple threads of execution can be used for parallel processing. In some instances, multiple processors or processors with multiple cores can also be used, whether in a single computer system, in a cluster, or distributed across systems over a network comprising a plurality of computers, cell phones, and/or personal data assistant devices.


As illustrated in FIG. 4, a high speed cache 404 can be connected to, or incorporated in, the processor 402 to provide a high speed memory for instructions or data that have been recently, or are frequently, used by processor 402. The processor 402 is connected to a north bridge 406 by a processor bus 408. The north bridge 406 is connected to random access memory (RAM) 410 by a memory bus 412 and manages access to the RAM 410 by the processor 402. The north bridge 406 is also connected to a south bridge 414 by a chipset bus 416. The south bridge 414 is, in turn, connected to a peripheral bus 418. The peripheral bus can be, for example, PCI, PCI-X, PCI Express, or other peripheral bus. The north bridge and south bridge are often referred to as a processor chipset and manage data transfer between the processor, RAM, and peripheral components on the peripheral bus 418. In some alternative architectures, the functionality of the north bridge can be incorporated into the processor instead of using a separate north bridge chip. In some instances, system 400 can include an accelerator card 422 attached to the peripheral bus 418. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.


Software and data are stored in external storage 424 and can be loaded into RAM 410 and/or cache 404 for use by the processor. The system 400 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example instances of the present disclosure. In this example, system 400 also includes network interface cards (NICs) 420 and 421 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.



FIG. 5 is a diagram showing a network 500 with a plurality of computer systems 502a, and 502b, a plurality of cell phones and personal data assistants 502c, and Network Attached Storage (NAS) 504a, and 504b. In example instances, systems 502a, 502b, and 502c can manage data storage and optimize data access for data stored in Network Attached Storage (NAS) 504a and 504b. A mathematical model can be used for the data and be evaluated using distributed parallel processing across computer systems 502a, and 502b, and cell phone and personal data assistant systems 502c. Computer systems 502a, and 502b, and cell phone and personal data assistant systems 502c can also provide parallel processing for adaptive data restructuring of the data stored in Network Attached Storage (NAS) 504a and 504b. FIG. 5 illustrates an example only, and a wide variety of other computer architectures and systems can be used in conjunction with the various instances of the present disclosure. For example, a blade server can be used to provide parallel processing. Processor blades can be connected through a back plane to provide parallel processing. Storage can also be connected to the back plane or as Network Attached Storage (NAS) through a separate network interface. In some example instances, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other instances, some or all of the processors can use a shared virtual address memory space.



FIG. 6 is a block diagram of a multiprocessor computer system using a shared virtual address memory space in accordance with an example instance. The system includes a plurality of processors 602a-f that can access a shared memory subsystem 604. The system incorporates a plurality of programmable hardware memory algorithm processors (MAPs) 606a-f in the memory subsystem 604. Each MAP 606a-f can comprise a memory 608a-f and one or more field programmable gate arrays (FPGAs) 610a-f The MAP provides a configurable functional unit and particular algorithms or portions of algorithms can be provided to the FPGAs 610a-f for processing in close coordination with a respective processor. For example, the MAPs can be used to evaluate algebraic expressions regarding the data model and to perform adaptive data restructuring in example instances. In this example, each MAP is globally accessible by all of the processors for these purposes. In one configuration, each MAP can use Direct Memory Access (DMA) to access an associated memory 608a-f, allowing it to execute tasks independently of, and asynchronously from the respective microprocessor 602a-f In this configuration, a MAP can feed results directly to another MAP for pipelining and parallel execution of algorithms.


The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example instances, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some instances, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example instances, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.


In example instances, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other instances, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in FIG. 4, system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic elements. For example, the Set Processor and Optimizer can be implemented with hardware acceleration through the use of a hardware accelerator card, such as accelerator card 422 illustrated in FIG. 4.


The following examples are set forth to illustrate more clearly the principle and practice of embodiments disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed embodiments. Unless otherwise stated, all parts and percentages are on a weight basis.


EXAMPLES

The following examples are given for the purpose of illustrating various embodiments of the disclosure and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure. Changes therein and other uses which are encompassed within the spirit of the disclosure as defined by the scope of the claims will occur to those skilled in the art.


Example 1: Functionalization of a Device Surface

A device was functionalized to support the attachment and synthesis of a library of polynucleotides. The device surface was first wet cleaned using a piranha solution comprising 90% H2SO4 and 10% H2O2 for 20 minutes. The device was rinsed in several beakers with DI water, held under a DI water gooseneck faucet for 5 min, and dried with N2. The device was subsequently soaked in NH4OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with DI water for 1 min each, and then rinsed again with DI water using the handgun. The device was then plasma cleaned by exposing the device surface to O2. A SAMCO PC-300 instrument was used to plasma etch O2 at 250 watts for 1 min in downstream mode.


The cleaned device surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C., 135° C. vaporizer. The device surface was resist coated using a Brewer Science 200X spin coater. SPR™ 3612 photoresist was spin coated on the device at 2500 rpm for 40 sec. The device was pre-baked for 30 min at 90° C. on a Brewer hot plate. The device was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The device was exposed for 2.2 sec and developed for 1 min in MSF 26A. Remaining developer was rinsed with the handgun and the device soaked in water for 5 min. The device was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200. A descum process was used to remove residual resist using the SAMCO PC-300 instrument to O2 plasma etch at 250 watts for 1 min.


The device surface was passively functionalized with a 100 μL solution of perfluorooctyltrichlorosilane mixed with 10 μl light mineral oil. The device was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air. The device was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The device was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power. The device was dipped in 300 mL of 200 proof ethanol and blown dry with N2. The functionalized surface was activated to serve as a support for polynucleotide synthesis.


Example 2: Synthesis of a 50-Mer Sequence on an Oligonucleotide Synthesis Device

A two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer”). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary polynucleotide of 50 bp (“50-mer polynucleotide”) using polynucleotide synthesis methods described herein.


The sequence of the 50-mer was as described. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCATOTTTTTT TTTT3′ (SEQ ID NO: 4213), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligos from the surface during deprotection.


The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 4 and an ABI synthesizer.









TABLE 4







Synthesis protocols


Table 4









General DNA Synthesis




Process Name
Process Step
Time (sec)












WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
6


Activator Flow)
Activator +
6



Phosphoramidite to



Flowcell



Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to



Flowcell



Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to



Flowcell



Activator to Flowcell
0.5



Activator +
5



Phosphoramidite to



Flowcell



Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


DNA BASE ADDITION
Activator Manifold Flush
2


(Phosphoramidite +
Activator to Flowcell
5


Activator Flow)
Activator +
18



Phosphoramidite to



Flowcell



Incubate for 25 sec
25


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4


CAPPING (CapA + B, 1:1,
CapA + B to Flowcell
15


Flow)


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
Acetonitrile to Flowcell
15



Acetonitrile System Flush
4


OXIDATION (Oxidizer
Oxidizer to Flowcell
18


Flow)


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



Acetonitrile System Flush
4



Acetonitrile to Flowcell
15



N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
23



N2 System Flush
4



Acetonitrile System Flush
4


DEBLOCKING (Deblock
Deblock to Flowcell
36


Flow)


WASH (Acetonitrile Wash
Acetonitrile System Flush
4


Flow)
N2 System Flush
4



Acetonitrile System Flush
4



Acetonitrile to Flowcell
18



N2 System Flush
4.13



Acetonitrile System Flush
4.13



Acetonitrile to Flowcell
15









The phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.


The flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M I2 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ˜300 uL/sec (compared to −50 uL/sec for all reagents with flow restrictor). The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals. After polynucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover polynucleotides. The recovered polynucleotides were then analyzed on a BioAnalyzer small RNA chip.


Example 3: Synthesis of a 100-Mer Sequence on an Oligonucleotide Synthesis Device

The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer polynucleotide (“100-mer polynucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCATG CTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT ##TTTTTTTTTT3′ (SEQ ID NO: 4214), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the polynucleotides extracted from the surface were analyzed on a BioAnalyzer instrument.


All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3′ (SEQ ID NO: 4215)) and a reverse (5′CGGGATCCTTATCGTCATCG3′ (SEQ ID NO: 4216)) primer in a 50 uL PCR mix (25 uL NEB Q5 mastermix, 2.5 uL 10 uM Forward primer, 2.5 uL 10 uM Reverse primer, 1 uL polynucleotide extracted from the surface, and water up to 50 uL) using the following thermalcycling program:


98° C., 30 sec


98° C., 10 sec; 63° C., 10 sec; 72° C., 10 sec; repeat 12 cycles


72° C., 2 min


The PCR products were also run on a BioAnalyzer, demonstrating sharp peaks at the 100-mer position. Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 5 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from chip 2.









TABLE 5







Sequencing results









Spot
Error rate
Cycle efficiency












1
1/763 bp
99.87%


2
1/824 bp
99.88%


3
1/780 bp
99.87%


4
1/429 bp
99.77%


5
1/1525 bp 
99.93%


6
1/1615 bp 
99.94%


7
1/531 bp
99.81%


8
1/1769 bp 
99.94%


9
1/854 bp
99.88%


10
1/1451 bp 
99.93%









Thus, the high quality and uniformity of the synthesized polynucleotides were repeated on two chips with different surface chemistries. Overall, 89% of the 100-mers that were sequenced were perfect sequences with no errors, corresponding to 233 out of 262.


Table 6 summarizes error characteristics for the sequences obtained from the polynucleotides samples from spots 1-10.









TABLE 6





Error characteristics




















Sample ID/Spot no.
OSA_0046/1
OSA_0047/2
OSA_0048/3
OSA_0049/4
OSA_0050/5





Total Sequences
32
32
32
32
32


Sequencing Quality
25 of 28
27 of 27
26 of 30
21 of 23
25 of 26


Oligo Quality
23 of 25
25 of 27
22 of 26
18 of 21
24 of 25


ROI Match Count
2500
2698
2561
2122
2499


ROI Mutation
2
2
1
3
1


ROI Multi
0
0
0
0
0


Base Deletion


ROI Small
1
0
0
0
0


Insertion


ROI Single
0
0
0
0
0


Base Deletion


Large Deletion
0
0
1
0
0


Count


Mutation: G > A
2
2
1
2
1


Mutation: T > C
0
0
0
1
0


ROI Error Count
3
2
2
3
1


ROI Error Rate
Err: ~1 in 834
Err: ~1 in 1350
Err: ~1 in 1282
Err: ~1 in 708
Err: ~1 in 2500


ROI Minus Primer
MP Err: ~1 in 763
MP Err: ~1 in 824
MP Err: ~1 in 780
MP Err: ~1 in 429
MP Err: ~1 in 1525


Error Rate





Sample ID/Spot no.
OSA_0051/6
OSA_0052/7
OSA_0053/8
OSA_0054/9
OSA_0055/10





Total Sequences
32
32
32
32
32


Sequencing Quality
29 of 30
27 of 31
29 of 31
28 of 29
25 of 28


Oligo Quality
25 of 29
22 of 27
28 of 29
26 of 28
20 of 25


ROI Match Count
2666
2625
2899
2798
2348


ROI Mutation
0
2
1
2
1


ROI Multi
0
0
0
0
0


Base Deletion


ROI Small
0
0
0
0
0


Insertion


ROI Single
0
0
0
0
0


Base Deletion


Large Deletion
1
1
0
0
0


Count


Mutation: G > A
0
2
1
2
1


Mutation: T > C
0
0
0
0
0


ROI Error Count
1
3
1
2
1


ROI Error Rate
Err: ~1 in 2667
Err: ~1 in 876
Err: ~1 in 2900
Err: ~1 in 1400
Err: ~1 in 2349


ROI Minus Primer
MP Err: ~1 in 1615
MP Err: ~1 in 531
MP Err: ~1 in 1769
MP Err: ~1 in 854
MP Err: ~1 in 1451


Error Rate









Example 4: Identification of Antibodies

Antibodies to be used with the lateral flow device were identified.


Briefly, antibodies were identified using phage display. Antibody expressing bacteriophage libraries were panned against the SARS-CoV-2 spike protein for binding, screened for binding after 3-4 panning rounds, and then underwent DNA sequencing to determine the sequence of the antibody being expressed. This process yielded 1,152 sequences (3×384 samples) analyzed via next-generation DNA sequencing (NGS).


A panel of antibodies were identified that comprise high affinity binding to S1 monomer and S trimer in ELISA (data not shown). Using surface plasmon resonance, many of the antibodies were determined to bind with subnanomolar binding to SARS-CoV-2 S1 monomer and/or S trimer (FIG. 7A). Ab-7 and Ab-4 showed no binding to the related SARS-CoV virus S1 protein (FIG. 7B). For Ab-7 and Ab-4, the SARS-CoV S1 binding affinities were in the micromolar range.


Ab-1 and Ab-8 were further analysis used CE-SDS gel and electropherograms. 2 uL of sample was used and reduced using 34 mM DTT. Data for Ab-1 and Ab-8 are seen in FIGS. 7C-7D and Table 7.













TABLE 7








Concentration
Available Yield



Name
(mg/mL)
(mg)




















Ab-1
4.13
103.5



Ab-8 (Lot 13092)
5.44
76.1



Ab-8 (Lot 13093)
9.35
177.6










Example 5: Lateral Flow Device

A lateral flow device using the antibodies identified was designed.


Antibodies described in Example 4 were used in a lateral flow device. Ab-1 captured SARS-CoV-2 spike protein in a concentration dependent manner and bound antigen with either Ab-7, Ab-4, or a control antibody CR3022 (Abcam) was detected (FIG. 8). The data shows that the SARS-CoV-2 spike protein was captured and presented for detection by a complementary sandwich pair with Ab-7 or Ab-4 that was improved as compared to the control antibody.


The antibodies were further screened for improved pairs of antibodies. Detector antibodies were conjugated with latex via Amide Beads. The following capture and detector antibody pairs were identified: Ab-1 capture with either Ab-2 or Ab-3 detector; Ab-4 capture with either Ab-2, Ab-5, or Ab-6 detector; Ab-7 capture with either Ab-5 or Ab-1 detector; and Ab-3 capture with Ab-2 detector. Exemplary results using the lateral flow device is seen in FIG. 9.


Initial limit of detection (LOD) assessments were also performed. Ab-3/Ab-2 and Ab-1/Ab-3 was observed to have a linear curve with an unoptimized LOD of about 125 and 63 ng/mL, respectively.


Example 6: Lateral Flow Assay

A lateral flow assay was performed using the antibodies described herein.


Details of the lateral flow assay are seen in Table 8.










TABLE 8







Target Analyte
SRAS-CoV-2 Spike Protein


Particle System
Colloidal Gold (Lumos)


Data Output
Colorimetric (Absorbance)


Detector Antibody
Ab-8


Test Line (Capture
Ab-1


Antibody)


Membrane
Unbacked CN140


Waste Pad
A440 (Ahlstrom)


Sample Pad
Ahlstrom 6614 treated with PVP-10, PVA,



IGEPAL CA-60 in Citrate buffer


Conjugate Pad
Ahlstrom 8950 treated with BSA and



Tween-20 in Borate buffer


Antibody Loading
6 μg antibody per mL per OD gold


Conjugate
OD10


Concentration


Conjugate Spray Rate
10 μL/cm


Conjugate Diluent
Colloidal gold resuspension buffer +


Buffer
10% sucrose + 5% trehalose





Assay Performance
Performance at Feasibility





Sensitivity
10 ng/ml


Time to result
15 minutes


Matrix
Pure Sal Saliva









Using the lateral flow assay, a dry test strip limit of detection was tested using saliva. The data is seen in FIGS. 10A-10B. FIG. 10A shows the dry system successfully detected 7.8 ng/mL of SARS-CoV-2 spike trimer protein that was spiked into salvia and showed a linear curve as the concentration of spike protein increases. FIG. 10B shows the limit of detection is close to 10 ng/mL SARS-CoV-2 spike trimer protein. The lateral flow device was also assayed for whether the spike trimer can pass through the device. As seen in FIG. 10C, the spike trimer passed through the device and a signal was detected.


The lateral flow assay was then tested using inactivated virus and live virus on swabs. Spike inactivated virus in saliva was passed through the lateral flow device as was spike inactivated virus in raw saliva. FIG. 11A shows data on test strips testing inactivated virus. As seen in FIG. 11A, positive signal was observed for both the heat and BPL inactivated virus. Signal was also observed when the virus mixed with raw saliva was passed through the lateral flow device. FIG. 11B shows data from live virus on swabs. Swab samples in saline were tested using strips. 60 uL of sample was added to the strip and a photo was taken at 15 minutes. All positive swab showed a test line at varying intensities and very little background was observed from the negative swab (FIG. 11B).


This Example shows that the lateral flow assay is able to detect SARS-CoV-2 protein in saliva samples.


Example 7. Rapid Antigen Detection Test Kit

An exemplary schema of the rapid antigen detection (RAD) test kit comprising a lateral flow device is seen in FIG. 12.


Spike protein was added to saliva and was measured using the lateral flow device. Data from the lateral flow device was compared to results from PCR. As seen in FIGS. 13A-13B, the lateral flow device gave similar results as using PCR. The lateral flow device was also used to test SARS-CoV-2 positive saliva samples. As seen in FIG. 13C, the lateral flow device positively identified two of the three samples that were SARS-CoV-2 positive. FIG. 13D shows data using the lateral flow device to detect SARS-CoV-2 in saliva samples from five additional SARS-CoV-2 positive samples. Using the cassette improved the signal of the test line as seen in FIG. 13E.


Example 8. Multiplexed SARS-CoV-2 Antigen Test

A SARS-CoV-2 lateral flow assay containing a cocktail of antibodies that can detect multiple SARS-CoV-2 specific antigens, specifically the Spike and Nucleocapsid proteins, was developed. The lateral flow assay contains a capture and detector antibody for each antigen. The nucleocapsid specific antibodies are commercially available and the spike protein antibodies were created at Twist Bioscience with Ab-9 detector and Ab-10 capture antibodies. As seen in FIG. 14A, a 3-line system with recombinant protein spiked into negative saliva demonstrates the specificity of the test. As seen in FIG. 14B, a 2-line system with recombinant protein spiked into transfer buffer and nasal swabs from covid-19 positive patients demonstrated the specificity of the test.


Example 9: Integrated Cassette for Saliva Detection

A kit for a rapid saliva detection assay is shown in FIGS. 14C-14E. FIG. 14C depicts the kit as assembled. FIG. 14D depicts the individual components of the kit, which includes a saliva collection device and a lateral flow cassette. The use is depicted in FIGS. 15A-15B. The cassette is opened and placed horizontally on the bench. The syringe barrel is locked into the cassette port. The swab is placed in the mouth of the subject where saliva has pooled until the red circle on the saliva collection device is completely full. The swab is compressed until the red conjugate can be seen flowing along the cassette string. After 10 minutes, the assay is complete. Presence of a control line and presence of the test line indicates that SARS-COV-2 has been detected. Presence of the control line only indicates that SARS-COV-2 has not been detected. Presence of the test line only indicates the test is invalid.


Example 10: Open Well Cassette for Saliva Detection

An Open Well Cassette is used to detect SARS-COV-2 as depicted in FIGS. 16A-16B. The swab is placed in the mouth to collect saliva for 5 minutes. The Eppendorf tube is attached to the base of the syringe barrel. The swab is placed in the syringe barrel and compressed to transfer saliva into the Eppendorf tube. The 80 μL fixed volume pipette is filled with saliva. The saliva is emptied from the pipette into the sample well. After 10 minutes, the assay is complete. Presence of a control line and presence of the test line indicates that SARS-COV-2 has been detected. Presence of the control line only indicates that SARS-COV-2 has not been detected. Presence of the test line only indicates the test is invalid.


Example 11: Detection of Viral Load Using Open Well Cassette

Coronavirus was spiked into saliva to a final concentration of 106 TCID50/mL, 105 TCID50/mL, 104 TCID50/mL, 103 TCID50/mL, 102 TCID50/mL, or transfer buffer only. The saliva was analyzed using the open well cassette device described in Example 10. As depicted in FIG. 17, the open well cassette device was able to detect virus levels at levels as low as 103 TCID50/mL. This results in detection of virus at viral levels consistently found in infectious individuals.


Example 12: Detection of Viral Load

Live virus was spiked into viral samples. The concentrations were 107 copies/mL, 106 copies/mL, and 105 copies/mL. 106 copies per mL is approximately 2.16×104 TCID50/mL. The saliva samples, as well as positive and negative controls were analyzed using an open well device with VHH trimer and commercial gold conjugate. As depicted in FIG. 18A and FIG. 18B, all cassettes testing positive controls displayed both the test and the control line, while all cassettes testing negative controls displayed only the control line. As depicted in FIG. 18C, the cassettes were able to detect viral loads of 107 copies/mL and 106 copies/mL, as indicated by both the control and test line. As depicted in FIG. 18D, cassettes tested with concentrations of 103 copies per mL displayed only the control line.


Example 13: Clinical Trial

Patients with symptoms of COVID-19 were given both a PCR test and the saliva assay described in Example 10. The saliva was tested immediately and the samples were identified as positive or negative by eye. The results were recorded by pictures taken in a light box. FIG. 19 depicts representative samples of the results. 10 of the 10 subjects tested were identified as positive for SARS-CoV-2 by both the saliva assay and the PCR analysis.


Example 14: Double Purification of Saliva

Saliva was spiked with spike protein. Single purification and double purification of the saliva was performed. The saliva was then analyzed using the lateral flow cassette. Results are depicted in FIGS. 20A-20C. When compared to single purification of saliva (FIG. 20B), double purification of saliva (FIG. 20C) resulted in loss of nonspecific binding while resulting in no loss of signal.


Example 15: Optimization of Conjugation of the Ab-10 Spike Trimer

The 201-1 spike trimer was conjugated to gold nanoparticles. Lateral flow strips using the conjugated trimer were tested at a pH of 4 and a pH of 10. The results are depicted in FIG. 21. Conjugation was successful at high pH values, however the signal was poor.


Biotinylated Ab-10 was conjugated to gold nanospheres and used as a detector antibody. Ab-10 and Ab-9 were tested as capture antibodies. The results are depicted in FIG. 22. Conjugation was successful, but binding to both captures was poor.


Example 16: Nucleocapsid Antibody Screening

7 conjugates were screened against 5 nucleocapsid antibodies in a lateral flow assay using buffer only. The results are depicted in FIG. 23A. Two potential candidate detector antibodies were identified. The two candidate antibodies were tested against capture antibodies. with nucleocapsid protein. Results are depicted in FIG. 23B. Conjugate 5 was the better detector antibody. Ab-89 (4th test strip) showed the strongest capture.


The assay was optimized to result nonspecific binding on the N assay with the 5B-1-Ab-89 pair. A new buffer of 150 mM Tris, pH 8.8, 2% IGEPAL, 0.1% PVP, 0.05% PVA and 0.5% Tween20 was found to reduce nonspecific binding, as depicted in FIG. 23C. Further, this buffer did not affect the binding of the S assay, as depicted in FIG. 23D.


Example 17: Combined Nucleocapsid and Spike Assay

A lateral flow strip assay to detect both nucleocapsid and spike protein was developed. The detector-capture pairs for nucleocapsid were 5B1 and Ab-89, and the detector-capture pair for spike protein was Ab-9 and Ab-10.


Different ratios of antibody pairs were tested. A 1:1 mix of both capture and detector antibodies resulted in nonspecific binding, as depicted in FIG. 24A. A 2:1 spike: nucleocapsid for the detector antibodies and a 1:1 spike: nucleocapsid ratio for the capture antibodies resulted in no nonspecific binding, as depicted in FIG. 24B.


Testing clinical samples resulted in all positive hits, as depicted in FIG. 25.


The buffer was optimized to reduce nonspecific binding for a 1:1 ratio of both detector and capture antibodies. A buffer of 150 mM Tris, pH 9; 2% IGEPAL, 0.1% PVP, 0.05% PVA, and 0.5% Tween20 resulted in no nonspecific binding, as depicted in FIG. 26.


Surfactants were added to reduce nonspecific binding to the nucleocapsid and spike assay. The sample pad was switched from CO48 to DVA. As depicted in FIG. 27, nonspecific binding was eliminated in the Double PurSal samples treated with 400 μL of 0.05% SDS/


A dose titration of inactivated virus samples and a dose titration of frozen nasopharyngeal samples was run on the nucleocapsid and spike lateral assay strips. As depicted in FIG. 28, in both the inactivated viral samples and the nasal pharyngeal samples, the virus could be detected up to a dilution of 1:256.


Example 18: Comparison of Nucleocapsid and Spike Lateral Flow Assay to Spike Lateral Flow Assay

The nucleocapsid and spike combined lateral flow assay strips were compared to strips detecting spike alone. The strips were tested using dilutions of inactivated virus in saliva. As seen in FIG. 29, the nucleocapsid and spike (N+S) strips were able to detect virus at dilutions as low as 1:256. In contrast, the spike only strips (S) were able to detect virus at dilutions of 1:16 (faint)


The N+S strips were compared to the S strips using nasopharyngeal swab samples. The results are depicted in FIG. 30. The N+S assay was able to detect virus at a dilution as low as 1:1024. The S assay was able to detect virus at a dilution of 1:16 (faint).


Example 19: Use of Mucolytic Agents

Saliva spiked with spike protein was combined with mucolytic agents. The saliva was then analyzed on the lateral flow cassette. As depicted in FIG. 31, there was a weakening or loss of the control line. Nonspecific binding was persistent.


Example 20: Exemplary Sequences

Tables 9-14 demonstrate exemplary sequences for use in the assays described herein.









TABLE 9







Variable Domain Heavy Chain CDR Sequences














SEQ ID

SEQ ID

SEQ ID



Variant
NO
CDRH1
NO
CDRH2
NO
CDRH3





1-1
148
FTFSSYAMN
 883
SAISGSGVSTYYA
1618
CAKGDSGSYYGSSYFDYW





1-2
149
FTFSSYGMS
 884
SAISGSGGNTYYA
1619
CTRVRRGSGVAPYSSSWGRYY








FDYW





1-3
150
FRFSSYSMS
 885
SAISGSGGSSYYA
1620
CAKDGSGTIFGVVIAKYYFDYW





1-4
151
FTFSAYAMS
 886
SAISGSGGSTHYA
1621
CASWGPLWSGSPNDAFDIW





1-5
152
FFSSYAMG
 887
SAISGSGYSTYYA
1622
CARVRSYDSTAYDEPLDALDIW





1-6
153
FTFSSFAMS
 888
SAISGSGVSTYYA
1623
CGRDARSSGYNGYDLFDIW





1-7
154
FTFSAYAMS
 889
SAISGSGGSYYA
1624
CAKGPLVGWYFDLW





1-8
155
FTFGSYAMS
 890
SLISGSGGSTYYA
1625
CASWGPLWSGSPNDAFDIW





1-9
156
FTFSAYAMS
 891
SAISGSGGSTFYA
1626
CTRQGDSSGWYDGWFDPW





1-10
157
FIFSSYAMS
 892
SIISGSGGSTYYA
1627
CIATVVSPLDYW





1-11
158
FTFSDYAMS
 893
STISGSGGSTYYA
1628
CARDESSSSLNWFDPW





1-12
159
FTFSSYAMI
 894
SAISGSAGSTYYA
1629
CASPDPLGSVADLDYW





1-13
160
FTFGSYAMS
 895
SAISGSGGTTYYA
1630
CARVWSSSSVFDYW





1-14
161
FTFSRYAMS
 896
SAISGSGASTYYA
1631
CAKDRGGGSYYGTFDYW





1-15
162
STFSSYAMS
 897
SAISGSGATYYA
1632
CTRVRVAGYSSSWYDAFDIW





1-16
163
FTFSSYAMT
 898
SAISGSGGNTYYA
1633
CVKGTIPIFGVIRSAFDYW





1-17
164
FTFSSYVMS
 899
SSISGSGGSTYYA
1634
CARGSGSYSFFDYW





1-18
165
FTFSSYAN
 900
SAISGSGVSTYYA
1635
CATTPGPWIQLWFGGGFDYW





1-19
166
FTFSSYDMS
 901
SAISGSAGSTTMR
1636
CAKDGLVVAGTFDYW





1-20
167
FTFSGYAMS
 902
SALSGSGGSTYYA
1637
CARGALLEWLSRFDNW





1-21
168
FTLSSYAMS
 903
SAISGSGGTTYYA
1638
CARDLGAADLIDYW





1-22
169
FIFSSYAMS
 904
SAISGSGGTYYA
1639
CVRVPAAAGKGVPGIFDIW





1-23
170
FTFSSYAMG
 905
SAIRGSGGSTYYA
1640
CARVRQGLRRTWYYFDYW





1-24
171
STFSSYAMS
 906
SAIGGSGGSTYYA
1641
CAKEYSSSWFDPW





1-25
172
FTFSSYTMS
 907
SAISVSGGSTYYA
1642
CAKREDYDFWSGRGAFDIW





1-26
173
FTFSSYAMY
 908
SAISGSGGTYYA
1643
CAKDIGYSSSWSFDYW





1-27
174
FTFRSYAMS
 909
SAISGSGRSTYY
1644
CARDDYSDYRPFDYW





1-28
175
FTFSSYTMS
 910
SAISGSGGSIYYA
1645
CAHRPSLQWLDWWFDPW





1-29
176
FTFSSQAMS
 911
SIISGSGGSTYYA
1646
CAKDGASGWPNWHFDLW





1-30
177
FTFSSYPMS
 912
SAISGSGGRTYYA
1647
CAKGAAAGPFDYW





1-31
178
FTFSSYAMT
 913
SAISGGTTYYA
1648
CAKEEYYYDSSGPNWFDPW





1-32
179
FTFSSYAMS
 914
TAISVSGGSTYYA
1649
WAPQGGTTVPTGRFDPW





1-33
180
FTFSSYAMS
 915
SAISGSSGSTYYA
1650
CSRGGGPAAGFHGLDVW





1-34
181
FTFSSYAVS
 916
SAISASGGSTYYA
1651
CARAAKRQQLFPRNYFDYW





1-35
182
FTFSSYPMS
 917
SAIRGSGGSTYYA
1652
CALHYGSGRSFDYW





1-36
183
FTFSSYGMS
 918
SAISGSGGATYYA
1653
CARPGGRIVGALWGAFDYW





3-1
184
RTFCRYSMG
 919
ATWRPANTNYA
1654
CAKNWGDAGTTWFEKSGW





3-2
185
NIFSRYIMG
 920
AAISRTGGSTYYA
1655
CAIDPDGEW





3-3
186
RTLAGYTMG
 921
AEIYPSGNGVYYA
1656
CAADVRDSIWRSW





3-4
187
STLSRYSMG
 922
AAIARRERVYA
1657
CARLSCHDYSCYSAFDFW





3-5
188
SIFSSAAMG
 923
AISWRTGTTYYA
1658
CAAAGSMGWNHLRDYDW





3-6
189
TFSGYLMG
 924
AGIWRSGVSLYYA
1659
CAARSGWGAAMRSADFRW





3-7
190
RTFSSYDMG
 925
AIIKSDGSTYYA
1660
CARSPRFSGVVVRPGLDLW





3-8
191
SISSYFMG
 926
SSIGIAGTPTLYA
1661
CAACSDYYCSGVGAVW





3-9
192
PTFSTYAMG
 927
AAVINGGTTNYA
1662
CAKDSWDSSGYSYHYYYYGM








DVW





3-10
193
IIGSFRTMG
 928
GFTGSGRSQYYA
1663
CARGDIAVIQVLDYW





3-11
194
GTFASYGMG
 929
AGIWEDSSAAHYA
1664
CAYSGIGTDW





3-12
195
LTFRNYAMG
 930
AGITSGGTRNYA
1665
CAAGWGDSAW





3-13
196
SISTINVMG
 931
AAISWGGGLTVYA
1666
CAAFDGYTGSDW





3-14
197
GTLSSYIG
 932
ATVRSGSITNYA
1667
CAADLTDIWEGIREYDEYAW





3-15
198
RTFRRYPMG
 933
VAVTWSGGSTYYA
1668
CAAGLRGRQYSW





3-16
199
STFSIDVMG
 934
AAISWSGESTLYA
1669
CAAFDGYSGSDW





3-17
200
RTSSSAVMG
 935
AAINRGGSTIYV
1670
CATGPYRSYFARSYLW





3-18
201
GTFSSYRMG
 936
SAISWNDGGADYA
1671
CAATQWGSSGWKQARWYDW





3-19
202
TIFASAMG
 937
AFSSSGGSTYYA
1672
CAKDPIAAADPGDSVSFDYW





3-20
203
FGIDAMG
 938
ATITEGGATNVGSTS
1673
CALNVWRTSSDW





3-21
204
NIIGGNHMG
 939
GAITSSRSTVYA
1674
CAAVTTQTYGYDW





3-22
205
RTFSRYDMG
 940
GGTRSGSTNYA
1675
CARHSDYSGLSNFDYW





3-23
206
QPAPELRGYGMG
 941
AAVIGSSGTTYYA
1676
CAKAKATVGLRAPFDYW





3-24
207
INFSRYGMG
 942
ASITYLGRTNYA
1677
CALRVRPYGQYDW





3-25
208
RTFRRYAMG
 943
AAINWSGARTYYA
1678
CAVSKPLNYYTYYDARRYDW





3-26
209
GTFGHYAMG
 944
AAVSWSGSSTYYA
1679
CAVSQPLNYYTYYDARRYDW





3-27
210
FTLDDYAMG
 945
AAISWSTGSTYYA
1680
CAASQAPITIATMMKPFYDW





3-28
211
FTFRRYDMG
 946
SAISGGLAYYA
1681
CAVDLSGDAVYDW





3-29
212
INFSRNAMG
 947
ASITHQDRPIYA
1682
CALPVGPYGQYDW





3-30
213
RTFTTYGMG
 948
ASITYLGRTYYA
1683
CALRVRPYGQYDW





3-31
214
STFSINAMG
 949
AGITSSGGYTNYA
1684
CAADGVPEYSDYASGPVW





7-1
215
FTFSNYAMR
 950
SAISGSGGSTYYA
1685
CARHTGRYSSGSTGWFHYW





7-2
216
FAFSRHAMS
 951
SDIGGSGSTTYYA
1686
CARTTFDNWFDPW





7-3
217
RTFSINAMG
 952
AGITRSAVSTITSE
1687
CAADGVPEYSDYASGPVW






GTANYA







7-4
218
FTFSSYGMN
 953
SASSGSGGSTYYA
1688
ARREYIESGFDSW





7-5
219
RTFSTDAMG
 954
AAISSGGSTNYA
1689
CAATRGRSTRLVLPSLVEW





7-6
220
RIFYPMG
 955
AAVRWSSTGIYYT
1690
CAAALSEVWRGSENLREGYD






QYA

W





7-7
221
FTFGSYDMG
 956
TAINWSGARTAYA
1691
CAARSVYSYEYNW





7-8
222
STFTINAMG
 957
SGISHNGGTTNYA
1692
CAADGVPEYSDYASGPVW





7-9
223
GTFSSIGMG
 958
AAISWDGGATAYA
1693
CAKEDVGKPFDW





7-10
224
RTYAMG
 959
AEINWSGSSTYYA
1694
CAVDGPFGW





7-11
225
LPFSTKSMG
 960
AAIHWSGLTSYA
1695
CAADRAADFFAQRDEYDW





7-12
226
RTIVPYTMG
 961
AAISPSAFTEYA
1696
CAARRWGYDW





7-13
227
LRLNMHRMG
 962
AAISGWSGGTNYA
1697
CAKIGTLWW





7-14
228
STFSINAMG
 963
AGISRGGTTNYA
1698
CAADGVPEYSDYASGPVW





7-15
229
STLPYHAMG
 964
ASISRFFGTAYYA
1699
CAPTFAAGASEYHW





7-16
230
FTFTSYAIS
 965
SAISGSGGSTDYA
1700
CARGAYGSGTYDYW





7-17
231
FSLDYYGMG
 966
AAITSGGTPHYA
1701
CASAYNPGIGYDW





7-18
232
LTDRRYTMG
 967
ASITLGGSTAYA
1702
CAKEDVGKPFDW





7-19
233
RTFRRYTMG
 968
ASITSSGVNAYA
1703
CAKEDVGKPFDW





7-20
234
PTFSIYAMG
 969
AGISWNGGSTNYA
1704
CALRRRFGGQEW





7-21
235
RTISRYTMG
 970
ASITSGGSTAYA
1705
CAKEDVGKPFDW





7-22
236
RTITRYTMG
 971
ASITSGGSTAYA
1706
CAKQDVGKPFDW





7-23
237
FTFENHAMG
 972
AEIYPSGSTIYA
1707
CAARILSRNW





7-24
238
FTFSRHAMN
 973
STITGSGGSTNYA
1708
CAREVGLYYYGSGSSSRRLLG








RIDYYFDYW





7-25
239
FTFDDYSMG
 974
ASIEWDGSTYYA
1709
CAAFDGYTGSDW





7-26
240
STFSINAMG
 975
AGITSSGGYTNYA
1710
CAADGVPEYSDYASGPVW





7-27
241
QTFNMG
 976
AEINWSGSSTYYA
1711
CAVDGPFGW





7-28
242
NTFSDNPMG
 977
AILAWDSGSTYYA
1712
CTTDYSKLAITKLSYW





7-29
243
RTHSIYPMG
 978
ASITSYGDTNYA
1713
CAARRWIPPGPIW





7-30
244
RTFSMHAMG
 979
ASISSQGRTNYA
1714
CAAEVRNGSDYLPIDW





7-31
245
FTFSNYSMG
 980
AAIHWNGDSTAYA
1715
CAAQTEDSAQYIW





7-32
246
STFSVNAMG
 981
AGVTRGGYTNYA
1716
CAADGVPEYSDYASGPVW





7-33
247
SIGSINAMG
 982
AGISNGGTTNYA
1717
CAADGVPEYSDYASGPVW





7-34
248
RTFGSYDMG
 983
AFIHRSGGSTYYA
1718
CATFPAIVTDSDYDLGNDW





7-35
249
GTFGHYAMG
 984
AAVSWSGSSTYYA
1719
CAVSQPLNYYTYYDARRYDW





7-36
250
FGFGSYDMG
 985
TAINWSGARAYYA
1720
CAARSVYSYDYNW





7-37
251
STLSINAMG
 986
AGITRSGSVTNYA
1721
CAADGVPEYSDYASGPVW





7-38
252
RPFSEYTMG
 987
SSIHWGGRGTNYA
1722
CAAELHSSDYTSPGAYAW





7-39
253
RTFSNYPMG
 988
AAITWSGDSTNYA
1723
CALPSNIITTDYLRVYW





7-40
254
RTFRRYTMG
 989
ASITKFGSTNYA
1724
CAKEDVGKPFDW





7-41
255
RTFSTYVMG
 990
ASISSRGITHYA
1725
CAKEDVGKPFDW





7-42
256
FTLDYYGMG
 991
AAITSGGTPHYG
1726
CASAYNPGIGYDW





7-43
257
FTFGHYAMG
 992
AAVSWSGSTTYYA
1727
CAVSHPLNYYTYYDARRYDW





7-44
258
FTFEDYAMG
 993
AAITRGSNTTDYA
1728
CAARRWMGGSYFDPGNYDW





7-45
259
RTLSRYTMG
 994
ASITSGGSTNYA
1729
CAKEDVGKPFDW





8-1
260
RTFASYAMG
 995
GAISRSGDSTYYA
1730
CARAPFYCTTTKCQDNYYYM








DVW





8-2
261
GTYHAMG
 996
AGITSDDRTNYA
1731
CARERRYYDSSGYPYYFDYW





8-3
262
TTLDYYAMG
 997
AAISWSGGSTAYA
1732
CAREDYYDSSGYSW





8-4
263
GTLSRSRMG
 998
AFIGSDTLYA
1733
CANLAYYDSSGYYDYW





8-5
264
GTFSFYNMG
 999
AFISGNGGTSYA
1734
CAVVAMRMVTTEGPDVLDVW





8-6
265
FTFDYYAMG
1000
SAIDSEGRTSYA
1735
CARWGPFDIW





8-7
266
FPFSIWPMG
1001
AAVRWSSTGIYYT
1736
CTRSEYSSGWYDYW






QYA







8-8
267
FAESSSMG
1002
AAISWSGDITIYA
1737
CARGAPYFDHGSKSYRLFYFDYW





8-9
268
FTFGTTTMG
1003
AAISWSTGIAHYA
1738
CARGGPNYYASGRYPWFDPW





8-10
269
FIGNYHAMG
1004
AAVTWSGGTTNYA
1739
CAREGYYYDSSGYPYYFDYW





4A-1
270
RTFSDDTMG
1005
GGISWSGGNTYYA
1740
CATDPPLFW





4A-2
271
RTFGDYIMG
1006
AAINWSAGYTAYA
1741
CARASPNTGWHFDRW





4A-3
272
RTFSDDAMG
1007
AAINWSGGTTRYA
1742
CATDPPLFW





4A-4
273
RTFGDYIMG
1008
AAINWIAGYTADA
1743
CAEPSPNTGWHFDHW





4A-5
274
RTFGDDTMG
1009
AAINWSGGNTYYA
1744
CATDPPLFW





4A-6
275
RTFGDDTMG
1010
AAINWTGGYTPYA
1745
CATDPPLFW





4A-7
276
RTFGDYIMG
1011
AAINWSGGYTAYA
1746
CATASPNTGWHFDHW





4A-8
277
RTFGDYIMG
1012
GGINWSGGYTYYA
1747
CATDPPLFW





4A-9
278
RTFGDYIMG
1013
AAINWSGGYTHYA
1748
CATDPPLFW





4A-10
279
RTFSDDTMG
1014
AAIHWSGSSTRYA
1749
CATDPPLFW





4A-11
280
RTFGDYAMG
1015
APINWSGGSTYYA
1750
CATDPPLFW





4A-12
281
RTFGDDTMG
1016
AAINWSGGNTPYA
1751
CATDPPLFW





4A-13
282
RTFGDDTMG
1017
AAINWSGDNTHYA
1752
CATDPPLFW





4A-14
283
RTFSDDTMG
1018
AAINWSGGTTRYA
1753
CATDPPLFW





4A-15
284
RTFSDDTMG
1019
AAINWSGDSTYYA
1754
CATDPPLFW





4A-16
285
RTFSDYTMG
1020
AAINWSGGYTYYA
1755
CATDPPLFW





4A-17
286
RTFGDDTMG
1021
AAINWSGGNTDYA
1756
CATDPPLFW





4A-18
287
RTFGDYIMG
1022
AAINWSGGYTPYA
1757
CATDPPLFW





4A-19
288
RTFSDDTMG
1023
AAINWSGGSTYYA
1758
CATDPPLFW





4A-20
289
RTFGDDIMG
1024
AAIHWSAGYTRYA
1759
CATDPPLFWGHVDLW





4A-21
290
RTFSDDTMG
1025
AGMTWSGSSTFYA
1760
CATDPPLFW





4A-22
291
RTFGDYIMG
1026
AAINWSGDNTHYA
1761
CATDPPLFW





4A-23
292
RTFSDDAMG
1027
AGISWNGGSIYYA
1762
CATDPPLFW





4A-24
293
RTFSDYTMG
1028
AAINWSGGTTYYA
1763
CATDPPLFW





4A-25
294
GTFSRYAMG
1029
SAVDSGGSTYYA
1764
CAASPSLRSAWQW





4A-26
295
RTFSDDTMG
1030
AAVNWSGGSTYYA
1765
CATDPPLFW





4A-27
296
RTFGDYIMG
1031
AAINWSAGYTAYA
1766
CARATPNTGWHFDHW





4A-28
297
RTFGDDTMG
1032
AAINWNGGNTHYA
1767
CATDPPLFW





4A-29
298
RTFGDDTMG
1033
AAINWSGGYTYYA
1768
CATDPPLFW





4A-30
299
RTFGDYTMG
1034
AAINWTGGYTYYA
1769
CATDPPLFW





4A-31
300
RTFGDYIMG
1035
AAINWSAGYTAYA
1770
CATASPNTGWHFDHW





4A-32
301
FTFDDYEMG
1036
AAISWRGGTTYYA
1771
CAADRRGLASTRAGDYDW





4A-33
302
FTFSRHDMG
1037
AGINWESGSTNYA
1772
CAADRGVYGGRWYRTSQYTW





4A-34
303
RTFGDYIMG
1038
AAINWSADYTAYA
1773
CATDPPLFCWHFDHW





4A-35
304
QLANFASYAMG
1039
AAITRSGSSTVYA
1774
CATTMNPNPRW





4A-36
305
RTFGDYIMG
1040
AAINWSAGYTAYA
1775
CATAPPLFCWHFDHW





4A-37
306
RTFGDYGMG
1041
ATINWSGALTHYA
1776
CATLPFYDFWSGYYTGYYYMDVW





4A-38
307
RTFSDDTMG
1042
AAITWSGGRTRYA
1777
CATDRPLFW





4A-39
308
RTFSNAAMG
1043
ARILWTGASRNYA
1778
CATTENPNPRW





4A-40
309
RTFSDDTMG
1044
AGINWSGNGVYYA
1779
CATDPPLFW





4A-41
310
RTFGDYIMG
1045
AAINWSGGTTPYA
1780
CATDPPLFCCHVDLW





4A-42
311
RTFGDDTMG
1046
AAINWSGGYTPYA
1781
CATDPPLFWGHVDLW





4A-43
312
RTFSDDTMG
1047
AAINWSGGSTDYA
1782
CATDPPLFW





4A-44
313
RTFGDYIMG
1048
AAINWSAGYTAYA
1783
CATARPNTGWHFDHW





4A-45
314
RTFSDDAMG
1049
AAINWSGGSTRYA
1784
CATDPPLFW





4A-46
315
RTFGDYIMG
1050
AAINWSAGYTPYA
1785
CATDPPLFWGHVDLW





4A-47
316
FTFGDYVMG
1051
AAINWNAGYTAYA
1786
CAKASPNTGWHFDHW





4A-48
317
RTFSDDAMG
1052
GRINWSGGNTYYA
1787
CATDPPLFW





4A-49
318
RTFGDYIMG
1053
AAINWSAGYTAYA
1788
CARASPNTGWHFDHW





4A-50
319
GTFSNSGMG
1054
AVVNWSGRRTYYA
1789
CAVPWMDYNRRDW





2A-1
320
FTFSNYATD
1055
SIISGSGGATYYA
1790
CAKGGYCSSDTCWWEYWLDPW





2A-2
321
FTFSRHAMN
1056
SGISGSGDETYYA
1791
CARDLPASYYDSSGYYWHNG








MDVW





2A-3
322
FTFSDFAMA
1057
SAISGSGDITYYA
1792
CAREADCLPSPWYLDLW





2A-4
323
FTFSDFAMA
1058
SAITGTGDITYYA
1793
CAREADGLHSPW





2A-5
324
FTFSDFAMA
1059
SAISGSGDITYYA
1794
CAREADGLHSPWHFDLW





2A-6
325
FTFSDFAMA
1060
SAISGSGDITYYA
1795
CAREADGLHSPWHFDLW





2A-7
326
FTFSDFAMA
1061
SAITGSGDITYYA
1796
CAREADGLHSPWHFDLW





2A-8
327
FTFSDFAMA
1062
SAISGSGDITYYA
1797
CAREADGLHSPWHFDLW





2A-9
328
FTFPRYAMS
1063
STISGSGSTTYYA
1798
CARLIDAFDIW





2A-10
329
FTFSAFAMG
1064
SAITASGDITYYA
1799
CARQSDGLPSPWHFDLG





2A-11
330
FTFSNYPMN
1065
STISGSGGNTFYA
1800
CVRHDEYSFDYW





2A-12
331
FTFSDYPMN
1066
STISGSGGITFYA
1801
CVRHDEYSFDYW





2A-13
332
FTFSDYPMN
1067
SAISGSGDNTYYA
1802
CVRHDEYSFDYW





2A-14
333
FTFSDYPMN
1068
SAITGSGDITYYA
1803
CVRHDEYSFDYW





2A-15
334
FTFSDYPMN
1069
STISGSGGITFYA
1804
CVRHDEYSFDYW





3A-1
335
FMFGNYAMS
1070
AAISGSGGSTYYA
1805
CAKDRGYSSSWYGGFDYW





3A-2
336
FTFRSHAMN
1071
SAISGSGGSTNYA
1806
CARGLKFLEWLPSAFDIW





3A-3
337
FTFRNYAMA
1072
SGISGSGGTTYYG
1807
CARGTRFLEWSLPLDVW





3A-4
338
FTFRNHAMA
1073
SGISGSGGTTYYG
1808
CARGTRFLQWSLPLDVW





3A-5
339
FTITNYAMS
1074
SGISGSGAGTYYA
1809
CARHAWWKGAGFFDHW





3A-6
340
FTIPNYAMS
1075
SGISGAGASTYYA
1810
CARHTWWKGAGFFDHW





3A-7
341
FTIPNYAMS
1076
SGISGSGASTYYA
1811
CARHTWWKGAGFFDHW





3A-8
342
FTITNYAMS
1077
SGISGSGASTYYA
1812
CARHTWWKGAGFFDHW





3A-9
343
FTITNYAMS
1078
SGISGSGAGTYYA
1813
CARHTWWKGAGFFDHW





3A-10
344
FTFRSHAMS
1079
SSISGGGASTYYA
1814
CARVKYLTTSSGWPRPYFDNW





3A-11
345
FTIRNYAMS
1080
SSISGGGASTYYA
1815
CARVKYLTTSSGWPRPYFDNW





3A-12
346
FTFRSHAMS
1081
SSISGGGASTYYA
1816
CARVKYLTTSSGWPRPYFDNW





3A-13
347
FTFRSHAMS
1082
SSISGGGASTYYA
1817
CARVKYLTTSSGWPRPYFDNW





3A-14
348
FTFRSYAMS
1083
SSISGGGASTYYA
1818
CARVKYLTTSSGWPRPYFDNW





3A-15
349
FTFSAYSMS
1084
SAISGSGGSRYYA
1819
CGRSKWPQANGAFDIW





2A-1
350
FTFSNYATD
1085
SIISGSGGATYYA
1820
CAKGGYCSSDTCWWEYWLDPW





2A-10
351
FTFSAFAMG
1086
SAITASGDITYYA
1821
CARQSDGLPSPWHFDLG





2A-5
352
FTFSDFAMA
1087
SAISGSGDITYYA
1822
CAREADGLHSPWHFDLW





2A-2
353
FTFSRHAMN
1088
SGISGSGDETYYA
1823
CARDLPASYYDSSGYYWHNG








MDVW





2A-4
354
FTFSDFAMA
1089
SAISGSGDITYYA
1824
CAREADGLHSPWHFDLW





2A-6
355
FTFSNYPMN
1090
STISGSGGNTFYA
1825
CVRHDEYSFDYW





2A-11
356
FTFSDFAMA
1091
SAITGSGDITYYA
1826
CAREADGLHSPWHFDLW





2A-12
357
FTFSDYPMN
1092
STISGSGGITFYA
1827
CVRHDEYSFDYW





2A-13
358
FTFSDYPMN
1093
SAISGSGDNTYYA
1828
CVRHDEYSFDYW





2A-14
359
FTFSDFAMA
1094
SAITGTGDITYYA
1829
CAREADGLHSPW





2A-7
360
FTFSDYPMN
1095
SAITGSGDITYYA
1830
CVRHDEYSFDYW





2A-8
361
FTFSDFAMA
1096
SAISGSGDITYYA
1831
CAREADGLHSPWHFDLW





2A-15
362
FTFSDFAMA
1097
SAISGSGDITYYA
1832
CAREADGLHSPWHFDLW





2A-9
363
FTFPRYAMS
1098
STISGSGSTTYYA
1833
CARLIDAFDIW





2A-21
364
FTFPRYAMS
1099
STISGSGSTTYYA
1834
CARLIDAFDIW





2A-22
365
FTFTTYALS
1100
SGISGSGDETYYA
1835
CTTGDDFWSGGNWFDPW





2A-23
366
FTFSRHAMN
1101
SGITGSGDETYYA
1836
CARDLPASYYDSSGYYWHNG








MDVW





2A-24
367
FVFSSYAMS
1102
SAISGSGGSSYYA
1837
CARVGGGYWYGIDVW





2A-25
368
FTLSSYVMS
1103
SGISGGGASTYYA
1838
CARGYSRNWYPSWFDPW





2A-26
369
FTFSTYAMS
1104
SSIGGSGSTTYYA
1839
CAGGWYLDYW





2A-27
370
FTYSNYAMT
1105
SAISGSSGSTYYA
1840
CASLCIVDPFDIW





2A-28
371
FTFSNYPMN
1106
STISGSGGNTFYA
1841
CVRHDEYSFDYW





3A-10
372
FTFRSHAMS
1107
SSISGGGASTYYA
1842
CARVKYLTTSSGWPRPYFDNW





3A-4
373
FTFSAYSMS
1108
SAISGSGGSRYYA
1843
CGRSKWPQANGAFDIW





3A-7
374
FMFGNYAMS
1109
AAISGSGGSTYYA
1844
CAKDRGYSSSWYGGFDYW





3A-1
375
FTFRNHAMA
1110
SGISGSGGTTYYG
1845
CARGTRFLQWSLPLDVW





3A-5
376
FTIPNYAMS
1111
SGISGAGASTYYA
1846
CARHTWWKGAGFFDHW





3A-6
377
FTFRNYAMA
1112
SGISGSGGTTYYG
1847
CARGTRFLEWSLPLDVW





3A-15
378
FTIRNYAMS
1113
SSISGGGASTYYA
1848
CARVKYLTTSSGWPRPYFDNW





3A-3
379
FTIPNYAMS
1114
SGISGSGASTYYA
1849
CARHTWWKGAGFFDHW





3A-11
380
FTITNYAMS
1115
SGISGSGAGTYYA
1850
CARHAWWKGAGFFDHW





3A-8
381
FTFRSHAMS
1116
SSISGGGASTYYA
1851
CARVKYLTTSSGWPRPYFDNW





3A-2
382
FTITNYAMS
1117
SGISGSGASTYYA
1852
CARHTWWKGAGFFDHW





3A-12
383
FTFRSHAMN
1118
SAISGSGGSTNYA
1853
CARGLKFLEWLPSAFDIW





3A-14
384
FTFRSHAMS
1119
SSISGGGASTYYA
1854
CARVKYLTTSSGWPRPYFDNW





3A-9
385
FTFRSYAMS
1120
SSISGGGASTYYA
1855
CARVKYLTTSSGWPRPYFDNW





3A-13
386
FTITNYAMS
1121
SGISGSGAGTYYA
1856
CARHTWWKGAGFFDHW





3A-16
387
FTFTNFAMS
1122
SAISGRGGGTYYA
1857
CARDAHGYYYDSSGYDDW





3A-17
388
FTFRSYPMS
1123
STISGSGGITYYA
1858
CAKGVYGSTVTTCHW





3A-18
389
FTLTSYAMS
1124
SAISGSGVDTYYA
1859
CARPTNWGFDYW





3A-19
390
FTFINYAMS
1125
STISTSGGNTYYA
1860
CARADSNWASSAYW





3A-2
391
FPFSTYAMS
1126
SGISVSGGFTYYA
1861
CARDPYSYGYYYYYGMDVW





3A-21
392
FTFSTYAMG
1127
SGISGGGVSTYYA
1862
CARARNWGPSDYW





3A-22
393
FIFSDYAMT
1128
SAISGSAFYA
1863
CARDATYSSSWYNWFDPW





3A-23
394
FTFSDYAMT
1129
SDISGSGGSTYYA
1864
CARGTVTSFDFW





3A-24
395
FTFSIYAMG
1130
SFISGSGGSTYYA
1865
CAKDYHSASWFSAAADYW





3A-25
396
FTFASYAMT
1131
SAISESGGSTYYA
1866
CAREGQEYSSGSSYFDYW





3A-26
397
FTFSEYAMS
1132
SAITGSGGSTYYG
1867
CARGSQTPYCGGDCPETFDYW





3A-27
398
FTFDDYAMS
1133
SGISGGGTSTYYA
1868
CARDLYSSGWYGFDYW





3A-28
399
FTFNNYAMN
1134
SAISGSVGSTYYA
1869
CARDNYDFWSGYYTNWFDPW





3A-29
400
FTFTNHAMS
1135
SAISGSGSNIYYA
1870
CARDSLSVTMGRGVVTYYYY








GMDFW





4A-51
401
PGTAIMG
1136
ARISTSGGSTKYA
1871
CARTTVIIPPLIW





4A-52
402
RSFSNSVMG
1137
ARITWNGGSTYYA
1872
CATTENPNPRW





4A-53
403
RTFGDDTMG
1138
AAVSWSGSGVYYA
1873
CATDPPLFW





4A-54
404
RTFSDARMG
1139
GAVSWSGGTTVYA
1874
CATTEDPYPRW





4A-49
405
RTFGDYIMG
1140
AAINWSAGYTAYA
1875
CARASPNTGWHFDHW





4A-55
406
SGLSINAMG
1141
AAISWSGGSTYTAYA
1876
CAAYQAGWGDW





4A-39
407
RTFSNAAMG
1142
ARILWTGASRNYA
1877
CATTENPNPRW





4A-56
408
FSLDYYGMG
1143
AAISWNGDFTAYA
1878
CAKRANPTGAYFDYW





4A-33
409
FTFSRHDMG
1144
AGINWESGSTNYA
1879
CAADRGVYGGRWYRTSQYTW





4A-57
410
LTFRNYAMG
1145
AAIGSGGYTDYA
1880
CAVKPGWVARDPSQYNW





4A-25
411
GTFSRYAMG
1146
SAVDSGGSTYYA
1881
CAASPSLRSAWQW





4A-58
412
FTLDYYDMG
1147
AAVTWSGGSTYYA
1882
CAADRRGLASTRAADYDW





4A-59
413
RTFGDYIMG
1148
AAINWSAGYTPYA
1883
CATAPPLFCWHFDLW





4A-6
414
RTFGDDIMG
1149
AAIHWSAGYTRYA
1884
CATDPPLFWGHVDLW





4A-61
415
RTFGDYIMG
1150
AAINWSADYTPYA
1885
CATAPPNTGWHFDHW





4A-3
416
RTFGDYIMG
1151
AAINWSAGYTAYA
1886
CATATPNTGWHFDHW





4A-62
417
RTFSDDTMG
1152
AAINWSGGSTDYA
1887
CATDPPLFW





4A-43
418
RTFGDDTMG
1153
AGINWSGGNTYYA
1888
CATDPPLFW





4A-5
419
RTFGDYIMG
1154
AAINWTGGYTSYA
1889
CATDPPLFW





4A-42
420
RTFGDDTMG
1155
AAINWSGGNTYYA
1890
CATDPPLFW





4A-63
421
RTFSDYTMG
1156
AAINWSGGYTYYA
1891
CATDPPLFW





4A-6
422
RTFGDYGMG
1157
ATINWSGALTHYA
1892
CATLPFYDFWSGYYTGYYYM








DVW





4A-40
423
RTFSDDTMG
1158
AGVTWSGSSTFYA
1893
CATDPPLFW





4A-21
424
RTFSDDIMG
1159
AAISWSGGNTHYA
1894
CATDPPLFW





4A-64
425
RTFGDYIMG
1160
AAINWSAGYTAYA
1895
CATASPNTGWHFDHW





4A-47
426
FTFDDDYVMG
1161
AAVSGSGDDTYYA
1896
CAADRRGLASTRAADYDW





4A-65
427
RTFGDYIMG
1162
AAINWSAGYTAYA
1897
CATEPPLSCWHFDLW





4A-18
428
RTFGDYIMG
1163
AAINWSGGYTPYA
1898
CATAPPNTGWHFDHW





4A-66
429
RTFGDDTMG
1164
AAINWSAGYTPYA
1899
CATDPPLFCCHFDLW





4A-36
430
RTFSDDTMG
1165
AAISWSGGFIRYA
1900
CATDPPLFW





4A-67
431
RTFSDDTMG
1166
AAINWSGDSTYYA
1901
CATDPPLFW





4A-16
432
RTFSDDTMG
1167
AAINWSGGTTRYA
1902
CATDPPLFW





4A-11
433
RTFSDDAMG
1168
AAIHWSGSSTRYA
1903
CATDPPLFW





4A-68
434
RTFSDDTMG
1169
GTINWSGGSTYYA
1904
CATDPPLFW





4A-34
435
RTFGDYIMG
1170
AAINWSGGYTPYA
1905
CATDPPLFW





4A-28
436
RTFGDDTMG
1171
AAINWNGGNTHYA
1906
CATDPPLFW





4A-69
437
RTFSDDAMG
1172
AAINWSGGTTRYA
1907
CATDPPLFW





4A-7
438
RTFGDYIMG
1173
AAINWSAGYTPYA
1908
CATDPPLFWGHVDLW





4A-71
439
RTFSDDTMG
1174
ASINWSGGSTYYA
1909
CATDPPLFW





4A-23
440
RTFSDDAMG
1175
AGISWNGGSIYYA
1910
CATDPPLFW





4A-9
441
FTFDDYEMG
1176
AAISWRGGTTYYA
1911
CAADRRGLASTRAGDYDW





4A-72
442
RTFGDDTMG
1177
AAINWSGGYTPYA
1912
CATDPPLFWGHVDLW





4A-73
443
RTFSDDAMG
1178
AAINWSGGSTRYA
1913
CATDPPLFW





4A-29
444
VTLDDYAMG
1179
AVINWSGGSTDYA
1914
CARGGGWVPSSTSESLNWYFD








RW





4A-41
445
RTFGDYIMG
1180
AAINWSGGTTPYA
1915
CATDPPLFCCHVDLW





4A-74
446
LTFSDDTMG
1181
AAVSWSGGNTYYA
1916
CATDPPLFW





4A-75
447
RTFGDDTMG
1182
AAINWTGGYTPYA
1917
CATDPPLFW





4A-31
448
RTFGDYIMG
1183
ATINWTAGYTYYA
1918
CATDPPLFCWHFDHW





4A-32
449
RTFGDDTMG
1184
AAINWSGGNTDYA
1919
CATDPPLFW





4A-15
450
RTFGDYTMG
1185
AAINWSGGNTYYA
1920
CATDPPLFW





4A-14
451
RTFSDDTMG
1186
AGINWSGNGVYYA
1921
CATDPPLFW





4A-76
452
RTFGDYAMG
1187
APINWSGGSTYYA
1922
CATDPPLFW





4A-50
453
GTFSNSGMG
1188
AVVNWSGRRTYYA
1923
CAVPWMDYNRRDW





4A-17
454
QLANFASYAMG
1189
AAITRSGSSTVYA
1924
CATTMNPNPRW





4A-37
455
RTFSDDIMG
1190
AAINWTGGSTYYA
1925
CATDPPLFW





4A-44
456
RTFGDYIMG
1191
AAINWSAGYTAYA
1926
CATARPNTGWHFDHW





4A-77
457
RTFSDDTMG
1192
GSINWSGGSTYYA
1927
CATDPPLFW





4A-78
458
RTFSDDTMG
1193
AGMTWSGSSTFYA
1928
CATDPPLFW





4A-79
459
RTFGDYIMG
1194
AAINWSGDYTDYA
1929
CATDPPLFW





4A-8
460
RTFGDYIMG
1195
GGINWSGGYTYYA
1930
CATDPPLFW





4A-81
461
RTFSDDTMG
1196
AAVNWSGGSTYYA
1931
CATDPPLFW





4A-82
462
RTFGDYAMG
1197
AAINWSGGYTRYA
1932
CATDPPLFW





4A-83
463
RTFGDDTMG
1198
AAINWSGGYTPYA
1933
CATDPPLFW





4A-35
464
RTFGDYIMG
1199
AAINWSAGYTAYA
1934
CARASPNTGWHFDRW





4A-45
465
RTFGDYIMG
1200
AAINWSGGYTHYA
1935
CATDPPLFW





4A-84
466
RTFSDDTMG
1201
AAITWSGGRTRYA
1936
CATDRPLFW





4A-85
467
RTFGDYIMG
1202
AAINWSGGYTAYA
1937
CATASPNTGWHFDHW





4A-86
468
RTFSDDTMG
1203
AAIHWSGSSTRYA
1938
CATDPPLFW





4A-87
469
RTFSDYTMG
1204
AAINWSGGTTYY
1939
CATDPPLFW





4A-88
470
RTFGDDTMG
1205
AAINWSGDNTHY
1940
CATDPPLFW





4A-89
471
FAFGDNWIG
1206
ASISSGGTTAYA
1941
CAHRGGWLRPWGYW





4A-9
472
RTFSDDAMG
1207
GRINWSGGNTYYA
1942
CATDPPLFW





4A-91
473
RTFSDDTMG
1208
GGISWSGGNTYYA
1943
CATDPPLFW





4A-92
474
RTFSDDTMG
1209
AAINWSGGSTYYA
1944
CATDPPLFW





4A-46
475
RTFGDDTMG
1210
AAINWSGGYTYYA
1945
CATDPPLFW





4A-20
476
RTFGDYIMG
1211
AAINWSADYTAYA
1946
CATDPPLFCWHFDHW





4A-93
477
RTFSDDAMG
1212
AAINWSGSSTYYA
1947
CATDPPLFW





4A-4
478
RTFGDYIMG
1213
AAINWIAGYTADA
1948
CAEPSPNTGWHFDHW





4A-2
479
RTFGDDTMG
1214
AAINWSGGNTPYA
1949
CATDPPLFW





4A-94
480
RTFSDDTMG
1215
AAINWSGDNTHYA
1950
CATDPPLFW





4A-95
481
RTFGDYIMG
1216
AAINWSAGYTAYA
1951
CATAPPLFCWHFDHW





4A-12
482
FTFGDYVMG
1217
AAINWNAGYTAYA
1952
CAKASPNTGWHFDHW





4A-30
483
RTFGDYTMG
1218
AAINWTGGYTYYA
1953
CATDPPLFW





4A-27
484
RTFGDYIMG
1219
AAINWSAGYTAYA
1954
CARATPNTGWHFDHW





4A-22
485
RTFGDYIMG
1220
AAINWSGDNTHYA
1955
CATDPPLFW





4A-96
486
RTFGDYIMG
1221
AAINWSAGYTPYA
1956
CATDPPLFCCHFDHW





4A-97
487
RTFGDYIMG
1222
AAINWSAGYTAYA
1957
CATAPPNTGWHFDHW





4A-98
488
FTWGDYTMG
1223
AAINWSGGNTYYAA
1958
CAADRRGLASTRAADYDW





4A-99
489
IPSTLRAMG
1224
AAVSSLGPFTRYA
1959
CAAKPGWVARDPSQYNW





4A-100
490
FSFDDDYVMG
1225
AAINWSGGSTYYA
1960
CAADRRGLASTRAADYDW





4A-101
491
RTFSNAAMG
1226
ARILWTGASRSYA
1961
CATTENPNPRW





4A-102
492
GTFGVYHMG
1227
AAINMSGDDSAYA
1962
CAILVGPGQVEFDHW





4A-103
493
FTFSSYYMG
1228
ARISGSTFYA
1963
CAALPFVCPSGSYSDYGDEYDW





4A-104
494
RTFSGDFMG
1229
GRINWSGGNTYYA
1964
CPTDPPLFW





4A-105
495
STLRDYAMG
1230
AAITWSGGSTAYA
1965
CASLLAGDRYFDYW





4A-106
496
FTFDDYTMG
1231
AAITDNGGSKYYA
1966
CAADRRGLASTRAADYDW





4A-107
497
GTFSSYGMG
1232
AAINWSGASTYYA
1967
CARDWRDRTWGNSLDYW





4A-108
498
FSFDDDYVMG
1233
AAISWSEDNTYYA
1968
CAADRRGLASTRAADYDW





4A-109
499
FSFDDDYVMG
1234
AAVSGSGDDTYYA
1969
CAADRRGLASTRAADYDW





4A-110
500
NIAAINVMG
1235
AAISASGRRTDYA
1970
CARRVYYYDSSGPPGVTFDIW





4A-111
501
IITSRYVMG
1236
AAISTGGSTIYA
1971
CARQDSSSPYFDYW





4A-112
502
FSFDDDYVMG
1237
AAISNSGLSTYYA
1972
CAADRRGLASTRAADYDW





4A-113
503
SISSINVMG
1238
ATMRWSTGSTYYA
1973
CAQRVRGFFGPLRTTPSWYEW





4A-114
504
LTFILYRMG
1239
AAINNFGTTKYA
1974
CARTHYDFWSGYTSRTPNYFD








YW





4A-115
505
GTFSVYHMG
1240
AAISWSGGSTAYA
1975
CAAVNTWTSPSFDSW





4A-116
506
RAFSTYGMG
1241
AGINWSGDTPYYA
1976
CAREVGPPPGYFDLW





4A-117
507
RTFSDIAMG
1242
ASINWGGGNTYYA
1977
CAAKGIWDYLGRRDFGDW





4A-118
508
RTFSSARMG
1243
AAISWSGDNTHYA
1978
CATTENPNPRW





4A-119
509
FAFSSYAMG
1244
ATINGDDYTYYA
1979
CVATPGGYGLW





4A-120
510
ITFRRHDMG
1245
AAIRWSSSSTVYA
1980
CAADRGVYGGRWYRTSQYTW





4A-121
511
TAASFNPMG
1246
AAITSGGSTNYA
1981
CAAIAYEEGVYRWDW





4A-122
512
NINIINYMG
1247
AAIHWNGDSTAYA
1982
CASGPPYSNYFAYW





4A-123
513
FTFDDYAMG
1248
AAISGSGGSTAYA
1983
CAKIMGSGRPYFDHW





4A-124
514
NIFTRNVMG
1249
AAITSSGSTNYA
1984
CARPSSDLQGGVDYW





4A-125
515
RTFSSIAMG
1250
ASINWGGGNTIYA
1985
CAAKGIWDYLGRRDFGDW





4A-126
516
IPSTLRAMG
1251
AAVSSLGPFTRYA
1986
CAAKPGWVARDPSEYNW





4A-127
517
FTLDDSAMG
1252
AAITNGGSTYYA
1987
CARFARGSPYFDFW





4A-128
518
SISSFNAMG
1253
AAIDWDGSTAYA
1988
CARGGGYYGSGSFEYW





4A-129
519
NIFSDNIIG
1254
AYYTSGGSIDYA
1989
CARGTAVGRPPPGGMDVW





4A-130
520
SISSIGAMG
1255
AAISSSGSSTVYA
1990
CARVPPGQAYFDSW





4A-131
521
FTFDDYGMG
1256
ATITWSGDSTYYA
1991
CAKGGSWYYDSSGYYGRW





4A-132
522
RTFSNYTMG
1257
SAISWSTGSTYYA
1992
CAADRYGPPWYDW





4A-133
523
STNYMG
1258
AAISMSGDDTIYA
1993
CARIGLRGRYFDLW





4A-134
524
GTFSSVGMG
1259
AVINWSGARTYYA
1994
CAVPWMDYNRRDW





4A-135
525
RIFTNTAMG
1260
AAINWSGGSTAYA
1995
CARTSGSYSFDYW





4A-136
526
EEFSDHWMG
1261
GAIHWSGGRTYYA
1996
CAADRRGLASTRAADYDW





4A-137
527
RTFSSIAMG
1262
AAINWSGARTAYA
1997
CAAKGIWDYLGRRDFGDW





4A-138
528
STSSLRTMG
1263
AAISSRDGSTIYA
1998
CARDDSSSPYFDYW





4A-139
529
GGTFGSYAMG
1264
AAISIASGASGGTT
1999
CATTMNPNPRW






NYA







4A-140
530
RTFSNAAMG
1265
ARITWNGGSTFYA
2000
CATTENPNPRW





4A-141
531
IILSDNAMG
1266
AAISWLGESTYYA
2001
CAADRRGLASTRAADYDW





4A-142
532
RTFGDYIMG
1267
AAINWNGGYTAYA
2002
CATTSPNTGWHYYRW





4A-143
533
FNFNWYPMG
1268
AAISWTGVSTYTAYA
2003
CARWGPGPAGGSPGLVGFDYA





4A-144
534
SIRSVSVMG
1269
AAISWSGVGTAYA
2004
CAAYQRGWGDW





4A-145
535
MTFRLYAMG
1270
GAINWLSESTYYA
2005
CAAKPGWVARDPSEYNW





4A-146
536
RTFSDDAMG
1271
AAINWSGGSTYYA
2006
CATDPPLFW





4A-147
537
GTFSVYAMG
1272
AAISMSGDDAAYA
2007
CAKISKDDGGKPRGAFFDSW





4A-148
538
FALGYYAMG
1273
AAISSRDGSTAYA
2008
CARLATGPQAYFHHW





4A-149
539
FNLDDYAMG
1274
AAISWDGGATAYA
2009
CARVGRGTTAFDSW





4A-150
540
NTFSGGFMG
1275
ASIRSGARTYYA
2010
CAQRVRGFFGPLRTTPSWYEW





4A-151
541
SIRSINIMG
1276
AAISWSGGSTVYA
2011
CASLLAGDRYFDYW





5A-1
542
GTFSSIGMG
1277
AAISWDGGATAYA
2012
CAKEDVGKPFDW





5A-2
543
LRFDDYAMG
1278
AIKFSGGTTDYA
2013
CASWDGLIGLDAYEYDW





5A-3
544
SIFSIDVMG
1279
AGISWSGDSTLYA
2014
CAAFDGYTGSDW





5A-4
545
FTLADYAMG
1280
AVITCSGGSTDYA
2015
CAADDCYIGCGW





5A-5
546
RTFSSIAMG
1281
AEITEGGISPSGDN
2016
CAAELHSSDYTSPGAESDYGW






IYYA







5A-6
547
PTFSSYAMMG
1282
AAINNFGTTKYA
2017
CAASASDYGLGLELFHDEYNW





5A-7
548
STGYMG
1283
AAIHSGGSTNYA
2018
CATVATALIW





5A-8
549
RPFSEYTMG
1284
SSIHWGGRGTNYA
2019
CAAELHSSDYTSPGAYAW





5A-9
550
LTLSTYGMG
1285
AHIPRSTYSPYYA
2020
CAAIGDGAVW





5A-10
551
FTFNNHNMG
1286
AAISSYSHTAYA
2021
CALQPFGASNYRW





5A-11
552
GIYRVMG
1287
ASISSGGGINYA
2022
CAAESWGRQW





5A-12
553
YTDSNLWMG
1288
AINRSTGSTSYA
2023
CATSGSGSPNW





5A-13
554
FTFDYYTMG
1289
AAIRSSGGLFYA
2024
CAAYLDGYSGSW





5A-14
555
GIFSINVMG
1290
SAIRWNGGNTAYA
2025
CAGFDGYTGSDW





5A-15
556
FTFDGAAMG
1291
ATIRWTNSTDYA
2026
CARGRYGIVERW





5A-16
557
RTHSIYPMG
1292
AAIHSGGATVYA
2027
CAARRWIPPGPIW





5A-17
558
PTFSIYAMG
1293
AGIRWSDVYTQYA
2028
CALDIDYRDW





5A-18
559
LTFDDNIHVMG
1294
AAIHWSGGSTIYA
2029
CAADVYPQDYGLGYVEGKMY








YGMDW





5A-19
560
LTLDYYAMG
1295
ASINWSGGSTYYA
2030
CAAYGSGEFDW





5A-20
561
RTIVPYTMG
1296
AAISPSAFTEYA
2031
CAARRWGYDW





5A-21
562
GTFTTYHMG
1297
AHISTGGATNYA
2032
CATFPAIVTDSDYDLGNDW





5A-22
563
FTFNVFAMG
1298
AAINWSDSRTDYA
2033
CASGSDNRARELSRYEYVW





5A-23
564
SIFSIDVMG
1299
AAISWSGESTLYA
2034
CAAFDGYSGSDW





5A-24
565
FTFSSYSMG
1300
AAISSYSHTAYA
2035
CALQPFGASSYRW





5A-25
566
NTFSINVMG
1301
AAIHWSGDSTLYA
2036
CAAFDGYSGNHW





5A-26
567
RTISSYIMG
1302
ARIYTGGDTIYA
2037
CAARTSYNGRYDY1DDYSW





5A-27
568
RANSINWMG
1303
ATITPGGNTNYA
2038
CAAAAGSTWYGTLYEYDW





5A-28
569
GTFSVFAMG
1304
AEITAGGSTYYA
2039
CAVDGPFGW





5A-29
570
FTFDDYPMG
1305
ASVLRGGYTWYA
2040
CAKDWATGLAW





5A-30
571
FALGYYAMG
1306
AGIRWTDAYTEYA
2041
CAADVSPSYGSRWYW





5A-31
572
RTLDIHVMG
1307
AVINWTGESTLYA
2042
CAAFDGYTGNYW





5A-32
573
FTPDNYAMG
1308
AALGWSGVTTYH
2043
CASDESDAANW






YYA







5A-33
574
FTFDDYAMG
1309
ATIMWSGNTTYYA
2044
CATNDDDV





5A-34
575
RTFSRYIMG
1310
AAISWSGGDNTYYA
2045
CAAYRIVVGGTSPGDWRW





5A-35
576
PTFSIYAMG
1311
AGISWNGGSTNYA
2046
CALRRRFGGQEW





5A-36
577
RTFSLNAMG
1312
AAISCGGGSTYA
2047
CAADNDMGYCSW





5A-37
578
STFSINAMG
1313
GGISRSGATTNYA
2048
CAADGVPEYSDYASGPVW





5A-38
579
RTFSMHAMG
1314
ASISSQGRTNYA
2049
CAAEVRNGSDYLPIDW





5A-39
580
VTLDLYAMG
1315
AGIRWTDAYTEYA
2050
CAVDIDYRDW





5A-40
581
LPFTINVMG
1316
AAIHWSGLTTFYA
2051
CAELDGYFFAHW





5A-41
582
RAFSNYAMG
1317
AWINNRGTTDYA
2052
CASTDDYGVDW






DSGSTYYA







5A-42
583
FTPDDYAMG
1318
ASIGYSGRSNSYN
2053
CAIAHGSSTYNW






YYA







5A-43
584
FTLNYYGMG
1319
AAITSGGAPHYA
2054
CASAYDRGIGYDW





5A-44
585
LPFSTKSMG
1320
AAIHWSGLTSYA
2055
CAADRAADFFAQRDEYDW





5A-45
586
RTFSINAMG
1321
AAISWSGESTQYA
2056
CAAFDGGSGTQW





5A-46
587
EEFSDHWMG
1322
AAIHWSGDSTHRN
2057
CATVGITLNW






YA







5A-47
588
FTFGSYDMG
1323
TAINWSGARTAYA
2058
CAARSVYSYEYNW





5A-48
589
LPLDLYAMG
1324
AGIRWSDAYTEYA
2059
CALDIDYRHW





5A-49
590
RTSTVNGMG
1325
ASISQSGAATAYA
2060
CAADRTYSYSSTGYYW





5A-50
591
FSLDYYGMG
1326
AAITSGGTPHYA
2061
CASAYNPGIGYDW





5A-51
592
RPNSINWMG
1327
ATITPGGNTNYA
2062
CAAAAGTTWYGTLYEYDW





5A-52
593
EKFSDHWMG
1328
ATITFSGARTAYA
2063
CAALIKPSSTDRIFEEW





5A-53
594
LTVVPYAMG
1329
AAIRRSAVTNYA
2064
CAARRWGYHYW





5A-54
595
TTFNFNVMG
1330
AVISWTGESTLYA
2065
CAAFDGYTGRDW





5A-55
596
IDVNRNAMG
1331
AAITWSGGWRYYA
2066
CATTFGDAGIPDQYDFGW





5A-56
597
RTFSSNMG
1332
ARIFGGDRTLYA
2067
CADINGDW





5A-57
598
GTFSMGWIR
1333
GCIGWITYYA
2068
CAPFGW





5A-58
599
CTLDYYAMG
1334
AGIRWTDAYTEYA
2069
CAADVSPSYGGRWYW





5A-59
600
LTFSLYRMC
1335
SCISNIDGSTYYA
2070
CAADLLGDSDYEPSSGFGW





5A-60
601
RSFSSHRMG
1336
AAIMWSGSHRNYA
2071
CAAIAYEEGVYRWDW





5A-61
602
RIIVPNTMG
1337
TGISPSAFTEYA
2072
CAAHGWGCHW





5A-62
603
SIFIISMG
1338
TGINWSGGSTTYA
2073
CAASAIGSGALRRFEYDW





5A-63
604
FSLDYYDMG
1339
AALGWSGGSTDYA
2074
CAAGNGGRYGIVERW





5A-64
605
TSISNRVMG
1340
ARIYTGGDTLYA
2075
CAARKIYRSLSYYGDYDW





5A-65
606
NIDRLYAMG
1341
AAIDSDGSTDYA
2076
CAALIDYGLGFPIEW





5A-66
607
NTFTINVMG
1342
AAINWNGGTTLYA
2077
CAAFDGYSGIDW





5A-67
608
FNVNDYAMG
1343
AGITSSVGVTNYA
2078
CAADIFFVNW





5A-68
609
FTFDHYTMG
1344
AAISGSENVTSYA
2079
CAAEPYIPVRTMRHMTFLTW





6A-1
610
RTFGNYNMG
1345
ATINSLGGTSYA
2080
CARVDYYMDVW





6A-2
611
FTMSSSWMG
1346
TVISGVGTSYA
2081
CARGPDSSGYGFDYW





6A-3
612
FTFSPSWMG
1347
ATINEYGGRNYA
2082
CARVDRDFDYW





6A-4
613
FTRDYYTMG
1348
AAISRSGSLTSYA
2083
CANLAYYDSSGYYDYW





6A-5
614
RTFTMG
1349
ASTNSAGSTNYA
2084
CTTVDQYFDYW





6A-6
615
TTLDYYAMG
1350
AAISWSGGSTAYA
2085
CAREDYYDSSGYSW





6A-7
616
FTFSSYWMG
1351
ATINWSGVTAYA
2086
CARADDYFDYW





6A-8
617
FTLSGIWMG
1352
AIITTGGRTTYA
2087
CAGYSTFGSSSAYYYYSMDVG





6A-9
618
FTFDYYAMG
1353
SAIDSEGRTSYA
2088
CARWGPFDIW





6A-10
619
SIASIHAMG
1354
AAISRSGGFGSYA
2089
CARDDKYYDSSGYPAYFQHW





6A-11
620
LAFNAYAMG
1355
ATIGWSGANTYYA
2090
CASDPPGW





6A-12
621
STYTTYSMG
1356
AAISGSENVTSYA
2091
CARVDDYMDVW





6A-13
622
LTFNDYAMG
1357
AHIPRSTYSPYYA
2092
CAFLVGPQGVDHGAFDVW





6A-14
623
ITFRFKAMG
1358
AAVSWDGRNTYYA
2093
CASDYYYMDVW





6A-15
624
STVLINAMG
1359
AAVRWSDDYTYYA
2094
CAKEGRAGSLDYW





6A-16
625
FTFDDAAMG
1360
AHISWSGGSTYYA
2095
CATFGATVTATNDAFDIW





6A-17
626
NTGSTGYMG
1361
AGVINDGSTVYA
2096
CARLATSHQDGTGYLFDYW





6A-18
627
LTFRNYAMG
1362
AGMMWSGGTTTYA
2097
CAREGYYYDSSGYLNYFDYW





6A-19
628
SILSIAVMG
1363
AAISPSAVTTYYA
2098
CAIGYYDSSGYFDYW





6A-20
629
STLPYHAMG
1364
AAITWNGASTSYA
2099
CARDRYYDTSASYFESETW





6A-21
630
TLFKINAMG
1365
AAITSSGSNIDYTYYA
2100
CARSNTGWYSFDYW





6A-22
631
RTFSEVVMG
1366
ATIHSSGSTSYA
2101
CVRVTSDYSMDSW





6A-23
632
SIFSMNTMG
1367
ALINRSGGGINYA
2102
CVRLSSGYYDFDYW





6A-24
633
FTLDYYAMG
1368
AAINWSGDNTHYA
2103
CARAPFYCTTTKCQDNYYYM








DVW





6A-25
634
LTFGTYTMG
1369
AAISRFGSTYYA
2104
CARGGDYDFWSVDYMDVW





6A-26
635
DTFSTSWMG
1370
ATINTGGGTNYA
2105
CARVTTSFDYW





6A-27
636
ITFRFKAMG
1371
ASISRSGTTYYA
2106
CATDYSAFDMW





6A-28
637
DTYGSYWMG
1372
ATITSDDRTNYA
2107
CARVTSSLSGMDVW





6A-29
638
YTLKNYYAMG
1373
AAIIWTGESTLDA
2108
CAREGYYDSSGYYW





6A-30
639
FAFGDSWMG
1374
ATINWSGVTAYA
2109
CARADGYFDYW





6A-31
640
DTFSANRMG
1375
ASITWSSANTYYA
2110
CATFNWNDEGFDFW





6A-32
641
FTLDYYDMG
1376
ALISWSGGSTYYA
2111
CATDFYGWGTRERDAFDIW





6A-33
642
TFQRINHMG
1377
ATINTGGQPNYA
2112
CASLIAAQDYYFDYW





6A-34
643
SAFRSNAMG
1378
AHISWSSKSTYYA
2113
CATYCSSTSCFDYW





6A-35
644
FTLAYYAMG
1379
AAISMSGDDTIYA
2114
CARELGYSSTVWPW





6A-36
645
FDFSVSWMG
1380
TAITWSGDSTNYA
2115
CASLLHTGPSGGNYFDYW





6A-37
646
HTFSTSWMG
1381
ATINSLGGTNYA
2116
CARVSSGDYGMDVW





6A-38
647
NTFSGGFMG
1382
AVISSLSSKSYA
2117
CAKVDSGYDYW





6A-39
648
FTFSPSWMG
1383
AAISWSGGSTAYA
2118
CHGLGEGDPYGDYEGYFDLW





6A-40
649
FTFSDYWMG
1384
ARVWWNGGSAYYA
2119
CAREVLRQQVVLDYW





6A-41
650
FTFSTSWMG
1385
ASINEYGGRNYA
2120
CAGLHYYYDSSGYNPTEYYG








MDVW





6A-42
651
DTYGSYWMG
1386
AVITSGGSTNYA
2121
CTHVQNSYYYAMDVW





6A-43
652
RTFSSYAMMG
1387
ASVNWDASQINYA
2122
CTTLGAVYFDSSGYHDYFDYW





6A-44
653
GTFGVYHMG
1388
GRITWTDGSTYYA
2123
CFGLLEVYDMTFDYW





6A-45
654
NMFSINAMG
1389
TLISWSSGRTSYA
2124
CASLGYCSGGSCFDYW





6A-46
655
LTFSAMG
1390
ALIRRDGSTIYA
2125
CAALGILFGYDAFDIW





6A-47
656
RTFSMHAMG
1391
ASITYGGNINYA
2126
CAKEGYYDSTGYRTYFQQW





6A-48
657
FTVSNYAMG
1392
ASVNWSGGITSYA
2127
CATTGTVTLGYW





6A-49
658
STVLINAMG
1393
AAISWSPGRTDYA
2128
CARDCSGGSCYSGDYW





6A-50
659
FSFDRWAMG
1394
ASLATGGNTNYA
2129
CARVTNYDAFDIW





6A-51
660
YTYSSYVMG
1395
AAISRFGSTYYA
2130
CARDSGEHFWDSGYIDHW





6A-52
661
DTYGSYWMG
1396
AAITSGGSTVYA
2131
CARVDSRFDYW





6A-53
662
ISINTNVMG
1397
AAISTGSVTIYA
2132
CARVDDFGYFDLW





6A-54
663
FEFENHWMG
1398
AHITAGGLSNYA
2133
CGRHWGIYDSSGFSSFDYW





6A-55
664
FTMSSSWMG
1399
ARITSGGSTGYA
2134
CASVDGYFDYW





6A-56
665
NIFRSNMG
1400
AGITWNGDTTYYA
2135
CARALGVTYQFDYW





6A-57
666
LTFDDHSMG
1401
AAVPLSGNTYYA
2136
CASFSGGPADFDYW





6A-58
667
RAVSTYAMG
1402
AAISGSENVTSYA
2137
CLSVTGDTEDYGVFDTW





6A-59
668
ISGSVFSRTPMG
1403
SSIYSDGSNTYYA
2138
CAHWSWELGDWFDPW





6A-60
669
DTYGSYWMG
1404
ATISQSGAATAYA
2139
CAGLLRYSGTYYDAFDVW





6A-61
670
DTYGSYWMG
1405
AAINWSGGSTNYA
2140
CAGLGWNYMDYW





6A-62
671
STFSGNWMG
1406
AVISWTGGSTYYA
2141
CATHNSLSGFDYW





6A-63
672
QTFNMG
1407
AAIGSGGSTSYA
2142
CWRLGNDYFDYW





6A-64
673
IPSIHAMG
1408
AAINWSHGVTYYA
2143
CGGGYGYHFDYW





6A-65
674
LPFSTLHMG
1409
ASLSIFGATGYA
2144
CWMYYYDSSGYYGNYYYGMDVW





6A-66
675
LTFSLFAMG
1410
AAISSGGSTDYA
2145
CARGNTKYYYDSSGYSSAFDYW





6A-67
676
SFSNYAMG
1411
AAISSSGALTSYA
2146
CWIVGPGPLDGMDVW





6A-68
677
FTLSDRAMG
1412
AHITAGGLSNYA
2147
CVHLASQTGAGYFDLW





6A-69
678
GTFSSVGMG
1413
AGISRSGGTYYA
2148
CARYDFWSGYPYW





6A-70
679
FNLDDYADMG
1414
AAIGWGGGSTRYA
2149
CAREILWFGEFGEPNVW





6A-71
680
ITFSNDAMG
1415
AIITSSDTNDTTNYA
2150
CARLHYYDSSGYFDYW





6A-72
681
STLSINAMG
1416
AAIDWSGGSTAYA
2151
CARDSSATRTGPDYW





6A-73
682
HTFSGYAMG
1417
AVITREGSTYYA
2152
CARLGGEGFDYW





6A-74
683
FAFGDSWMG
1418
AAITSGGSTDYA
2153
CARGLLWFGELFGYW





6A-75
684
GTFSTYWMG
1419
AAISRSGGNTYYA
2154
CVRHSGTDGDSSFDYW





6A-76
685
LAFDFDGMG
1420
AAINSGGSTYYA
2155
CARFFRAHDYW





6A-77
686
FTFDRSWMG
1421
AAVTEGGTTSYA
2156
CARADYDFDYW





6A-78
687
RTYDAMG
1422
ASVTSGGYTHYA
2157
CAKFGRKIVGATELDYW





6A-79
688
SISSIDYMG
1423
SWISSSDGSTYYA
2158
CARSPSFSQIYYYYYMDVW





6A-80
689
GTFSFYNMG
1424
AFISGNGGTSYA
2159
CAVVAMRMVTTEGPDVLDVW





6A-81
690
FIGNYHAMG
1425
AAVTWSGGTTNYA
2160
CAREGYYYDSSGYPYYFDYW





6A-82
691
SSLDAYGMG
1426
AAISWGGGSIYYA
2161
CARLSQGMVALDYW





6A-83
692
SIASIHAMG
1427
AAITWSGAITSYA
2162
CAKDGGYGELHYGMEVW





6A-84
693
FTPDDYAMG
1428
AAINSGGSYTYYA
2163
CARDRGPW





6A-85
694
GTFSVFAMG
1429
SAINWSGGSLLYA
2164
CALFGDFDYW





6A-86
695
PISGINRMG
1430
AVITSNGRPSYA
2165
CVRLSSGYFDFDYW





6A-87
696
TSIMVGAMG
1431
AIIRGDGRTSYA
2166
CARFAGWDAFDIW





6A-88
697
RTFSTHWMG
1432
AVINWSGGSIYYA
2167
CARLSSDGYNYFDFW





6A-89
698
TIFASAMG
1433
AVVNWNGSSTVYA
2168
CTTVDQYFNYW





6A-90
699
FPFSIWPMG
1434
AAVRWSSTYYA
2169
CATGECDGGSCSLAYW





6A-91
700
RTFGNYAMG
1435
ASISSSGVSKHYA
2170
CVRFGSSWARDLDQW





6A-92
701
FLFDSYASMG
1436
ATIWRRGNTYYA
2171
CTETGTAAW






NYA







6A-93
702
LPFSTKSMG
1437
AAISMSGLTSYA
2172
CLKVLGGDYEADNWFDYW





6A-94
703
NIFRIETMG
1438
AGIIRSGGETLYA
2173
CARSLYYDRSGSYYFDYW





6A-95
704
IPSSIRAMG
1439
AV1RWTGGSTYYA
2174
CARDIGYYDSSGYYNDGGFDYW





6A-96
705
FTLSGNWMG
1440
AIITSGGRTNYA
2175
CAGHATFGGSSSSYYYGMDVW





6A-97
706
FTFSSLAMG
1441
AAITWSGDITNYA
2176
CLRLSSSGFDHW





6A-98
707
TFGHYAMG
1442
AAINWSSRSTVYA
2177
CAKSDGLMGELRSASAFDIW





6A-99
708
IPFRSRTMG
1443
AGISRSGASTAYA
2178
CTHANDYGDYW





6A-100
709
GTFSTSWMG
1444
AHITAGGLSNYA
2179
CARLLVREDWYFDLW





6A-101
710
GTFSLFAMG
1445
AAISWTGDSTYYK
2180
CAYNNSSGEYW






YYA







6A-102
711
SSFSAYAMG
1446
SAIDSEGTTTYA
2181
CAGDYNFWSGFDHW





6A-103
712
RTSSPIAMG
1447
AVRWSDDYTYYA
2182
CAKKLGGYYAFDIW





6A-104
713
LTFNQYTMG
1448
ASITDGGSTYYA
2183
CARDSRYMDVW





6A-105
714
PTFSSMG
1449
AAISWDGGATAYA
2184
CAIEIVVGGIYW





6A-106
715
IPSTLRAMG
1450
AATSWSGGSKYYA
2185
CATDLYYMDVW





6A-107
716
GVGFSVTNMG
1451
AVISSSSSTNYA
2186
CTTFNWNDEGFDYW





6A-108
717
GTFGSYGMG
1452
AAIRWSGGITYYA
2187
CARERYWNPLPYYYYGMDVW





6A-109
718
GTFSTYAMG
1453
ASIDWSGLTSYA
2188
CARGPFYMYCSGTKCYSTNW








FDPW





6A-110
719
PIYAVNRMG
1454
AGIWRSGGHRDYA
2189
CARGEIDILTGYWYDYW





6A-111
720
FTFSNYWMG
1455
GGISRSGVSTSYA
2190
CTTLLYYYDSSGYSFDAFDIW





6A-112
721
GTFSAYHMG
1456
TIIDNGGPTSYA
2191
CTALLYYFDNSGYNFDPFDIW





9A-1
722
RTFSRLAMG
1457
AAISRSGRSTSYA
2192
CAARRSQILFTSRTDYEW





9A-2
723
SFSIAAMG
1458
ATINYSGGGTYYA
2193
CAAVN1FDESAYAAFACYDVVW





9A-3
724
RTFSRYAMG
1459
AAISRSGKSTYYA
2194
CAASSVFSDLRYRKNPKW





9A-4
725
RTFSKYAMG
1460
ALITPSSRTTYYA
2195
CAIAGRGRW





9A-5
726
RTFRRYAMG
1461
ASINWGGGNTYYA
2196
CAKTKRTGIFTTARMVDW





9A-6
727
RTFSRFAMG
1462
AAIRWSGGRTVYA
2197
CAIEPGTIRNWRNRVPFARGNF








GW





9A-7
728
LGIAFSRRTAMG
1463
AAISWRGGNTYYA
2198
CAARRWIPPGPIW





9A-8
729
RTFRRYPMG
1464
AAISRSGGSTYYA
2199
CAAKRLRSFASGGSYDW





9A-9
730
GTLRGYGMG
1465
ASISRSGGSTYYA
2200
CAARRRVTLFTSRADYDW





9A-10
731
RMFSSRSMG
1466
ALINRSGGSQFYA
2201
CAARRWIPPGPIW





9A-11
732
RTFGRRAMG
1467
AGISRGGGTNYA
2202
CAAKGIWDYLGRRDFGDW





10A-1
733
LSSPPFDDFPMG
1468
SSIYSDDGDSMYA
2203
CARQTFDFWSASLGGNFWYFDLW





10A-2
734
GTFSSYSMG
1469
SAISWIIGSGGTTNYA
2204
CTAGAGDSW





10A-3
735
SIFSTRTMG
1470
ASITKFGSTNYA
2205
CTRGGGRFFDWLYLRW





10A-4
736
RTLWRSNMG
1471
ASISSFGSTKYA
2206
CARGHGRYFDWLLFARPPDYW





10A-5
737
RSLGIYRMG
1472
AAITSGGRKNYA
2207
CAKRTIFGVGRWLDPW





10A-6
738
TTLTFRIMG
1473
PAISSTGLASYT
2208
CSKDRAPNCFACCPNGFDVW





10A-7
739
SRFSGRFNILNMG
1474
ARIGYSGQSISYA
2209
CARGRFLGGTEW





10A-8
740
TLFKINAMG
1475
AQINRHGVTYYA
2210
CARGRTIFFGGGRYFDYW





10A-9
741
IPFRSRTMG
1476
AGITGSGRSQYYA
2211
CARGARIFGSVAPWRGGNYY








GMDVW





10A-10
742
FTFSSFRMG
1477
AGISRGGSTNYA
2212
CARASGLWFRRPHVW





10A-11
743
RNFRRNSMG
1478
AGISWSGARTHYA
2213
CARVSRRPRSPPGYYYGMDVW





10A-12
744
RNLRMYRMG
1479
ATIRWSDGSTYYA
2214
CTRARLRYFDWLFPTNFDYW





10A-13
745
GLTFSSNTMG
1480
ASISSSGRTSYA
2215
CARRVRRLWFRSYFDLW





10A-14
746
FTLAYYAMG
1481
AAISWSGRNINYA
2216
CARERARWFGKFSVSW





10A-15
747
RTFSSFPMG
1482
AAISWSGSTSYA
2217
SACGRLGFGAW





10A-16
748
ISSSKRNMG
1483
ATWTSRGITTYA
2218
CARGGPPRLWGSYRRKYFDYW





10A-17
749
RTFSIYAMG
1484
ARITRGGITKYA
2219
CARGLGWLLGYYW





10A-18
750
RMYNSYSMG
1485
ARISPGGTFYA
2220
CTTSARSGWFWRYFDSW





10A-19
751
RTFRSYGMG
1486
ASISRSGTTMYA
2221
CARRGLLQWFGAPNSWFDPW





10A-20
752
RTIRTMG
1487
ATINSRGITNYA
2222
CTTERDGLLWFRELFRPSW





10A-21
753
RSFSFNAMG
1488
ARISRFGRTNYA
2223
CAKVHSYVWGGHSDYW





10A-22
754
RTYYAMG
1489
GAIDWSGRRITYA
2224
CARVRFSRLGGVIGRPIDSW





10A-23
755
RAFRRYTMG
1490
ASITKFGSTNYA
2225
CAKDRGVLWFGELWYW





10A-24
756
RTFSNYRMG
1491
ASINRGGSTKYA
2226
CASGKGGSATIFHLSRRPLYFD








YW





10A-25
757
ITFSPYAMG
1492
ATINWSGGYTVYA
2227
CAKRKNRGPLWFGGGGWGYW





10A-26
758
RTFSGFTMSST
1493
AGIITNGSTNYA
2228
CARRVAYSSFWSGLRKHMDV




WMG



W





10A-27
759
RTFRRYSMG
1494
ASITPGGNTNYA
2229
CASRRRWLTPYIFW





10A-28
760
SIFSIGMG
1495
ARIWWRSGATYYA
2230
CAAISIFGRLKW





10A-29
761
RTFTSYRMG
1496
AEISSSGGYTYYA
2231
CARVGPLRFLAQRPRLRPDYW





10A-30
762
RTFSSFRFRAMG
1497
ALIFSGGSTYYA
2232
CAREWGRWLQRGSYW





10A-31
763
RTFGSYGMG
1498
ATISIGGRTYYA
2233
CARGSGSGFMWYHGNNNYDR








WRYW





10A-32
764
RTFRSYPMG
1499
ASINRGGSTNYA
2234
CARGRYDFWSGYYRWFDPW





10A-33
765
RTFSRSDMG
1500
AAISWSGGSTSYA
2235
CATVPPPRRFLEWLPRRLTYIW





10A-34
766
RTFRRYTMG
1501
ASMRGSRSYYA
2236
CARMSGFPFLDYW





10A-35
767
SIFRLSTMG
1502
ASISSFGSTYYA
2237
CARTRGIFLWFGESFDYW





10A-36
768
IAFRIRTMG
1503
ASITSGGSTNYA
2238
CARGGPRFGGFRGYFDPW





10A-37
769
FTFTSYRMG
1504
AGISRFFGTAYYA
2239
CARVTRWFGGLDVW





10A-38
770
RTFSRYVMG
1505
ASISRFGRTNYA
2240
CARHHGLGILWWGTMDVW





10A-39
771
RTFSMG
1506
ASISRFGRTNYA
2241
CAKRSTWLPQHFDSW





10A-40
772
RTFSTYTMG
1507
ARIWRSGGNTYYA
2242
CARGVRGVFRAYFDHW





10A-41
773
RNLRMYRMG
1508
ALISRVGVTSYA
2243
CARGTSFFNFWSGSLGRVGFD








SW





10A-42
774
ITIRTHAMG
1509
ATISRSGGNTYYA
2244
CTTAGVLRYFDWFRRPYW





10A-43
775
RTFRRYHMG
1510
AAITSGGRTNYA
2245
CTTDGLRYFDWFPWASAFDIW





10A-44
776
RTFRRYTMG
1511
AVISWSGGSTKYA
2246
CARKGRWSGMNVW





10A-45
777
RTFSWYPMG
1512
ASISWGGARTYYA
2247
CARSTGPRGSGRYRAHWFDSW





10A-46
778
RTFTSYRMG
1513
AAITWNSGRTRYA
2248
CSPSSWPFYFGAW





10A-47
779
RPLRRYVMG
1514
AAITNGGSTKYA
2249
CARGTPWRLLWFGTLGPPPAF








DYW





10A-48
780
RTFRRYAMG
1515
AAINRSGSTEYA
2250
CARQHQDFWTGYYTVW





10A-49
781
RTFRRYTMG
1516
ASISRSGTTYYA
2251
CAKEGWRWLQLRGGFDYW





10A-50
782
RTLSTYNMG
1517
ASISRFGRTNYA
2252
CARRGKLSAAMHWFDPW





10A-51
783
RFFSTRVMG
1518
ARIWPGGSTYYA
2253
CARDRGIFGVSRW





10A-52
784
RFFSICSMG
1519
AGINWRSGGSTYYA
2254
CARGSGWWEYW





10A-53
785
RMFSSRSNMG
1520
ASISSGGTTAYA
2255
CARGFGRRFLEWLPRFDYW





10A-54
786
RTFSSARMG
1521
AGINMISSTKYA
2256
CAHFRRFLPRGYVDYW





10A-55
787
RTFRRYTMG
1522
ARIAGGSTYYA
2257
CARQQYYDFWSGYFRSGYFDLW





10A-56
788
HTFRNYGMG
1523
AAITSSGSTNYA
2258
CATVPPPRRFLEWLPRRLTYTW





10A-57
789
RTFSRYAMG
1524
ASITKFGSTNYA
2259
CAKERESRFLKWRKTDW





10A-58
790
RNLRMYRMG
1525
ASISRFGRTNYA
2260
CARHDSIGLFRHGMDVW





10A-59
791
RTFRRYAMG
1526
ARISSGGSTSYA
2261
CARDRGFGFWSGLRGYFDLW





10A-60
792
IPASMYLG
1527
AAITSGGRTSYA
2262
CAKRKKRGPLWFGGGGWGYW





10A-61
793
IPFRSRTFSAY
1528
AQITRGGSTNYA
2263
CARRHWFGFDYW




AMG









9-1
794
FTFSSYAMH
1529
AVISYDGNHEYYA
2264
CARGYKGYYYMDVW





9-2
795
FSFNNYGMH
1530
AVISFDGSNEYYA
2265
CAKENWLGYFDPW





9-3
796
FTFGTYAMH
1531
AVVSTEGGTTYYA
2266
CAGSYGAYFDYW





9-4
797
FDFSDYYMH
1532
AVISYDGSNKYYA
2267
CAREEPVYGMDVW





9-5
798
FTFGTYAMH
1533
AVVSTEGGTTYYA
2268
CAGSYGAYFDYW





9-6
799
FTFSGYAMH
1534
AVISYDGSNEYYA
2269
CARTNSGSYYGPFDYW





9-7
800
FTFSSYAMH
1535
AVISYDGNHEYYA
2270
CARGYKGYYYMDVW





9-8
801
FTFSSYAMH
1536
AVISYDGNHEYYA
2271
CARGYKGYYYMDVW





9-9
802
FIFRSYAMH
1537
AVISYDGSSKYYA
2272
CARPSSGSYFPPFDYW





9-10
803
FTFSDYGMH
1538
AVVSYDGTTKYYA
2273
CAKENWLGYFDPW





9-11
804
FTFSNFPMH
1539
AVISYDGSLKYYA
2274
CARYQGGYMDVW





9-12
805
FTFSRFAMH
1540
AVISYDGSNKYYA
2275
CARDTGLGFDPW





9-13
806
FTFNNYAMH
1541
AVISYDGNNKYYA
2276
CAKTMGGSYFDAFDIW





9-14
807
FTFSDYTMH
1542
AVISYEGSIKYYA
2277
CARSSSGSYPSLVDYW





9-15
808
#N/A
1543
#N/A
2278
CARDYWVDYFKPG





10-1
809
FTFSRYAMH
1544
AVISYDGTNEYYA
2279
CARDTGLGFDPW





10-2
810
FTFSRYAMH
1545
AVISYDGTNEYYA
2280
CARDTGLGFDPW





10-3
811
FTFSRYAMH
1546
AVISYDGTNEYYA
2281
CARDTGLGFDPW





10-4
812
FTFSRYAMH
1547
AVISYDGTNEYYA
2282
CARDTGLGFDPW





10-5
813
FTFSRYAMH
1548
AVISYDGTNEYYA
2283
CARDTGLGFDPW





10-6
814
FTFSRYAMH
1549
AVISYDGTNEYYA
2284
CARDTGLGFDPW





11-1
815
FTFGSYGMH
1550
AVISYDGGDEYYA
2285
CARDISRYGYYGMDVW





11-2
816
FTFGTYAMH
1551
AVVSTEGGTTYYA
2286
CAGSYGAYFDYW





11-3
817
FTFSNFAMH
1552
AVISYDGNHEYYA
2287
CAKTNSGSYGGMFDYW





11-4
818
FTFDNYAMH
1553
AVISDDGRNKYYA
2288
CAKDNYYDSSGYYGGGMDVW





11-5
819
FTFSSFAMH
1554
AVISYDGSNKYYA
2289
CARSRSGSYSSYFDYW





11-6
820
FTFGTYAMH
1555
AVVSTEGGTTYYA
2290
CAGEYYDSSGSSIDYW





11-7
821
FTFSSYAMH
1556
AVISYDGSNQYYA
2291
CARAKGGGYRGAFDIW





11-8
822
FTFSSYAMH
1557
AVISYDGSNTYYA
2292
CARPRGGSYWTYFDYW





11-9
823
FTFGTYAMH
1558
AVVSTEGGTTYYA
2293
CAGSYGAYFDYW





11-10
824
FIFNNYGMH
1559
AVISYDGSNIYYA
2294
CARDYNDGIGSYTGAFDSW





11-11
825
FTFDNYAMH
1560
AVISYDGSNKYYA
2295
CLREGILWDVW





11-12
826
FTFSSQAMH
1561
AVISYDGSNKYYA
2296
CAKTEGGTYGGAFDIW





11-13
827
FSFSSYGMH
1562
AVISYDGSDKYYA
2297
CAKDNYYDSSGYYGGGMDVW





11-14
828
FTFSSYSMH
1563
AVISYDGSHKYYA
2298
CARDGWGYFDYW





11-15
829
FIFSNYGMH
1564
AVISYDGSDKYYA
2299
CARDDYMYGFEHW





11-16
830
FTFSDHYMH
1565
AVISYDGSNEYYA
2300
CAKDLGPAGVDYW





11-17
831
FIFSSYAMH
1566
AVISYDGSNKYYA
2301
CARSRSGSYSSWFDYW





11-18
832
FTFGTYAMH
1567
AVISYDGNNKYYA
2302
CAKTGSGSYYSWFDYW





11-19
833
FTFSSYAMH
1568
AVISYDGTNDYYA
2303
CARTRGGSYFTPFDYW





11-20
834
FTFDDYAMH
1569
AVISYDGSNKYYA
2304
CASPHSGSYWAAFDIW





12-12-1
835
FTFSYYGMH
1570
AVTSYDGSNKYYA
2305
CARPQGGSYFAAFDIW





12-2
836
FIFRSYAMH
1571
AVISYDGSSKYYA
2306
CARPSSGSYFPPFDYW





12-3
837
FTFSSYAMH
1572
AVISYDGSNQYYA
2307
CAKTRTGSYFSAFDIW





12-4
838
FTFSYYGMH
1573
AVISYDGTNDYYA
2308
CAKPHSGSYRGYFDYW





12-5
839
FTFSYYGMH
1574
AVTSYDGSNKYYS
2309
CARPKSGSYATYFDYW





12-6
840
FIFRNYAMH
1575
AVISYDGSNKYYA
2310
CARPRGGSYHGAFDIW





12-7
841
FTFSIYAMH
1576
AVISYDGTNEYYA
2311
CAKSRGGSYYGAFDYW





12-8
842
FTFNNYVMH
1577
AVISYDGTNDYYA
2312
CARGESGSYWGAFDYW





12-9
843
FTFSSYGMH
1578
AVISYDGTTEYYA
2313
CARPSSGSYLGFFDYW





12-10
844
FIFRSYAMH
1579
AVISYDGSIKYYA
2314
CARTRGGSYYGAFDYW





12-11
845
FSFGGYGMH
1580
AVISYDGSNEYYA
2315
CAKSYSGSYSSYFDYW





12-12
846
FAFSSHAME
1581
AVISYDGSNKYYA
2316
CAKAYSGSYMGYFDYW





12-13
847
FSFSTYGMH
1582
AVISYDGSNKYYA
2317
CARPLSGSYWSWFDPW





12-14
848
FTFSSYSMH
1583
AVISYDGSNKYYA
2318
CARGKGGGYYSSFDFW





12-15
849
FSFGGYGMH
1584
AVISYDGSNKYYA
2319
CARPYSGSYISWFDYW





12-16
850
FIFRSYAMH
1585
AVISYDGSSKYYA
2320
CARTLGGSYFAAFDIW





12-17
851
FTFGSYGMH
1586
AVISYDGNHEYYA
2321
CARPHSGSYTAYFDYW





12-18
852
FTFSSYAMH
1587
AVISYDGSNQYYA
2322
CARGYGGSYSYFDYW





12-19
853
FAFSSYAMH
1588
AVISYDGTYEYYA
2323
CARSLGGSYFSGMDVW





12-20
854
FSFGGYGMH
1589
AVISYDGSNKYYA
2324
CARSKGGSYYGPFDYW





12-21
855
FSFGGYGMH
1590
AVISYDGSNKYYA
2325
CARPKGGNYWNAFDIW





12-22
856
FTFSSYGMH
1591
AVISYDGNHEYYA
2326
CARPKSGSYVSYFDYW





12-23
857
FIFSSYAMH
1592
AVISYDGSNKYYA
2327
CARPRGGNYLNYFDYW





12-24
858
FTFSNFPMH
1593
AVISYDGNNKYYA
2328
CAKDHGDHYFDYW





12-25
859
FTFSSYAMH
1594
AVISYDGSNQYYA
2329
CARDKGGSYYGPFDYW





12-26
860
FTFSNYAMH
1595
AVISYDGSNEYYA
2330
CAKSGSGSYFSPFDYW





12-27
861
FSFGGYGMH
1596
AVISYDGSTKYYA
2331
CARPRGGSYKDAFDIW





12-28
862
FTFSSYAMH
1597
AVISYDGTNEYYA
2332
CARAHGGSYFSGMDVW





12-29
863
FSFSNYGMH
1598
AVISYDGNNKYYA
2333
CARSKGGSYYGPFDDW





12-30
864
FTFSGYAMH
1599
AVISYDGSNKYYA
2334
CARSRGGSYYAPFDYW





12-31
865
#N/A
1600
#N/A
2335
CARPLGGSYFAAFDIW





12-32
866
FTFGTYAMH
1601
AVISYDGNNKYYA
2336
CAKTMSGSYFSAFDIW





12-33
867
FTFSSYAMH
1602
AVISYDGSNQYYA
2337
CARPHGGNYFDWFDPW





12-34
868
FIFRSYAMH
1603
AVISYDGSSKYYA
2338
CARPSGGSYFDPFDYW





12-35
869
FTFSSSSMH
1604
AVISYDGSNKYYA
2339
CAKVDSGSYVGYFDYW





12-36
870
FSFNNYGMH
1605
AVISYDGSNDYYA
2340
CARPNSGSYSNYFDYW





12-37
871
FTFSSYAMH
1606
AVISYDGSNQYYA
2341
CARSRSGSYLAYFDYW





12-38
872
FTFSSYAMH
1607
AVISYDGSNQYYA
2342
CARAAGGSYSSWFDPW





12-39
873
FTFSSYAMH
1608
AVISYDGNHEYYA
2343
CARAHSGSYFSHFDYW





12-40
874
FTFSSYAMH
1609
AVISYDGSNTYYA
2344
CARPTSGSYFSWFDPW





12-41
875
FIFSSYAMH
1610
AVISYDGSNKYYA
2345
CARPNSGSYWGPFDYW





12-42
876
FTFGSYGMH
1611
AVISYDGSHKYYA
2346
CARALGGNYYYFDYW





12-43
877
FIFSSYGMH
1612
AVISYDGSNEYYA
2347
CARPRSGSYLSAFDYW





13-1
878
FTFSSYSMH
1613
AVISYDGRNQYYA
2348
CAKGYGGNYYYMDGW





13-2
879
FTFSSYAMH
1614
AVISYDGNNKYYA
2349
CARTYGGSYYSAFDYW





13-3
880
FSFNNHAMH
1615
AVISYDGSDKYYA
2350
CARNLLRGYGMDVW





13-4
881
FAFDDYAMH
1616
AVISYDGSNKYYA
2351
CATLGYGDYPDYW





13-5
882
FIFRSYAMH
1617
AVISYDGSSKYYA
2352
CARPLGGGYQDAFDIW
















TABLE 10







Variable Region, Heavy Chain Complementary


Determining Region 3 (CDRH3)











Variant
SEQ ID NO
CDRH3 Sequence







1N-1
2353
CAKEDVGKPFYW







1N-2
2354
CAKEDVGKPFFW







1N-3
2355
CAKEDVGKPFDW







1N-4
2356
CAKEDVGKPFCW







1N-5
2357
CAKEDVGKPFDW







1N-6
2358
CAKEDVGKPFDW







1N-7
2359
CAKEDVGKPFDW







1N-8
2360
CAKEDVGKPLDW







1N-9
2361
CAKEDVGPPFDW







1N-10
2362
CAKEDVGKPFHW







1N-11
2363
CAKEDVGPPFYW







1N-12
2364
CWKEDVGKPGDW







1N-13
2365
CAKEDVGKPFCW







1N-14
2366
CRKEDVGKPFFW







1N-15
2367
CYKEDVGKPFYW







1N-16
2368
CHKEDVGKPFYW







1N-17
2369
CFKEDVGKPFFW







1N-18
2370
CYKEDVGKPFFW







1N-19
2371
CFKEDVGKPFWW







1N-20
2372
CWKEDVGKPFDE







1N-21
2373
CARVDRDFDYW







1N-22
2374
CARVDRDFDYW







1N-23
2375
CARVTRDFDYW







1N-24
2376
CARVWRDFDYW







1N-25
2377
CARVDRDFDYW







1N-26
2378
CARVDRDFDYW







1N-27
2379
CARVDRDFDYW







1N-28
2380
CARVDRDFDYW







1N-29
2381
CARVDRDFDYW







1N-30
2382
CARVYRDFDYW







1N-31
2383
CARVDRDFDYW







1N-32
2384
CARVTRDFDYW







1N-33
2385
CARVDRDFDYW







1N-34
2386
CARVDRDFDYW







1N-35
2387
CARVSRDFDYW







1N-36
2388
CARVDGDFDYW







1N-37
2389
CARVDRDFDYW







1N-38
4177
CARVTRDFDYW







1N-39
4178
CARVDRDFDYW







1N-40
4179
CARVYRDFDYW







1N-41
4180
CARVTRDFDYW







1N-42
4181
CARVDRDFDYW







1N-43
4182
CARVDYDFDYW







1N-44
4183
CARVDRDFDYW







1N-45
4184
CARVDRDFDYW







1N-46
4185
CWRLGNDYFDYW







1N-47
4186
CWRLGNDYFDYW







1N-48
4187
CWRLGNDYFDYW







1N-49
4188
CWRLGNDYFDYW







1N-50
4189
CWRYGNDYFDYW







1N-51
4190
CWRFGNDYFDYW







1N-52
4191
CWRLGNDYFDYW







1N-53
4192
CWRLGNDYFDYW







1N-54
4193
CWRLGNDYFDYW







1N-55
4194
CWRLGNDYFDYW







1N-56
4195
CWRLGNDYFDYW







1N-57
4196
CWRLGNDYFDYW







1N-58
4197
CWREGNDYFDYW







1N-59
4198
CWREGNDYFDYW







1N-60
4199
CWRLGNDYFDYW







1N-61
4200
CWRGGNDYFDYW







1N-62
4201
CWRLGNDYFDYW







1N-63
4202
CWRLGNDYFDYW







1N-64
4203
CWRLGNDYFDYW







1N-65
4204
CWRYGNDYFDYW







1N-66
4205
CWRYGNDYFDYW







1N-67
4206
CWRLGNDYFDYW







1N-68
4207
CWRLTNDYFDYW







1N-69
4208
CWRLGNDYFDYW







1N-70
4209
CWRLGNDYFDYW







1N-71
4210
CWRYGNDYFDYW







1N-72
4211
CWRYGNDYFDYW







1N-73
4212
CWRLGNDYFDYW







1N-74
2390
CWRLGNDYFDYW







1N-75
2391
CWRYGNDYFDYW







1N-76
2392
CWRLGNDYFDYW







1N-77
2393
CWRFGNDYFDYW







1N-78
2394
CPRLGNDYFDYW







1N-79
2395
CWRTGNDYFDYW







1N-80
2396
CWRHGNDYFDYW







1N-81
2397
CAGDYDFWSGFDHW







1N-82
2398
CARHYYDSSDYYPHYYYYGMDVW







1N-83
2399
CARHMGYYDSGTYFDYFDYW







1N-84
2400
CTTVDQYFDYW







1N-85
2401
CARYDFWSGYPYW







1N-86
2402
CAKFAVYDYWSGTSFDYW







1N-87
2403
CTSLVGLTAGFADYW







1N-88
2404
CAAFDGYTGSDW







1N-89
2405
CAGDYDFWSGFDHW







1N-90
2406
CARADNYFDYW







1N-91
2407
CAAFDGYTGSDW







1N-92
2408
CARDYGDYYYFDYW







1N-93
2409
CAKGPSSGYAFDIW







1N-94
2410
CTTVDQYFDYW







1N-95
2411
CTTVDQYFDYW







1N-96
2412
CAAFDGYSGSDW







1N-97
2413
CTTFNWNDEGFDYW







1N-98
2414
CAAFDGYTGSDW







1N-99
2415
CVRSNMAGFDHW







1N-100
2416
CAAFDGYSGSDW

















TABLE 11







Variable Domain Light Chain Sequences














SEQ ID

SEQ ID

SEQ ID



Variant
NO
CDRL1
NO
CDRL2
NO
CDRL3





2A-1
2417
RASQSIHRFLN
2587
AASNLHS
2757
CQQSYGLPPTF





2A-2
2418
RASQTINTYLN
2588
SASTLQS
2758
CQQSYSTFTF





2A-3
2419
RASQNIHTYLN
2589
AASTFAK
2759
CQQSYSAPPYTF





2A-4
2420
RASQSIDTYLN
2590
AASALAS
2760
CQQSYSAPPYTF





2A-5
2421
RASQSIHTYLN
2591
AASALAS
2761
CQQSYSAPPYTF





2A-6
2422
RASQSIDTYLN
2592
AASALAS
2762
CQQSYSAPPYTF





2A-7
2423
RASQSIDTYLN
2593
AASALAS
2763
CQQSYSAPPYTF





2A-8
2424
RASQSIDTYLN
2594
AASALAS
2764
CQQSYSAPPYTF





2A-9
2425
RASQRIGTYLN
2595
AASNLEG
2765
CQQNYSTTWTF





2A-10
2426
RASQSIHISLN
2596
LASPLAS
2766
CQQSYSAPPYTF





2A-11
2427
RASQSIGNYLN
2597
GVSSLQS
2767
CQQSHSAPLTF





2A-12
2428
RASQSIDNYLN
2598
GVSALQS
2768
CQQSHSAPPYFF





2A-13
2429
RASQSIDTYLN
2599
GASALES
2769
CQQSHSAPPYFF





2A-14
2430
RASQSIDTYLN
2600
GVSALQS
2770
CQQSYSAPPYFF





2A-15
2431
RASQSIDNYLN
2601
GVSALQS
2771
CQQSHSAPLTF





3A-1
2432
RASQTIYSYLN
2602
ATSTLQG
2772
CQHRGTF





3A-2
2433
RTSQSINTYLN
2603
GASNVQS
2773
CQQSYRIPRTF





3A-3
2434
RASRSISRYLN
2604
AASSLQA
2774
CQQSYSSLLTF





3A-4
2435
RASRSIRRYLN
2605
ASSSLQA
2775
CQQSYSTLLTF





3A-5
2436
RASQSIGRYLN
2606
AASSLKS
2776
CQQSYSLPRTF





3A-6
2437
RASQSIGKYLN
2607
ASSSLQS
2777
CQQSYSPPFTF





3A-7
2438
RASQSIGRYLN
2608
ASSSLQS
2778
CQQSYSLPRTF





3A-8
2439
RASQSIGRYLN
2609
AASSLKS
2779
CQQSYSLPLTF





3A-9
2440
RASQSIGRYLN
2610
AASSLKS
2780
CQQSYSLPRTF





3A-10
2441
RASQSIRKYLN
2611
ASSTLQR
2781
CQQSLSTPFTF





3A-11
2442
RASQSIGKYLN
2612
ASSTLQR
2782
CQQSLSPPFTF





3A-12
2443
RASQSIGKYLN
2613
ASSTLQR
2783
CQQSLSTPFTF





3A-13
2444
RASQSIGKYLN
2614
ASSTLQR
2784
CQQSFSPPFTF





3A-14
2445
RASQSIGKYLN
2615
ASSTLQR
2785
CQQSFSTPFTF





3A-15
2446
RASQNIKTYLN
2616
AASKLQS
2786
CQQSYSTSPTF





2A-1
2447
RASQSIHRFLN
2617
AASNLHS
2787
CQQSYGLPPTF





2A-10
2448
RASQSIHISLN
2618
LASPLAS
2788
CQQSYSAPPYTF





2A-5
2449
RASQSIHTYLN
2619
AASALAS
2789
CQQSYSAPPYTF





2A-2
2450
RASQTINTYLN
2620
SASTLQS
2790
CQQSYSTFTF





2A-4
2451
RASQSIDTYLN
2621
AASALAS
2791
CQQSYSAPPYTF





2A-6
2452
RASQSIGNYLN
2622
GVSSLQS
2792
CQQSHSAPLTF





2A-11
2453
RASQSIDTYLN
2623
AASALAS
2793
CQQSYSAPPYTF





2A-12
2454
RASQSIDNYLN
2624
GVSALQS
2794
CQQSHSAPPYFF





2A-13
2455
RASQSIDTYLN
2625
GASALES
2795
CQQSHSAPPYFF





2A-14
2456
RASQSIDTYLN
2626
AASALAS
2796
CQQSYSAPPYTF





2A-7
2457
RASQSIDTYLN
2627
GVSALQS
2797
CQQSYSAPPYFF





2A-8
2458
RASQSIDTYLN
2628
AASALAS
2798
CQQSYSAPPYTF





2A-15
2459
RASQSIDNYLN
2629
GVSALQS
2799
CQQSHSAPLTF





2A-9
2460
RASQRIGTYLN
2630
AASNLEG
2800
CQQNYSTTWTF





2A-21
2461
RASQSIHTYLN
2631
AASALAS
2801
CQQSYSAPPYTF





2A-22
2462
RASQSIHTYLN
2632
AASALAS
2802
CQQSYSAPPYTF





2A-23
2463
RASQTINTFLN
2633
SASTLQS
2803
CQQSYSTFTF





2A-24
2464
RASQTIRTYLN
2634
DASTLQR
2804
CQQSYRTPPWTF





2A-25
2465
RSSQSISSYLN
2635
GASRLRS
2805
CQQGYSAPWTF





2A-26
2466
RASQSISGSLN
2636
AESRLHS
2806
CQQSYSPPQTF





2A-27
2467
RASRSISTYLN
2637
AASNLQG
2807
CQQSHSIPRTF





2A-28
2468
RASQSIHTYLN
2638
AASALAS
2808
CQQSYSAPPYTF





3A-10
2469
RASQSIRKYLN
2639
ASSTLQR
2809
CQQSLSTPFTF





3A-4
2470
RASQNIKTYLN
2640
AASKLQS
2810
CQQSYSTSPTF





3A-7
2471
RASQTIYSYLN
2641
ATSTLQG
2811
CQHRGTF





3A-1
2472
RASRSIRRYLN
2642
ASSSLQA
2812
CQQSYSTLLTF





3A-5
2473
RASQSIGKYLN
2643
ASSSLQS
2813
CQQSYSPPFTF





3A-6
2474
RASRSISRYLN
2644
AASSLQA
2814
CQQSYSSLLTF





3A-15
2475
RASQSIGKYLN
2645
ASSTLQR
2815
CQQSLSPPFTF





3A-3
2476
RASQSIGRYLN
2646
ASSSLQS
2816
CQQSYSLPRTF





3A-11
2477
RASQSIGRYLN
2647
AASSLKS
2817
CQQSYSLPRTF





3A-8
2478
RASQSIGKYLN
2648
ASSTLQR
2818
CQQSLSTPFTF





3A-2
2479
RASQSIGRYLN
2649
AASSLKS
2819
CQQSYSLPLTF





3A-12
2480
RTSQSINTYLN
2650
GASNVQS
2820
CQQSYRIPRTF





3A-14
2481
RASQSIGKYLN
2651
ASSTLQR
2821
CQQSFSPPFTF





3A-9
2482
RASQSIGKYLN
2652
ASSTLQR
2822
CQQSFSTPFTF





3A-13
2483
RASQSIGRYLN
2653
AASSLKS
2823
CQQSYSLPRTF





3A-16
2484
RASQIIGSYLN
2654
TTSNLQS
2824
CQQSYITPWTF





3A-17
2485
RASQSISRYIN
2655
EASSLES
2825
CQQSHITPLTF





3A-18
2486
RASQSIYTYLN
2656
SASNLHS
2826
CQQSDTTPWTF





3A-19
2487
RASQSIATYLN
2657
GASSLEG
2827
CQQTFSSPFTF





3A-2
2488
RASQNINTYLN
2658
SASSLQS
2828
CQQSSLTPWTF





3A-21
2489
RASQGIATYLN
2659
YASNLQS
2829
CQQSYSTRFTF





3A-22
2490
RASERISNYLN
2660
TASNLES
2830
CQQSYTPPRTF





3A-23
2491
RASQSISSSLN
2661
AASRLQD
2831
CQQSYSTPRSF





3A-24
2492
RASQSISSHLN
2662
RASTLQS
2832
CQQTYNTPQTF





3A-25
2493
RASQSISSYLI
2663
AASRLHS
2833
CQQGYNTPRTF





3A-26
2494
RASPSISTYLN
2664
TASRLQT
2834
CQQTYSTPSSF





3A-27
2495
RASQNIAKYLN
2665
GASGLQS
2835
CQQSHSPPITF





3A-28
2496
RASQSIGTYLN
2666
AASNLHS
2836
CQESYSAPYTF





3A-29
2497
RASQSISPYLN
2667
KASSLQS
2837
CQQSSSTPYTF





9-1
2498
RASQGVSNYLA
2668
DASNRAT
2838
CQQRYSWVTF





9-2
2499
RASQSVSSSLA
2669
DASNRAT
2839
CQQRINWPRSF





9-3
2500
RASQSVNSYLA
2670
DVSNRAT
2840
CQQFSNWPTF





9-4
2501
RASQSVGTSLA
2671
GASNRAT
2841
CQQRSNWQPF





9-5
2502
RATQYVNSYLA
2672
DVSNRAT
2842
CQQFSNWPTF





9-6
2503
RASQSVGTSLA
2673
GASNRAT
2843
CQLRSNWYTF





9-7
2504
RASQGVSNYLA
2674
DASNRAT
2844
CQQRYSWVTF





9-8
2505
RASQGVSNYLA
2675
DASNRAT
2845
CQQRYSWVTF





9-9
2506
RASQSVDSRLA
2676
DTSNRAT
2846
CQQRSTWPPVF





9-10
2507
RASQSVRHHLA
2677
DASNRAT
2847
CQQRTDWPRAF





9-11
2508
RASQSVGNFLA
2678
DASNRAT
2848
CQQSSTWPLTF





9-12
2509
RASESISTYLA
2679
DASNRAT
2849
CQQRSGLITF





9-13
2510
RASQSVGDFLA
2680
DTSNRAT
2850
CQQRSNLTF





9-14
2511
RASQTIRNSLN
2681
ASSSLQS
2851
CQQTHSIPKTF





9-15
2512
RASQSVSSSLA
2682
DASNRAT
2852
CQQRINWPRSF





10-1
2513
RASQDVSTYLA
2683
DASNRAT
2853
CQQRRDWPQTF





10-2
2514
RASQDVSTYLA
2684
DASNRAT
2854
CQQRRDWPQTF





10-3
2515
RASQDVSTYLA
2685
DASNRAT
2855
CQQRRDWPQTF





10-4
2516
RASQDVSTYLA
2686
DASNRAT
2856
CQQRRDWPQTF





10-5
2517
RASQDVSTYLA
2687
DASNRAT
2857
CQQRRDWPQTF





10-6
2518
RASQDVSTYLA
2688
DASNRAT
2858
CQQRRDWPQTF





11-1
2519
RASQSLGSFLA
2689
DASNRAT
2859
CQQRALWPRLTF





11-2
2520
RASQSVNSYLA
2690
DVSNRAT
2860
CQQFSNWPTF





11-3
2521
RASQNIGNHLA
2691
DASNRAT
2861
CQQRDNGPPEGTF





11-4
2522
RASQSVGSYLA
2692
DAVNRAT
2862
CQQRFTWPTTF





11-5
2523
RASQSITDYLA
2693
DASNRAT
2863
CHQRNNWPPTF





11-6
2524
RASQSVDSSLA
2694
DASNRAT
2864
CQQQSNWPGTF





11-7
2525
RASQSIGSYLA
2695
DGSNRAT
2865
CQQRTNWPLFSF





11-8
2526
RASQTVTNYLA
2696
DTSNRAT
2866
CQHRDDWPPTF





11-9
2527
RASQSVSYYLA
2697
DSSNRAT
2867
CQQRSNWQGNF





11-10
2528
RASQSVSTSLA
2698
DATNRAT
2868
CQQHYSWPLTF





11-11
2529
RASHNINNFLA
2699
DTSNRAT
2869
CQQGRNWPPSSF





11-12
2530
RASQSVGTSLA
2700
GASNRAT
2870
CQERSNWPDTF





11-13
2531
RASQSVSSQLA
2701
DTSNRAT
2871
CQQRYNWPSTF





11-14
2532
RASQSVDSRLA
2702
DASNRAT
2872
CQQRTNLPPSITF





11-15
2533
RASQSVGSYLA
2703
DAVNRAT
2873
CQQRSDSITF





11-16
2534
#N/A
2704
#N/A
2874
#N/A





11-17
2535
RASQNIGSHLA
2705
DVSNRAT
2875
CQQRDYWPPYTF





11-18
2536
RASQSLTSYLA
2706
DASNRAT
2876
CQQRHYWPPITF





11-19
2537
RASQSIGSYLA
2707
DASNRAT
2877
CQQRDSWPHTF





11-20
2538
RASQSVGSYLA
2708
DAVNRAT
2878
CQQRSLWPF





12-1
2539
RASQSVSSHLA
2709
DVSNRAT
2879
CQQRDTFTF





12-2
2540
RASQSVDSRLA
2710
DTSNRAT
2880
CQQRSTWPPVF





12-3
2541
RASQSVGDFLA
2711
DTSNRAT
2881
CQYRSNFTF





12-4
2542
RASQSVGSHLA
2712
DASNRAT
2882
CQQISNWPLTF





12-5
2543
RASQNVGQSLA
2713
DASNRAT
2883
CQQRENWPPTF





12-6
2544
RASQSLGNYLA
2714
DSSNRAT
2884
CQQRNWPYTF





12-7
2545
RASQSLGNYLA
2715
DSSNRAT
2885
CQQRTDWPPSF





12-8
2546
RASQNIGNHLA
2716
DVSNRAT
2886
CQQRKSWPPFTF





12-9
2547
RASQSVSTSLA
2717
DATNRAT
2887
CQRRTDWPPTF





12-10
2548
RASQSVNSDLA
2718
DASNRAT
2888
CQQRTDWPPATF





12-11
2549
RASQSVGSYLA
2719
DAVNRAT
2889
CQQRFTWPTTF





12-12
2550
RASQSVSSSLA
2720
DASNRAT
2890
CQHRDDWPPTF





12-13
2551
RASQSVGSYLA
2721
DAVNRAT
2891
CQQRNSWPPATF





12-14
2552
RASQSVGSYLA
2722
DAVNRAT
2892
CQQVSNWPLTF





12-15
2553
RASQSVSSHLA
2723
DVSNRAT
2893
CQVRSDWPPLTF





12-16
2554
RASQSLDSYLA
2724
DVSNRAT
2894
CQQRRGWPPVTF





12-17
2555
RASQSVSKFLA
2725
DASNRAT
2895
CHQHSDWPLTF





12-18
2556
RASQSIGGSLA
2726
DASNRAT
2896
CQQRYSYFTF





12-19
2557
RASQSISRYLA
2727
DVSNRAT
2897
CQQSSNWPLFTF





12-20
2558
RASQSLGNYLA
2728
DSSNRAT
2898
CQQRNTWPGVTF





12-21
2559
RASQSVNSDLA
2729
DASNRAT
2899
CQERSLF





12-22
2560
RASQSVRHHLA
2730
DASNRAT
2900
CQERSDWPITF





12-23
2561
RASQSVDSRLA
2731
DASNRAT
2901
CQQRSTWPPVF





12-24
2562
RASQSFGDSLA
2732
DASNRAT
2902
CQQRSIPITF





12-25
2563
RASQSVNSYLA
2733
DVSNRAT
2903
CQERGNWPPFTF





12-26
2564
RASQSVSTSLA
2734
DISNRAT
2904
CQQRRSGLTF





12-27
2565
RASDTVSSYLA
2735
DTSNRAT
2905
CQQRASWPLSF





12-28
2566
RASQSVRHHLA
2736
DASNRAT
2906
CQQSGSWPLTF





12-29
2567
RASQIISSYLA
2737
DTSNRAT
2907
CQVRSNWPPLTF





12-30
2568
RASHNIGTYLA
2738
DVSNRAT
2908
CQQRADWPQTF





12-31
2569
#N/A
2739
#N/A
2909
#N/A





12-32
2570
RASQSIGSYLA
2740
DVSNRAT
2910
CQQRDSFTF





12-33
2571
RASQDVSTYLA
2741
DASNRAT
2911
CQQRAYWPGTF





12-34
2572
RASQSVGNFLA
2742
DASNRAT
2912
CQHRRLLTF





12-35
2573
RASQRVSSYLA
2743
DAFNRAT
2913
CQQRQDWPLTF





12-36
2574
RASQGISTYLA
2744
DASNRAT
2914
CQQRRRWPPTF





12-37
2575
RASESVSESLA
2745
DASNRAT
2915
CQQRTHGVTF





12-38
2576
RASQSVSTSLA
2746
DATNRAT
2916
CQQRQKWPLTF





12-39
2577
RASESISTYLA
2747
DASNRAT
2917
CQQRRNSLTF





12-40
2578
RASQSVNSDLA
2748
DASNRAT
2918
CQQRSTWSPLTF





12-41
2579
RASQNVGQSLA
2749
DASNRAT
2919
CQLRTNWPPVTF





12-42
2580
RASQSVDSRLA
2750
DTSNRAT
2920
CQQRSSNWTF





12-43
2581
RASQSVGKSLA
2751
DTSNRAT
2921
CQQRGSFPLTF





13-1
2582
RASQSVGDFLA
2752
DTSNRAT
2922
CQQRSIRGTF





13-2
2583
RASDTVSSYLA
2753
DTSNRAT
2923
CQQRGGWPPAF





13-3
2584
RASQSIGDYLN
2754
EASSLQS
2924
CLHTYLPPYSF





13-4
2585
RASQSITRYLN
2755
AASSLQS
2925
CQQTYNFPHTF





13-5
2586
RASQSIGSYLA
2756
DVSNRAT
2926
CQQRHHWPPVTF
















TABLE 12







Variable Domain Heavy Chain Sequences










SEQ



Variant
ID NO
Sequence





1-1
2927
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMNWVRQAPGKGLEWVSAISGSGVST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGDSGSYYGSSYFDYWGQ




GTLVTVSS





1-2
2928
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGMSWVRQAPGKGLEWVSAISGSGGNT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRVRRGSGVAPYSSSWGRY




YFDYWGQGTLVTVSS





1-3
2929
EVQLLESGGGLVQPGGSLRLSCAASGFRFSSYSMSWVRQAPGKGLEWVSAISGSGGSS




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGSGTIFGVVIAKYYFDY




WGQGTLVTVSS





1-4
2930
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLEWVSAISGSGGST




HYADSVKGRFTISRDNSKNTLYLQNSLRAEDTAVYYCASWGPLWSGSPNDAFDIWGQ




GTLVTVSS





1-5
2931
EVQLLESGGGLVQPGGSLRLSCAASGFFSSYAMGWVRQAPGKGLEWVSAISGSGYSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRSYDSTAYDEPLDALDI




WGQGTLVTVSS





1-6
2932
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSFAMSWVRQAPGKGLEWVSAISGSGVST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRDARSSGYNGYDLFDIWG




QGTLVTVSS





1-7
2933
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYAMSWRQAPGKGLEWVSAISGSGGSYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGPLVGWYFDLWGQGTLVT




VSS





1-8
2934
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMSWVRQAPGKGLEWVSLISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASWGPLWSGSPNDAFDIWG




QGTLVTVSS





1-9
2935
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYAMSWVRQAPGKGLEWVSAISGSGGST




FYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRQGDSSGWYDGWFDPWG




QGTLVTVSS





1-10
2936
EVQLLESGGGLVQPGGSLRLSCAASGFIFSSYAMSWVRQAPGKGLEWVSIISGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCIATVVSPLDYWGQGTLVTVSS





1-11
2937
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMSWVRQAPGKGLEWVSTISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDESSSSLNWFDPWGQGT




LVTVSS





1-12
2938
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMIWVRQAPGKGLEWVSAISGSAGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASPDPLGSVADLDYWGQGT




LVTVSS





1-13
2939
EVQLLESGGGLVQPGGSLRLSCAASGFTFGSYAMSWVRQAPGKGLEWVSAISGSGGTT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVWSSSSVFDYWGQGTLV




TVSS





1-14
2940
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRYAMSWRQAPGKGLEWVSAISGSGASTY




YADSVKGRFTISRDNKNTLYLQMNSLRAEDTAVYYCAKDRGGGSYYGTFDYWGQGT




LVTVSS





1-15
2941
EVQLLESGGGLVQPGGSLRLSCAASGSTFSSYAMSWVRQAPGKGLEWVSAISGSGATY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTRVRVAGYSSSWYDAFDIWG




QGTLVTVSS





1-16
2942
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMTWVRQAPGKGLEWVSAISGSGGNT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVKGTIPIFGVIRSAFDYWGQ




GTLVTVSS





1-17
2943
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYVMSWVRQAPGKGLEWVSSISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSGSYSFFDYWGQGTLV




TVSS





1-18
2944
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYANWVRQAPGKGLEWVSAISGSGVSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATTPGPWIQLWFGGGFDYWG




QGTLVTVSS





1-19
2945
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYDMSWVRQAPGKGLEWVSAISGSAGST




TMRDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGLVVAGTFDYWGQGT




LVTVSS





1-20
2946
EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYAMSWVRQAPGKGLEWVSALSGSGGS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGALLEWLSRFDNWGQG




TLVTVSS





1-21
2947
EVQLLESGGGLVQPGGSLRLSCAASGFTLSSYAMSWVRQAPGKGLEWVSAISGSGGTT




YYADSVKGFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLGAADLIDYWGQGTLVT




VSS





1-22
2948
EVQLLESGGGLVQPGGSLRLSCAASGFIFSSYAMSWVRQAPGKGLEWISAISGSGGTYY




ADSVKGRFTISRDNSKNTLYLQMNSPRAEDTAVYYCVRVPAAAGKGVPGIFDIWGQGT




LVTVSS





1-23
2949
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMGWVRQAPGKGLEWVSAIRGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRQGLRRTWYYFDYWG




QGTLVTVSS





1-24
2950
EVQLLESGGGLVQPGGSLRLSCAASGSTFSSYAMSWVRQAPGKGLEWVSAIGGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEYSSSWFDPWGQGTLVT




VSS





1-25
2951
EVQLLESGGGLVQPGGSLSCAASGFTFSSYTMSWVRQAPGKGLEWVSAISVSGGSTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKREDYDFWSGRGAFDIWGQG




TLVTIS





1-26
2952
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMYWVRQAPGKGLEWVSAISGSGGTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDIGYSSSWSFDYWGQGTL




VTVSS





1-27
2953
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMSWVRQAPGKGLEWVSAISGSGRST




YYASVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDYSDYRPFDYWGQGTLV




TVSS





1-28
2954
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGKGLEWVSAISGSGGSIY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAHRPSLQWLDWWFDPWGQG




TLVTVSS





1-29
2955
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSQAMSWVRQAPGKGLEWVSIISGSGGSTY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDGASGWPNWHFDLWGQG




TLVTVSS





1-30
2956
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQAPGKGLEWVSAISGSGGRT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGAAAGPFDYWGQGTLV




TVSS





1-31
2957
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMTWVRQAPGKGLEWVSAISGGTTYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEEYYYDSSGPNWFDPWGQG




TLVTVSS





1-32
2958
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVTAISVSGGST




YYADSVKGRFTISRDNSKNTLYLQNSLKTQETAGYYWAPQGGTTVPTGRFDPWGQRT




LVTVSS





1-33
2959
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSSGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCSRGGGPAAGFHGLDVWGQ




GTLVTVSS





1-34
2960
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAVSWVRQAPGKGLEWVSAISASGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAAKRQQLFPRNYFDYWG




QGTLVTVSS





1-35
2961
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYPMSWVRQAPGKGLEWVSAIRGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCALHYGSGRSFDYWGQGTLV




TVSS





1-36
2962
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYGMSWVRQAPGKGLEWVSAISGSGGAT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPGGRIVGALWGAFDYW




GQGTLVTVSS





3-1
2963
EVQLVESGGGLVQPGGSLRLSCAASGRTFCRYSMGWFRQAPGKERELVATWRPANTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKNWGDAGTTWFEKSGWGQ




GTLVTSS





3-2
2964
EVQLVESGGGLVQPGGSLRLSCAASGNIFSRYIMGWFRQAPGKERELVAAISRTGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIDPDGEWGQGTLVTVSS





3-3
2965
EVQLVESGGGLVQPGGSLRLSCAASGRTLAGYTMGWFRQAPGKERELLAEIYPSGNGV




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVRDSIWRSWGQGTLVT




VSS





3-4
2966
EVQLVESGGGLVQPGGSLRLSCAASGSTLSRYSMGWFRQAPGKEREFVAAIARRERVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLSCHDYSCYSAFDFWGQGT




LVTVSS





3-5
2967
EVQLVESGGGLVQPGGSLRLSCAASGSIFSSAAMGWFRQAPGKEREFEAISWRTGTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAGSMGWNHLRDYDWGQ




GTLVT





3-6
2968
EVQLVESGGGLVQPGGSLRLSCAATFSGYLMGWFRQAPGKEREFVAGIWRSGVSLYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSGWGAAMRSADFRWGQG




TLVTVSS





3-7
2969
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYDMGWFRQAPGKERERVAIIKSDGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSPRFSGVVVRPGLDLWGQ




GTLVTVSS





3-8
2970
EVQLVESGGGLVQPGGSLRLSCAASGSISSYFMGWFRQAPGKEREWVSSIGIAGTPTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAACSDYYCSGVGAVWGQGTL




VTVSS





3-9
2971
EVQLVESGGGLVQPGGSLRLSCAASGPTFSTYAMGWFRQAPGKEREFVAAVINGGTTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDSWDSSGYSYHYYYYGM




DVWGQGTLVTVSS





3-10
2972
EVQLVESGGGLVQPGGSLRLSCAASGIIGSFRTMGWFRQAPGKERELAGFTGSGRSQY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDIAVIQVLDYWGQGTLV




TVSS





3-11
2973
EVQLVESGGGLVQPGGSLRLSCAASGGTFASYGMGWFRQAPGKEREWVAGIWEDSSA




AHYAESVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAYSGIGTDWGQGTLVTVS




S





3-12
2974
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKERELVAGITSGGTR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGWGDSAWGQGTLVTVS




S





3-13
2975
EVQLVESGGGLVQPGGSLRLSCAASGSISTINVMGWFRQAPGKEREFVAAISWGGGLT




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVT




VSS





3-14
2976
EVQLVESGGGLVQPGGSLRLSCAASGGTLSSYIGWFRQAPGKERELVATVRSGSITNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLTDIWEGIREYDEYAWGQG




TLVTVSS





3-15
2977
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYPMGWFRQAPGKEREFVVAVTWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGLRGRQYSWGQGTLVT




VSS





3-16
2978
EVQLVESGGGLVQPGGSLRLSCAASGSTFSIDVMGWFRQAPGKEREFVAAISWSGESTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGSDWGQGTLVTVS




S





3-17
2979
EVQLVESGGGLVQPGGSLRLSCAASGRTSSSAVMGWFRQAPGKEREFVAAINRGGSTI




YVDSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGPYRSYFARSYLWGQGTL




VTVSS





3-18
2980
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYRMGWFRQAPGKEREWVSAISWNDGG




ADYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATQWGSSGWKQARWY




DWGQGTLVTVSS





3-19
2981
EVQLVESGGGLVQPGGSLRLSCAASGTIFASAMGWFRQAPGKERELVAFSSSGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDPIAAADPGDSVSFDYWGQ




GTLVTVSS





3-20
2982
EVQLVESGGGLVQPGGSLRLSCAASGFGIDAMGWFRQAPGKEREFVATITEGGATNVG




STSYSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALNVWRTSSDWGQGTLVTV




SS





3-21
2983
EVQLVESGGGLVQPGGSLRLSCAASGNIIGGNHMGWFRQAPGKEREFVGAITSSRSTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVTTQTYGYDWGQGTLVT




VSS





3-22
2984
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYDMGWFRQAPGKEREFVGGTRSGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHSDYSGLSNFDYWGQGTL




VTVSS





3-23
2985
EVQLVESGGGLVQPGGSLRLSCAAGRQPAPELRGYGMGWFRQAPGKEREFVAAVIGS




SGTTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKAKATVGLRAPFDY




WGQGTLVTVSS





3-24
2986
EVQLVESGGGLVQPGGSLRLSCAASGINFSRYGMGWFRQAPGKEREFVASITYLGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRVRPYGQYDWGQGTLVT




VSS





3-25
2987
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYAMGWFRQAPGKEREFVAAINWSGAR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSKPLNYYTYYDARRYD




WGQGTLVTVSS





3-26
2988
EVQLVESGGGLVQPGGSLRLSCAASGGTFGHYAMGWFRQAPGKEREFVAAVSWSGSS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSQPLNYYTYYDARRYD




WGQGTLVTVSS





3-27
2989
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDYAMGWFRQAPGKEREFVAAISWSTGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASQAPITIATMMKPFYDW




GQGTLVTVS





3-28
2990
EVQLVESGGGLVQPGGSLRLSCAASGFTFRRYDMGWFRQAPGKEREFVSAISGGLAYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDLSGDAVYDWGQGTLVTV




SS





3-29
2991
EVQLVESGGGLVQPGGSLRLSCAASGINFSRNAMGWFRQAPGKERELVASITHQDRPIY




ADSEKGLFTITEDNKKNTDHLMMNLLKPEDTAVYYCALPVGPYGQYDWGQGTLVTW




S





3-30
2992
EVQLVESGGGLVQPGGSLRLSCAASGRTFTTYGMGWFRQAPGKEREFVASITYLGRTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRVRPYGQYDWGQGTLVT




VSS





3-31
2993
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVAGITSSGGYT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWG




QGTLVTVSS





7-1
2994
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMRWVRQAPGKGLEWVSAISGSGGST




YYADSVRGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTGRYSSGSTGWFHYWG




QGTLVTVSS





7-2
2995
EVQLVESGGGLVQPGGSLRLSCAASGFAFSRHAMSWFRQAPGKEREFVSDIGGSGSTT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHTDNWFDPWGQGTLVT




VSS





7-3
2996
EVQLVESGGGLVQPGGSLRLSCAASGRTFSINAMGWFRQAPGKEREFVAGITRSAVSTI




TSEGTANYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYAS




GPVWGQGTLVTVSS





7-4
2997
EVQLLESGGGLVQPGESLRLSCAASGFTFSSYGMNWVRQAPGKGLEWVSASSGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAYYCARREYIESGFDSWGQGTLVTV




SS





7-5
2998
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTDAMGWFRQAPGKEREFVAAISSGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATRGRSTRLVLPSLVEWGQ




GTLVTVSS





7-6
2999
EVQLVESGGGLVQPGGSLRLSCAASGRIFYPMGWFRQAPGKEREFVAAVRWSSTGIYY




TQYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAALSEVWRGSENLREGY




DWGQGTLVTVSS





7-7
3000
EVQLVESGGGLVQPGGSLRLSCAASGFTFGSYDMGWFRQAPGKEREFVTAINWSGAR




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSVYSYEYNWGQGTLV




TVSS





7-8
3001
EVQLVESGGGLVQPGGSLRLSCAASGSTFTINAMGWFRQAPGKEREFVSGISHNGGTT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWG




QGTLVTVSS





7-9
3002
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVT




VSS





7-10
3003
EVQLVESGGGLVQPGGSLRLSCAASGRTYAMGWFRQAPGKEREFVAEINWSGSSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDGPFGWGQGTLVTVSS





7-11
3004
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTKSMGWFRQAPGKEREFVAAIHWSGLTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRAADFFAQRDEYDWGQ




GTLVTVSS





7-12
3005
EVQLVESGGGLVQPGGSLRLSCAASGRTIVPYTMGWFRQAPGKEREFVAAISPSAFTEY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWGYDWGQGTLVTVSS





7-13
3006
EVQLVESGGGLVQPGGSLRLSCAASGLRLNMHRMGWFRQAPGKEREFVAAISGWSGG




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKIGTLWWGQGTLVTVSS





7-14
3007
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVAGISRGGTTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQ




GTLVTVSS





7-15
3008
EVQLVESGGGLVQPGGSLRLSCAASGSTLPYHAMGWFRQAPGKEREFVASISRFFGTA




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAPTFAAGASEYHWGQGTLV




TVSS





7-16
3009
EVQLVESGGGLVQPGGSLRLSCAASGFTFTSYAISWFRQAPGKEREFVSAISGSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGAYGSGTYDYWGQGTLV




TVSS





7-17
3010
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKEREFVAAITSGGTPH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAYNPGIGYDWGQGTLVTV




SS





7-18
3011
EVQLVESGGGLVQPGGSLRLSCAASGLTDRRYTMGWFRQAPGKEREFVASITLGGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVS




S





7-19
3012
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASITSSGVNA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVS




S





7-20
3013
EVQLVESGGGLVQPGGSLRLSCAASGPTFSIYAMGWFRQAPGKEREFVAGISWNGGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRRRFGGQEWGQGTLVTV




SS





7-21
3014
EVQLVESGGGLVQPGGSLRLSCAASGRTISRYTMGWFRQAPGKEREFVASITSGGSTAY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-22
3015
EVQLVESGGGLVQPGGSLRLSCAASGRTITRYTMGWFRQAPGKEREFVASITSGGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKQDVGKPFDWGQGTLVTVS




S





7-23
3016
EVQLVESGGGLVQPGGSLRLSCAASGFTFENHAMGWFRQAPGKEREFVAEIYPSGSTIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARILSRNWGQGTLVTVSS





7-24
3017
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRHAMNWFRQAPGKEREFVSTITGSGGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVGLYYYGSGSSSRRLL




GRIDYYFDYWGQGTLVTVSS





7-25
3018
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYSMGWFRQAPGKEREFVASIEWDGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVTVS




S





7-26
3019
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVAGITSSGGYT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWG




QGTLVTVSS





7-27
3020
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVAEINWSGSSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDGPFGWGQGTLVTVSS





7-28
3021
EVQLVESGGGLVQPGGSLRLSCAASGNTFSDNPMGWFRQAPGKEREFVAILAWDSGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTDYSKLAITKLSYWGQGT




LVT





7-29
3022
EVQLVESGGGLVQPGGSLRLSCAASGRTHSIYPMGWFRQAPGKEREFVASITSYGDTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGTLVTVS




S





7-30
3023
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMHAMGWFRQAPGKEREFVASISSQGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEVRNGSDYLPIDWGQGTL




VTVSS





7-31
3024
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYSMGWFRQAPGKEREFVAAIHWNGDS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQTEDSAQYIWGQGTLV




TVSS





7-32
3025
EVQLVESGGGLVQPGGSLRLSCAASGSTFSVNAMGWFRQAPGKEREFVAGVTRGGYT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWG




QGTLVTVSS





7-33
3026
EVQLVESGGGLVQPGGSLRLSCAASGSIGSINAMGWFRQAPGKEREFVAGISNGGTTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQ




GTLVTVSS





7-34
3027
EVQLVESGGGLVQPGGSLRLSCAASGRTFGSYDMGWFRQAPGKEREFVAFIHRSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFPAIVTDSDYDLGNDWG




QGTLVTVSS





7-35
3028
EVQLVESGGGLVQPGGSLRLSCAASGGTFGHYAMGWFRQAPGKEREFVAAVSWSGSS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSQPLNYYTYYDARRYD




WGQGTLVTVSS





7-36
3029
EVQLVESGGGLVQPGGSLRLSCAASGFGFGSYDMGWFRQAPGKEREFVTAINWSGAR




AYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSVYSYDYNWGQGTL




VTVSS





7-37
3030
EVQLVESGGGLVQPGGSLRLSCAASGSTLSINAMGWFRQAPGKEREFVAGITRSGSVT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWG




QGTLVTVSS





7-38
3031
EVQLVESGGGLVQPGGSLRLSCAASGRPFSEYTMGWFRQAPGKEREFVSSIHWGGRGT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAELHSSDYTSPGAYAWGQ




GTLVTVSS





7-39
3032
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYPMGWFRQAPGKEREFVAAITWSGDST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALPSNIITTDYLRVYWGQGT




LVTVSS





7-40
3033
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASITKFGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVS




S





7-41
3034
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTYVMGWFRQAPGKEREFVASISSRGITHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVSS





7-42
3035
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYGMGWFRQAPGKEREFVAAITSGGTPH




YGDSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAYNPGIGYDWGQGTLVTV




SS





7-43
3036
EVQLVESGGGLVQPGGSLRLSCAASGFTFGHYAMGWFRQAPGKEREFVAAVSWSGST




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVSHPLNYYTYYDARRYD




WGQGTLVTVSS





7-44
3037
EVQLVESGGGLVQPGGSLRLSCAASGFTFEDYAMGWFRQAPGKEREGVAAITRGSNTT




DYADSVKGRFTISADNSKNTAYLQMNSLKPKDTAVYYCAARRWMGGSYFDPGNYDW




GQGTLVTVSS





7-45
3038
EVQLVESGGGLVQPGGSLRLSCAASGRTLSRYTMGWFRQAPGKEREFVASITSGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVTVS




S





8-1
3039
EVQLVESGGGLVQPGGSLRLSCAASGRTFASYAMGWFRQAPGKEREFVGAISRSGDST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARAPFYCTTTKCQDNYYYM




DVWGQGTLVTVSS





8-2
3040
EVQLVESGGGLVQPGGSLRLSCAASGGTYHAMGWFRQAPGKEREFVAGITSDDRTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARERRYYDSSGYPYYFDYWGQ




GTLVTVSS





8-3
3041
EVQLVESGGGLVQPGGSLRLSCAASGTTLDYYAMGWFRQAPGKEREFVAAISWSGGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREDYYDSSGYSWGQGTL




VTVSS





8-4
3042
EVQLVESGGGLVQPGGSLRLSCAASGGTLSRSRMGWFRQAPGKEREFVAFIGSDTLYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCANLAYYDSSGYYDYWGQGTLV




TVSS





8-5
3043
EVQLVESGGGLVQPGGSLRLSCAASGGTFSFYNMGWFRQAPGKEREFVAFISGNGGTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVAMRMVTTEGPDVLDVW




GQGTLVTVSS





8-6
3044
EVQLVESGGGLVQPGGSLRLSCAASGFTFDYYAMGWFRQAPGKEREFVSAIDSEGRTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPFDIWGQGTLVTVSS





8-7
3045
EVQLVESGGGLVQPGGSLRLSCAASGFPFSIWPMGWFRQAPGKEREFVAAVRWSSTGI




YYTQYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTRSEYSSGWYDYWGQ




GTLVTVSS





8-8
3046
EVQLVESGGGLVQPGGSLRLSCAASGFAESSSMGWFRQAPGKEREFVAAISWSGDITIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGAPYFDHGSKSYRLFYFDY




WGQGTLVTVSS





8-9
3047
EVQLVESGGGLVQPGGSLRLSCAASGFTFGTTTMGWFRQAPGKEREFVAAISWSTGIA




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGPNYYASGRYPWFDP




WGQGTLVTVSS





8-10
3048
EVQLVESGGGLVQPGGSLRLSCAASGFIGNYHAMGWFRQAPGKEREFVAAVTWSGGT




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYYDSSGYPYYFDY




WGQGTLVTVSS





2A-1
3049
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYATDWVRQAPGKGLEWVSIISGSGGAT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGYCSSDTCWWEYWLD




PWGQGTLVTVSS





2A-10
3050
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAFAMGWVRQAPGKGLEWVSAITASGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARQSDGLPSPWHFDLGGQG




TLVTVSS





2A-5
3051
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-2
3052
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNWVRQAPGKGLEWVSGISGSGDET




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPASYYDSSGYYWHNG




MDVWGQGTLVTVSS





2A-4
3053
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-6
3054
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYPMNWVRQAPGKGLEWVSTISGSGGNT




FYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-11
3055
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-12
3056
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSTISGSGGIT




FYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-13
3057
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAISGSGDNT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-14
3058
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGTGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWGQGTLVTV




SS





2A-7
3059
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAITGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-8
3060
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-15
3061
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-9
3062
EVQLLESGGGLVQPGGSLRLSCAASGFTFPRYAMSWVRQAPGKGLEWVSTISGSGSTT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLIDAFDIWGQGTLVTVSS





2A-21
3063
EVQLLESGGGLVQPGGSLRLSCAASGFTFPRYAMSWVRQAPGKGLEWVSTISGSGSTT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLIDAFDIWGQGTLVTVSS





2A-22
3064
EVQLLESGGGLVQPGGSLRLSCAASGFTFTTYALSWVRQAPGKGLEWVSGISGSGDET




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCTTGDDFWSGGNWFDPWGQ




GTLVTVSS





2A-23
3065
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNWVRQAPGKGLEWVSGITGSGDE




TYYADSVKGRFTISRDNSKNTLYLQMNSLKAEDTAVYYCARDLPASYYDSSGYYWHN




GMDVWGQGTLVTVSS





2A-24
3066
EVQLLESGGGLVQPGGSLRLSCAASGFVFSSYAMSWVRQAPGKGLEWVSAISGSGGSS




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVGGGYWYGIDVWGQGT




LVTVSS





2A-25
3067
EVQLLESGGGLVQPGGSLRLSCAASGFTLSSYVMSWVRQAPGKGLEWVSGISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYSRNWYPSWFDPWGQ




GTLVTVSS





2A-26
3068
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEWVSSIGGSGSTT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGGWYLDYWGQGTLVTVS




S





2A-27
3069
EVQLLGSGGGLVQPGGSLRLSCAASGFTYSNYAMTWVRQAPGKGLEWVSAISGSSGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASLCIVDPFDIWGQGTLVTV




SS





2A-28
3070
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYPMNWVRQAPGKGLEWVSTISGSGGNT




FYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





3A-10
3071
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-4
3072
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYSMSWVRQAPGKGLEWVSAISGSGGSR




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRSKWPQANGAFDIWGQGT




LVTVSS





3A-7
3073
EVQLLESGGGLVQPGGSLRLSCAASGFMFGNYAMSWVRQAPGKGLEWVAAISGSGGS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGYSSSWYGGFDYW




GQGTLVTVSS





3A-1
3074
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNHAMAWVRQAPGKGLEWVSGISGSGGT




TYYGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLQWSLPLDVWGQ




GTLVTVSS





3A-5
3075
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGAGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-6
3076
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYAMAWVRQAPGKGLEWVSGISGSGGT




TYYGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLEWSLPLDVWGQ




GTLVTVSS





3A-15
3077
EVQLLESGGGLVQPGGSLRLSCAASGFTIRNYAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-3
3078
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGSGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-11
3079
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHAWWKGAGFFDHWGQ




GTLVTVSS





3A-8
3080
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-2
3081
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-12
3082
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMNWVRQAPGKGLEWVSAISGSGGST




NYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGLKFLEWLPSAFDIWGQ




GTLVTVSS





3A-14
3083
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-9
3084
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-13
3085
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-16
3086
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNFAMSWVRQAPGKGLEWVSAISGRGGGT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDAHGYYYDSSGYDDWG




QGTLVTVSS





3A-17
3087
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYPMSWVRQAPGKGLEWVSTISGSGGITY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGVYGSTVTTCHWGQGTLV




TVSS





3A-18
3088
EVQLLESGGGLVQPGGSLRLSCAASGFTLTSYAMSWVRQAPGKGLEWVSAISGSGVDT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPTNWGFDYWGQGTLVT




VSS





3A-19
3089
EVQLLESGGGLVQPGGSLRLSCAASGFTFINYAMSWVRQAPGKGLEWVSTISTSGGNT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADSNWASSAYWGQGTL




VTVSS





3A-2
3090
EVQLLESGGGLVQPGGSLRLSCAASGFPFSTYAMSWVRQAPGKGLEWVSGISVSGGFT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPYSYGYYYYYGMDVW




GQGTLVTVSS





3A-21
3091
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMGWVRQAPGKGLEWVSGISGGGVS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARARNWGPSDYWGQGTL




VTVSS





3A-22
3092
EVQLLESGGGLVQPGGSLRLSCAASGFIFSDYAMTWVRQAPGKGLEWVSAISGSAFYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDATYSSSWYNWFDPWGQGTL




VTVSS





3A-23
3093
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMTWVRQAPGKGLEWVSDISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTVTSFDFWGQGTLVTV




SS





3A-24
3094
EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMGWVRQAPGKGLEWVSFISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDYHSASWFSAAADYWG




QGTLVTVSS





3A-25
3095
EVQLLESGGGLVQPGGSLRLSCAASGFTFASYAMTWVRQAPGKGLEWVSAISESGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGQEYSSGSSYFDYWGQ




GTLVTVSS





3A-26
3096
EVQLLESGGGLVQPGGSLRLSCAASGFTFSEYAMSWVRQAPGKGLEWVSAITGSGGST




YYGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSQTPYCGGDCPETFDY




WGQGTLVTVSS





3A-27
3097
EVQLLESGGGLVQPGGSLRLSCAASGFTFDDYAMSWVRQAPGKGLEWVSGISGGGTS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLYSSGWYGFDYWGQ




GTLVTVSS





3A-28
3098
EVQLLESGGGLVQPGGSLRLSCAASGFTFNNYAMNWVRQAPGKGLEWVSAISGSVGS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDNYDFWSGYYTNWFD




PWGQGTLVTVSS





3A-29
3099
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNHAMSWVRQAPGKGLEWVSAISGSGSNI




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSLSVTMGRGVVTYYYY




GMDFWGQGTLVTVSS





4A-51
3100
EVQLVESGGGLVQPGGSLRLSCAASGPGTAIMGWFRQAPGKEREFVARISTSGGSTKY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTTVTTPPLIWGQGTLVTVSS





4A-52
3101
EVQLVESGGGLVQPGGSLRLSCAASGRSFSNSVMGWFRQAPGKEREFVARITWNGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVS




S





4A-53
3102
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAVSWSGSG




VYYADSVKGRFTITADNSKNTAYLQMNSLKPENTAVYYCATDPPLFWGQGTLVTVSS





4A-54
3103
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDARMGWFRQAPGKEREFVGAVSWSGGT




TVYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTEDPYPRWGQGTLVTV




SS





4A-49
3104
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDHWGQG




TLVTVSS





4A-55
3105
EVQLVESGGGLVQPGGSLRLSCAASGSGLSINAMGWFRQAPGKERESVAAISWSGGST




YTAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQAGWGDWGQGTLV




TVSS





4A-39
3106
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGAS




RNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTV




SS





4A-56
3107
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKERESVAAISWNGDF




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRANPTGAYFDYWGQG




TLVTVSS





4A-33
3108
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRHDMGWFRQAPGKEREFVAGINWESGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYT




WGQGTLVTVSS





4A-57
3109
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAIGSGGYT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVKPGWVARDPSQYNWGQ




GTLVTVSS





4A-25
3110
EVQLVESGGGLVQPGGSLRLSCAASGGTFSRYAMGWFRQAPGKEREWVSAVDSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASPSLRSAWQWGQGTLVT




VSS


+ 




4A-58
3111
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYDMGWFRQAPGKEREFVAAVTWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-59
3112
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDLWGQGT




LVTVSS





4A-6
3113
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDIMGWFRQAPGKEREFVAAIHWSAGY




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGT




LVTVSS





4A-61
3114
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSADYT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTL




VTVSS





4A-3
3115
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATATPNTGWHFDHWGQGT




LVTVSS





4A-62
3116
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGS




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-43
3117
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAGINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-5
3118
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWTGGY




TSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-42
3119
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERECVAAINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-63
3120
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREFVAAINWSGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-6
3121
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYGMGWFRQAPGKEREFVATINWSGAL




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATLPFYDFWSGYYTGYYY




MDVWGQGTLVTVSS





4A-40
3122
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFLAGVTWSGSS




TFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-21
3123
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAISWSGGNT




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-64
3124
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQG




TLVTVSS





4A-47
3125
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDDYVMGWFRQAPGKEREFVAAVSGSGD




DTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-65
3126
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATEPPLSCWHFDLWGQGT




LVTVSS





4A-18
3127
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSGGYT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTL




VTVSS





4A-66
3128
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREIVAAINWSAGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDLWGQGTL




VTVSS





4A-36
3129
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAISWSGGTT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-67
3130
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-16
3131
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGT




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-11
3132
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAIHWSGSST




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-68
3133
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKERELVGTINWSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-34
3134
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-28
3135
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERELVAAINWNGGN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-69
3136
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGT




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-7
3137
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGT




LVTVSS





4A-71
3138
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVASINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-23
3139
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAGISWNGGSI




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-9
3140
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYEMGWFRQAPGKEREFVAAISWRGGT




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAGDYDW




GQGTLVTVSS





4A-72
3141
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGT




LVTVSS





4A-73
3142
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGS




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-29
3143
EVQLVESGGGLVQPGGSLRLSCAASGVTLDDYAMGWFRQAPGKEREFVAVINWSGGS




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGWVPSSTSESLNWY




FDRWGQGTLVTVSS





4A-41
3144
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGTT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHVDLWGQGTL




VTVSS





4A-74
3145
EVQLVESGGGLVQPGGSLRLSCAASGLTFSDDTMGWFRQAPGKEREFVAAVSWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-75
3146
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWTGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-31
3147
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVATINWTAGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGT




LVTVSS





4A-32
3148
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGN




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-15
3149
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-14
3150
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGINWSGNG




VYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-76
3151
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKERELVAPINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-50
3152
EVQLVESGGGLVQPGGSLRLSCAASGGTFSNSGMGWFRQAPGKERELVAVVNWSGRR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTL




VTVSS





4A-17
3153
EVQLVESGGGLVQPGGSLRLSCAASGQLANFASYAMGWFRQAPGKEREFVAAITRSGS




STVYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGTLVT




VSS





4A-37
3154
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAINWTGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-44
3155
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATARPNTGWHFDHWGQGT




LVTVSS





4A-77
3156
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVGSINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-78
3157
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGMTWSGSS




TFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-79
3158
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERECVAAINWSGDY




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-8
3159
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVGGINWSGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-81
3160
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAVNWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-82
3161
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKEREFVAAINWSGGY




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-83
3162
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-35
3163
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDRWGQG




TLVTVSS





4A-45
3164
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGY




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-84
3165
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAITWSGGR




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDRPLFWGQGTLVTVSS





4A-85
3166
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQG




TLVTVSS





4A-86
3167
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAIHWSGSST




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-87
3168
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREWVAAINWSGGT




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-88
3169
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGDN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-89
3170
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDNWIGWFRQAPGKEREWVASISSGGTTA




YADNVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCAHRGGWLRPWGYWGQGTLV




TVSS





4A-9
3171
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVGRINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-91
3172
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVGGISWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-92
3173
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-46
3174
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-20
3175
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSADY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGT




LVTVSS





4A-93
3176
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGSST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-4
3177
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREMVAAINWIAGY




TADADSVRRLFTITADNNKNTAHLMMNLLKPENTAVYYCAEPSPNTGWHFDHWGQG




TLVTVSS





4A-2
3178
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGN




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-94
3179
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-95
3180
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDHWGQGTL




VTVSS





4A-12
3181
EVQLVESGGGLVQPGGSLRLSCAASGFTFGDYVMGWFRQAPGKEREIVAAINWNAGY




TAYADSVRGLFTITADNSKNTAYLQMNSLKPEDTAVYYCAKASPNTGWHFDHWGQG




TLVTVSS





4A-30
3182
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWTGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-27
3183
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGLFTITADNSKNTAYLQMNILKPEDTAVYYCARATPNTGWHFDHWGQGTL




VTVSS





4A-22
3184
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGDN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-96
3185
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDHWGQGTL




VTVSS





4A-97
3186
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQG




TLVTVSS





4A-98
3187
EVQLVESGGGLVQPGGSLRLSCAASGFTWGDYTMGWFRQAPGKEREFVAAINWSGG




NTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-99
3188
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSQYNWGQ




GTLVTVSS





4A-100
3189
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAINWSGG




STYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-101
3190
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGAS




RSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTV




SS





4A-102
3191
EVQLVESGGGLVQPGGSLRLSCAASGGTFGVYHMGWFRQAPGKEREGVAAINMSGD




DSAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAILVGPGQVEFDHWGQG




TLVTVSS





4A-103
3192
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMGWFRQAPGKEREFVARI--




SGSTFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALPFVCPSGSYSDYG




DEYDWGQGTLVTVSS





4A-104
3193
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGDFMGWFRQAPGKEREFVGRINWSGGN




TYYADSVRGLFTITADNNKNTAYLMMNLLKPEDTAVYYCPTDPPLFWGLGTLVTWSS





4A-105
3194
EVQLVESGGGLVQPGGSLRLSCAASGSTLRDYAMGWFRQAPGKERESVAAITWSGGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTL




VTVSS





4A-106
3195
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYTMGWFRQAPGKEREFVAAITDNGGS




KYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-107
3196
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYGMGWFRQAPGKEREFVAAINWSGAS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDWRDRTWGNSLDYWG




QGTLVTVSS





4A-108
3197
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISWSED




NTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-109
3198
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAVSGSGD




DTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-110
3199
EVQLVESGGGLVQPGGSLRLSCAASGNIAAINVMGWFRQAPGKEREFVAAISASGRRT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVYYYDSSGPPGVTFDI




WGQGTLVTVSS





4A-111
3200
EVQLVESGGGLVQPGGSLRLSCAASGIITSRYVMGWFRQAPGKEREGVAAISTGGSTIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQDSSSPYFDYWGQGTLVTV




SS





4A-112
3201
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISNSGLS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-113
3202
EVQLVESGGGLVQPGGSLRLSCAASGSISSINVMGWFRQAPGKEREFVATMRWSTGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYE




WGQGTLVTVSS





4A-114
3203
EVQLVESGGGLVQPGGSLRLSCAASGLTFILYRMGWFRQAPGKEREFVAAINNFGTTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTHYDFWSGYTSRTPNYFD




YWGQGTLVTVSS





4A-115
3204
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYHMGWFRQAPGKEREPVAAISWSGGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVNTWTSPSFDSWGQGT




LVTVSS





4A-116
3205
EVQLVESGGGLVQPGGSLRLSCAASGRAFSTYGMGWFRQAPGKEREFVAGINWSGDT




PYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVGPPPGYFDLWGQGT




LVTVSS





4A-117
3206
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDIAMGWFRQAPGKEREFVASINWGGGNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWG




QGTLVTVSS





4A-118
3207
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSARMGWFRQAPGKEREFVAAISWSGDNT




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVS




S





4A-119
3208
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYAMGWFRQAPGKEREWVATINGDDYT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVATPGGYGLWGQGTLVTVS




S





4A-120
3209
EVQLVESGGGLVQPGGSLRLSCAASGITFRRHDMGWFRQAPGKEREFVAAIRWSSSST




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYT




WGQGTLVTVSS





4A-121
3210
EVQLVESGGGLVQPGGSLRLSCAASGTAASFNPMGWFRQAPGKEREFVAAITSGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIAYEEGVYRWDWGQGTL




VTVSS





4A-122
3211
EVQLVESGGGLVQPGGSLRLSCAASGNINIINYMGWFRQAPGKEREGVAAIHWNGDST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGPPYSNYFAYWGQGTLV




TVSS





4A-123
3212
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYAMGWFRQAPGKERESVAAISGSGGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKIMGSGRPYFDHWGQGTL




VTVSS





4A-124
3213
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPGKEREFVAAITSSGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARPSSDLQGGVDYWGQGTLV




TVSS





4A-125
3214
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKEREFVASINWGGGNT




IYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQ




GTLVTVSS





4A-126
3215
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWGQ




GTLVTVSS





4A-127
3216
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDSAMGWFRQAPGKEREWVAAITNGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFARGSPYFDFWGQGTLV




TVSS





4A-128
3217
EVQLVESGGGLVQPGGSLRLSCAASGSISSFNAMGWFRQAPGKERESVAAIDWDGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGYYGSGSFEYWGQGTL




VTVSS





4A-129
3218
EVQLVESGGGLVQPGGSLRLSCAASGNIFSDNIIGWFRQAPGKEREMVAYYTSGGSIDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTAVGRPPPGGMDVWGQG




TLVTVSS





4A-130
3219
EVQLVESGGGLVQPGGSLRLSCAASGSISSIGAMGWFRQAPGKEREGVAAISSSGSSTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVPPGQAYFDSWGQGTLVT




VSS





4A-131
3220
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYGMGWFRQAPGKERELVATITWSGDS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKGGSWYYDSSGYYGRW




GQGTLVTVSS





4A-132
3221
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYTMGWFRQAPGKEREWVSAISWSTGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRYGPPWYDWGQGTLV




TVSS





4A-133
3222
EVQLVESGGGLVQPGGSLRLSCAASGSTNYMGWFRQAPGKEREGVAAISMSGDDTIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARIGLRGRYFDLWGQGTLVTV




SS





4A-134
3223
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSVGMGWFRQAPGKERELVAVINWSGAR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTL




VTVSS





4A-135
3224
EVQLVESGGGLVQPGGSLRLSCAASGRIFTNTAMGWFRQAPGKEREGVAAINWSGGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTSGSYSFDYWGQGTLVT




VSS





4A-136
3225
EVQLVESGGGLVQPGGSLRLSCAASGEEFSDHWMGWFRQAPGKEREFVGAIHWSGGR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-137
3226
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKEREFVAAINWSGART




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWG




QGTLVTVSS





4A-138
3227
EVQLVESGGGLVQPGGSLRLSCAASGSTSSLRTMGWFRQAPGKEREGVAAISSRDGSTI




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDDSSSPYFDYWGQGTLVT




VSS





4A-139
3228
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAPGKEREFVAAISIASGA




SGGTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGT




LVTVSS





4A-140
3229
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARITWNGGS




TFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTV




SS





4A-141
3230
EVQLVESGGGLVQPGGSLRLSCAASGIILSDNAMGWFRQAPGKEREFVAAISWLGEST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWG




QGTLVTVSS





4A-142
3231
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWNGGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTSPNTGWHYYRWGQG




TLVTVSS





4A-143
3232
EVQLVESGGGLVQPGGSLRLSCAASGFNFNWYPMGWFRQAPGKERESVAAISWTGVS




TYTAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPGPAGGSPGLVG




FDYWGQGTLVTVSS





4A-144
3233
EVQLVESGGGLVQPGGSLRLSCAASGSIRSVSVMGWFRQAPGKEREAVAAISWSGVGT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQRGWGDWGQGTLVTV




SS





4A-145
3234
EVQLVESGGGLVQPGGSLRLSCAASGMTFRLYAMGWFRQAPGKEREFVGAINWLSES




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWG




QGTLVTVSS





4A-146
3235
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTMVTVSS





4A-147
3236
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYAMGWFRQAPGKEREGVAAISMSGDD




AAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKISKDDGGKPRGAFFDS




WGQGTLVTVSS





4A-148
3237
EVQLVESGGGLVQPGGSLRLSCAASGFALGYYAMGWFRQAPGKERESVAAISSRDGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLATGPQAYFHHWGQGTL




VTVSS





4A-149
3238
EVQLVESGGGLVQPGGSLRLSCAASGFNLDDYAMGWFRQAPGKERESVAAISWDGGA




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVGRGTTAFDSWGQGTL




VTVSS





4A-150
3239
EVQLVESGGGLVQPGGSLRLSCAASGNTFSGGFMGWFRQAPGKEREFVASIRSGARTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYEW




GQGTLVTVSS





4A-151
3240
EVQLVESGGGLVQPGGSLRLSCAASGSIRSINIMGWFRQAPGKEREAVAAISWSGGSTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTLVT




VSS





5A-1
3241
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVT




VSS





5A-2
3242
EVQLVESGGGLVQPGGSLRLSCAASGLRFDDYAMGWFRQAPGKERELVAIKFSGGTT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASWDGLIGLDAYEYDWGQ




GTLVTVSS





5A-3
3243
EVQLVESGGGLVQPGGSLRLSCAASGSIFSIDVMGWFRQAPGKEREFVAGISWSGDSTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVTVS




S





5A-4
3244
EVQLVESGGGLVQPGGSLRLSCAASGFTLADYAMGWFRQAPGKEREFVAVITCSGGST




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADDCYIGCGWGQGTLVTV




SS





5A-5
3245
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKERELVAEITEGGISPS




GDNIYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAELHSSDYTSPGAES




DYGWGQGTLVTVSS





5A-6
3246
EVQLVESGGGLVQPGGSLRLSCAASGPTFSSYAMMGWFRQAPGKEREWVAAINNFGT




TKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASASDYGLGLELFHDEY




NWGQGTLVTVSS





5A-7
3247
EVQLVESGGGLVQPGGSLRLSCAASGSTGYMGWFRQAPGKEREFVAAIHSGGSTNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVATALIWGQGTLVTVSS





5A-8
3248
EVQLVESGGGLVQPGGSLRLSCAASGRPFSEYTMGWFRQAPGKEREFVSSIHWGGRGT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAELHSSDYTSPGAYAWGQ




GTLVTVSS





5A-9
3249
EVQLVESGGGLVQPGGSLRLSCAASGLTLSTYGMGWFRQAPGKEREFVAHIPRSTYSP




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGDGAVWGQGTLVTVSS





5A-10
3250
EVQLVESGGGLVQPGGSLRLSCAASGFTFNNHNMGWFRQAPGKEREFVAAISSYSHTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALQPFGASNYRWGQGTLVTV




SS





5A-11
3251
EVQLVESGGGLVQPGGSLRLSCAASGGIYRVMGWFRQAPGKERELVASTSSGGGINYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAESWGRQWGQGTLVTVSS





5A-12
3252
EVQLVESGGGLVQPGGSLRLSCAASGYTDSNLWMGWFRQAPGKEREFVAINRSTGSTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATSGSGSPNWGQGTLVTVSS





5A-13
3253
EVQLVESGGGLVQPGGSLRLSCAASGFTFDYYTMGWFRQAPGKEREFVAAIRSSGGLF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYLDGYSGSWGQGTLVTVS




S





5A-14
3254
EVQLVESGGGLVQPGGSLRLSCAASGGIFSINVMGWFRQAPGKEREWVSAIRWNGGN




TAYADSVKGRFTITADNSKNTAYLQMNSLKPEDTAVYYCAGFDGYTGSDWGQGTLVT




VSS





5A-15
3255
EVQLVESGGGLVQPGGSLRLSCAASGFTFDGAAMGWFRQAPGKEREFVATIRWTNST




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRYGIVERWGQGTLVTV




SS





5A-16
3256
EVQLVESGGGLVQPGGSLRLSCAASGRTHSIYPMGWFRQAPGKERELVAAIHSGGATV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGTLVTVS




S





5A-17
3257
EVQLVESGGGLVQPGGSLRLSCAASGPTFSIYAMGWFRQAPGKEREFVAGIRWSDVYT




QYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALDIDYRDWGQGTLVTVSS





5A-18
3258
EVQLVESGGGLVQPGGSLRLSCAASGLTFDDNIHVMGWFPQAPGKEREFVAAIHWSG




GSTIYADSVKGRFTINADNSKNTAYLQMNSLKPEDTAVYYCAADVYPQDYGLGYVEG




KMYYGMDWGQGTLVTVSS





5A-19
3259
EVQLVESGGGLVQPGGSLRLSCAASGLTLDYYAMGWFRQAPGKEREWVASINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYGSGEFDWGQGTLVTV




SS





5A-20
3260
EVQLVESGGGLVQPGGSLRLSCAASGRTIVPYTMGWFRQAPGKERELVAAISPSAFTEY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWGYDWGQGTLVTVSS





5A-21
3261
EVQLVESGGGLVQPGGSLRLSCAASGGTFTTYHMGWFRQAPGKEREFVAHISTGGATN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFPAIVTDSDYDLGNDWGQ




GTLVTVSS





5A-22
3262
EVQLVESGGGLVQPGGSLRLSCAASGFTFNVFAMGWFRQAPGKEREFVAAINWSDSRT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGSDNRARELSRYEYVWG




QGTLVTVSS





5A-23
3263
EVQLVESGGGLVQPGGSLRLSCAASGSIFSIDVMGWFRQAPGKEREFVAAISWSGESTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGSDWGQGTLVTVS




S





5A-24
3264
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYSMGWFRQAPGKEREFVAAISSYSHTA




YADSVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCALQPFGASSYRWGQGTLVTVS




S





5A-25
3265
EVQLVESGGGLVQPGGSLRLSCAASGNTFSINVMGWFRQAPGKEREFVAAIHWSGDST




LYADSGKGRFTIIADNNKNTAYLQMISLKPEDTAVYYCAAFDGYSGNHWGQGTLVTV




SS





5A-26
3266
EVQLVESGGGLVQPGGSLRLSCAASGRTISSYIMGWFRQAPGKERELVARIYTGGDTIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARTSYNGRYDYIDDYSWGQG




TLVTVSS





5A-27
3267
EVQLVESGGGLVQPGGSLRLSCAASGRANSINWMGWFRQAPGKEREFVATITPGGNTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAAGSTWYGTLYEYDWGQ




GTLVTVSS





5A-28
3268
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVFAMGWFRQVPGKERELVAEITAGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDGPFGWGQGTLVTVSS





5A-29
3269
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYPMGWFRQAPGKEREGVASVLRGGYT




WYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDWATGLAWGQGTLVTV




SS





5A-30
3270
EVQLVESGGGLVQPGGSLRLSCAASGFALGYYAMGWFRQAPGKEREFVAGIRWTDAY




TEYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVSPSYGSRWYWGQGT




LVTVSS





5A-31
3271
EVQLVESGGGLVQPGGSLRLSCAASGRTLDIHVMGWFRQAPGKEREFVAVINWTGEST




LYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGNYWGQGTLVT




VSS





5A-32
3272
EVQLVESGGGLVQPGGSLRLSCAASGFTPDNYAMGWFRQAPGKEREFVAALGWSGVT




TYHYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDESDAANWGQGTL




VTVSS





5A-33
3273
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYAMGWFRQAPGKERELVATIMWSGNT




TYYADSVRRRFIIRDNNNKNTAHLQMNSLKPEDTAVYYCATNDDDVWGQGTLVTVSS





5A-34
3274
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYIMGWFRQAPGKEREFVAAISWSGGDN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYRIVVGGTSPGDWRWG




QGTLVTVSS





5A-35
3275
EVQLVESGGGLVQPGGSLRLSCAASGPTFSIYAMGWFRQAPGKERELVAGISWNGGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALRRRFGGQEWGQGTLVTV




SS





5A-36
3276
EVQLVESGGGLVQPGGSLRLSCAASGRTFSLNAMGWFRQAPGKERELVAAISCGGGST




YADNGKGRFTIITDNSKNTAYLQMMNLKPEDTAAYYCAADNDMGYCSWGQGTLVTV




SS





5A-37
3277
EVQLVESGGGLVQPGGSLRLSCAASGSTFSINAMGWFRQAPGKEREFVGGISRSGATTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADGVPEYSDYASGPVWGQ




GTLVTVSS





5A-38
3278
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMHAMGWFRQAPGKERELVASISSQGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEVRNGSDYLPIDWGQGTL




VTVSS





5A-39
3279
EVQLVESGGGLVQPGGSLRLSCAASGVTLDLYAMGWFRQAPGKEREFVAGIRWTDAY




TEYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVDIDYRDWGQGTLVTVS




S





5A-40
3280
EVQLVESGGGLVQPGGSLRLSCAASGLPFTINVMGWFRQAPGKEREFVAAIHWSGLTT




FYADSVKGLFTITEDNSKNTAHLMMNLLKPEDTAVYCCAELDGYFFAHWGQGTLVTV




SS





5A-41
3281
EVQLVESGGGLVQPGGSLRLSCAASGRAFSNYAMGWFRQAPGKEREFVAWINNRGTT




DYADSGSTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASTDDYGVDW




GQGTLVTVSS





5A-42
3282
EVQLVESGGGLVQPGGSLRLSCAASGFTPDDYAMGWFRQAPGKEREFVASIGYSGRSN




SYNYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIAHGSSTYNWGQGTL




VTVSS





5A-43
3283
EVQLVESGGGLVQPGGSLRLSCAASGFTLNYYGMGWFPQAPGKEREFVAAITSGGAPH




YADSVKGRFTINADNSKNTAYLQMNSLKPEDTAVYYCASAYDRGIGYDWGQGTLVT




VSS





5A-44
3284
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTKSMGWFRQAPGKEREFVAAIHWSGLTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRAADFFAQRDEYDWGQ




GTLVTVSS





5A-45
3285
EVQLVESGGGLVQPGGSLRLSCAASGRTFSINAMGWFPQAPGKERELVAAISWSGEST




QYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGGSGTQWGQGTLVT




VSS





5A-46
3286
EVQLVESGGGLVQPGGSLRLSCAASGEEFSDHWMGWFRQAPGKEREFVAAIHWSGDS




THRNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVGITLNWGQGTLVT




VSS





5A-47
3287
EVQLVESGGGLVQPGGSLRLSCAASGFTFGSYDMGWFRQAPGKEREFVTAINWSGAR




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSVYSYEYNWGQGTLV




TVSS





5A-48
3288
EVQLVESGGGLVQPGGSLRLSCAASGLPLDLYAMGWFPPAPGKELEFVAGIRWSDAYT




EYADSVKGRFTINADNSKNPANLQMNSLKPEDTAVYYCALDIDYRHWGQGTLVTVSS





5A-49
3289
EVQLVESGGGLVQPGGSLRLSCAASGRTSTVNGMGWFRQAPGKEREFVASISQSGAAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRTYSYSSTGYYWGQGT




LVTVSS





5A-50
3290
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKEREFVAAITSGGTPH




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAYNPGIGYDWGQGTLVTV




SS





5A-51
3291
EVQLVESGGGLVQPGGSLRLSCAASGRPNSINWMGWFRQAPGKERQFVATITPGGNTN




YADSVKGRFTISADNSKNTAYLLMNSLKPEDTAVYYCAAAAGTTWYGTLYEYDWGQ




GTLVTVSS





5A-52
3292
EVQLVESGGGLVQPGGSLRLSCAASGEKFSDHWMGWFRQAPGKEREFVATITFSGART




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALIKPSSTDRIFEEWGQGT




LVTVSS





5A-53
3293
EVQLVESGGGLVQPGGSLRLSCAASGLTVVPYAMGWFRQAPGKEREFVAAIRRSAVT




NYADSVKGRFTIIADNSKNTAYLLMNSLKPEDTAVYYCAARRWGYHYWGQGTLVTV




SS





5A-54
3294
EVQLVESGGGLVQPGGSLRLSCAASGTTFNFNVMGWFRQAPGKERELVAVISWTGEST




LYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGRDWGQGTLVT




VSS





5A-55
3295
EVQLVESGGGLVQPGGSLRLSCAASGIDVNRNAMGWFRQAPGKEREFVAAITWSGGW




RYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTFGDAGIPDQYDFGWG




QGTLVTVSS





5A-56
3296
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSNMGWFRQAPGKEREFVARIFGGDRTLY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCADINGDWGQGTLVTVSS





5A-57
3297
EVQLVESGGGLVQPGGSLRLSCAASGGTFSMGWIRWVPQAQGKELEFMGCIGWITYY




ADYAKSRFSLFTDNADNIKNPPNMEMNPQKPEDTAVYYCAPFGWGQGTLVTVSS





5A-58
3298
EVQLVESGGGLVQPGGSLRLSCAASGCTLDYYAMGWFRQAPGKEREFVAGIRWTDAY




TEYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADVSPSYGGRWYWGQG




TLVTVSS





5A-59
3299
EVQLVESGGGLVQPGGSLRLSCAASGLTFSLYRMCWFRQAPGKEREEVSCISNIDGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLLGDSDYEPSSGFGWGQ




GTLVTVSS





5A-60
3300
EVQLVESGGGLVQPGGSLRLSCAASGRSFSSHRMGWFRQAPGKEREFVAAIMWSGSH




RNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIAYEEGVYRWDWGQG




TLVTVSS





5A-61
3301
EVQLVESGGGLVQPGGSLRLSCAASGRIIVPNTMGWFRQAPGKERERVTGISPSAFTEY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAHGWGCHWGQGTLVTVSS





5A-62
3302
EVQLVESGGGLVQPGGSLRLSCAASGSIFIISMGWFRQAPGKEHEFVTGINWSGGSTTY




ADSVKGRFTINADNSKNTAYLQMNSLKPEDTAVYYCAASAIGSGALRRFEYDWGQGT




LVTVSS





5A-63
3303
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYDMGWFRQAPGKEREFVAALGWSGGS




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRYGIVERWGQGT




LVTVSS





5A-64
3304
EVQLVESGGGLVQPGGSLRLSCAASGTSISNRVMGWFRQAPGKERELVARIYTGGDTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARKIYRSLSYYGDYDWGQG




TLVTVSS





5A-65
3305
EVQLVESGGGLVQPGGSLRLSCAASGNIDRLYAMGWFRQAPGKEREGVAAIDSDGST




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALIDYGLGFPIEWGQGTLV




TVSS





5A-66
3306
EVQLVESGGGLVQPGGSLRLSCAASGNTFTINVMGWFRQAPGKEREFVAAINWNGGT




TLYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGIDWGQGTLVT




VSS





5A-67
3307
EVQLVESGGGLVQPGGSLRLSCAASGFNVNDYAMGWFRQAPGKEREFVAGITSSVGV




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADIFFVNWGRGTLVTVSS





5A-68
3308
EVQLVESGGGLVQPGGSLRLSCAASGFTFDHYTMGWFRQAPGKEREFVAAISGSENVT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAEPYIPVRTMRHMTFLTW




GQGTLVTVSS





6A-1
3309
EVQLVESGGGLVQPGGSLRLSCAASGRTFGNYNMGWFRQAPGKEREFVATINSLGGTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDYYMDVWGQGTLVTVS




S





6A-2
3310
EVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREFVTVISGVGTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGPDSSGYGFDYWGQGTLVT




VSS





6A-3
3311
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





6A-4
3312
EVQLVESGGGLVQPGGSLRLSCAASGFTRDYYTMGWFRQAPGKEREFVAAISRSGSLT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCANLAYYDSSGYYDYWGQG




TLVTVSS





6A-5
3313
EVQLVESGGGLVQPGGSLRLSCAASGRTFTMGWFRQAPGKEREFVASTNSAGSTNYA




DSVNGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTVDQYFDYWGQGTLVTVSS





6A-6
3314
EVQLVESGGGLVQPGGSLRLSCAASGTTLDYYAMGWFRQAPGKERELVAAISWSGGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREDYYDSSGYSWGQGTL




VTVSS





6A-7
3315
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMGWFRQAPGKEREFVATINWSGVT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARADDYFDYWGQGTLVTV




SS





6A-8
3316
EVQLVESGGGLVQPGGSLRLSCAASGFTLSGIWMGWFLQAPGKEHEFVAIITTGGRTTY




ADSXKGRFTSSSDNSKNTAYLQMNLLKPEDTAEYYCAGYSTFGSSSAYYYYSMDVGW




GQGTLVTVSS





6A-9
3317
EVQLVESGGGLVQPGGSLRLSCAASGFTFDYYAMGWFRQAPGKEREFVSAIDSEGRTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPFDIWGQGTLVTVSS





6A-10
3318
EVQLVESGGGLVQPGGSLRLSCAASGSIASIHAMGWFRQAPGKEREFVAAISRSGGFGS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDDKYYDSSGYPAYFQHW




GQGTLVTVSS





6A-11
3319
EVQLVESGGGLVQPGGSLRLSCAASGLAFNAYAMGWFRQAPGKEREEVATIGWSGAN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDPPGWGQGTLVTVSS





6A-12
3320
EVQLVESGGGLVQPGGSLRLSCAASGSTYTTYSMGWFRQAPGKEREFVAAISGSENVT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDDYMDVWGQGTLVTV




SS





6A-13
3321
EVQLVESGGGLVQPGGSLRLSCAASGLTFNDYAMGWFRQAPGKEREFVAHIPRSTYSP




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAFLVGPQGVDHGAFDVWG




QGTLVTVSS





6A-14
3322
EVQLVESGGGLVQPGGSLRLSCAASGITFRFKAMGWFRQAPGKEREFVAAVSWDGRN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDYYYMDVWGQGTLVT




VSS





6A-15
3323
EVQLVESGGGLVQPGGSLRLSCAASGSTVLINAMGWFRQAPGKEREFVAAVRWSDDY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEGRAGSLDYWGQGTL




VTVSS





6A-16
3324
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDAAMGWFRQAPGKEREFVAHISWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFGATVTATNDAFDIWG




QGTLVTVSS





6A-17
3325
EVQLVESGGGLVQPGGSLRLSCAASGNTGSTGYMGWFRQAPGKEREMVAGVINDGST




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLATSHQDGTGYLFDYWG




QGTLVTVSS





6A-18
3326
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFIAGMMWSGGT




TTYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYYDSSGYLNYFDY




WGQGTLVTVSS





6A-19
3327
EVQLVESGGGLVQPGGSLRLSCAASGSILSIAVMGWFRQAPGKEREFVAAISPSAVTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIGYYDSSGYFDYWGQGTLV




TVSS





6A-20
3328
EVQLVESGGGLVQPGGSLRLSCAASGSTLPYHAMGWFRQAPGKEREFVAAITWNGAS




TSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRYYDTSASYFESETW




GQGTLVTVSS





6A-21
3329
EVQLVESGGGLVQPGGSLRLSCAASGTLFKINAMGWFRQAPGKEREFVAAITSSGSNID




YTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSNTGWYSFDYWGQG




TLVTVSS





6A-22
3330
EVQLVESGGGLVQPGGSLRLSCAASGRTFSEVVMGWFRQAPGKEREFVATIHSSGSTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRVTSDYSMDSWGQGTLVTV




SS





6A-23
3331
EVQLVESGGGLVQPGGSLRLSCAASGSIFSMNTMGWFRQAPGKEREFVALINRSGGGI




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRLSSGYYDFDYWGQGTLV




TVSS





6A-24
3332
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAMGWFRQAPGKEREFVAAINWSGDN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARAPFYCTTTKCQDNYYY




MDVWGQGTLVTVSS





6A-25
3333
EVQLVESGGGLVQPGGSLRLSCAASGLTFGTYTMGWFRQAPGKEREFVAAISRFGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGDYDFWSVDYMDVWG




QGTLVTVSS





6A-26
3334
EVQLVESGGGLVQPGGSLRLSCAASGDTFSTSWMGWFRQAPGKEREFVATINTGGGT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTTSFDYWGQGTLVTVS




S





6A-27
3335
EVQLVESGGGLVQPGGSLRLSCAASGITFRFKAMGWFRQAPGKEREFVASISRSGTTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDYSAFDMWGQGTLVTVSS





6A-28
3336
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVATITSDDRT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTSSLSGMDVWGQGTLV




TVSS





6A-29
3337
EVQLVESGGGLVQPGGSLRLSCAASGYTLKNYYAMGWFRQAPGKERXLVAAIIWTGE




STLDADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYDSSGYYWGQGT




LVTVSS





6A-30
3338
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDSWMGWFRQAPGKEREFVATINWSGVT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARADGYFDYWGQGTLVTV




SS





6A-31
3339
EVQLVESGGGLVQPGGSLRLSCAASGDTFSANRMGWFRQAPGKEREFVASITWSSANT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATFNWNDEGFDFWGQGTL




VTVSS





6A-32
3340
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYDMGWFRQAPGKEREFVALISWSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDFYGWGTRERDAFDIWG




QGTLVTVSS





6A-33
3341
EVQLVESGGGLVQPGGSLRLSCAASGTFQRINHMGWFRQAPGKEREFVATINTGGQPN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLIAAQDYYFDYWGQGTLV




TVSS





6A-34
3342
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSNAMGWFRQAPGKEREFVAHISWSSKST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATYCSSTSCFDYWGQGTLV




TVSS





6A-35
3343
EVQLVESGGGLVQPGGSLRLSCAASGFTLAYYAMGWFRQAPGKEREFVAAISMSGDD




TIYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARELGYSSTVWPWGQGTL




VTVSS





6A-36
3344
EVQLVESGGGLVQPGGSLRLSCAASGFDFSVSWMGWFRQAPGKEREFVTAITWSGDST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLHTGPSGGNYFDYWGQ




GTLVTVSS





6A-37
3345
EVQLVESGGGLVQPGGSLRLSCAASGHTFSTSWMGWFRQAPGKEREFVATINSLGGTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVSSGDYGMDVWGQGTLV




TVSS





6A-38
3346
EVQLVESGGGLVQPGGSLRLSCAASGNTFSGGFMGWFRQAPGKEREFVAVISSLSSKS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKVDSGYDYWGQGTLVTVSS





6A-39
3347
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVAAISWSGGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCHGLGEGDPYGDYEGYFDL




WGQGTLVTVSS





6A-40
3348
EVQLVESGGGLVQPGGSLRLSCAASGFTFSDYWMGWFRQAPGKERELVARVWWNGG




SAYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVLRQQVVLDYWGQ




GTLVTVSS





6A-41
3349
EVQLVESGGGLVQPGGSLRLSCAASGFTFSTSWMGWFRQAPGKEREFVASINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGLHYYYDSSGYNPTEYYGM




DVWGQGTLVTVSS





6A-42
3350
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVAVITSGGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTHVQNSYYYAMDVWGQGT




LVTVSS





6A-43
3351
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYAMMGWFRQAPGKEREFVASVNWDAS




QINYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTLGAVYFDSSGYHDYFD




YWGQGTLVTVSS





6A-44
3352
EVQLVESGGGLVQPGGSLRLSCAASGGTFGVYHMGWFRQAPGKEREFIGRITWTDGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCFGLLEVYDMTFDYWGQGTL




VTVSS





6A-45
3353
EVQLVESGGGLVQPGGSLRLSCAASGNMFSINAMGWFRQAPGKEREFVTLISWSSGRT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLGYCSGGSCFDYWGQGT




LVTVSS





6A-46
3354
EVQLVESGGGLVQPGGSLRLSCAASGLTFSAMGWFRQAPGKEREFVALIRRDGSTIYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALGILFGYDAFDIWGQGTLVTV




SS





6A-47
3355
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMHAMGWFRQAPGKERELVASITYGGNIN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEGYYDSTGYRTYFQQWG




QGTLVTVSS





6A-48
3356
EVQLVESGGGLVQPGGSLRLSCAASGFTVSNYAMGWFRQAPGKEREFVASVNWSGGT




TSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTGTVTLGYWGQGTLVT




VSS





6A-49
3357
EVQLVESGGGLVQPGGSLRLSCAASGSTVLINAMGWFRQAPGKEREFVAAISWSPGRT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDCSGGSCYSGDYWGQG




TLVTVSS





6A-50
3358
EVQLVESGGGLVQPGGSLRLSCAASGFSFDRWAMGWFRQAPGKEREWVASLATGGN




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTNYDAFDIWGQGTLV




TVSS





6A-51
3359
EVQLVESGGGLVQPGGSLRLSCAASGYTYSSYVMGWFRQAPGKEREFVAAISRFGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDSGEHFWDSGYIDHWGQG




TLVTVSS





6A-52
3360
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREVVAAITSGGST




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDSRFDYWGQGTLVTVS




S





6A-53
3361
EVQLVESGGGLVQPGGSLRLSCAASGISINTNVMGWFRQAPGKEREFVAAISTGSVTIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDDFGYFDLWGQGTLVTVS




S





6A-54
3362
EVQLVESGGGLVQPGGSLRLSCAASGFEFENHWMGWFRQAPGKEREYVAHITAGGLS




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCGRHWGIYDSSGFSSFDYWG




QGTLVTVSS





6A-55
3363
EVQLVESGGGLVQPGGSLRLSCAASGFTMSSSWMGWFRQAPGKEREFVARITSGGSTG




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASVDGYFDYWGQGTLVTVSS





6A-56
3364
EVQLVESGGGLVQPGGSLRLSCAASGNIFRSNMGWFRQAPGKEREFVAGITWNGDTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARALGVTYQFDYWGQGTLV




TVSS





6A-57
3365
EVQLVESGGGLVQPGGSLRLSCAASGLTFDDHSMGWFRQAPGKEREFVAAVPLSGNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASFSGGPADFDYWGQGTLV




TVSS





6A-58
3366
EVQLVESGGGLVQPGGSLRLSCAASGRAVSTYAMGWFRQAPGKEREFVAAISGSENVT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCLSVTGDTEDYGVFDTWGQG




TLVTVSS





6A-59
3367
EVQLVESGGGLVQPGGSLRLSCAASGISGSVFSRTPMGWFRQAPGKEREWVSSIYSDGS




NTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAHWSWELGDWFDPWGQ




GTLVTVSS





6A-60
3368
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVATISQSGAA




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGLLRYSGTYYDAFDVWG




QGTLVTVSS





6A-61
3369
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREFVAAINWSGGS




TNYADSVKGRFTITADNNKNTAYLQMNSLKPEDTAVYYCAGLGWNYMDYWGQGTL




VTVSS





6A-62
3370
EVQLVESGGGLVQPGGSLRLSCAASGSTFSGNWMGWFRQAPGKEREFVAVISWTGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATHNSLSGFDYWGQGTLV




TVSS





6A-63
3371
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





6A-64
3372
EVQLVESGGGLVQPGGSLRLSCAASGIPSIHAMGWFRQAPGKERELVAAINWSHGVTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCGGGYGYHFDYWGQGTLVTV




SS





6A-65
3373
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTLHMGWFRQAPGKEREFVASLSIFGATG




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWMYYYDSSGYYGNYYYGM




DVWGQGTLVTVSS





6A-66
3374
EVQLVESGGGLVQPGGSLRLSCAASGLTFSLFAMGWFRQAPGKERELVAAISSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGNTKYYYDSSGYSSAFDY




WGQGTLVTVSS





6A-67
3375
EVQLVESGGGLVQPGGSLRLSCAASGSFSNYAMGWFRQAPGKEREFVAAISSSGALTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWIVGPGPLDGMDVWGQGTL




VTVSS





6A-68
3376
EVQLVESGGGLVQPGGSLRLSCAASGFTLSDRAMGWFRQAPGKEREYVAHITAGGLS




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVHLASQTGAGYFDLWGQG




TLVTVSS





6A-69
3377
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSVGMGWFRQAPGKEREFVAGISRSGGTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARYDFWSGYPYWGQGTLVT




VSS





6A-70
3378
EVQLVESGGGLVQPGGSLRLSCAASGFNLDDYADMGWFRQAPGKEREFVAAIGWGG




GSTRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREILWFGEFGEPNVW




GQGTLVTVSS





6A-71
3379
EVQLVESGGGLVQPGGSLRLSCAASGITFSNDAMGWFRQAPGKEREFVAIITSSDTNDT




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLHYYDSSGYFDYWGQ




GTLVTVSS





6A-72
3380
EVQLVESGGGLVQPGGSLRLSCAASGSTLSINAMGWFRQAPGKEREFVAAIDWSGGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDSSATRTGPDYWGQGTL




VTVSS





6A-73
3381
EVQLVESGGGLVQPGGSLRLSCAASGHTFSGYAMGWFRQAPGKEREFVAVITREGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLGGEGFDYWGQGTLVTVS




S





6A-74
3382
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDSWMGWFRQAPGKERELVAAITSGGST




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGLLWFGELFGYWGQGTL




VTVSS





6A-75
3383
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYWMGWFRQAPGKEREFVAAISRSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRHSGTDGDSSFDYWGQG




TLVTVSS





6A-76
3384
EVQLVESGGGLVQPGGSLRLSCAASGLAFDFDGMGWFRQAPGKEREGVAAINSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFFRAHDYWGQGTLVTVS




S





6A-77
3385
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREFVAAVTEGGTT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARADYDFDYWGQGTLVTVS




S





6A-78
3386
EVQLVESGGGLVQPGGSLRLSCAASGRTYDAMGWFRQAPGKEREFVASVTSGGYTHY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKFGRKIVGATELDYWGQGTL




VTVSS





6A-79
3387
EVQLVESGGGLVQPGGSLRLSCAASGSISSIDYMGWFRQAPGKEREGVSWISSSDGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSPSFSQIYYYYYMDVWGQ




GTLVTVSS





6A-80
3388
EVQLVESGGGLVQPGGSLRLSCAASGGTFSFYNMGWFRQAPGKEREFVAFISGNGGTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVAMRMVTTEGPDVLDVW




GQGTLVTVSS





6A-81
3389
EVQLVESGGGLVQPGGSLRLSCAASGFIGNYHAMGWFRQAPGKEREFVAAVTWSGGT




TNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREGYYYDSSGYPYYFDY




WGQGTLVTVSS





6A-82
3390
EVQLVESGGGLVQPGGSLRLSCAASGSSLDAYGMGWFRQAPGKEREFVAAISWGGGSI




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLSQGMVALDYWGQGTL




VTVSS





6A-83
3391
EVQLVESGGGLVQPGGSLRLSCAASGSIASIHAMGWFRQAPGKEREFVAAITWSGAITS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDGGYGELHYGMEVWGQG




TLVTVSS





6A-84
3392
EVQLVESGGGLVQPGGSLRLSCAASGFTPDDYAMGWFRQAPGKEREFVAAINSGGSYT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRGPWGQGTLVTVSS





6A-85
3393
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVFAMGWFRQAPGKEREFVSAINWSGGSL




LYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALFGDFDYWGQGTLVTVSS





6A-86
3394
EVQLVESGGGLVQPGGSLRLSCAASGPISGINRMGWFRQAPGKEREFVAVITSNGRPSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRLSSGYFDFDYWGQGTLVTV




SS





6A-87
3395
EVQLVESGGGLVQPGGSLRLSCAASGTSIMVGAMGWFRQAPGKEREFVAIIRGDGRTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFAGWDAFDIWGQGTLVTV




SS





6A-88
3396
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTHWMGWFRQAPGKEREFVAVINWSGGSI




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLSSDGYNYFDFWGQGTL




VTVSS





6A-89
3397
EVQLVESGGGLVQPGGSLRLSCAASGTIFASAMGWFRQAPGKEHQFVAVVNWNGSST




VYADNVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCTTVDQYFNYWGQGTLVTVS




S





6A-90
3398
EVQLVESGGGLVQPGGSLRLSCAASGFPFSIWPMGWFRQAPGKEREFVAAVRWSSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGECDGGSCSLAYWGQGTLV




TVSS





6A-91
3399
EVQLVESGGGLVQPGGSLRLSCAASGRTFGNYAMGWFRQAPGKEREFVASISSSGVSK




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRFGSSWARDLDQWGQGT




LVTVSS





6A-92
3400
EVQLVESGGGLVQPGGSLRLSCAASGFLFDSYASMGWFRQAPGKEREFVATIWRRGNT




YYANYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTETGTAAWGQGTLVTV




SS





6A-93
3401
EVQLVESGGGLVQPGGSLRLSCAASGLPFSTKSMGWFRQAPGKEREFVAAISMSGLTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCLKVLGGDYEADNWFDYWGQ




GTLVTVSS





6A-94
3402
EVQLVESGGGLVQPGGSLRLSCAASGNIFRIETMGWFRQAPGKEREFVAGIIRSGGETL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSLYYDRSGSYYFDYWGQG




TLVTVSS





6A-95
3403
EVQLVESGGGLVQPGGSLRLSCAASGIPSSIRAMGWFRQAPGKEREFVAVIRWTGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDIGYYDSSGYYNDGGFD




YWGQGTLVTVSS





6A-96
3404
EVQLVESGGGLVQPGGSLRLSCAASGFTLSGNWMGWFRQAPGKEREFVAIITSGGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGHATFGGSSSSYYYGMDV




WGQGTLVTVSS





6A-97
3405
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSLAMGWFRQAPGKEREFVAAITWSGDIT




NYADSVKGRFTITADNSKNTAYLQMNSLKPEDTAVYYCLRLSSSGFDHWGQGTLVTV




SS





6A-98
3406
EVQLVESGGGLVQPGGSLRLSCAASGTFGHYAMGWFRQAPGKEREFVAAINWSSRST




VYADSVKGRFTITADNSKNTAYLQMNSLKPEDTAVYYCAKSDGLMGELRSASAFDIW




GQGTLVTVSS





6A-99
3407
EVQLVESGGGLVQPGGSLRLSCAASGIPFRSRTMGWFRQAPGKEREFVAGISRSGASTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTHANDYGDYWGQGTLVTVS




S





6A-100
3408
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTSWMGWFRQAPGKEREYVAHITAGGLS




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLLVREDWYFDLWGQGT




LVTVSS





6A-101
3409
EVQLVESGGGLVQPGGSLRLSCAASGGTFSLFAMGWFRQAPGKEREFVAAISWTGDST




YYKYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAYNNSSGEYWGQGTL




VTVSS





6A-102
3410
EVQLVESGGGLVQPGGSLRLSCAASGSSFSAYAMGWFRQAPGKEREFVSAIDSEGTTT




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGDYNFWSGFDHWGQGTLV




TVSS





6A-103
3411
EVQLVESGGGLVQPGGSLRLSCAASGRTSSPIAMGWFRQAPGKEREPVAVRWSDDYT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKKLGGYYAFDIWGQGTLV




TVSS





6A-104
3412
EVQLVESGGGLVQPGGSLRLSCAASGLTFNQYTMGWFRQAPGKEREFVASITDGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDSRYMDVWGQGTLVTVS




S





6A-105
3413
EVQLVESGGGLVQPGGSLRLSCAASGPTFSSMGWFRQAPGKEREFVAAISWDGGATA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIEIVVGGIYWGQGTLVTVSS





6A-106
3414
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAATSWSGGSK




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDLYYMDVWGQGTLVTV




SS





6A-107
3415
EVQLVESGGGLVQPGGSLRLSCAASGGVGFSVTNMGWFRQAPGKEREFVAVISSSSST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTFNWNDEGFDYWGQGTL




VTVSS





6A-108
3416
EVQLVESGGGLVQPGGSLRLSCAASGGTFGSYGMGWFRQAPGKEREFVAAIRWSGGIT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARERYWNPLPYYYYGMDV




WGQGTLVTVSS





6A-109
3417
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYAMGWFRQVPGKEREFVASIDWSGLTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGPFYMYCSGTKCYSTNWF




DPWGQGTLVTVSS





6A-110
3418
EVQLVESGGGLVQPGGSLRLSCAASGPIYAVNRMGWFRQAPGKEREFVAGIWRSGGH




RDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGEIDILTGYWYDYWGQ




GTLVTVSS





6A-111
3419
EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYWMGWFRQAPGKEREFVGGISRSGVST




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTLLYYYDSSGYSFDAFDIW




GQGTLVTVSS





6A-112
3420
EVQLVESGGGLVQPGGSLRLSCAASGGTFSAYHMGWFRQAPGKERELVTIIDNGGPTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTALLYYFDNSGYNFDPFDIWG




QGTLVTGSS





2A-H1
3421
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYATDWVRQAPGKGLEWVSIISGSGGAT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGYCSSDTCWWEYWLD




PWGQGTLVTVSS





2A-H2
3422
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAFAMGWVRQAPGKGLEWVSAITASGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARQSDGLPSPWHFDLGGQG




TLVTVSS





2A-H3
3423
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-H4
3424
EVQLLESGGGLVQPGGSLRLSCAASGFTFSRHAMNWVRQAPGKGLEWVSGISGSGDET




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLPASYYDSSGYYWHNG




MDVWGQGTLVTVSS





2A-H5
3425
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADCLPSPWYLDLWGQG




TLVTVSS





2A-H6
3426
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-H7
3427
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYPMNWVRQAPGKGLEWVSTISGSGGNT




FYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-H8
3428
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-H9
3429
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSTISGSGGIT




FYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-H10
3430
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAISGSGDNT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-H11
3431
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAITGTGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWGQGTLVTV




SS





2A-H12
3432
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYPMNWVRQAPGKGLEWVSAITGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRHDEYSFDYWGQGTLVTV




SS





2A-H13
3433
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-H14
3434
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDFAMAWVRQAPGKGLEWVSAISGSGDIT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREADGLHSPWHFDLWGQ




GTLVTVSS





2A-H15
3435
EVQLLESGGGLVQPGGSLRLSCAASGFTFPRYAMSWVRQAPGKGLEWVSTISGSGSTT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARLIDAFDIWGQGTLVTVSS





2A-L1
3436
DIQMTQSPSSLSASVGDRVTITCRASQSIHRFLNWYQQKPGKAPKLLIYAASNLHSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYGLPPTFGQGTKVEIK





2A-L2
3437
DIQMTQSPSSLSASVGDRVTITCRASQSIHISLNWYQQKPGKAPKLLIYLASPLASGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L3
3438
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L4
3439
DIQMTQSPSSLSASVGDRVTITCRASQTINTYLNWYQQKPGKAPKLLIYSASTLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTFTFGQGTKVEIK





2A-L5
3440
DIQMTQSPSSLSASVGDRVTITCRASQNIHTYLNWYQQKPGKAPKLLIYAASTFAKGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L6
3441
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L7
3442
DIQMTQSPSSLSASVGDRVTITCRASQSIGNYLNWYQQKPGKAPKLLIYGVSSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-L8
3443
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L9
3444
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-L10
3445
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGASALESGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-L11
3446
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L12
3447
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYFFGQGTKVEIK





2A-L13
3448
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-L14
3449
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-L15
3450
DIQMTQSPSSLSASVGDRVTITCRASQRIGTYLNWYQQKPGKAPKLLIYAASNLEGGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQNYSTTWTFGQGTKVEIK





2A-H16
3451
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSVISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYRDYLWYFDLWGQG




TLVTVSS





2A-H17
3452
EVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSAISGSAGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVRQGLRRTWYYFDYWG




QGTLVTVSS





2A-H18
3453
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMYWVRQAPGKGLEWVSAISGSAGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTNDFWSGYSIFDPWGQ




GTLVTVSS





2A-H19
3454
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYTMSWVRQAPGKGLEWVSVISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGYRDYLWYFDLWGQG




TLVTVSS





2A-H20
3455
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYDMSWVRQAPGKGLEWVSVISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGPLVGWYFDLWGQGTL




VTVSS





2A-L16
3456
DIQMTQSPSSLSASVGDRVTITCTGTSSDVGSYDLVSWYQQKPGKAPKLLIYEGNKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSSVVFGQGTKVEIK





2A-L17
3457
DIQMTQSPSSLSASVGDRVTITCTGTSSDVGSSNLVSWYQQKPGKAPKLLIYEGSKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSLYVFGQGTKVEIK





2A-L18
3458
DIQMTQSPSSLSASVGDRVTITCTGTSSDIGSYNLVSWYQQKPGKAPKLLIYEGTKRPSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSRTYVFGQGTKVEIK





2A-L19
3459
DIQMTQSPSSLSASVGDRVTITCTGTSTDVGSYNLVSWYQQKPGKAPKLLIYEGTKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSYTSVVFGQGTKVEIK





2A-L20
3460
DIQMTQSPSSLSASVGDRVTITCTGTSSNVGSYNLVSWYQQKPGKAPKLLIYEGTKRPS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCCSYAGSSSFVVFGQGTKVEIK





3A-H1
3461
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-H2
3462
EVQLLESGGGLVQPGGSLRLSCAASGFTFSAYSMSWVRQAPGKGLEWVSAISGSGGSR




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCGRSKWPQANGAFDIWGQGT




LVTVSS





3A-H3
3463
EVQLLESGGGLVQPGGSLRLSCAASGFMFGNYAMSWVRQAPGKGLEWVAAISGSGGS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDRGYSSSWYGGFDYW




GQGTLVTVSS





3A-H4
3464
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNHAMAWVRQAPGKGLEWVSGISGSGGT




TYYGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLQWSLPLDVWGQ




GTLVTVSS





3A-H5
3465
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGAGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-H6
3466
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYAMAWVRQAPGKGLEWVSGISGSGGT




TYYGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTRFLEWSLPLDVWGQ




GTLVTVSS





3A-H7
3467
EVQLLESGGGLVQPGGSLRLSCAASGFTIRNYAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-H8
3468
EVQLLESGGGLVQPGGSLRLSCAASGFTIPNYAMSWVRQAPGKGLEWVSGISGSGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-H9
3469
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHAWWKGAGFFDHWGQ




GTLVTVSS





3A-H10
3470
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-H11
3471
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-H12
3472
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMNWVRQAPGKGLEWVSAISGSGGST




NYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGLKFLEWLPSAFDIWGQ




GTLVTVSS





3A-H13
3473
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSHAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-H14
3474
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYAMSWVRQAPGKGLEWVSSISGGGAST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVKYLTTSSGWPRPYFDN




WGQGTLVTVSS





3A-H15
3475
EVQLLESGGGLVQPGGSLRLSCAASGFTITNYAMSWVRQAPGKGLEWVSGISGSGAGT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARHTWWKGAGFFDHWGQG




TLVTVSS





3A-L1
3476
DIQMTQSPSSLSASVGDRVTITCRASQSIRKYLNWYQQKPGKAPKLLIYASSTLQRGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGQGTKVEIK





3A-L2
3477
DIQMTQSPSSLSASVGDRVTITCRASQNIKTYLNWYQQKPGKAPKLLIYAASKLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTSPTFGQGTKVEIK





3A-L3
3478
DIQMTQSPSSLSASVGDRVTITCRASQTIYSYLNWYQQKPGKAPKLLIYATSTLQGGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQHRGTFGQGTKVEIK





3A-L4
3479
DIQMTQSPSSLSASVGDRVTITCRASRSIRRYLNWYQQKPGKAPKLLIYASSSLQAGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLLTFGQGTKVEIK





3A-L5
3480
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSPPFTFGQGTKVEIK





3A-L6
3481
DIQMTQSPSSLSASVGDRVTITCRASRSISRYLNWYQQKPGKAPKLLIYAASSLQAGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSSLLTFGQGTKVEIK





3A-L7
3482
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSPPFTFGQGTKVEIK





3A-L8
3483
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYASSSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-L9
3484
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-L10
3485
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGQGTKVEIK





3A-L11
3486
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPLTFGQGTKVEIK





3A-L12
3487
DIQMTQSPSSLSASVGDRVTITCRTSQSINTYLNWYQQKPGKAPKLLIYGASNVQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRIPRTFGQGTKVEIK





3A-L13
3488
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSPPFTFGQGTKVEIK





3A-L14
3489
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSTPFTFGQGTKVEIK





3A-L15
3490
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-H16
3491
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNFAMSWVRQAPGKGLEWVSAISGRGGGT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDAHGYYYDSSGYDDWG




QGTLVTVSS





3A-H17
3492
EVQLLESGGGLVQPGGSLRLSCAASGFTFRSYPMSWVRQAPGKGLEWVSTISGSGGITY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGVYGSTVTTCHWGQGTLV




TVSS





3A-H18
3493
EVQLLESGGGLVQPGGSLRLSCAASGFTLTSYAMSWVRQAPGKGLEWVSAISGSGVDT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPTNWGFDYWGQGTLVT




VSS





3A-H19
3494
EVQLLESGGGLVQPGGSLRLSCAASGFTFINYAMSWVRQAPGKGLEWVSTISTSGGNT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADSNWASSAYWGQGTL




VTVSS





3A-H20
3495
EVQLLESGGGLVQPGGSLRLSCAASGFPFSTYAMSWVRQAPGKGLEWVSGISVSGGFT




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPYSYGYYYYYGMDVW




GQGTLVTVSS





3A-H21
3496
EVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMGWVRQAPGKGLEWVSGISGGGVS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARARNWGPSDYWGQGTL




VTVSS





3A-H22
3497
EVQLLESGGGLVQPGGSLRLSCAASGFIFSDYAMTWVRQAPGKGLEWVSAISGSAFYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDATYSSSWYNWFDPWGQGTL




VTVSS





3A-H23
3498
EVQLLESGGGLVQPGGSLRLSCAASGFTFSDYAMTWVRQAPGKGLEWVSDISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGTVTSFDFWGQGTLVTV




SS





3A-H24
3499
EVQLLESGGGLVQPGGSLRLSCAASGFTFSIYAMGWVRQAPGKGLEWVSFISGSGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDYHSASWFSAAADYWG




QGTLVTVSS





3A-H25
3500
EVQLLESGGGLVQPGGSLRLSCAASGFTFASYAMTWVRQAPGKGLEWVSAISESGGST




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGQEYSSGSSYFDYWGQ




GTLVTVSS





3A-H26
3501
EVQLLESGGGLVQPGGSLRLSCAASGFTFSEYAMSWVRQAPGKGLEWVSAITGSGGST




YYGDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGSQTPYCGGDCPETFDY




WGQGTLVTVSS





3A-H27
3502
EVQLLESGGGLVQPGGSLRLSCAASGFTFDDYAMSWVRQAPGKGLEWVSGISGGGTS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLYSSGWYGFDYWGQ




GTLVTVSS





3A-H28
3503
EVQLLESGGGLVQPGGSLRLSCAASGFTFNNYAMNWVRQAPGKGLEWVSAISGSVGS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDNYDFWSGYYTNWFD




PWGQGTLVTVSS





3A-H29
3504
EVQLLESGGGLVQPGGSLRLSCAASGFTFTNHAMSWVRQAPGKGLEWVSAISGSGSNI




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSLSVTMGRGVVTYYYY




GMDFWGQGTLVTVSS





3A-L16
3505
DIQMTQSPSSLSASVGDRVTITCRASQIIGSYLNWYQQKPGKAPKLLIYTTSNLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYITPWTFGQGTKVEIK





3A-L17
3506
DIQMTQSPSSLSASVGDRVTITCRASQSISRYINWYQQKPGKAPKLLIYEASSLESGVPSR




FSGSGSGTDFTLTISSLQPEDFATYYCQQSHITPLTFGQGTKVEIK





3A-L18
3507
DIQMTQSPSSLSASVGDRVTITCRASQSIYTYLNWYQQKPGKAPKLLIYSASNLHSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSDTTPWTFGQGTKVEIK





3A-L19
3508
DIQMTQSPSSLSASVGDRVTITCRASQSIATYLNWYQQKPGKAPKLLIYGASSLEGGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQTFSSPFTFGQGTKVEIK





3A-L20
3509
DIQMTQSPSSLSASVGDRVTITCRASQNINTYLNWYQQKPGKAPKLLIYSASSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSSLTPWTFGQGTKVEIK





3A-L21
3510
DIQMTQSPSSLSASVGDRVTITCRASQGIATYLNWYQQKPGKAPKLLIYYASNLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTRFTFGQGTKVEIK





3A-L22
3511
DIQMTQSPSSLSASVGDRVTITCRASERISNYLNWYQQKPGKAPKLLIYTASNLESGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTPPRTFGQGTKVEIK





3A-L23
3512
DIQMTQSPSSLSASVGDRVTITCRASQSISSSLNWYQQKPGKAPKLLIYAASRLQDGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRSFGQGTKVEIK





3A-L24
3513
DIQMTQSPSSLSASVGDRVTITCRASQSISSHLNWYQQKPGKAPKLLIYRASTLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQTYNTPQTFGQGTKVEIK





3A-L25
3514
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLIWYQQKPGKAPKLLIYAASRLHSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQGYNTPRTFGQGTKVEIK





3A-L26
3515
DIQMTQSPSSLSASVGDRVTITCRASPSISTYLNWYQQKPGKAPKLLIYTASRLQTGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSTPSSFGQGTKVEIK





3A-L27
3516
DIQMTQSPSSLSASVGDRVTITCRASQNIAKYLNWYQQKPGKAPKLLIYGASGLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSPPITFGQGTKVEIK





3A-L28
3517
DIQMTQSPSSLSASVGDRVTITCRASQSIGTYLNWYQQKPGKAPKLLIYAASNLHSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQESYSAPYTFGQGTKVEIK





3A-L29
3518
DIQMTQSPSSLSASVGDRVTITCRASQSISPYLNWYQQKPGKAPKLLIYKASSLQSGVPS




RFSGSGSGTDFTLTISSLQPEDFATYYCQQSSSTPYTFGQGTKVEIK





4A-H51
3519
EVQLVESGGGLVQPGGSLRLSCAASGPGTAIMGWFRQAPGKEREFVARISTSGGSTKY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTTVTTPPLIWGQGTLVTVSS





4A-H52
3520
EVQLVESGGGLVQPGGSLRLSCAASGRSFSNSVMGWFRQAPGKEREFVARITWNGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVS




S





4A-H53
3521
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAVSWSGSG




VYYADSVKGRFTITADNSKNTAYLQMNSLKPENTAVYYCATDPPLFWGQGTLVTVSS





4A-H54
3522
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDARMGWFRQAPGKEREFVGAVSWSGGT




TVYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTEDPYPRWGQGTLVTV




SS





4A-H49
3523
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDHWGQG




TLVTVSS





4A-H55
3524
EVQLVESGGGLVQPGGSLRLSCAASGSGLSINAMGWFRQAPGKERESVAAISWSGGST




YTAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQAGWGDWGQGTLV




TVSS





4A-H39
3525
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGAS




RNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTV




SS





4A-H56
3526
EVQLVESGGGLVQPGGSLRLSCAASGFSLDYYGMGWFRQAPGKERESVAAISWNGDF




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRANPTGAYFDYWGQG




TLVTVSS





4A-H33
3527
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRHDMGWFRQAPGKEREFVAGINWESGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYT




WGQGTLVTVSS





4A-H57
3528
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAIGSGGYT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVKPGWVARDPSQYNWGQ




GTLVTVSS





4A-H25
3529
EVQLVESGGGLVQPGGSLRLSCAASGGTFSRYAMGWFRQAPGKEREWVSAVDSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASPSLRSAWQWGQGTLVT




VSS





4A-H58
3530
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYDMGWFRQAPGKEREFVAAVTWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-H59
3531
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDLWGQGT




LVTVSS





4A-H6
3532
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDIMGWFRQAPGKEREFVAAIHWSAGY




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGT




LVTVSS





4A-H61
3533
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSADYT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTL




VTVSS





4A-H3
3534
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATATPNTGWHFDHWGQGT




LVTVSS





4A-H62
3535
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGS




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H43
3536
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAGINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H5
3537
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWTGGY




TSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H42
3538
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERECVAAINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H63
3539
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREFVAAINWSGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H6
3540
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYGMGWFRQAPGKEREFVATINWSGAL




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATLPFYDFWSGYYTGYYY




MDVWGQGTLVTVSS





4A-H40
3541
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFLAGVTWSGSS




TFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H21
3542
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAISWSGGNT




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H64
3543
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQG




TLVTVSS





4A-H47
3544
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDDYVMGWFRQAPGKEREFVAAVSGSGD




DTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-H65
3545
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATEPPLSCWHFDLWGQGT




LVTVSS





4A-H18
3546
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSGGYT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQGTL




VTVSS





4A-H66
3547
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREIVAAINWSAGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDLWGQGTL




VTVSS





4A-H36
3548
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAISWSGGTT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H67
3549
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H16
3550
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGT




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H11
3551
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAIHWSGSST




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H68
3552
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKERELVGTINWSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H34
3553
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H28
3554
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKERELVAAINWNGGN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H69
3555
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGT




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H7
3556
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGT




LVTVSS





4A-H71
3557
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVASINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H23
3558
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAGISWNGGSI




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H9
3559
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYEMGWFRQAPGKEREFVAAISWRGGT




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAGDYDW




GQGTLVTVSS





4A-H72
3560
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGHVDLWGQGT




LVTVSS





4A-H73
3561
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGS




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H29
3562
EVQLVESGGGLVQPGGSLRLSCAASGVTLDDYAMGWFRQAPGKEREFVAVINWSGGS




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGWVPSSTSESLNWY




FDRWGQGTLVTVSS





4A-H41
3563
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGTT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHVDLWGQGTL




VTVSS





4A-H74
3564
EVQLVESGGGLVQPGGSLRLSCAASGLTFSDDTMGWFRQAPGKEREFVAAVSWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H75
3565
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWTGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H31
3566
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVATINWTAGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGT




LVTVSS





4A-H32
3567
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGN




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H15
3568
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H14
3569
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGINWSGNG




VYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H76
3570
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKERELVAPINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H50
3571
EVQLVESGGGLVQPGGSLRLSCAASGGTFSNSGMGWFRQAPGKERELVAVVNWSGRR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTL




VTVSS





4A-H17
3572
EVQLVESGGGLVQPGGSLRLSCAASGQLANFASYAMGWFRQAPGKEREFVAAITRSGS




STVYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGTLVT




VSS





4A-H37
3573
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDIMGWFRQAPGKEREFVAAINWTGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H44
3574
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATARPNTGWHFDHWGQGT




LVTVSS





4A-H77
3575
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREWVGSINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H78
3576
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAGMTWSGSS




TFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H79
3577
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERECVAAINWSGDY




TDYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H8
3578
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVGGINWSGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H81
3579
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAVNWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H82
3580
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYAMGWFRQAPGKEREFVAAINWSGGY




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H83
3581
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGY




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H35
3582
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASPNTGWHFDRWGQG




TLVTVSS





4A-H45
3583
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGGY




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H84
3584
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAITWSGGR




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDRPLFWGQGTLVTVSS





4A-H85
3585
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSGGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATASPNTGWHFDHWGQG




TLVTVSS





4A-H86
3586
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAIHWSGSST




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H87
3587
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDYTMGWFRQAPGKEREWVAAINWSGGT




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H88
3588
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGDN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H89
3589
EVQLVESGGGLVQPGGSLRLSCAASGFAFGDNWIGWFRQAPGKEREWVASISSGGTTA




YADNVKGRFTIIADNSKNTAYLQMNSLKPEDTAVYYCAHRGGWLRPWGYWGQGTLV




TVSS





4A-H9
3590
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVGRINWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H91
3591
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVGGISWSGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H92
3592
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H46
3593
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H20
3594
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSADY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCWHFDHWGQGT




LVTVSS





4A-H93
3595
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGSST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H4
3596
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREMVAAINWIAGY




TADADSVRRLFTITADNNKNTAHLMMNLLKPENTAVYYCAEPSPNTGWHFDHWGQG




TLVTVSS





4A-H2
3597
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDDTMGWFRQAPGKEREFVAAINWSGGN




TPYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H94
3598
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDTMGWFRQAPGKEREFVAAINWSGDN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H95
3599
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPLFCWHFDHWGQGTL




VTVSS





4A-H12
3600
EVQLVESGGGLVQPGGSLRLSCAASGFTFGDYVMGWFRQAPGKEREIVAAINWNAGY




TAYADSVRGLFTITADNSKNTAYLQMNSLKPEDTAVYYCAKASPNTGWHFDHWGQG




TLVTVSS





4A-H30
3601
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYTMGWFRQAPGKEREFVAAINWTGGY




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H27
3602
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




AYADSVKGLFTITADNSKNTAYLQMNILKPEDTAVYYCARATPNTGWHFDHWGQGTL




VTVSS





4A-H22
3603
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREFVAAINWSGDN




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTLVTVSS





4A-H96
3604
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKEREIVAAINWSAGYT




PYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFCCHFDHWGQGTL




VTVSS





4A-H97
3605
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWSAGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATAPPNTGWHFDHWGQG




TLVTVSS





4A-H98
3606
EVQLVESGGGLVQPGGSLRLSCAASGFTWGDYTMGWFRQAPGKEREFVAAINWSGG




NTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-H99
3607
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSQYNWGQ




GTLVTVSS





4A-H100
3608
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAINWSGG




STYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-H101
3609
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARILWTGAS




RSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTV




SS





4A-H102
3610
EVQLVESGGGLVQPGGSLRLSCAASGGTFGVYHMGWFRQAPGKEREGVAAINMSGD




DSAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAILVGPGQVEFDHWGQG




TLVTVSS





4A-H103
3611
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMGWFRQAPGKEREFVARI--




SGSTFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAALPFVCPSGSYSDYG




DEYDWGQGTLVTVSS





4A-H104
3612
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGDFMGWFRQAPGKEREFVGRINWSGGN




TYYADSVRGLFTITADNNKNTAYLMMNLLKPEDTAVYYCPTDPPLFWGLGTLVTWSS





4A-H105
3613
EVQLVESGGGLVQPGGSLRLSCAASGSTLRDYAMGWFRQAPGKERESVAAITWSGGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTL




VTVSS





4A-H106
3614
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYTMGWFRQAPGKEREFVAAITDNGGS




KYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-H107
3615
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYGMGWFRQAPGKEREFVAAINWSGAS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDWRDRTWGNSLDYWG




QGTLVTVSS





4A-H108
3616
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISWSED




NTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-H109
3617
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAVSGSGD




DTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYD




WGQGTLVTVSS





4A-H11
3618
EVQLVESGGGLVQPGGSLRLSCAASGNIAAINVMGWFRQAPGKEREFVAAISASGRRT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVYYYDSSGPPGVTFDI




WGQGTLVTVSS





4A-H111
3619
EVQLVESGGGLVQPGGSLRLSCAASGIITSRYVMGWFRQAPGKEREGVAAISTGGSTIY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQDSSSPYFDYWGQGTLVTV




SS





4A-H112
3620
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDDYVMGWFRQAPGKEREFVAAISNSGLS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-H113
3621
EVQLVESGGGLVQPGGSLRLSCAASGSISSINVMGWFRQAPGKEREFVATMRWSTGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYE




WGQGTLVTVSS





4A-H114
3622
EVQLVESGGGLVQPGGSLRLSCAASGLTFILYRMGWFRQAPGKEREFVAAINNFGTTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTHYDFWSGYTSRTPNYFD




YWGQGTLVTVSS





4A-H115
3623
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYHMGWFRQAPGKEREPVAAISWSGGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVNTWTSPSFDSWGQGT




LVTVSS





4A-H116
3624
EVQLVESGGGLVQPGGSLRLSCAASGRAFSTYGMGWFRQAPGKEREFVAGINWSGDT




PYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREVGPPPGYFDLWGQGT




LVTVSS





4A-H117
3625
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDIAMGWFRQAPGKEREFVASINWGGGNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWG




QGTLVTVSS





4A-H118
3626
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSARMGWFRQAPGKEREFVAAISWSGDNT




HYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTVS




S





4A-H119
3627
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYAMGWFRQAPGKEREWVATINGDDYT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVATPGGYGLWGQGTLVTVS




S





4A-H12
3628
EVQLVESGGGLVQPGGSLRLSCAASGITFRRHDMGWFRQAPGKEREFVAAIRWSSSST




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRGVYGGRWYRTSQYT




WGQGTLVTVSS





4A-H121
3629
EVQLVESGGGLVQPGGSLRLSCAASGTAASFNPMGWFRQAPGKEREFVAAITSGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIAYEEGVYRWDWGQGTL




VTVSS





4A-H122
3630
EVQLVESGGGLVQPGGSLRLSCAASGNINIINYMGWFRQAPGKEREGVAAIHWNGDST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGPPYSNYFAYWGQGTLV




TVSS





4A-H123
3631
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYAMGWFRQAPGKERESVAAISGSGGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKIMGSGRPYFDHWGQGTL




VTVSS





4A-H124
3632
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPGKEREFVAAITSSGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARPSSDLQGGVDYWGQGTLV




TVSS





4A-H125
3633
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKEREFVASINWGGGNT




IYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWGQ




GTLVTVSS





4A-H126
3634
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVAAVSSLGPFT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWGQ




GTLVTVSS





4A-H127
3635
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDSAMGWFRQAPGKEREWVAAITNGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARFARGSPYFDFWGQGTLV




TVSS





4A-H128
3636
EVQLVESGGGLVQPGGSLRLSCAASGSISSFNAMGWFRQAPGKERESVAAIDWDGSTA




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGGYYGSGSFEYWGQGTL




VTVSS





4A-H129
3637
EVQLVESGGGLVQPGGSLRLSCAASGNIFSDNIIGWFRQAPGKEREMVAYYTSGGSIDY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTAVGRPPPGGMDVWGQG




TLVTVSS





4A-H13
3638
EVQLVESGGGLVQPGGSLRLSCAASGSISSIGAMGWFRQAPGKEREGVAAISSSGSSTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVPPGQAYFDSWGQGTLVT




VSS





4A-H131
3639
EVQLVESGGGLVQPGGSLRLSCAASGFTFDDYGMGWFRQAPGKERELVATITWSGDS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKGGSWYYDSSGYYGRW




GQGTLVTVSS





4A-H132
3640
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYTMGWFRQAPGKEREWVSAISWSTGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRYGPPWYDWGQGTLV




TVSS





4A-H134
3641
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSVGMGWFRQAPGKERELVAVINWSGAR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVPWMDYNRRDWGQGTL




VTVSS





4A-H135
3642
EVQLVESGGGLVQPGGSLRLSCAASGRIFTNTAMGWFRQAPGKEREGVAAINWSGGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTSGSYSFDYWGQGTLVT




VSS





4A-H136
3643
EVQLVESGGGLVQPGGSLRLSCAASGEEFSDHWMGWFRQAPGKEREFVGAIHWSGGR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDW




GQGTLVTVSS





4A-H137
3644
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSIAMGWFRQAPGKEREFVAAINWSGART




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWG




QGTLVTVSS





4A-H138
3645
EVQLVESGGGLVQPGGSLRLSCAASGSTSSLRTMGWFRQAPGKEREGVAAISSRDGSTI




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDDSSSPYFDYWGQGTLVT




VSS





4A-H139
3646
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAPGKEREFVAAISIASGA




SGGTTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTMNPNPRWGQGT




LVTVSS





4A-H14
3647
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNAAMGWFRQAPGKEREFVARITWNGGS




TFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTENPNPRWGQGTLVTV




SS





4A-H141
3648
EVQLVESGGGLVQPGGSLRLSCAASGIILSDNAMGWFRQAPGKEREFVAAISWLGEST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADRRGLASTRAADYDWG




QGTLVTVSS





4A-H142
3649
EVQLVESGGGLVQPGGSLRLSCAASGRTFGDYIMGWFRQAPGKERESVAAINWNGGY




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATTSPNTGWHYYRWGQG




TLVTVSS





4A-H143
3650
EVQLVESGGGLVQPGGSLRLSCAASGFNFNWYPMGWFRQAPGKERESVAAISWTGVS




TYTAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARWGPGPAGGSPGLVG




FDYWGQGTLVTVSS





4A-H144
3651
EVQLVESGGGLVQPGGSLRLSCAASGSIRSVSVMGWFRQAPGKEREAVAAISWSGVGT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAYQRGWGDWGQGTLVTV




SS





4A-H145
3652
EVQLVESGGGLVQPGGSLRLSCAASGMTFRLYAMGWFRQAPGKEREFVGAINWLSES




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKPGWVARDPSEYNWG




QGTLVTVSS





4A-H146
3653
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDDAMGWFRQAPGKEREFVAAINWSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATDPPLFWGQGTMVTVSS





4A-H147
3654
EVQLVESGGGLVQPGGSLRLSCAASGGTFSVYAMGWFRQAPGKEREGVAAISMSGDD




AAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKISKDDGGKPRGAFFDS




WGQGTLVTVSS





4A-H148
3655
EVQLVESGGGLVQPGGSLRLSCAASGFALGYYAMGWFRQAPGKERESVAAISSRDGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLATGPQAYFHHWGQGTL




VTVSS





4A-H149
3656
EVQLVESGGGLVQPGGSLRLSCAASGFNLDDYAMGWFRQAPGKERESVAAISWDGGA




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVGRGTTAFDSWGQGTL




VTVSS





4A-H15
3657
EVQLVESGGGLVQPGGSLRLSCAASGNTFSGGFMGWFRQAPGKEREFVASIRSGARTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAQRVRGFFGPLRTTPSWYEW




GQGTLVTVSS





4A-H151
3658
EVQLVESGGGLVQPGGSLRLSCAASGSIRSINIMGWFRQAPGKEREAVAAISWSGGSTV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASLLAGDRYFDYWGQGTLVT




VSS





7A-1
3659
EVQLVESGGGLVQPGGSLRLSCAASGFTLGDYVMGWFRQAPGKEREFVAAIHSGGST




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNWGQ




GTLVTVSS





7A-2
3660
EVQLVESGGGLVQPGGSLRLSCAASGGGTFGSYAMGWFRQAPGKERELVAAISSGGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVS




S





7A-3
3661
EVQLVESGGGLVQPGGSLRLSCAASGRTYSISAMGWFRQAPGKEREFVAAISMSGDDS




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDW




GQGTLVTVSS





7A-4
3662
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYPMGWFRQAPGKEREFVAAITSDGSTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATDYNKAYAREGRRYDWG




QGTLVTVSS





7A-5
3663
EVQLVESGGGLVQPGGSLRLSCAASGSIFRINAMGWFRQAPGKEREFVAAIHWSGSSTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQDRRRGDYYTFDYHWGQ




GTLVTVSS





7A-6
3664
EVQLVESGGGLVQPGGSLRLSCAASGGTFNNYAMGWFRQAPGKERELVAAITSGGST




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVS




S





7A-7
3665
EVQLVESGGGLVQPGGSLRLSCAASGTIVNINVMGWFRQAPGKEREFVAAIHWSGGLK




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAMNRAGIYEWGQGTLVTVS




S





7A-8
3666
EVQLVESGGGLVQPGGSLRLSCAASGSTFSNYAMGWFRQAPGKERELVAAITSGGSTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-9
3667
EVQLVESGGGLVQPGGSLRLSCAASGFSFDDYVMGWFRQAPGKEREFVAAISRSGNLK




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNWG




QGTLVTVSS





7A-10
3668
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSTVMGWFRQAPGKEREFVAAVIGSSGIT




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVS




S





7A-11
3669
EVQLVESGGGLVQPGGSLRLSCAASGRTFSDAGMGWFRQAPGKEREFVAAISRSGNLK




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVQVNGTWAWGQGTLVTV




SS





7A-12
3670
EVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAMGWFRQAPGKERELVAAISWNGGS




TSYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTV




SS





7A-13
3671
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYVMGWFRQAPGKEREFVAAISWSGEST




LYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLMYGVDRRYDWGQGT




LVTVSS





7A-14
3672
EVQLVESGGGLVQPGGSLRLSCAASGISSSKRNMGWFRQAPGKEREFVAGISWTGGIT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIAGRGRWGQGTLVTVSS





7A-15
3673
EVQLVESGGGLVQPGGSLRLSCAASGRRFSAYGMGWFRQAPGKEREFVAVISRSGTLT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASSGPADARNGERWHWGQ




GTLVTVSS





7A-16
3674
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSFVMGWFRQAPGKEREFVAAISSNGGST




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNWG




QGTLVTVSS





7A-17
3675
EVQLVESGGGLVQPGGSLRLSCAASGTVFSISAMGWFRQAPGKEREFVAAISMSGDDT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDW




GQGTLVTVSS





7A-18
3676
EVQLVESGGGLVQPGGSLRLSCAASGSIFSPNVMGWFRQAPGKEREFVAAITNGGSTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQRWRGGSYEWGQGTLVT




VSS





7A-19
3677
EVQLVESGGGLVQPGGSLRLSCAASGIPASIRVMGWFRQAPGKEREFVAAIHWSGSSTR




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCALSRAIVPGDSEYDYRWGQG




TLVTVSS





7A-20
3678
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMSAMGWFRQAPGKEREFVSAISWSGGST




LYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDWG




QGTLVTVSS





7A-21
3679
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYAMGWFRQAPGKERELVAAITSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-22
3680
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSYAMGWFRQAPGKERELVAAISTGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-23
3681
EVQLVESGGGLVQPGGSLRLSCAASGRSFSSVGMGWFRQAPGKEREFVAVISRSGAST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAGPADARNGERWAWGQ




GTLVTVSS





7A-24
3682
EVQLVESGGGLVQPGGSLRLSCAASGRAFRRYTMGWFRQAPGKERELIAVINWSGDR




RYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAATLAKGGGRWGQGTLV




TVSS





7A-25
3683
EVQLVESGGGLVQPGGSLRLSCAAMAWAGFARRRAKNAKWWRALPRGGPTYADSV




KGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGGMWYGSSLYVRFDLLEDGMDW




GQGTLVTVSS





7A-26
3684
EVQLVESGGGLVQPGGSLRLSCAASGSISSINGMGWFRQAPGKERELVALISRSGGTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASAGPADARNGERWAWGQG




TLVTVSS





7A-27
3685
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNNVMGWFRQAPGKERELVAAAISGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-28
3686
EVQLVESGGGLVQPGGSLRLSCAASGRTFSISAMGWFRQAPGKEREFVAAISRSGTTM




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDWG




QGTLVTVSS





7A-29
3687
EVQLVESGGGLVQPGGSLRLSCAASGGTFSYYDLAAMGWFRQAPGKEREFVAAISWS




QYNTKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARVVVRTAHGFEDN




WGQGTLVTVSS





7A-30
3688
EVQLVESGGGLVQPGGSLRLSCAASGRTFNNYGMGWFRQAPGKEREFVAVISRSGSLK




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASDPTYGSGRWTWGQGTL




VTVSS





7A-31
3689
EVQLVESGGGLVQPGGSLRLNCAASGFTLDDYVMGWFRQTPGKEREFVAAISSSGALT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDAAVYYCAAKEYGGTRRYDRAYNWG




QGTLVTVSS





7A-32
3690
EVQLVESGGGLVQPGGSLRLSCAASGRTFNAMGWFRQAPGKEREFVAAIRWSGDMSV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQDRRRGDYYTFDYHWGQ




GTLVTVSS





7A-33
3691
EVQLVESGGGLVQPGGSLRLSCAASGLTFSTYAMGWFRQAPGKEREFVAAITSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-34
3692
EVQLVESGGGLVQPGGSLRLSCAASGSIFTINAMGWFRQAPGKEREGVAAIGSDGSTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVRWGADWGQGTLVTVSS





7A-35
3693
EVQLVESGGGLVQPGGSLRLSCAASGLTFSSYAMGWFRQAPGKERELVAAITSSSGSTP




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVS




S





7A-36
3694
EVQLVESGGGLVQPGGSLRLSCAASGIPFSTRTMGWFRQAPGKEREFVAAISWSQYNT




KYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARHWGMFSRSENDYNWG




QGTLVTVSS





7A-37
3695
EVQLVESGGGLVQPGGSLRLSCAASGRSRFSTYVMGWFRQAPGKEREFVAAISWSQY




NTKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRNYGHSRARY




DWGQGTLVTVSS





7A-38
3696
EVQLVESGGGLVQPGGSLRLSCAASGLTLSSYGMGWFRQAPGKEREYVAVISRSGSLK




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATRADAEGWWDWGQGTLV




TVSS





7A-39
3697
EVQLVESGGGLVQPGGSLRLSCAASGSIFRVNVMGWFRQAPGKEREFVAAINNFGTTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAADLPSRWGQGTLVTVSS





7A-40
3698
EVQLVESGGGLVQPGGSLRLSCAASGRTFRNYAMGWFRQAPGKERELVAAISSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-41
3699
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSFAMGWFRQAPGKERELVAAISSGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





7A-42
3700
EVQLVESGGGLVQPGGSLRLSCAASGTTFRINAMGWFRQAPGKEREFVAAMNWSGGS




TKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQDRRRGDYYTFDYHW




GQGTLVTVSS





7A-43
3701
EVQLVESGGGLVQPGGSLRLSCAASGFTLGDYVMGWFRQAPGKEREFVAAIHSGGSTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRTYNWGQ




GTLVTVSS





7A-44
3702
EVQLVESGGGLVQPGGSLRLSCAASGFTFSRSAMGWFRQAPGKERELVAGILSSGATV




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKAPRDWGQGTLVTVSS





7A-45
3703
EVQLVESGGGLVQPGGSLRLSCAASGRTFNNYAMGWFRQAPGKERELVAAITSGGST




DYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVS




S





7A-46
3704
EVQLVESGGGLVQPGGSLRLSCAASGFTFRSYPMGWFRQAPGKEREFVAAINNFGTTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAAKGIGVYGWGQGTLVTVS




S





7A-47
3705
EVQLVESGGGLVQPGGSLRLSCAASGNIFTRNVMGWFRQAPGKEREFVAAIHWNGDS




TKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGSNIGGSRWRYDWGQ




GTLVTVSS





7A-48
3706
EVQLVESGGGLVQPGGSLRLSCAASGRTISRYTMGWFRQAPGKERELVAAIKWSGAST




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWG




QGTLVTVSS





7A-49
3707
EVQLVESGGGLVQPGGSLRLSCAASGFRFSSYGMGWFRQAPGKEREFVAIITSGGLTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARKTFYFGTSSYPNDYAWGQ




GTLVTVSS





7A-50
3708
EVQLVESGGGLVQPGGSLRLSCAASGRTFDNHAMGWFRQAPGKEREGVAAIGSDGST




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVVRWGVDWGQGTLVTVS




S





7A-51
3709
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSHAMGWFRQAPGKEREFVAGISWSGEST




LTRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCADVNGDWGQGTLVTVSS





7A-52
3710
EVQLVESGGGLVQPGGSLRLSCAASGMTFRLYAMGWFRQAPGKEREFVAAISWSQYN




TKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLGYESGYSLTYDYDW




GQGTLVTVSS





7A-53
3711
EVQLVESGGGLVQPGGSLRLSCAASGGTFRKLAMGWFRQAPGKEREFVAVISWTGGS




SYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARLTSFATWGQGTLVTVSS





7A-54
3712
EVQLVESGGGLVQPGGSLRLSCAASGRTFSANGMGWFRQAPGKEREFVAAISASGTLR




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARSPMSPTWDWGQGTLV




TVSS





7A-55
3713
EVQLVESGGGLVQPGGSLRLSCAASGSAFRSTVMGWFRQAPGKEREFVAAISWTGEST




LYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGPYRSYFARSYLWGQGT




LVTVSS





7A-56
3714
EVQLVESGGGLVQPGGSLRLSCAASGGTFDYSGMGWFRQAPGKEREFVAVVSQSGRT




TYYADSVKGLFTITADNSKNTAYLQMNLLKPEDTAVYYCPTATRPGEWDGGQGTLVT




VSR





7A-57
3715
EVQLVESGGGLVQPGGSLRLSCAASGVFGPIRAMGWFRQAPGKERELVALMGNDGST




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGWRWGQGTLVTVSS





7A-58
3716
EVQLVESGGGLVQPGGSLRLSCAASGFNFNWYPMGWFRQAPGKEREFVAAIRWSGGI




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATGPYRSYFARSYLWGQG




TLVTVSS





7A-59
3717
EVQLVESGGGLVQPGGSLRLSCAASGMTFHRYVMGWFRQAPGKERELVASITTGGTP




NYADSVKGRFTIITDNNKNTAYLLMINLQPEDTAVYYCCKVPYIWGQGTLGTVGT





7A-60
3718
EVQLVESGGGLVQPGGSLRLSCAASGISTMGWFRQAPGKEREFVAAINNFGTTKYADS




VKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAASQSGSGYDWGQGTLVTVSS





7A-61
3719
EVQLVESGGGLVQPGGSLRLSCAASGRAFNTRAMGWFRQAPGKERELVALMGNDGST




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGWRWGQGTLVTVSS





7A-62
3720
EVQLVESGGGLVQPGGSLRLSCAASGLTDRRYTMGWFRQAPGKEREFVAAINSGGSTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAGNGGRTYGHSRARYEWG




QGTLVTVSS





7A-63
3721
EVQLVESGGGLVQPGGSLRLSCAASGRTFNVMGWFRQAPGKERELVALMGNDGSTY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVRWGVDWGQGTLVTVSS





7A-64
3722
EVQLVESGGGLVQPGGSLRLSCAASGRAFNTRAMGWFRQAPGKERELVALMGNDGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAIGWRWGQGTLVTVSS





7A-65
3723
EVQVVESGGGVVHPGGSVRMRCAASGVTVDYSGMGWFGQAPGKEREFVAVVSQSAR




TTYYADSVKGRFTISADNSKNTEYLQMNSMKPEDTAVYYCATATRPGEWDWGQGTL




VTVSS





7A-66
3724
EVQLVESGGGLVQPGGSLRLSCAASGRTPRLGAMGWFRQAPGKEREFVAAISRSGGLT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQLVGSNIGGSRWRYDWG




QGTLVTVSS





7A-67
3725
EVQLVESGGGLVQPGGSLRLSCAASGLTFRNYAMGWFRQAPGKEREFVAAITSGGSTL




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGHGTLVTESS





8A-1
3726
EVQLVESGGGLVQPGGSLRLSCAASGGRTFSDLAMGWFRQAPGKEREFVALITRSGGT




TFYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIGRGSWGQGTLVTVSS





8A-2
3727
EVQLVESGGGLVQPGGSLRLSCAASGFTFGEYAMGWFRQAPGKEREFVAAVSSLGPFT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVLDGYSGSWGQGTLVTV




SS





8A-3
3728
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYGMGWFRQAPGKEREFVAAISWSGVRS




GVSAIYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTDLTGDLWYFDLWG




QGTLVTVSS





8A-4
3729
EVQLVESGGGLVQPGGSLRLSCAASGLTAGTYAMCWFRQAPGKEREGVACASSTDGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVRTYGSATYDWGQGT




LVTVSS





8A-5
3730
EVQLVESGGGLVQPGGSLRLSCAASGFTLDDYVMGWFRQAPGKERELVAAVSSLGPF




TRYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKEYGGTRRYDRAYNW




GQGTLVTVSS





8A-6
3731
EVQLVESGGGLVQPGGSLRLSCAASGPTLGSYVMGWFRQAPGKEREFVAAISWSQYN




TKYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAQRWRGGSYEWGQGTL




VTVSS





8A-7
3732
EVQLVESGGGLVQPGGSLRLSCAASGPTFSSYVMGWFRQAPGKEREFVAAISWSQYNT




KYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAASRSGSGYDWGQGTLVT




VSS





8A-8
3733
EVQLVESGGGLVQPGGSLRLSCAASGYLYSKDCMGWFRQAPGKEREGVATICTGDGS




TAYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAVIAYEEGVYRWDWGQG




TLVTVSS





8A-9
3734
EVQLVESGGGLVQPGGSLRLSCAASGFTIDDYAMGWFRQAPGKEREGVAAISGSGDDT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKLPYVSGDYWGQGTLVT




VSS





8A-10
3735
EVQLVESGGGLVQPGGSLRLSCAASGGRFSDYGMGWFRQAPGKERELVALISRSGNLK




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKTGTSFVWGQGTLVTVS




S





8A-11
3736
EVQLVESGGGLVQPGGSLRLSCAASGLSFSNYAMGWFRQAPGKERELVAAITSGGSTD




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGDWRYGWGQGTLVTVSS





8A-12
3737
EVQLVESGGGLVQPGGSLRLSCAASGIPSTLRAMGWFRQAPGKEREFVALINRSGGSQF




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIGRGSWGQGTLVTVSS





9A-1
3738
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRLAMGWFRQAPGKEREFVAAISRSGRST




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRSQILFTSRTDYEWGQG




TLVTVSS





9A-2
3739
EVQLVESGGGLVQPGGSLRLSCAASGSFSIAAMGWFRQAPGKEREFVATINYSGGGTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAVNIFDESAYAAFACYDVV




WGQGTLVTVSS





9A-3
3740
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYAMGWFRQAPGKEREFVAAISRSGKST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAASSVFSDLRYRKNPKWGQ




GTLVTVSS





9A-4
3741
EVQLVESGGGLVQPGGSLRLSCAASGRTFSKYAMGWFRQAPGKEREFVSHISRDGGRT




FSSSTMGWFRQAPGKERELVALITPSSRTTYYADSVKGRFTISADNSKNTAYLQMNSLK




PEDTAVYYCAIAGRGRWGQGTLVTVSS





9A-5
3742
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYAMGWFRQAPGKEREFVASINWGGGN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKTKRTGIFTTARMVDWG




QGTLVTVSS





9A-6
3743
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRFAMGWFRQAPGKEREFVAAIRWSGGRT




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAIEPGTIRNWRNRVPFARGN




FGWGQGTLVTVSS





9A-7
3744
EVQLVESGGGLVQPGGSLRLSCAASGLGIAFSRRTAMGWFRQAPGKEREFVAAISWRG




GNTYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGT




LVTVSS





9A-8
3745
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYPMGWFRQAPGKEREFVAAISRSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKRLRSFASGGSYDWGQG




TLVTVSS





9A-9
3746
EVQLVESGGGLVQPGGSLRLSCAASGGTLRGYGMGWFRQAPGKEREFVASISRSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRRVTLFTSRADYDWGQ




GTLVTVSS





9A-10
3747
EVQLVESGGGLVQPGGSLRLSCAASGRMFSSRSMGWFRQAPGKEREFVALINRSGGSQ




FYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAARRWIPPGPIWGQGTLVTV




SS





9A-11
3748
EVQLVESGGGLVQPGGSLRLSCAASGRTFGRRAMGWFRQAPGKEREFVAGISRGGGT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAKGIWDYLGRRDFGDWG




QGTLVTVSS





10A-1
3749
EVQLVESGGGLVQPGGSLRLSCAASGLSSPPFDDFPMGWFRQAPGKEREFVSSIYSDDG




DSMYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQTFDFWSASLGGNFW




YFDLWGQGTLVTVSS





10A-2
3750
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSYSMGWFRQAPGKEREFVSAISWIIGSGG




TTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTAGAGDSWGQGTLVTVS




S





10A-3
3751
EVQLVESGGGLVQPGGSLRLSCAASGSIFSTRTMGWFRQAPGKEREFVASITKFGSTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTRGGGRFFDWLYLRWGQGTLV




TVSS





10A-4
3752
EVQLVESGGGLVQPGGSLRLSCAASGRTLWRSNMGWFRQAPGKEREFVASISSFGSTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGHGRYFDWLLFARPPDYW




GQGTLVTVSS





10A-5
3753
EVQLVESGGGLVQPGGSLRLSCAASGRSLGIYRMGWFRQAPGKEREFVAAITSGGRKN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRTIFGVGRWLDPWGQGTL




VTVSS





10A-6
3754
EVQLVESGGGLVQPGGSLRLSCAASGTTLTFRIMGWFRQAPGKEREFVPAISSTGLASY




TDSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCSKDRAPNCFACCPNGFDVWGQ




GTLVTVSS





10A-7
3755
EVQLVESGGGLVQPGGSLRLSCAASGSRFSGRFNILNMGWFRQAPGKEREFVARIGYS




GQSISYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRFLGGTEWGQGTL




VTVSS





10A-8
3756
EVQLVESGGGLVQPGGSLRLSCAASGTLFKINAMGWFRQAPGKEREFVAQINRHGVTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRTIFFGGGRYFDYWGQG




TLVTVSS





10A-9
3757
EVQLVESGGGLVQPGGSLRLSCAASGIPFRSRTMGWFRQAPGKEREFVAGITGSGRSQY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGARIFGSVAPWRGGNYYG




MDVWGQGTLVTVSS





10A-10
3758
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSFRMGWFRQAPGKEREFVAGISRGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARASGLWFRRPHVWGQGTL




VTVSS





10A-11
3759
EVQLVESGGGLVQPGGSLRLSCAASGRNFRRNSMGWFRQAPGKEREFVAGISWSGAR




THYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVSRRPRSPPGYYYGMD




VWGQGTLVTVSS





10A-12
3760
EVQLVESGGGLVQPGGSLRLSCAASGRNLRMYRMGWFRQAPGKEREFVATIRWSDGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTRARLRYFDWLFPTNFDY




WGQGTLVTVSS





10A-13
3761
EVQLVESGGGLVQPGGSLRLSCAASGGLTFSSNTMGWFRQAPGKEREFVASISSSGRTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVRRLWFRSYFDLWGQGT




LVTVSS





10A-14
3762
EVQLVESGGGLVQPGGSLRLSCAASGFTLAYYAMGWFRQAPGKEREFVAAISWSGRNI




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARERARWFGKFSVSWGQGT




LVTVSS





10A-15
3763
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSFPMGWFRQAPGKEREFVAAISWSGSTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYSACGRLGFGAWGQGTLVTVSS





10A-16
3764
EVQLVESGGGLVQPGGSLRLSCAASGISSSKRNMGWFRQAPGKEREFVATWTSRGITT




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGPPRLWGSYRRKYFDY




WGQGTLVTVSS





10A-17
3765
EVQLVESGGGLVQPGGSLRLSCAASGRTFSIYAMGWFRQAPGKEREFVARITRGGITKY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGLGWLLGYYWGQGTLVTV




SS





10A-18
3766
EVQLVESGGGLVQPGGSLRLSCAASGRMYNSYSMGWFRQAPGKEREFVARISPGGTFY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTSARSGWFWRYFDSWGQGTL




VTVSS





10A-19
3767
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYGMGWFRQAPGKEREFVASISRSGTTM




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRGLLQWFGAPNSWFDPW




GQGTLVTVSS





10A-20
3768
EVQLVESGGGLVQPGGSLRLSCAASGRTIRTMGWFRQAPGKEREFVATINSRGITNYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTERDGLLWFRELFRPSWGQGTL




VTVSS





10A-21
3769
EVQLVESGGGLVQPGGSLRLSCAASGRSFSFNAMGWFRQAPGKEREFVARISRFGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKVHSYVWGGHSDYWGQGT




LVTVSS





10A-22
3770
EVQLVESGGGLVQPGGSLRLSCAASGRTYYAMGWFRQAPGKEREFVGAIDWSGRRIT




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVRFSRLGGVIGRPIDSWGQ




GTLVTVSS





10A-23
3771
EVQLVESGGGLVQPGGSLRLSCAASGRAFRRYTMGWFRQAPGKEREFVASITKFGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKDRGVLWFGELWYWGQGT




LVTVSS





10A-24
3772
EVQLVESGGGLVQPGGSLRLSCAASGRTFSNYRMGWFRQAPGKEREFVASINRGGSTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASGKGGSATIFHLSRRPLYFD




YWGQGTLVTVSS





10A-25
3773
EVQLVESGGGLVQPGGSLRLSCAASGITFSPYAMGWFRQAPGKEREFVATINWSGGYT




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRKNRGPLWFGGGGWGY




WGQGTLVTVSS





10A-26
3774
EVQLVESGGGLVQPGGSLRLSCAASGRTFSGFTMSSTWMGWFRQAPGKEREFVAGIIT




NGSTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRVAYSSFWSGLRK




HMDVWGQGTLVTVSS





10A-27
3775
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYSMGWFRQAPGKEREFVASITPGGNTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCASRRRWLTPYIFWGQGTLVT




VSS





10A-28
3776
EVQLVESGGGLVQPGGSLRLSCAASGSIFSIGMGWFRQAPGKEREFVARIWWRSGATY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAISIFGRLKWGQGTLVTVSS





10A-29
3777
EVQLVESGGGLVQPGGSLRLSCAASGRTFTSYRMGWFRQAPGKEREFVAEISSSGGYT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVGPLRFLAQRPRLRPDY




WGQGTLVTVSS





10A-30
3778
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSFRFRAMGWFRQAPGKEREFVALIFSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAREWGRWLQRGSYWGQG




TLVTVSS





10A-31
3779
EVQLVESGGGLVQPGGSLRLSCAASGRTFGSYGMGWFRQAPGKEREFVATISIGGRTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGSGSGFMWYHGNNNYDR




WRYWGQGTLVTVSS





10A-32
3780
EVQLVESGGGLVQPGGSLRLSCAASGRTFRSYPMGWFRQAPGKEREFVASINRGGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGRYDFWSGYYRWFDPWG




QGTLVTVSS





10A-33
3781
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRSDMGWFRQAPGKEREFVAAISWSGGST




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVPPPRRFLEWLPRRLTYI




WGQGTLVTVSS





10A-34
3782
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASMRGSRSY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARMSGFPFLDYWGQGTLVTV




SS





10A-35
3783
EVQLVESGGGLVQPGGSLRLSCAASGSIFRLSTMGWFRQAPGKEREFVASISSFGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARTRGIFLWFGESFDYWGQGT




LVTVSS





10A-36
3784
EVQLVESGGGLVQPGGSLRLSCAASGIAFRIRTMGWFRQAPGKEREFVASITSGGSTNY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGGPRFGGFRGYFDPWGQGT




LVTVSS





10A-37
3785
EVQLVESGGGLVQPGGSLRLSCAASGFTFTSYRMGWFRQAPGKEREFVAGISRFFGTA




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTRWFGGLDVWGQGTL




VTVSS





10A-38
3786
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYVMGWFRQAPGKEREFVASISRFGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHHGLGILWWGTMDVWGQ




GTLVTVSS





10A-39
3787
EVQLVESGGGLVQPGGSLRLSCAASGRTFSMGWFRQAPGKEREFVASISRFGRTNYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRSTWLPQHFDSWGQGTLVTVS




S





10A-40
3788
EVQLVESGGGLVQPGGSLRLSCAASGRTFSTYTMGWFRQAPGKEREFVARIWRSGGNT




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGVRGVFRAYFDHWGQG




TLVTVSS





10A-41
3789
EVQLVESGGGLVQPGGSLRLSCAASGRNLRMYRMGWFRQAPGKEREFVALISRVGVT




SYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTSFFNFWSGSLGRVGFD




SWGQGTLVTVSS





10A-42
3790
EVQLVESGGGLVQPGGSLRLSCAASGITIRTHAMGWFRQAPGKEREFVATISRSGGNTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTAGVLRYFDWFRRPYWGQ




GTLVTVSS





10A-43
3791
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYHMGWFRQAPGKEREFVAAITSGGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTDGLRYFDWFPWASAFDIW




GQGTLVTVSS





10A-44
3792
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVAVISWSGGST




KYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARKGRWSGMNVWGQGTLV




TVSS





10A-45
3793
EVQLVESGGGLVQPGGSLRLSCAASGRTFSWYPMGWFRQAPGKEREFVASISWGGAR




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARSTGPRGSGRYRAHWFD




SWGQGTLVTVSS





10A-46
3794
EVQLVESGGGLVQPGGSLRLSCAASGRTFTSYRMGWFRQAPGKEREFVAAITWNSGRT




RYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCSPSSWPFYFGAWGQGTLVT




VSS





10A-47
3795
EVQLVESGGGLVQPGGSLRLSCAASGRPLRRYVMGWFRQAPGKEREFVAAITNGGST




KYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGTPWRLLWFGTLGPPPA




FDYWGQGTLVTVSS





10A-48
3796
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYAMGWFRQAPGKEREFVAAINRSGSTE




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQHQDFWTGYYTVWGQGT




LVTVSS





10A-49
3797
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVASISRSGTTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEGWRWLQLRGGFDYWGQ




GTLVTVSS





10A-50
3798
EVQLVESGGGLVQPGGSLRLSCAASGRTLSTYNMGWFRQAPGKEREFVASISRFGRTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRGKLSAAMHWFDPWGQG




TLVTVSS





10A-51
3799
EVQLVESGGGLVQPGGSLRLSCAASGRFFSTRVMGWFRQAPGKEREFVARIWPGGSTY




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRGIFGVSRWGQGTLVTV




SS





10A-52
3800
EVQLVESGGGLVQPGGSLRLSCAASGRFFSICSMGWFRQAPGKEREFVAGINWRSGGS




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGSGWWEYWGQGTLVT




VSS





10A-53
3801
EVQLVESGGGLVQPGGSLRLSCAASGRMFSSRSNMGWFRQAPGKEREFVASISSGGTT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARGFGRRFLEWLPRFDYWG




QGTLVTVSS





10A-54
3802
EVQLVESGGGLVQPGGSLRLSCAASGRTFSSARMGWFRQAPGKEREFVAGINMISSTK




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAHFRRFLPRGYVDYWGQGTL




VTVSS





10A-55
3803
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYTMGWFRQAPGKEREFVARIAGGSTYY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARQQYYDFWSGYFRSGYFDLW




GQGTLVTVSS





10A-56
3804
EVQLVESGGGLVQPGGSLRLSCAASGHTFRNYGMGWFRQAPGKEREFVAAITSSGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCATVPPPRRFLEWLPRRLTYTW




GQGTLVTVSS





10A-57
3805
EVQLVESGGGLVQPGGSLRLSCAASGRTFSRYAMGWFRQAPGKEREFVASITKFGSTN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKERESRFLKWRKTDWGQGT




LVTVSS





10A-58
3806
EVQLVESGGGLVQPGGSLRLSCAASGRNLRMYRMGWFRQAPGKEREFVASISRFGRT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHDSIGLFRHGMDVWGQ




GTLVTVSS





10A-59
3807
EVQLVESGGGLVQPGGSLRLSCAASGRTFRRYAMGWFRQAPGKEREFVARISSGGSTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDRGFGFWSGLRGYFDLWG




QGTLVTVSS





10A-60
3808
EVQLVESGGGLVQPGGSLRLSCAASGIPASMYLGWFRQAPGKEREFVAAITSGGRTSY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKRKKRGPLWFGGGGWGYWG




QGTLVTVSS





10A-61
3809
EVQLVESGGGLVQPGGSLRLSCAASGIPFRSRTFSAYAMGWFRQAPGKEREFVAQITRG




GSTNYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARRHWFGFDYWGQGT




LVTVSS





9-1
3810
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGNH




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYKGYYYMDVWGQGT




LVTVSS





9-2
3811
QVQLVESGGGVVQPGRSLRLSCAASGFSFNNYGMHWVRQAPGKGLEWVAVISFDGSN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKENWLGYFDPWGQGTL




VTVSS





9-3
3812
QVQLVESGGGVVQPGRSLRLSCAASGFTFGTYAMHWVRQAPGKGLEWVAVVSTEGG




TTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGSYGAYFDYWGQGTLV




TVSS





9-4
3813
QVQLVESGGGVVQPGRSLRLSCAASGFDFSDYYMHWVRQAPGKGLEWVAVISYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREEPVYGMDVWGQGT




LVTVSS





9-5
3814
QVQLVESGGGVVQPGRSLRLSCAASGFTFGTYAMHWVRQAPGKGLEWVAVVSTEGG




TTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGSYGAYFDYWGQGTLV




TVSS





9-6
3815
QVQLVESGGGVVQPGRSLRLSCAASGFTFSGYAMHWVRQAPGKGLEWVAVISYDGSN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTNSGSYYGPFDYWGQG




TLVTVSS





9-7
3816
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGNH




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYKGYYYMDVWGQGT




LVTVSS





9-8
3817
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGNH




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYKGYYYMDVWGQGT




LVTVSS





9-9
3818
QVQLVESGGGVVQPGRSLRLSCAASGFIFRSYAMHWVRQAPGKGLEWVAVISYDGSS




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPSSGSYFPPFDYWGQGT




LVTVSS





9-10
3819
QVQLVESGGGVVQPGRSLRLSCAASGFTFSDYGMHWVRQAPGKGLEWVAVVSYDGT




TKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKENWLGYFDPWGQGT




LVTVSS





9-11
3820
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNFPMHWVRQAPGKGLEWVAVISYDGSL




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARYQGGYMDVWGQGTLV




TVSS





9-12
3821
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRFAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTGLGFDPWGQGTLVT




VSS





9-13
3822
QVQLVESGGGVVQPGRSLRLSCAASGFTFNNYAMHWVRQAPGKGLEWVAVISYDGN




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTMGGSYFDAFDIWGQ




GTLVTVSS





9-14
3823
QVQLVESGGGVVQPGRSLRLSCAASGFTFSDYTMHWVRQAPGKGLEWVAVISYEGSI




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSSSGSYPSLVDYWGQG




TLVTVSS





9-15
3824
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYAMHWVRQAPGKGLEWVAVISFDGSN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYWVDYFKPGGRGALL




TTSS





10-1
3825
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTGLGFDPWGQGTLVT




VSS





10-2
3826
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTGLGFDPWGQGTLVT




VSS





10-3
3827
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTGLGFDPWGQGTLVT




VSS





10-4
3828
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTGLGFDPWGQGTLVT




VSS





10-5
3829
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTGLGFDPWGQGTLVT




VSS





10-6
3830
QVQLVESGGGVVQPGRSLRLSCAASGFTFSRYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTGLGFDPWGQGTLVT




VSS





11-1
3831
QVQLVESGGGVVQPGRSLRLSCAASGFTFGSYGMHWVRQAPGKGLEWVAVISYDGG




DEYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDISRYGYYGMDVWG




QGTLVTVSS





11-2
3832
QVQLVESGGGVVQPGRSLRLSCAASGFTFGTYAMHWVRQAPGKGLEWVAVVSTEGG




TTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGSYGAYFDYWGQGTLV




TVSS





11-3
3833
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNFAMHWVRQAPGKGLEWVAVISYDGNH




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTNSGSYGGMFDYWGQ




GTLVTVSS





11-4
3834
QVQLVESGGGVVQPGRSLRLSCAASGFTFDNYAMHWVRQAPGKGLEWVAVISDDGR




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNYYDSSGYYGGGM




DVWGQGTLVTVSS





11-5
3835
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSRSGSYSSYFDYWGQG




TLVTVSS





11-6
3836
QVQLVESGGGVVQPGRSLRLSCAASGFTFGTYAMHWVRQAPGKGLEWVAVVSTEGG




TTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGEYYDSSGSSIDYWGQ




GTLVTVSS





11-7
3837
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAKGGGYRGAFDIWGQ




GTLVTVSS





11-8
3838
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPRGGSYWTYFDYWGQ




GTLVTVSS





11-9
3839
QVQLVESGGGVVQPGRSLRLSCAASGFTFGTYAMHWVRQAPGKGLEWVAVVSTEGG




TTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAGSYGAYFDYWGQGTLV




TVSS





11-10
3840
QVQLVESGGGVVQPGRSLRLSCAASGFIFNNYGMHWVRQAPGKGLEWVAVISYDGSN




IYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYNDGIGSYTGAFDSW




GQGTLVTVSS





11-11
3841
QVQLVESGGGVVQPGRSLRLSCAASGFTFDNYAMHWVRQAPGKGLEWVAVISYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCLREGILWDVWGQGTLVT




VSS





11-12
3842
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSQAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTEGGTYGGAFDIWGQG




TLVTVSS





11-13
3843
QVQLVESGGGVVQPGRSLRLSCAASGFSFSSYGMHWVRQAPGKGLEWVAVISYDGSD




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDNYYDSSGYYGGGMD




VWGQGTLVTVSS





11-14
3844
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYSMHWVRQAPGKGLEWVAVISYDGSH




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGWGYFDYWGQGTLV




TVSS





11-15
3845
QVQLVESGGGVVQPGRSLRLSCAASGFIFSNYGMHWVRQAPGKGLEWVAVISYDGSD




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDYMYGFEHWGQGTL




VTVSS





11-16
3846
QVQLVESGGGVVQPGRSLRLSCAASGFTFSDHYMHWVRQAPGKGLEWVAVISYDGSN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDLGPAGVDYWGQGTL




VTVSS





11-17
3847
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSYAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSRSGSYSSWFDYWGQG




TLVTVSS





11-18
3848
QVQLVESGGGVVQPGRSLRLSCAASGFTFGTYAMHWVRQAPGKGLEWVAVISYDGN




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTGSGSYYSWFDYWG




QGTLVTVSS





11-19
3849
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGTN




DYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTRGGSYFTPFDYWGQG




TLVTVSS





11-20
3850
QVQLVESGGGVVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVAVISYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASPHSGSYWAAFDIWGQ




GTLVTVSS





12-1
3851
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEWVAVTSYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPQGGSYFAAFDIWGQ




GTLVTVSS





12-2
3852
QVQLVESGGGVVQPGRSLRLSCAASGFIFRSYAMHWVRQAPGKGLEWVAVISYDGSS




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPSSGSYFPPFDYWGQGT




LVTVSS





12-3
3853
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTRTGSYFSAFDIWGQG




TLVTVSS





12-4
3854
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEWVAVISYDGT




NDYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKPHSGSYRGYFDYWG




QGTLVTVSS





12-5
3855
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYGMHWVRQAPGKGLEWVAVTSYDGS




NKYYSDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPKSGSYATYFDYWGQ




GTLVTVSS





12-6
3856
QVQLVESGGGVVQPGRSLRLSCAASGFIFRNYAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPRGGSYHGAFDIWGQG




TLVTVSS





12-7
3857
QVQLVESGGGVVQPGRSLRLSCAASGFTFSIYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSRGGSYYGAFDYWGQ




GTLVTVSS





12-8
3858
QVQLVESGGGVVQPGRSLRLSCAASGFTFNNYVMHWVRQAPGKGLEWVAVISYDGT




NDYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGESGSYWGAFDYWG




QGTLVTVSS





12-9
3859
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGTT




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPSSGSYLGFFDYWGQG




TLVTVSS





12-10
3860
QVQLVESGGGVVQPGRSLRLSCAASGFIFRSYAMHWVRQAPGKGLEWVAVISYDGSIK




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTRGGSYYGAFDYWGQG




TLVTVSS





12-11
3861
QVQLVESGGGVVQPGRSLRLSCAASGFSFGGYGMHWVRQAPGKGLEWVAVISYDGS




NEYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSYSGSYSSYFDYWGQ




GTLVTVSS





12-12
3862
QVQLVESGGGVVQPGRSLRLSCAASGFAFSSHAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSEKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKAYSGSYMGYFDYWGQ




GTLVTVSS





12-13
3863
QVQLVESGGGVVQPGRSLRLSCAASGFSFSTYGMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPLSGSYWSWFDPWGQ




GTLVTVSS





12-14
3864
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYSMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGKGGGYYSSFDFWGQ




GTLVTVSS





12-15
3865
QVQLVESGGGVVQPGRSLRLSCAASGFSFGGYGMHWVRQAPGKGLEWVAVISYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPYSGSYISWFDYWGQ




GTLVTVSS





12-16
3866
QVQLVESGGGVVQPGRSLRLSCAASGFIFRSYAMHWVRQAPGKGLEWVAVISYDGSS




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTLGGSYFAAFDIWGQG




TLVTVSS





12-17
3867
QVQLVESGGGVVQPGRSLRLSCAASGFTFGSYGMHWVRQAPGKGLEWVAVISYDGN




HEYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPHSGSYTAYFDYWGQ




GTLVTVSS





12-18
3868
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGYGGSYSYFDYWGQG




TLVTVSS





12-19
3869
QVQLVESGGGVVQPGRSLRLSCAASGFAFSSYAMHWVRQAPGKGLEWVAVISYDGTY




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSLGGSYFSGMDVWGQG




TLVTVSS





12-20
3870
QVQLVESGGGVVQPGRSLRLSCAASGFSFGGYGMHWVRQAPGKGLEWVAVISYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSKGGSYYGPFDYWG




QGTLVTVSS





12-21
3871
QVQLVESGGGVVQPGRSLRLSCAASGFSFGGYGMHWVRQAPGKGLEWVAVISYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPKGGNYWNAFDIWG




QGTLVTVSS





12-22
3872
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGNH




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPKSGSYVSYFDYWGQG




TLVTVSS





12-23
3873
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSYAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPRGGNYLNYFDYWGQ




GTLVTVSS





12-24
3874
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNFPMHWVRQAPGKGLEWVAVISYDGNN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDHGDHYFDYWGQGTL




VTVSS





12-25
3875
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDKGGSYYGPFDYWGQ




GTLVTVSS





12-26
3876
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMHWVRQAPGKGLEWVAVISYDGSN




EYYADSEKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSGSGSYFSPFDYWGQGT




LVTVSS





12-27
3877
QVQLVESGGGVVQPGRSLRLSCAASGFSFGGYGMHWVRQAPGKGLEWVAVISYDGST




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPRGGSYKDAFDIWGQG




TLVTVSS





12-28
3878
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGTN




EYYADSEKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAHGGSYFSGMDVWGQ




GTLVTVSS





12-29
3879
QVQLVESGGGVVQPGRSLRLSCAASGFSFSNYGMHWVRQAPGKGLEWVAVISYDGN




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSKGGSYYGPFDDWG




QGTLVTVSS





12-30
3880
QVQLVESGGGVVQPGRSLRLSCAASGFTFSGYAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSRGGSYYAPFDYWGQG




TLVTVSS





12-31
3881
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYTMHWVRQAPGKGLEWVAVTSYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPLGGSYFAAFDIWGQ




GTLVTVSS





12-32
3882
QVQLVESGGGVVQPGRSLRLSCAASGFTFGTYAMHWVRQAPGKGLEWVAVISYDGN




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKTMSGSYFSAFDIWGQ




GTLVTVSS





12-33
3883
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPHGGNYFDWFDPWGQ




GTLVTVSS





12-34
3884
QVQLVESGGGVVQPGRSLRLSCAASGFIFRSYAMHWVRQAPGKGLEWVAVISYDGSS




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPSGGSYFDPFDYWGQG




TLVTVSS





12-35
3885
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSSSMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKVDSGSYVGYFDYWGQ




GTLVTVSS





12-36
3886
QVQLVESGGGVVQPGRSLRLSCAASGFSFNNYGMHWVRQAPGKGLEWVAVISYDGS




NDYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPNSGSYSNYFDYWGQ




GTLVTVSS





12-37
3887
QVQLVESGGGVVQPGRSLRFSCAGTGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARSRSGSYLAYFDYWGQG




TLVTVSS





12-38
3888
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAAGGSYSSWFDPWGQ




GTLVTVSS





12-39
3889
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGNH




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAHSGSYFSHFDYWGQG




TLVTVSS





12-40
3890
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSN




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPTSGSYFSWFDPWGQG




TLVTVSS





12-41
3891
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSYAMHWVRQAPGKGLEWVAVISYDGSN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPNSGSYWGPFDYWGQ




GTLVTVSS





12-42
3892
QVQLVESGGGVVQPGRSLRLSCAASGFTFGSYGMHWVRQAPGKGLEWVAVISYDGSH




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARALGGNYYYFDYWGQG




TLVTVSS





12-43
3893
QVQLVESGGGVVQPGRSLRLSCAASGFIFSSYGMHWVRQAPGKGLEWVAVISYDGSN




EYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPRSGSYLSAFDYWGQG




TLVTVSS





13-1
3894
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYSMHWVRQAPGKGLEWVAVISYDGRN




QYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGYGGNYYYMDGWGQ




GTLVTVSS





13-2
3895
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGNN




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARTYGGSYYSAFDYWGQ




GTLVTVSS





13-3
3896
QVQLVESGGGVVQPGRSLRLSCAASGFSFNNHAMHWVRQAPGKGLEWVAVISYDGS




DKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARNLLRGYGMDVWGQG




TLVTVSS





13-4
3897
QVQLVESGGGVVQPGRSLRLSCAASGFAFDDYAMHWVRQAPGKGLEWVAVISYDGS




NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATLGYGDYPDYWGQGT




LVTVSS





13-5
3898
QVQLVESGGGVVQPGRSLRLSCAASGFIFRSYAMHWVRQAPGKGLEWVAVISYDGSS




KYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARPLGGGYQDAFDIWGQG




TLVTVSS





1N-1
3899
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFYWGQGTLVT




VSS





1N-2
3900
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFFWGQGTLVTV




SS





1N-3
3901
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGST




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVT




VSS





1N-4
3902
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFCWGQGTLVTV




SS





1N-5
3903
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWNGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVT




VSS





1N-6
3904
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGRT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVT




VSS





1N-7
3905
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWSGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFDWGQGTLVT




VSS





1N-8
3906
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPLDWGQGTLVT




VSS





1N-9
3907
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGPPFDWGQGTLVTV




SS





1N-10
3908
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFHWGQGTLVT




VSS





1N-11
3909
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGPPFYWGQGTLVTV




SS





1N-12
3910
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWKEDVGKPGDWGQGTLVT




VSS





1N-13
3911
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDRGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKEDVGKPFCWGQGTLVTV




SS





1N-14
3912
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCRKEDVGKPFFWGQGTLVTV




SS





1N-15
3913
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCYKEDVGKPFYWGQGTLVT




VSS





1N-16
3914
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCHKEDVGKPFYWGQGTLVT




VSS





1N-17
3915
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCFKEDVGKPFFWGQGTLVTV




SS





1N-18
3916
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCYKEDVGKPFFWGQGTLVTV




SS





1N-19
3917
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCFKEDVGKPFWWGQGTLVT




VSS





1N-20
3918
EVQLVESGGGLVQPGGSLRLSCAASGGTFSSIGMGWFRQAPGKEREFVAAISWDGGAT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWKEDVGKPFDEGQGTLVTV




SS





1N-21
3919
EVQLVESGGGLVQPGGSLRLSCAASGFTFSGSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTV




SS





1N-22
3920
EVQLVESGGGLVQPGGSLRLSCAASGFWFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTV




SS





1N-23
3921
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTRDFDYWGQGTLVTVSS





1N-24
3922
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVWRDFDYWGQGTLVTVS




S





1N-25
3923
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVATINSYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-26
3924
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVAFINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-27
3925
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVATINPYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-28
3926
EVQLVESGGGLVQPGGSLRLSCAASGTTFSPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-29
3927
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWFGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-30
3928
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVYRDFDYWGQGTLVTVSS





1N-31
3929
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVAWINPYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTV




SS





1N-32
3930
EVQLVESGGGLVQPGGSLRLSCAASGFWFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTRDFDYWGQGTLVTVS




S





1N-33
3931
EVQLVESGGGLVQPGGSLRLSCAASGFFFYPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-34
3932
EVQLVESGGGLVQPGGSLRLSCAASGFFFHPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-35
3933
EVQLVESGGGLVQPGGSLRLSCAASGFWFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVSRDFDYWGQGTLVTVS




S





1N-36
3934
EVQLVESGGGLVQPGGSLRLSCAASGFWFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDGDFDYWGQGTLVTV




SS





1N-37
3935
EVQLVESGGGLVQPGGSLRLSCAASGFWFSPSWMGWFRQAPGKEREFVATINNYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTV




SS





1N-38
3936
EVQLVESGGGLVQPGGSLRLSCAASGFCFSPSWMGWFRQAPGKEREFVATINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTRDFDYWGQGTLVTVSS





1N-39
3937
EVQLVESGGGLVQPGGSLRLSCAASGWFFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTV




SS





1N-40
3938
EVQLVESGGGLVQPGGSLRLSCAASGFWFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVYRDFDYWGQGTLVTV




SS





1N-41
3939
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPSWMGWFRQAPGKEREFVSTINEYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVTRDFDYWGQGTLVTVSS





1N-42
3940
EVQLVESGGGLVQPGGSLRLSCAASGFTFYPSWMGWFRQAPGKEREFVATINPYGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-43
3941
EVQLVESGGGLVQPGGSLRLSCAASGFWFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDYDFDYWGQGTLVTV




SS





1N-44
3942
EVQLVESGGGLVQPGGSLRLSCAASGFWFEPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTV




SS





1N-45
3943
EVQLVESGGGLVQPGGSLRLSCAASGFLFSPSWMGWFRQAPGKEREFVATINERGGRN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARVDRDFDYWGQGTLVTVSS





1N-46
3944
EVQLVESGGGLVQPGGSLRLSCAASGQTFVMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-47
3945
EVQLVESGGGLVQPGGSLRLSCAASGQTFMNIGWFRQAPGKEREFVAAIGSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-48
3946
EVQLVESGGGLVQPGGSLRLSCAASGQTFFMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-49
3947
EVQLVESGGGLVQPGGSLRLSCAASGQTFLMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-50
3948
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRYGNDYFDYWGQGTLVTVSS





1N-51
3949
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRFGNDYFDYWGQGTLVTVSS





1N-52
3950
EVQLVESGGGLVQPGGSLRLSCAASGQYFNMGWFRQAPGKEREFVAAIGSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-53
3951
EVQLVESGGGLVQPGGSLRLSCAASGQTFNMGWFRQAPGKEREFVADIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-54
3952
EVQLVESGGGLVQPGGSLRLSCAASGQTYNMGWFRQAPGKEREFVAAIGSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-55
3953
EVQLVESGGGLVQPGGSLRLSCAASGQFFNMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-56
3954
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-57
3955
EVQLVESGGGLVQPGGSLRLSCAASGQTQPMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-58
3956
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWREGNDYFDYWGQGTLVTVSS





1N-59
3957
EVQLVESGGGLVQPGGSLRLSCAASGQTFTMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWREGNDYFDYWGQGTLVTVSS





1N-60
3958
EVQLVESGGGLVQPGGSLRLSCAASGQTFTMGWFRQAPGKEREFVAAIGSGGWTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-61
3959
EVQLVESGGGLVQPGGSLRLSCAASGQTFTMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRGGNDYFDYWGQGTLVTVSS





1N-62
3960
EVQLVESGGGLVQPGGSLRLSCAASGQTFTMGWFRQAPGKEREFVAAGGSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-63
3961
EVQLVESGGGLVQPGGSLRLSCAASGQTFFFGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-64
3962
EVQLVESGGGLVQPGGSLRLSCAASGQTFTMGWFRQAPGKEREFVAPIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-65
3963
EVQLVESGGGLVQPGGSLRLSCAASGQTFMNIGWFRQAPGKEREFVAAIGSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRYGNDYFDYWGQGTLVTVSS





1N-66
3964
EVQLVESGGGLVQPGGSLRLSCAASGQTFVMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRYGNDYFDYWGQGTLVTVSS





1N-67
3965
EVQLVESGGGLVQPGGSLRLSCAASGQTFMNIGWFRQAPGKEREFVGAIGSGGSTSYA




DSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-68
3966
EVQLVESGGGLVQPGGSLRLSCAASGQTFTMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLTNDYFDYWGQGTLVTVSS





1N-69
3967
EVQLVESGGGLVQPGGSLRLSCAASGQTFFVGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-70
3968
EVQLVESGGGLVQPGGSLRLSCAASGQTFVFGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-71
3969
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSPSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRYGNDYFDYWGQGTLVTVSS





1N-72
3970
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRYGNDYFDYWGQGTLVTVSS





1N-73
3971
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSPSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-74
3972
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVGAGGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-75
3973
EVQLVESGGGLVQPGGSLRLSCAASGQTQPMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRYGNDYFDYWGQGTLVTVSS





1N-76
3974
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSTSPAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRLGNDYFDYWGQGTLVTVSS





1N-77
3975
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRFGNDYFDYWGQGTLVTVSS





1N-78
3976
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCPRLGNDYFDYWGQGTLVTVSS





1N-79
3977
EVQLVESGGGLVQPGGSLRLSCAASGQTFIMGWFRQAPGKEREFVAAGGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRTGNDYFDYWGQGTLVTVSS





1N-80
3978
EVQLVESGGGLVQPGGSLRLSCAASGQTQPMGWFRQAPGKEREFVAAIGSGGSTSYAD




SVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCWRHGNDYFDYWGQGTLVTVSS





1N-81
3979
EVQLVESGGGLVQPGGSLRLSCAASGSIFRSNAMGWFRQAPGKEREWVATIGSDGTTI




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGDYDFWSGFDHWGQGTLV




TVSS





1N-82
3980
EVQLVESGGGLVQPGGSLRLSCAASGFDFSVSWMGWFRQAPGKEREFVASTNSAGST




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHYYDSSDYYPHYYYYGM




DVWGQGTLVTVSS





1N-83
3981
EVQLVESGGGLVQPGGSLRLSCAASGYTYSSNWMGWFRQAPGKEREFVSAIDSEGRTS




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARHMGYYDSGTYFDYFDYW




GQGTLVTVSS





1N-84
3982
EVQLVESGGGLVQPGGSLRLSCAASGGTFSFYGMGWFRQAPGKEREFVATISWSGGD




GRSYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTVDQYFDYWGQGTLV




TVSS





1N-85
3983
EVQLVESGGGLVQPGGSLRLSCAASGSIFRSNAMGWFRQAPGKEREWVATIGSDGTTI




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARYDFWSGYPYWGQGTLVT




VSS





1N-86
3984
EVQLVESGGGLVQPGGSLRLSCAASGDIFSINAMGWFRQAPGKEHEFVASISGSDKITN




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKFAVYDYWSGTSFDYWGQ




GTLVTVSS





1N-87
3985
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREFVAAISGSGGST




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTSLVGLTAGFADYWGQGTL




VTVSS





1N-88
3986
EVQLVESGGGLVQPGGSLRLSCAASDSTFSIDVMGWFRQAPGKEREFVAAISWSAGST




LYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVTV




SS





1N-89
3987
EVQLVESGGGLVQPGGSLRLSCAASGDTFSWYAMGWFRQAPGKEREFVAVISWSGAY




TEYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAGDYDFWSGFDHWGQGT




LVTVSS





1N-90
3988
EVQLVESGGGLVQPGGSLRLSCAASGEEFSDHWMGWFRQAPGKEREFVGTINSGGDT




NYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARADNYFDYWGQGTLVTV




SS





1N-91
3989
EVQLVESGGGLVQPGGSLRLSCAASGSTFRINVMGWFRQAPGKEREFVAATSWSGGTT




VYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVT




VSS





1N-92
3990
EVQLVESGGGLVQPGGSLRLSCAASGGTFSTYGMGWFRQAPGKEREFVAAISWGGGS




DTLYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCARDYGDYYYFDYWGQG




TLVTVSS





1N-93
3991
EVQLVESGGGLVQPGGSLRLSCAASGFTFDRSWMGWFRQAPGKEREFVTVITWSGGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAKGPSSGYAFDIWGQGTLV




TVSS





1N-94
3992
EVQLVESGGGLVQPGGSLRLSCAASGSIFETNTMGWFRQAPGKERELVASITSGGSTVY




ADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTVDQYFDYWGQGTLVTVSS





1N-95
3993
EVQLVESGGGLVQPGGSLRLSCAASGFTDGIDAMGWFRQAPGKESEWVSAISWNGSN




TYYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTVDQYFDYWGQGTLVTV




SS





1N-96
3994
EVQLVESGGGLVQPGGSLRLSCAASGNTFSINVMGWFRQAPGKERELVAAISWSGAST




IYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGSDWGQGTLVTV




SS





1N-97
3995
EVQLVESGGGLVQPGGSLRLSCAASGSDVWFNVMGWFRQAPGKERELVATITRALNT




AYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCTTFNWNDEGFDYWGQGTL




VTVSS





1N-98
3996
EVQLVESGGGLVQPGGSLRLSCAASGSTFSVNVMGWFRQAPGKERELVAAISWSGAST




IYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYTGSDWGQGTLVTV




SS





1N-99
3997
EVQLVESGGGLVQPGGSLRLSCAASGVTLDDYAMGWFRQAPGKEREWVSEITSGGYT




YADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCVRSNMAGFDHWGQGTLVTV




SS





1N-100
3998
EVQLVESGGGLVQPGGSLRLSCAASGDTYGSYWMGWFRQAPGKEREGISLITSDDGST




YYADSVKGRFTISADNSKNTAYLQMNSLKPEDTAVYYCAAFDGYSGSDWGQGTLVTV




SS
















TABLE 13







Variable Domain Light Chain Sequences










SEQ



Variant
ID NO
Sequence





1-1
3999
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYATGFYVFGGGTKLTVL





1-2
4000
QSALTQPASVSGSPGQSITISCTGTSSVGGYNLVSWYQQHPGKAPKLMIYEGSKRPSGV




SNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLAVFGGGTKLTVL





1-3
4001
QSALTQPASVSGSPGQSITISCTGTSSNVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTFKAYVFGGGTKLTVL





1-4
4002
QSALTQPASVSGSPGQSITISCTGTSSDVGGYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTHYVFGGGTKLTVL





1-5
4003
QSALTQPASVSGSPGQSITISCTGTSSDVGSYHLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTFGVVFGGGTKLTVL





1-6
4004
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYSGRYTYVFGGGTKLTVL





1-7
4005
QSALTQPASVSGSPGQSITISCTGTSSDVGNYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTFAVFGGGTKLTVL





1-8
4006
QSALTQPASVSGSPGQSITISCTGTSSDIGSYNLVSWYQQHPGKAPKLMIYEASRPSGV




SNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSGIFYVFGGGTKLTVL





1-9
4007
QSALTQPASVSGSPGQSITISCTGTGSDVGYNLVSWYQQHPGKAPKLMIYEVSKRPSGV




SNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTFEVFGGGTKLTVL





1-10
4008
QSALTQPASVSGSPGQSITISCTGTSSDVGDYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTNVVFGGGTKLTVL





1-11
4009
QSALTQPASVSGSPGQSITISCTGTSSDVGTYNLVSWYQQHPGKAPKLMIYEGYKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGNLWLFGGGTKLTVL





1-12
4010
QSALTQPASVSGSPGQSITISCTGTSSDVGHYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGRDTYVAFGGGTKLTVL





1-13
4011
QSALTQPASVSGSPGQSITISCTGTSSDVGRYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSRTVVFGGGTKLTVL





1-14
4012
QSALTQPASVSGSPGQSITISCTGASSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSGVFGGGTKLTVL





1-15
4013
QSALTQPASVSGSPGQSITISCTGTSTDVGSYNLVSWYQQHPGKAPKLMIYEGFKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLGVFGGGTKLTVL





1-16
4014
QSALTQPASVSGSPGQSITISCTGTTSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAKDEADYYCSYTSSRTGVFGGGTKLTVL





1-17
4015
QSALTQPASVSGSPGQSITISCTATSSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSWVFGGGTKLTVL





1-18
4016
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGSKWPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSFAGSSTDVVFGGGTKLTVL





1-19
4017
QSALTQPASVSGSPGQSITISCTGASSDVGSYNLVSWYQQHPGKAPKLMIYEGFKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSHTYVFGGGTKLTVL





1-20
4018
QSALTQPASVSGSPGQSITISCTGTSSDVGSYYLVSWYQQHPGKAPKLMIYEGFKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSLYVFGGGTKLTVL





1-21
4019
QSALTQPASVSGSPGQSITISCTGTSSDVGSYSLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSRRVFGGGTKLTVL





1-22
4020
QSALTQPASVSGSPGQSITISCTGSSSDVGSYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSNWVFGGGTKLTVL





1-23
4021
QSALTQPASVSGSPGQSITISCTGTSSDVGYYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTPYVVFGGGTKLTVL





1-24
4022
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGSKWPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSFAGSSTDVVFGGGTKLTVL





1-25
4023
QSALTQPASVSGSPGQSITISCTGTSSDVGSSNLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYGVVFGGGTKLTVL





1-26
4024
QSALTQPASVSGSPGQSITISCTGTSSDIGSYNLVSWYQQHPGKAPKLMIYEGFKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYSVVFGGGTKLTVL





1-27
4025
QSALTQPASVSGSPGQSITISCTGTSSDVGAYNLVSWYQQHPGKAPKLMIHEGNKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGDSFPYVFGGGTKLTVL





1-28
4026
QSALTQPASVSGSPGQSITISCTGTSRDVGSYNLVSWYQQHPGKAPKLMIYEASKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSYTLYVFGGGTKLTVL





1-29
4027
QSALTQPASVSGSPGQSITISCTGTSSDVGHYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSIYVFGGGTKLTVL





1-30
4028
QSALTQPASVSGSPGQSITISCTGTSSDVGNYNLVSWYQQHPGKAPKLMIYEGTKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGTVVFGGGTKLTVL





1-31
4029
QSALTQPASVSGSPGQSITISCTGTSSDVGKYNLVSWYQQHPGKAPKLMIYEGSQRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTVFGGGTKLTVL





1-32
4030
QSALTQPASVSGSPGQSITISCTGTSSDVGSNNLVSWYQQHPGKAPKLMIYEGDKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYTGSYTVVFGGGTKLTVL





1-33
4031
QSALTQPASVSGSPGQSITISCTGTSSDVGDYNLVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTNVVFGGGTKLTVL





1-34
4032
QSALTQPASVSGSPGQSITISCTGTSSDVGKYNLVSWYQQHPGKAPKLMIYEASKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCYSYAGSYTLGVFGGGTKLTVL





1-35
4033
QSALTQPASVSGSPGQSITISCTGTSSDVGSYNHVSWYQQHPGKAPKLMIYEGGKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGTTTPFVFGGGTKLTVL





1-36
4034
QSALTQPASVSGSPGQSITISCTGTSSDVGKYNLVSWYQQHPGKAPKLMIYETRKRPSG




VSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTVVFGGGTKLTVL





2A-1
4035
DIQMTQSPSSLSASVGDRVTITCRASQSIHRFLNWYQQKPGKAPKLLIYAASNLHSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYGLPP-TFGQGTKVEIK





2A-10
4036
DIQMTQSPSSLSASVGDRVTITCRASQSIHISLNWYQQKPGKAPKLLIYLASPLASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-5
4037
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-2
4038
DIQMTQSPSSLSASVGDRVTITCRASQTINTYLNWYQQKPGKAPKLLIYSASTLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTFTFGQGTKVEIK





2A-4
4039
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-6
4040
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-11
4041
DIQMTQSPSSLSASVGDRVTITCRASQSIGNYLNWYQQKPGKAPKLLIYGVSSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-12
4042
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-13
4043
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGASALESGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPPYFFGQGTKVEIK





2A-14
4044
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYFFGQGTKVEIK





2A-7
4045
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-8
4046
DIQMTQSPSSLSASVGDRVTITCRASQSIDTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-15
4047
DIQMTQSPSSLSASVGDRVTITCRASQSIDNYLNWYQQKPGKAPKLLIYGVSALQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSAPLTFGQGTKVEIK





2A-9
4048
DIQMTQSPSSLSASVGDRVTITCRASQRIGTYLNWYQQKPGKAPKLLIYAASNLEGGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQNYSTTWTFGQGTKVEIK





2A-21
4049
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-22
4050
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





2A-23
4051
DIQMTQSPSSLSASVGDRVTITCRASQTINTFLNWYQQKPGKAPKLLIYSASTLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTFTFGGGTKVEIK





2A-24
4052
DIQMTQSPSSLSASVGDRVTITCRASQTIRTYLNWYRQKPGKAPKLLIYDASTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRTPPWTFGGGTKVEIK





2A-25
4053
DIQMTQSPSSLSASVGDRVTITCRSSQSISSYLNWYQQKPGEAPKLLIYGASRLRSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYSAPWTFGGGTKVEIK





2A-26
4054
DIQMTQSPSSLSASVGDRVTITCRASQSISGSLNWYQQKPGKAPKLLIYAESRLHSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSPPQTFGGGTKVEIK





2A-27
4055
DIQMTQSPSSLSASVGDRVTITCRASRSISTYLNWYQQKPGKAPKLLIYAASNLQGGVP




SRISGSGSGTDFTLTISSLQPEDFATYYCQQSHSIPRTFGGGTKVEIK





2A-28
4056
DIQMTQSPSSLSASVGDRVTITCRASQSIHTYLNWYQQKPGKAPKLLIYAASALASGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSAPPYTFGQGTKVEIK





3A-10
4057
DIQMTQSPSSLSASVGDRVTITCRASQSIRKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGGGTKVEIK





3A-4
4058
DIQMTQSPSSLSASVGDRVTITCRASRSIRRYLNWYQQKPGKAPKLLIYASSSLQAGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTLLTFGQGTKVEIK





3A-7
4059
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYASSSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-1
4060
DIQMTQSPSSLSASVGDRVTITCRASQTIYSYLNWYQQKPGKAPKLLIYATSTLQGGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQHRGTFGQGTKVEIK





3A-5
4061
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-6
4062
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSPPFTFGQGTKVEIK





3A-15
4063
DIQMTQSPSSLSASVGDRVTITCRASQNIKTYLNWYQQKPGKAPKLLIYAASKLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTSPTFGQGTKVEIK





3A-3
4064
DIQMTQSPSSLSASVGDRVTITCRASRSISRYLNWYQQKPGKAPKLLIYAASSLQAGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSSLLTFGQGTKVEIK





3A-11
4065
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSPPFTFGQGTKVEIK





3A-8
4066
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPLTFGQGTKVEIK





3A-2
4067
DIQMTQSPSSLSASVGDRVTITCRTSQSINTYLNWYQQKPGKAPKLLIYGASNVQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYRIPRTFGQGTKVEIK





3A-12
4068
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSLSTPFTFGQGTKVEIK





3A-14
4069
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSTPFTFGQGTKVEIK





3A-9
4070
DIQMTQSPSSLSASVGDRVTITCRASQSIGRYLNWYQQKPGKAPKLLIYAASSLKSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSLPRTFGQGTKVEIK





3A-13
4071
DIQMTQSPSSLSASVGDRVTITCRASQSIGKYLNWYQQKPGKAPKLLIYASSTLQRGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSFSPPFTFGQGTKVEIK





3A-16
4072
DIQMTQSPSSLSASVGDRVTITCRASQIIGSYLNWYQQKPGKAPKLLIYTTSNLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYITPWTFGQGTKVEIK





3A-17
4073
DIQMTQSPSSLSASVGDRVTITCRASQSISRYINWYQQKPGKAPKLLIYEASSLESGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHITPLTFGQGTKVEIK





3A-18
4074
DIQMTQSPSSLSASVGDRVTITCRASQSIYTYLNWYQQKPGKAPKLLIYSASNLHSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSDTTPWTFGQGTKVEIK





3A-19
4075
DIQMTQSPSSLSASVGDRVTITCRASQSIATYLNWYQQKPGKAPKLLIYGASSLEGGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQTFSSPFTFGQGTKVEIK





3A-2
4076
DIQMTQSPSSLSASVGDRVTITCRASQNINTYLNWYQQKPGKAPKLLIYSASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSSLTPWTFGQGTKVEIK





3A-21
4077
DIQMTQSPSSLSASVGDRVTITCRASQGIATYLNWYQQKPGKAPKLLIYYASNLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTRFTFGQGTKVEIK





3A-22
4078
DIQMTQSPSSLSASVGDRVTITCRASERISNYLNWYQQKPGKAPKLLIYTASNLESGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYTPPRTFGQGTKVEIK





3A-23
4079
DIQMTQSPSSLSASVGDRVTITCRASQSISSSLNWYQQKPGKAPKLLIYAASRLQDGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRSFGQGTKVEIK





3A-24
4080
DIQMTQSPSSLSASVGDRVTITCRASQSISSHLNWYQQKPGKAPKLLTYRASTLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYNTPQTFGQGTKVEIK





3A-25
4081
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLIWYQQKPGKAPKLLIYAASRLHSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQGYNTPRTFGQGTKVEIK





3A-26
4082
DIQMTQSPSSLSASVGDRVTITCRASPSISTYLNWYQQKPGKAPKLLIYTASRLQTGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYSTPSSFGQGTKVEIK





3A-27
4083
DIQMTQSPSSLSASVGDRVTITCRASQNIAKYLNWYQQKPGKAPKLLIYGASGLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSHSPPITFGQGTKVEIK





3A-28
4084
DIQMTQSPSSLSASVGDRVTITCRASQSIGTYLNWYQQKPGKAPKLLIYAASNLHSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQESYSAPYTFGQGTKVEIK





3A-29
4085
DIQMTQSPSSLSASVGDRVTITCRASQSISPYLNWYQQKPGKAPKLLIYKASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQSSSTPYTFGQGTKVEIK





9-1
4086
EIVLTQSPATLSLSPGERATLSCRASQGVSNYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRYSWVTFGGGTKVEIK





9-2
4087
EIVLTQSPATLSLSPGERATLSCRASQSVSSSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRINWPRSFGGGTKVEIK





9-3
4088
EIVLTQSPATLSLSPGERATLSCRASQSVNSYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQFSNWPTFGGGTKVEIK





9-4
4089
EIVLTQSPATLSLSPGERATLSCRASQSVGTSLAWYQQKPGQAPRLLIYGASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWQPFGGGTKVEIK





9-5
4090
EIVLTQSPATLSLSPGERATLSCRATQYVNSYLAWYQQKPRQAPRLIIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQFSNWPTFGGGTKVEIK





9-6
4091
EIVLTQSPATLSLSPGERATLSCRASQSVGTSLAWYQQKPGQAPRLLIYGASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQLRSNWYTFGGGTKVEIK





9-7
4092
EIVLTQSPATLSLSPGERATLSCRASQGVSNYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLSISSLEPEDFAVYYCQQRYSWVTFGGGTKVEIK





9-8
4093
EIVLTQSPATLSLSPGERATLSCRASQGVSNYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRYSWVTFGGGTKVEIK





9-9
4094
EIVLTQSPATLSLSPGERATLSCRASQSVDSRLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSTWPPVFGGGTKVEIK





9-10
4095
EIVLTQSPATLSLSPGERATLSCRASQSVRHHLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRTDWPRAFGGGTKVEIK





9-11
4096
EIVLTQSPATLSLSPGERATLSCRASQSVGNFLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSTWPLTFGGGTKVEIK





9-12
4097
EIVLTQSPATLSLSPGERATLSCRASESISTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSGLITFGGGTKVEIK





9-13
4098
EIVLTQSPATLSLSPGERATLSCRASQSVGDFLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNLTFGGGTKVEIK





9-14
4099
DIQMTQSPSSLSASVGDRVTITCRASQTIRNSLNWYQQKPGKAPKLLIYASSSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQTHSIPKTFGQGTKVEIK





9-15
4100
EIVLTQSPATLSLSPGERATLSCRASQSVSSSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRINWPRSFGGGTKVEIK





10-1
4101
EIVLTQSPATLSLSPGERATLSCRASQDVSTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRRDWPQTFGGGTKVEIK





10-2
4102
EIVLTQSPATLSLSPGERATLSCRASQDVSTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTPFITNFEPEDFAVYYCQQRRDWPQTFGGGTKVEIK





10-3
4103
EIVLTQSPATLSLSPGERATLSCRASQDVSTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTPFITNFEPEDFAVYYCQQRRDWPQTFGGGTKVEIK





10-4
4104
EIVLTQSPATLSLSPGERATLSCRASQDVSTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLFITNFEPEDFAVYYCQQRRDWPQTFGGGTKVEIK





10-5
4105
EIVLTQSPATLSLSPGERATLSCRASQDVSTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSFEPEDFAVYYCQQRRDWPQTFGGGTKVEIK





10-6
4106
EIVLTQSPATLSLSPGERATLSCRASQDVSTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTPFITNFEHEDFAVYYCQQRRDWPQTFGGGTKVEIK





11-1
4107
EIVLTQSPATLSLSPGERATLSCRASQSLGSFLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRALWPRLTFGGGTKVEIK





11-2
4108
EIVLTQSPATLSLSPGERATLSCRASQSVNSYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQFSNWPTFGGGTKVEIK





11-3
4109
EIVLTQSPATLSLSPGERATLSCRASQNIGNHLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRDNGPPEGTFGGGTKVEIK





11-4
4110
EIVLTQSPATLSLSPGERATLSCRASQSVGSYLAWYQQKPGQAPRLLIYDAVNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRFTWPTTFGGGTKVEIK





11-5
4111
EIVLTQSPATLSLSPGERATLSCRASQSITDYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCHQRNNWPPTFGGGTKVEIK





11-6
4112
EIVLTQSPATLSLSPGERATLSCRASQSVDSSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQQSNWPGTFGGGTKVEIK





11-7
4113
EIVLTQSPATLSLSPGERATLSCRASQSIGSYLAWYQQKPGQAPRLLIYDGSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRTNWPLFSFGGGTKVEIK





11-8
4114
EIVLTQSPATLSLSPGERATLSCRASQTVTNYLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRDDWPPTFGGGTKVEIK





11-9
4115
EIVLTQSPATLSLSPGERATLSCRASQSVSYYLAWYQQKPGQAPRLLIYDSSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWQGNFGGGTKVEIK





11-10
4116
EIVLTQSPATLSLSPGERATLSCRASQSVSTSLAWYQQKPGQAPRLLIYDATNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQHYSWPLTFGGGTKVEIK





11-11
4117
EIVLTQSPATLSLSPGERATLSCRASHNINNFLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQGRNWPPSSFGGGTKVEIK





11-12
4118
EIVLTQSPATLSLSPGERATLSCRASQSVGTSLAWYQQKPGQAPRLLIYGASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQERSNWPDTFGGGTKVEIK





11-13
4119
EIVLTQSPATLSLSPGERATLSCRASQSVSSQLAWYQQKPGQAPRLLMYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRYNWPSTFGGGTKVEIK





11-14
4120
EIVLTQSPATLSLSPGERATLSCRASQSVDSRLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRTNLPPSITFGGGTKAKLK





11-15
4121
EMVVPQSPPTVSLSPGERATLSCRASQSVGSYLAWYQQKPGQAPRLLIYDAVNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSDSITFGGGTKVEIK





11-16
4122
EIVLTQSPATLSLSPGERATLSCRASQSLGRYLAWYQQKPGQAPRLLIYDSSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQYGDWPETFGGGTKVEIK





11-17
4123
EIVLTQSPATLSLSPGERATLSCRASQNIGSHLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRDYWPPYTFGGGTKVEIK





11-18
4124
EIVLTQSPATLSLSPGERATLSCRASQSLTSYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRHYWPPITFGGGTKVEIK





11-19
4125
EIVLTQSPATLSLSPGERATLSCRASQSIGSYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRDSWPHTFGGGTKVEIK





11-20
4126
EIVLTQSPATLSLSPGERATLSCRASQSVGSYLAWYQQKPGQAPRLLIYDAVNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSLWPFGGGTKVEIK





12-1
4127
EIVLTQSPATLSLSPGERATLSCRASQSVSSHLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRDTFTFGGGTKVEIK





12-2
4128
EIVLTQSPATLSLSPGERATLSCRASQSVDSRLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSTWPPVFGGGTKVEIK





12-3
4129
EIVLTQSPATLSLSPGERATLSCRASQSVGDFLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQYRSNFTFGGGTKVEIK





12-4
4130
EIVLTQSPATLSLSPGERATLSCRASQSVGSHLAWYQQKPGQAPRLLIYDASNRATGIP




SRFSGSGSGTDFTLTISSLEPEDFAVYYCQQISNWPLTFGGGTKVEIK





12-5
4131
EIVLTQSPATLSLSPGERATLSCRASQNVGQSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRENWPPTFGGGTKVEIK





12-6
4132
EIVLTQSPATLSLSPGERATLSCRASQSLGNYLAWYQQKPGQAPRLLIYDSSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRNWPYTFGGGTKVEIK





12-7
4133
EIVLTQSPATLSLSPGERATLSCRASQSLGNYLAWYQQKPGQAPRLLIYDSSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRTDWPPSFGGGTKVEIK





12-8
4134
EIVLTQSPATLSLSPGERATLSCRASQNIGNHLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRKSWPPFTFGGGTKVEIK





12-9
4135
EIVLTQSPATLSLSPGERATLSCRASQSVSTSLAWYQQKPGQAPRLLIYDATNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQRRTDWPPTFGGGTKVEIK





12-10
4136
EIVLTQSPATLSLSPGERATLSCRASQSVNSDLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRTDWPPATFGGGTKVEIK





12-11
4137
EIVLTQSPATLSLSPGERATLSCRASQSVGSYLAWYQQKPGQAPRLLIYDAVNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRFTWPTTFGGGTKVEIK





12-12
4138
EIVLTQSPATLSLSPGERATLSCRASQSVSSSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRDDWPPTFGGGTKVEIK





12-13
4139
EIVLTQSPATLSLSPGERATLSCRASQSVGSYLAWYQQKPGQAPRLLIYDAVNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRNSWPPATFGGGTKVEIK





12-14
4140
EIVLTQSPATLSLSPGERATLSCRASQSVGSYLAWYQQKPGQAPRLLIYDAVNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQVSNWPLTFGGGTKVEIK





12-15
4141
EIVLTQSPATLSLSPGERATLSCRASQSVSSHLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQVRSDWPPLTFGGGTKVEIK





12-16
4142
EIVLTQSPATLSLSPGERATLSCRASQSLDSYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRRGWPPVTFGGGTKVEIK





12-17
4143
EIVLTQSPATLSLSPGERATLSCRASQSVSKFLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCHQHSDWPLTFGGGTKVEIK





12-18
4144
EIVLTQSPATLSLSPGERATLSCRASQSIGGSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRYSYFTFGGGTKVEIK





12-19
4145
EIVLTQSPATLSLSPGERATLSCRASQSISRYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSSNWPLFTFGGGTKVEIK





12-20
4146
EIVLTQSPATLSLSPGERATLSCRASQSLGNYLAWYQQKPGQAPRLLIYDSSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRNTWPGVTFGGGTKVEIK





12-21
4147
EIVLTQSPATLSLSPGERATLSCRASQSVNSDLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQERSLFGGGTKVEIK





12-22
4148
EIVLTQSPATLSLSPGERATLSCRASQSVRHHLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQERSDWPITFGGGTKVEIK





12-23
4149
EIVLTQSPATLSLSPGERATLSCRASQSVDSRLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSTWPPVFGGGTKVEIK





12-24
4150
EIVLTQSPATLSLSPGERATLSCRASQSFGDSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSIPITFGGGTKVEIK





12-25
4151
EIVLTQSPATLSLSPGERATLSCRASQSVNSYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQERGNWPPFTFGGGTKVEIK





12-26
4152
EIVLTQSPATLSLSPGERATLSCRASQSVSTSLAWYQQKPGQAPRLLIYDISNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRRSGLTFGGGTKVEIK





12-27
4153
EIVLTQSPATLSLSPGERATLSCRASDTVSSYLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRASWPLSFGGGTKVEIK





12-28
4154
EIVLTQSPATLSLSPGERATLSCRASQSVRHHLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQSGSWPLTFGGGTKVEIK





12-29
4155
EIVLTQSPATLSLSPGERATLSCRASQIISSYLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQVRSNWPPLTFGGGTKVEIK





12-30
4156
EIVLTQSPATLSLSPGERATLSCRASHNIGTYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRADWPQTFGGGTKVEIK





12-31
4157
EIVLTQSPATLSLSPGERATLSCRASQSIGSYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRDSFTFGGGTKVEIK





12-32
4158
EIVLTQSPATLSLSPGERATLSCRASQSIGSYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRDSFTFGGGTKVEIK





12-33
4159
EIVLTQSPATLSLSPGERATLSCRASQDVSTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRAYWPGTFGGGTKVEIK





12-34
4160
EIVLTQSPATLSLSPGERATLSCRASQSVGNFLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQHRRLLTFGGGTKVEIK





12-35
4161
EIVLTQSPATLSLSPGERATLSCRASQRVSSYLAWYQQKPGQAPRLLIYDAFNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRQDWPLTFGGGTKVEIK





12-36
4162
EIVLTQSPATLSLSPGERATLSCRASQGISTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRRRWPPTFGGGTKVEIK





12-37
4163
EIELTQSPATLSLSPGERATLSCRASESVSESLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRTHGVTFGGGTKVEIK





12-38
4164
EIVLTQSPATLSLSPGERATLSCRASQSVSTSLAWYQQKPGQAPRLLIYDATNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRQKWPLTFGGGTKVEIK





12-39
4165
EIVLTQSPATLSLSPGERATLSCRASESISTYLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDLAVYYCQQRRNSLTFGGGTKVEIK





12-40
4166
EIVLTQSPATLSLSPGERATLSCRASQSVNSDLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSTWSPLTFGGGTKVEIK





12-41
4167
EIVLTQSPATLSLSPGERATLSCRASQNVGQSLAWYQQKPGQAPRLLIYDASNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQLRTNWPPVTFGGGTKVEIK





12-42
4168
EIVLTQSPATLSLSPGERATLSCRASQSVDSRLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSSNWTFGGGTKVEIK





12-43
4169
EIVLTQSPATLSLSPGERATLSCRASQSVGKSLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRGSFPLTFGGGTKVEIK





13-1
4170
EIVLTQSPATLSLSPGERATLSCRASQSVGDFLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSIRGTFGGGTKVEIK





13-2
4171
EIVLTQSPATLSLSPGERATLSCRASDTVSSYLAWYQQKPGQAPRLLIYDTSNRATGIP




ARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRGGWPPAFGGGTKVEIK





13-3
4172
DIQMTQSPSSLSASVGDRVTITCRASQSIGDYLNWYQQKPGKAPKLLIYEASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCLHTYLPPYSFGQGTKVEIK





13-4
4173
DIQMTQSPSSLSASVGDRVTITCRASQSITRYLNWYQQKPGKAPKLLIYAASSLQSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYNFPHTFGQGTKVEIK





13-5
4174
EIVLTQSPATLSLSPGERATLSCRASQSIGSYLAWYQQKPGQAPRLLIYDVSNRATGIP




ARFSGSGSGTDFTLTISSFEPEDFAVYYCQQRHHWPPVTFGGGTKVEIK
















TABLE 14







Antibody Sequences










SEQ



Antibody
ID NO
Sequence





Antibody 1
4175
EVQLVESGGGLVQPGGSLRLSCAASGSTFSIN




AMGWFRQAPGKEREFVAGITSSGGYTNYADSV




KGRFTISADNSKNTAYLQMNSLKPEDTAVYYC




AADGVPEYSDYASGPVWGQGTLVTVSSGGGGS




GGGGSASEVQLVESGGGLVQPGGSLRLSCAAS




GFTFSPSWMGWFRQAPGKEREFVATINEYGGR




NYADSVKGRFTISADNSKNTAYLQMNSLKPED




TAVYYCARVDRDFDYWGQGTLVTVSSGGGGSE




PKSSDKTHTCPPCPAPELLGGPSVFLFPPKPK




DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD




GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD




WLNGKEYKCKVSNKALPAPIEKTISKAKGQPR




EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSD




IAVEWESNGQPENNYKTTPPVLDSDGSFFLYS




KLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS




LSLSPG





Antibody 2
4176
EVQLVESGGGLVQPGGSLRLSCAASGFTFSPS




WMGWFRQAPGKEREFVATINEYGGRNYADSVK




GRFTISADNSKNTAYLQMNSLKPEDTAVYYCA




RVDRDFDYWGQGTLVTVSSGGGGSEPKSSDKT




HTCPPCPAPELLGGPSVFLFPPKPKDTLMISR




TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNA




KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY




KCKVSNKALPAPIEKTISKAKGQPREPQVYTL




PPSREEMTKNQVSLTCLVKGFYPSDIAVEWES




NGQPENNYKTTPPVLSDGSFFLYSKLTVDKSR




WQQGNVFSCSVMHEALHNHYTQKSLSLSPGGG




GGSGGGGSASEVQLVESGGGLVQPGGSLRLSC




AASGSTFSINAMGWFRQAPGKEREFVAGITSS




GGYTNYADSVKGRFTISADNSKNTAYLQMNSL




KPEDTAVYYCAADGVPEYSDYASGPVWGQGTL




VTVSS









While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A device for detecting a virus in a sample comprising: a) a sample application pad for receiving the sample; andb) a membrane substrate comprising a first test line, the first test line comprising an immobilized antibody or antibody fragment, wherein the immobilized antibody or antibody fragment comprises a predetermined number of variants within a complementarity determining region (CDR) relative to a reference antibody or antibody fragment, and wherein the immobilized antibody or antibody fragment comprises at least a 2.5× higher binding affinity than a binding affinity of the reference antibody or antibody fragment.
  • 2. The device of claim 1, wherein the device is a lateral flow immunoassay.
  • 3-6. (canceled)
  • 7. The device of claim 1, wherein the immobilized antibody comprises an amino acid sequence comprising at least about 80% sequence identity to any one of SEQ ID NOs: 1-4212.
  • 8-17. (canceled)
  • 18. The device of claim 1, wherein the CDR comprises at least one variant relative to the reference antibody or antibody fragment.
  • 19. The device of claim 1, wherein the CDR is a CDR1, CDR2, and CDR3 on a heavy chain.
  • 20. The device of claim 1, wherein the CDR is a CDR1, CDR2, and CDR3 on a light chain.
  • 21. The device of claim 1, wherein the immobilized antibody comprises an EC50 of less than about 5 nM.
  • 22. (canceled)
  • 23. The device of claim 1, wherein the immobilized antibody comprises a binding affinity of less than about 100 nM.
  • 24-29. (canceled)
  • 30. The device of claim 1, wherein the sample comprises saliva, blood, semen, vaginal fluid, or urine.
  • 31. The device of claim 1, wherein the sample comprises saliva.
  • 32. The device of claim 1, wherein the membrane substrate further comprises at least one control line.
  • 33. The device of claim 1, wherein the device further comprises a backing.
  • 34. The device of claim 1, wherein the device further comprises a wicking pad.
  • 35. The device of claim 1, wherein the device comprises a sensitivity of at least about 70% for detecting the virus.
  • 36. The device of claim 1, wherein the device detects viral titers in a range of about 103 to about 104 viral particles.
  • 37. The device of claim 1, wherein the device comprises a specificity of at least about 70% for detecting the virus as compared to another virus.
  • 38. The device of claim 1, wherein the device is specific for detecting SARS-CoV-2.
  • 39. (canceled)
  • 40. A method of detecting a virus, the method comprising: a) contacting a sample comprising the virus with a device of claim 1; andb) detecting the virus if the first test line undergoes a color change.
  • 41. The method of claim 40, wherein the method detects the virus in at most about 20 minutes.
  • 42. (canceled)
  • 43. A kit comprising: a) a device of claim 1, andb) instructions for use thereof.
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 63/104,368 filed on Oct. 22, 2020, which is incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
63104368 Oct 2020 US