Methods and systems for detecting path break conditions while minimizing network overhead

Information

  • Patent Grant
  • 10887159
  • Patent Number
    10,887,159
  • Date Filed
    Friday, March 6, 2020
    4 years ago
  • Date Issued
    Tuesday, January 5, 2021
    3 years ago
Abstract
Disclosed herein are systems and methods for detection of a path break in a communication network by one network appliance of a plurality of network appliance. A communication path that is transitioning from active to idle state can be quickly determined by evaluating network data traffic within a predetermined time interval after the end of a data transmission. By strategically utilizing health probes at only a set predetermined time interval after a data transmission, a path break condition can be quickly determined without significant use of network bandwidth. Further, the path break condition can be determined unilaterally by one network appliance.
Description
TECHNICAL FIELD

This disclosure relates generally to the detection of a path break in a communication network.


BACKGROUND

The approaches described in this section could be pursued, but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


Health packet probes are utilized to ping network components and check that they are operating as they should. Generally health packets are transmitted at specific intervals. The receiving network component returns a confirmation of receipt of the health packets. If the receiving side fails to receive a few health packets in a row, it may determine that there is a problem with the communication network link. Alternatively, or in addition, if the transmitting side fails to receive a few health packet acknowledgements in a row, it may determine that there is a problem with the communication network link. In addition, the time between transmission of health packets may be increased if the link is idle, or decreased if there is a suspicion that a problem may exist with the link, to conserve network bandwidth.


Traditionally, when a problem is suspected on a network link, more health packets are transmitted. The time in between a suspicion and a confirmation of a break in a network link can be several seconds, or longer. In the interim, the link continues to be used. If the link is confirmed as nonoperational, then all of the data transmitted over it while waiting for confirmation of nonoperational status, is lost. Thus, a mechanism is needed to detect a break in a network link quickly.


Further, in an enterprise comprising many network components, sending health packets between every network device continuously can significantly increase the network traffic and congestion. Thus, a mechanism is needed to detect a break in a network link without continuously sending many health packets and unnecessarily increasing network overhead.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


In exemplary embodiments, a method for quickly determining a break condition in a communication path by a receiving network appliance of a plurality of network appliances, comprises: receiving at a receiving network appliance, a first plurality of data packets transmitted by a transmitting network appliance over a communication path; determining that a first predetermined time interval has elapsed since the first plurality of data packets was received by the receiving network appliance over the communication path, wherein no data packets or health probe packets are received within the first predetermined time interval; after expiration of the first predetermined time interval, expecting receipt of either a data packet or a health probe packet during a second predetermined time interval; determining that a second predetermined time interval has elapsed since the first plurality of data packets was received by the receiving network appliance over the communication path, wherein no data packets or health probe packets are received within the second predetermined time interval; and sending a message to the transmitting network appliance that there is likely a break condition in the communication path.


Other features, examples, and embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by limitation in the figures of the accompanying drawings, in which like references indicate similar elements.



FIG. 1 depicts an exemplary environment, within which the present disclosure can be implemented.



FIG. 2 depicts an exemplary network for connecting multiple appliances.



FIG. 3 depicts a block diagram of an exemplary network appliance.



FIG. 4 depicts an exemplary implementation of data packet transfer over a network using quality of service using multiple flows.



FIG. 5 depicts an exemplary environment of a plurality of network appliances in communication with an orchestrator device.



FIG. 6A depicts an exemplary environment in which embodiments of the present disclosure may be implemented.



FIG. 6B depicts exemplary timelines in which embodiments of the present disclosure may be implemented.



FIG. 7 depicts an exemplary flowchart for detecting a path break by a receiving network appliance.



FIG. 8 depicts an exemplary flowchart for confirming a path break by a transmitting network appliance.



FIG. 9 depicts another exemplary flowchart for detecting a path break by a transmitting network appliance.





DETAILED DESCRIPTION

The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations, in accordance with exemplary embodiments. These exemplary embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.


The embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system containing one or more computers, or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a disk drive, or computer-readable medium.


The embodiments described herein relate to the fast detection of path break conditions while minimizing network overhead.


I. System Setup



FIG. 1 illustrates an exemplary environment 100, within which the present disclosure can be implemented. The exemplary environment 100 includes a first location 110, a second location 120 (also sometimes referred to as a data center), and two communication networks 130A and 130B. While two communication networks are depicted in exemplary environment 100, there can be any number of communication networks, including just one, or three or more.


In exemplary embodiments, first location 110 may be a branch location of an enterprise, a central location, or a data center. In the exemplary environment 100 of FIG. 1, first location 110 includes computers 140, a first appliance 150, and a router 160. In the first location 110, the computers 140 are linked to the first appliance 150. The first appliance 150 is linked to the router 160, which is coupled to the communication networks 130A and 130B. While only one appliance is depicted in first location 110, there can be multiple appliances, physical and/or virtual, at first location 110. Similarly, while only one router 160 is depicted in exemplary environment 100, there can be multiple routers, switches, or other equipment (physical or virtual) at first location 110. Additionally, in some embodiments, first appliance 150 may be in communication with the one or more communication networks directly, instead of through router 160.


In various embodiments, second location 120 may be a branch location of an enterprise, a central location, or a data center. The second location 120 in exemplary environment 100 of FIG. 1 includes central servers 170 and a second appliance 180. While the term “server” is used herein, any type of computing device may be used in second location 120. In the second location 120, the central servers 170 are linked to the second appliance 180. The second appliance 180 is coupled directly to the communication networks 130A and 130B. While only one appliance is depicted in second location 120, there can be multiple appliances, physical and/or virtual, at second location 120. Additionally, in some embodiments, second appliance 180 may be in communication with the one or more communication networks through a router, switch, or other physical or virtual equipment, instead of directly.


The principles discussed herein are equally applicable to multiple branch locations (not shown) and to multiple central locations (not shown). For example, the environment 100 may include multiple branch locations and/or multiple central locations coupled to one or more communication networks. Branch location/branch location communication, central location/central location communication, central location/cloud appliance communication, as well as multi-appliance and/or multi-node communication and bi-directional communication are further within the scope of the disclosure. However, for the sake of simplicity, the disclosure illustrates the environment 100 as having a single branch location at first location 110 and a single central location as second location 120.


The communication networks 130A and 130B comprise hardware and/or software elements that enable the exchange of information (e.g., voice, video and data) between the first location 110 and the second location 120. Some examples of the communication network 130 are a private wide-area network (WAN), and the public Internet. Typically connections from the first location 110 to the communication networks (e.g., from the router 160 and second appliance 180) are T1 lines (1.544 Mbps), or broadband connections such as digital subscriber lines (DSL) and cable modems. Other examples are MPLS lines, T3 lines (43.232 Mbps), OC3 (155 Mbps), and OC48 (2.5 Gbps), fiber optic cables, or LTE (Long Term Evolution) wireless access connection. One or more of the communication networks 130A and 130B can also be a cloud network or virtual network.


The router 160 and second appliance 180 are connected to the communication networks 130A and 130B via access links 125, sometimes also referred to herein as network access links. The communication networks consist of routers, switches, and other internal components that make up provider links 135, that are managed by the network service providers such as an internet service provider. Access links 125 and provider links 135 can be combined to make various network paths along which data travels. The exemplary embodiment of FIG. 1 depicts two paths through each communication network, showing a total of four network paths for data to be exchanged between the first appliance 150 and second appliance 180. As understood by persons of ordinary skill in the art, there can be any number of network paths across one or more communication networks.


The first appliance 150 and second appliance 180 comprise hardware and/or software elements configured to receive data and optionally perform any type of processing, including but not limited to, WAN optimization techniques to the data, before transmitting to another appliance. The operations of the second appliance 180 may be similar to the operations of the first appliance 150.


As illustrated, the first appliance 150 is configured in-line (or serially) between the computers 140 and the router 160. The first appliance 150 and the second appliance 180 transparently intercept network traffic between the computers 140 and the central servers 170. For example, the second appliance 180 transparently intercepts data sent from the central servers 170 and addressed to the computers 140. The computers 140 and the central servers 170 advantageously require no additional configuration because the first appliance 150 and the second appliance 180 operate transparently.


Alternatively, the first appliance 150 and the second appliance 180 are configured as an additional router or gateway. As a router, for example, the first appliance 150 appears to the computers 140 as an extra hop before the router 160. In some embodiments, the first appliance 150 and the second appliance 180 provide redundant routing or peer routing with the router 160. Additionally, in the bridge and router configurations, the first appliance 150 and the second appliance 180 provide failure mechanisms, such as, fail-to-open (e.g., no data access) or fail-to-wire (e.g., a direct connection to the router 160). If an appliance has multiple interfaces, it can be transparent on some interfaces, and act like a router/bridge on others. Alternatively, the appliance can be transparent on all interfaces, or appear as a router/bridge on all interfaces.


In some embodiments, the environment 100 includes one or more secure tunnels between the first appliance 150 and the second appliance 180. The secure tunnel may be utilized with encryption (e.g., IPsec), access control lists (ACLs), compression (such as header and payload compression), fragmentation/coalescing optimizations and/or error detection and correction provided by an appliance.


An exemplary network for connecting multiple appliances 250 is depicted in FIG. 2. Each appliance 250 can be in communication with other appliances 250, whether they are in a first location 110, second location 120, private cloud network, customer datacenter, or any other location. In the exemplary embodiment of FIG. 2, a network is displayed where appliances are in communication with each other. As understood by persons of ordinary skill in the art, any type of network topology may be used.


Each appliance can be physical or virtual. In the exemplary embodiment of FIG. 2, a virtual appliance is depicted as being in its own virtual private cloud (VPC) 210, managed by a cloud service provider, such as Amazon Web Services, or others. Another appliance in customer datacenter 220 can be physical or virtual.


As discussed herein, the communication network 130 can comprise multiple provider links, made up of routers and switches, connecting networked devices in different locations. These provider links, which together form various paths, are part of one or more core networks, sometimes referred to as an underlay network. In addition to these paths, there can also be tunnels connecting two networked devices. A virtual network, sometimes called an overlay network, can be used to transmit data across the underlay network, regardless of which Service Provider manages the routes or provider links. Data from connected devices can travel over this overlay network, which can consist of any number of tunnels or paths between each location.


In an exemplary embodiment, data from computers 140 at first location 110 may include voice, video, and data. This information is sent through switch 230, and then transmitted by an appliance 250 over the communication network 130 to other connected appliances 250. In some embodiments, voice, video, and data may be received and transmitted on separate LAN or vLAN interfaces, and the appliance 250 can distinguish the traffic based on the LAN/vLAN interface at which the data was received on.



FIG. 3 illustrates a block diagram of an appliance 250, in an exemplary implementation of the invention. The appliance 250 includes a processor 310, a memory 320, a WAN communication interface 330, a LAN communication interface 340, and a database 350. A system bus 380 links the processor 310, the memory 320, the WAN communication interface 330, the LAN communication interface 340, and the database 350. When deployed in a branch location, line 360 links the WAN communication interface 330 to the router 160 (in FIG. 1), and line 370 links the LAN communication interface 340 to the computers 140 in FIG. 1.


The database 350 comprises hardware and/or software elements configured to store data in an organized format to allow the processor 310 to create, modify, and retrieve the data. The hardware and/or software elements of the database 350 may include storage devices, such as RAM, hard drives, optical drives, flash memory, and magnetic tape.


In some embodiments, some appliances comprise identical hardware and/or software elements. Alternatively, in other embodiments, some appliances, such as a second appliance, may include hardware and/or software elements providing additional processing, communication, and storage capacity.



FIG. 4 illustrates an exemplary implementation of data packet transfer over a network using quality of service using multiple flows. An environment 400, as depicted in FIG. 4, may include certain similar elements as the environment 100, such as the computers 140 and 430. The environment may also include a communication network 424, a communication network 404, as well as the various routers (e.g., the local routers 408, the edge routers 410, and the core routers 412). The communication networks 404 and 424 are composed of provider links, such as provider link 422, similar to provider links 135 of FIG. 1. Access link 420 may be used by a networked device to access the communication network 404. The environment 400 also includes a first appliance 150, positioned between the computer 140 and one of the local routers 408. The second appliance 180 is positioned between the computer 430 and another local router 408.


In some embodiments, the first appliance 150 may amend the packet 406 received from the computer 140 via the inter-computer flows to affect which inter-device flow the packet is directed to, this resulting in an amended packet 402. According to one embodiment, the packet 406 is amended such that an additional header portion is added to the packet 406, while according to another embodiment, the packet 406 is amended such that certain information in the header portion is altered or replaced (sometimes called encapsulation or tunneling to create tunnel packets). The amended packet 402 may be restored to the packet 406 upon receipt by the second appliance 180. After which, the packet 406 may be delivered to the computer 430 on the inter-computer flow from which it originated. Again, it is noted that the first appliance 150 may be equivalent to, and interchangeable with, the second appliance 180 in that any task or procedure carried out by the first appliance 150 may be carried out by the second appliance 180, and vice versa.


The data paths of environment 400 may be of varying quality, such as a good flow 414, a moderate flow 416, or a poor flow 418. Quality of a given path may be determined by certain metrics. As mentioned herein, the metrics may include latency, re-ordering, jitter, and/or loss of packets, and may be referred to as a latency metric, a re-ordering metric, and a loss metric, respectively.


The latency metric may simply be described as a time required for the packet to reach a destination. In some cases, the latency metric may be related to round-trip time (RTT). Many different communication network delays may comprise the latency metric. For example, a processing delay is time taken by various routers (e.g., the local router 408, the edge router 410, and the core router 412) to process the header of the packet. A queuing delay may be time that the packet spends in routing queues. Time required to push the packet into a physical link connecting the various routers may be referred to as a transmission delay. Lastly, a propagation delay is time required for a signal comprising the packet to propagate through a medium (e.g., a wire, a cable, or air) used to transmit the packet.


The re-ordering metric determines a level of re-ordering of the packets that is required upon arrival of the packets at the destination, in exemplary embodiments. To illustrate, when a plurality of related packets are transmitted across the communication network(s), different packets may be directed to different paths. This may be due to packets from a single flow being directed to more than one path, for example. The plurality of related packets may resultantly arrive at the destination in a different order than as sent. Thus, the plurality of related packets may require re-ordering. The re-ordering of packets may have a dramatic impact, for example, on VoIP and video data streams, and TCP/IP data streams.


The loss metric quantifies packet loss, which occurs when one or more packets being transmitted across the communication network fail to reach the destination. Packet loss may be caused by a number of factors, such as signal degradation, oversaturation of the communication network, corrupted packets being rejected in-transit, faulty communication networking hardware, and maligned system drivers or communication network applications. The loss metric may also take into account bit error and/or spurious packets. Although the latency metric, the re-ordering metric, and the loss metric are described herein, other metrics may comprise the flow metrics and still fall within the scope of the present invention.


The paths or tunnels in environment 400 may be categorized based on various flow metrics. These flow metrics may be related to, for example, latency, re-ordering, jitter, and/or loss of packets, among other metrics. The packets may be directed to tunnels having preferable metrics without any specific knowledge or concern of the communication network, protocols, or computers thereof.


Classifying the flows based on the flow metrics may aid the appliances 150 and 180 in determining which packets should be directed to which inter-device flows. For example, the inter-device flows may be grouped into three classifications. A first classification may be associated with inter-device flows having preferable flow metrics, which exhibit excellent performance in transferring the packets. The first classification may be reserved for packets having highest priorities. A second classification may be ascribed to inter-device flows having slightly less preferable flow metrics, relative to the first classification, but nevertheless acceptable. Packets that must be transferred, but that are less essential, may be directed to the inter-device flows having the second classification. Poorly performing inter-device flows, having less than desirable flow metrics, may be used only sparingly. However, in one example, at least some packets may be directed to each inter-device flow in order to determine the flow metrics.


As shown in FIG. 4, the amended packets 402 may advantageously be more heavily distributed to the inter-device flows having preferable flow metrics (e.g., the good flow 414). The moderate flow 416 may transfer less of the amended packets 402, while the poor flow 418 may transfer even fewer.


In various embodiments, a plurality of network appliances 250 can be in communication with an orchestrator device, as depicted in FIG. 5. Though not depicted, the network appliances can also be in communication with one another via any network topology. The orchestrator 510 can be hardware and/or software, and be in communication with each of the networked devices, such as the appliances 250, as well as in communication with the database(s) 520.


In exemplary embodiments, the orchestrator may maintain information regarding the configuration of each appliance at each physical location. In this way, the orchestrator can create, manage and deploy business objectives for network traffic throughout the network of connected devices. For example, if a higher priority is designated for voice traffic at each location, the orchestrator can automatically configure the corresponding network interfaces at each location accordingly.


By having knowledge of the configuration of each appliance in the network, the orchestrator 510 can also create and manage all of the bonded tunnels in the enterprise network, each bonded tunnel carrying a particular type of network traffic between each source-destination appliance pair. The orchestrator 510 can automatically configure the enterprise network by determining which overlay and underlay tunnels need to be set up, and automatically creating them based on the network nodes and overlays.


II. Data Transmission


There can be multiple provider links, made up of routers and switches, connecting devices in different locations, as explained herein and known to persons of ordinary skill in the art. Physical provider links, which make up paths, are part of one or more core networks, sometimes referred to as an underlay network. These provider links can be managed by different service providers, such as Internet Service Providers.


For example, within an MPLS network, there can be multiple provider links within the MPLS communication network that are managed by a MPLS service provider. There can also be an access link connecting a device outside of the communication network to the MPLS network. Other access links can connect a device to other communication networks, such as cable, DSL, or wireless networks such as LTE.


There may be tunnels, carrying packets such as IPsec packets, over each of these provider links from a source device to a destination device. In embodiments of the present invention, separate bonded tunnels can be used for each type of data traffic, such that each type of data traffic can remain separate across the network and arrive as a separate flow at the destination site. In various embodiments there are at least three layers of tunnels—underlay tunnels in a core network, overlay tunnels, and bonded tunnels. Additional description of bonded tunnels can be found in corresponding U.S. Pat. No. 9,717,021 issued on Jul. 25, 2017 entitled “Virtual Network Overlay”, the disclosure of which is hereby incorporated by reference.


The underlay tunnels to be utilized are qualified based on tunnel metrics, bonding policy, business intent, and/or quality of service desired. That is, a determination is made as to which underlay tunnel(s) are acceptable based on the metrics and quality of service desired. Thus, each overlay can use different underlay tunnels, based on network performance determined from measured metrics. In various embodiments, an overlay network can send data through multiple underlay tunnels at the same time, in a packet by packet manner, load balancing over each of the underlay tunnels. In other embodiments, multiple underlay tunnels may be used on a flow-by-flow basis (i.e., packets of a certain flow all travel over the same underlay tunnel). Further, sticky flows may be used such that every packet on a given flow gets transmitted across the same underlay tunnel until network conditions or loading trigger a reassignment.


In various embodiments, data packets can be transmitted across all, or any portion of, qualified underlay tunnels. From each underlay tunnel's endpoint, the traffic is sent to the appropriate network through a network service provider. In this way, the system allows for the selection of a network to be utilized for the data packets associated with a particular type of network traffic and profile based on business intent and network performance, without controlling the routing through the physical network provider links of each individual network. Underlay tunnels may carry traffic for different overlay tunnels, i.e. traffic for voice overlay and traffic for data overlay.


III. Detection of Path Break



FIG. 6A depicts an exemplary environment in which embodiments of the present disclosure may be implemented. In the exemplary embodiment, data packets 670 are queued at first appliance 150 for transmission across a communication network to second appliance 180. There may be one or more available communication networks available for transmitting data, for example an MPLS network, Internet, and LTE network. As would be understood by persons of ordinary skill in the art, there can be fewer or additional communication networks available for transmitting data between first appliance 150 and second appliance 180, than those depicted in the exemplary figure.


Exemplary FIG. 6A also depicts one communication path in each direction through each of the communication networks, that is communication paths 610-635. However, this is merely for simplicity and there can be many communication paths through each communication network.


In some embodiments, first appliance 150 transmits data packets over a communication path to second appliance 180. While second appliance 180 receives the data packets, second appliance 180 knows that the communication path is operational. There may be delay or loss over the path, but it is operational since data was received. Thus, there is no need for a health packet to be transmitted over the path simply to test whether the path is operational for an active path, i.e. a path that is actively transmitting data.


In other embodiments, a communication link between first appliance 150 and second appliance 180 may be idle after a data transmission. That is, there may be no data to transmit (the transmission has completed), or the data traffic is currently being handled by other paths, or there has been a break in the path. The second appliance 180 that had been receiving data packets previously over a path that is now idle will need to know whether the path has become idle for a legitimate reason (such as the transmission being complete), or the path has become idle unexpectedly due to a path break, or there is merely a delay in data transmission. To test whether there is a path break or not, a burst of health probe packets may be transmitted from the first appliance 150 to the second appliance 180. Receipt of all of the health probe packets indicates that the path is operational. Receipt of some of the health probe packets indicates that there may be some problem (such as delay) with a path, but it is operational. Receipt of none of the health probe packets in the burst indicates that there is a break somewhere along the path.


Exemplary FIG. 6B depicts various embodiments of timelines that may occur within the exemplary environment of FIG. 6A. As discussed herein, the transmitter can be either of first appliance 150 or second appliance 180. Similarly, the receiver can be either of first appliance 150 or second appliance 180.


Exemplary timeline 640 shows that the transmitter transmits data packets to a receiving side, and then stops. The transmission can be over any type of communication path, such as any one or more of paths 610-635 of FIG. 6A. After ceasing transmission of data packets, a first period of time elapses since the end of data transmission, depicted as time period 675. The receiving appliance doesn't know whether the data transmission has ceased because the flow has ended, or if the data transmission has ceased because there is a delay or break in the communication path. The transmitter may wait a first period of time, depicted as time period 675, and then transmit a series of health probes over a second time period, depicted as time period 680 in FIG. 6B. In exemplary embodiments, the burst of health probes in time period 680 may be transmitted only one time after a data transmission ends, and not transmitted periodically while the path is idle. In this way a path break condition can be quickly detected while minimizing the amount of network bandwidth overhead dedicated to testing the health of network appliances.


While four health probes are depicted in timeline 640 of FIG. 6B for simplicity, there can be any number of health probes transmitted at any interval. In exemplary embodiments, there can be 10-50 health probes transmitted 10 milliseconds apart. Time periods 675 and 680 can be any predetermined length of time customizable by a network administrator, or dynamically adjusted according to network conditions. For example, time period 675 may be 250 milliseconds, and time period 680 may be 300 milliseconds if there are 30 health probes sent 10 milliseconds apart. In preferred embodiments, time period 675 is between 100 milliseconds to 1 second. Further, in preferred embodiments, there are 10-50 health probes transmitted during time period 680, spaced 1-100 milliseconds apart.


Timeline 645 depicts one exemplary embodiment from the receiver side. The receiver receives the series of data packets sent by the transmitter and then suddenly stops receiving data. A predetermined first period of time elapses, shown as time period 675, and then a series of health probes are received during time period 680. Since all health probes transmitted were received within time period 680, the receiver can conclude that the communication path is operational, and data transmission has likely ceased simply because the transmission is completed.


Timeline 650 depicts another exemplary embodiment from the receiver side. The receiver receives the series of data packets sent by the transmitter and then suddenly stops receiving data. A predetermined first period of time elapses, shown as time period 675, and then only one health probe is received during time period 680. Since the transmitter and receiver are in communication with one another, the receiver knows that a certain number of health probes are expected to be received during time period 680. When the full expected amount of health probes are not received by the receiver, this indicates to the receiver that the communication path may have some delay or loss, but the path is operational since at least one health probe was received within time period 680. While only one health packet is depicted for simplicity in timeline 650 of FIG. 6B, there can be any number of health probes received during time period 680 less than the expected number of health probes.


Since the path is operational, but is not performing optimally, the receiver may be unable to conclude definitively whether the data transmission has ceased due to a problem with the path (such as loss or delay), or the data transmission has ceased due to the transmission being completed. In various embodiments, subsequent health probes may be sent to determine the status conclusively.


Timeline 655 depicts a third exemplary embodiment from the receiver side. The receiver receives the series of data packets sent by the transmitter and then suddenly stops receiving data. The predetermined first period of time elapses in time period 675. The receiver expects to receive a burst of health probes during time period 680, however, no health probes are received during time period 680. This indicates to the receiver that the communication path is nonoperational since no health probes were received within time period 680, as expected. The receiver will not know where the problem lies specifically—that is, with the network access link connecting the receiving appliance to the communication network, or with one or more provider links within the communication network itself. However, the receiving appliance can unilaterally determine that there is a suspected break somewhere along the chain of communication from the transmitting appliance to the receiving appliance. The receiving appliance may then notify the transmitting appliance that there is a break somewhere along the network path.


In this way, the receiving appliance can unilaterally determine a path break condition. Unlike a traditional health probe that requires a transmission and an acknowledgment, the receiving appliance detects the path break condition simply by failing to receive any expected health probes within a certain time period after data is received over the path.


While it is possible that the data transmission was in fact completed, the receiving appliance knows that a burst of health probes are expected within a certain time interval after a data transmission. Failure to receive any of the health probes within that time interval (time period 680 in FIG. 6B), indicates to the receiver that there is likely a path break.


Upon notification that there is a suspected break along the path, the transmitting appliance may make the path ineligible and select a different path for further data transmissions, either in the same communication network, or in a different communication network. A different network path can be chosen, in accordance with network path metrics and classifications discussed above. Alternatively, the transmitting appliance may transmit a series of fast health probe packets to verify whether there is actually a break along the path, or merely a delay or loss of certain packets. If none of the series of fast health probe packets are acknowledged as received, then the transmitting appliance may determine that there is indeed a break along the path.


In other embodiments, timeline 640 depicts that after a period of time, which may be as short as a few seconds, or as long as a few days, the transmitter begins data transmission again. Once the second data transmission ceases, the transmitter waits the predetermined first period of time 685 (which may be the same amount of time as time period 675), and then begins transmitting health probes during time period 690 (which may be the same amount of time as time period 680). While transmitting health probes during time period 690, a new data flow may begin and thus health probes cease to be transmitted during time period 690 and the data transmission begins. As long as the receiver receives anything during time period 690 (either the health probes or the data packets for the new flow), the receiver knows that the communication path is operational.


Timeline 660 depicts an exemplary embodiment from the receiver side. The receiver receives the series of data packets sent by the transmitter and does not receive any of the expected health probes during time period 680. After some time elapses, which can be as short as 1 second or as long as a few days, the receiver suddenly receives a data packet again. This indicates to the receiver that the path has become operational again.


The time periods 675 and 680 may be variable depending on any number of factors, such as the type of communication path or path history. That is, a different amount of time may be designated for an MPLS, Internet, or LTE paths, for each of time periods 675 and 680. This may be advantageous when one or more of the communication networks are more heavily utilized than other communication networks and thus path break needs to be determined quickly. Further, certain communication networks are costlier to utilizer than others, so a different schedule of health probe packets may be warranted based on the costs.


By utilizing health probes within this predetermined period of time after data transmission, it can be quickly determined whether a pause in data transmission is due to a path break condition, or simply a communication path transitioning from an active to an idle state. Thus, the amount of network traffic dedicated to health probes can be reduced in comparison to conventional systems. Further, by limiting the frequency of health probes to only a predetermined time period, a detection in the break of a network path can be swiftly determined without consuming significant amounts of network bandwidth for this purpose. If data is being transmitted over a network path that has become nonoperational, then the amount of time needed to detect a break in the network path becomes critical since the data is being lost in transit.


In some embodiments, while transmitting data, the system also continually monitors the network health metrics across the various access links, provider links and tunnels. In an exemplary embodiment, it may be determined that the latency of the MPLS access link has increased to 150 ms and the loss rate has increased to 0.5%. Meanwhile, the Internet access link metrics remain the same at 100 ms latency and 0.3% loss. Thus, the Internet link has now become the better access link for data transmission, and may automatically be re-designated as the primary access link while the MPLS link is re-designated as the secondary access link. Therefore, data packets are now transmitted from the first appliance to the second appliance over the Internet access link. Thus, data transmission can change to a different communication path based on network performance metrics, in addition to information from health probe packets utilized for measuring network performance. In this way, the system may also continually monitor the network health metrics and transmit data over the best quality access link as a primary access link, regardless of whether that primary link is MPLS, Internet, or some other type of network, thus allowing for dynamic switching of access links for data transmission. Also, by modulating the health probe packets transmitted over all of these communication networks, a multitude of paths and tunnels are available for use for transmitting data without increasing network traffic exponentially.


With the present disclosure, path break conditions can be detected unilaterally by a receiving network appliance. FIG. 7 depicts an exemplary flowchart 700 for detecting a path break by a receiving network appliance, such as second appliance 180 in FIG. 6A. In step 710, the receiving network appliance determines if a first time period has elapsed since the last data was receiver over the particular network path. In exemplary FIG. 7, the first time period is 250 milliseconds. As discussed here, any time interval greater than or less than 250 milliseconds can be used. If more than 250 milliseconds have elapsed since the last data was received over the particular network path, then the receiving network appliance determines if any fast health probes are received during a second time period. In exemplary FIG. 7, the second time period is 200 milliseconds in step 720. However, any time interval greater or less than 200 milliseconds can be used in various embodiments.


If no fast health probes are received in the second time period of 200 milliseconds as expected, then a likely path break is unilaterally determined by the receiving appliance. The receiving appliance may send a path break indication to the transmitting appliance in step 730, such as a fail message.


In further embodiments, the receiving network appliance can determine that a path that was previously determined to be in a path break state has become operational again. If the receiving network appliance receives a data packet within the first time interval, or receives a health probe during the second time interval, and the path had previously been determined to be in a path break state, then the receiving network appliance may determine that the path is operational again and send a path ok message in step 740 to the transmitting network appliance. This would make the path eligible for use for data transmission again. If the path was not previously determined to be in a path break state, then it is not necessary to send a path ok message to the transmitting network appliance. The path fail message in 730 and the path ok message can be conveyed to the transmitting side using a reliable protocol using retransmission and using multiple paths, if there is more than one path available. In some embodiments these messages may be combined with other path information travelling back from the receiver to the transmitter to create a larger aggregate message.


With this method, a determination can be made as to whether a breakdown in communications is a one-way break or a two-way break. That is, a determination can be made as to whether the problem lies with the transmission side or the receiving side. If the receiving appliance is expecting to receive certain data packets or health probes, and does not receive them within the expected time intervals, then it can determine that the problem lies with the transmission side.


In other embodiments, the transmission side may determine that a path break condition is due to a problem with the receiving side if expected acknowledgement(s) to data packets or health probes are not received within certain expected time intervals. Thus, a determination can be made as to which side is broken, and not just that there is a breakdown in communication between the two appliances. In other embodiments, a path ok message serves as an acknowledgment instead of a traditional ACK packet.



FIG. 8 depicts an exemplary flowchart 800 for confirming a path break by a transmitting appliance. In step 805, a transmitting appliance receives a path break indication from the receiving appliance. The transmitting appliance may then make the path ineligible for transmitting data in step 810. In some embodiments, the transmitting appliance may optionally continue to send slow health probes over the network path in step 815 to determine when the network path becomes operational again.


In step 820, a transmitting appliance may receive a path ok message from the receiving appliance. This indicates that the path is no longer in a path break condition, and the path can be determined to be eligible for data transmission again, in step 825. Once the path is eligible for transmission, metrics and classifications (such as described herein with reference to FIG. 4) may be used to determine which of the eligible paths will actually be used for a particular data transmission.



FIG. 9 depicts an exemplary flowchart 900 for a transmitting appliance to enable a receiving appliance to quickly detect a path break condition. The exemplary method of FIG. 9 may be utilized when a communication path is transitioning from an active state of data transmission to an idle state. In step 905, a transmitting appliance determines if at least 250 milliseconds have elapsed since the last data transmission over the network path (first time period). As discussed herein, the specific time interval can be greater than or less than 250 milliseconds in various embodiments. If at least 250 milliseconds have elapsed, then the transmitting appliance sets a health probe count to zero in step 910. In step 915, a fast health probe is sent by the transmitting appliance and the probe counter is incremented by one. If data is being sent in step 920, then the method begins again at step 905. If no data is being sent in step 920, then the transmitting appliance continues to send up to 20 fast health probes at an interval of 10 milliseconds in steps 930 and 925. Again, there can be fewer or greater than 20 fast health probes in step 930, and the interval can be greater than or less than 10 milliseconds in step 925. The second time period, as discussed herein, may be defined by the summation of steps 925 and 930. That is, 20 health probes sent 10 milliseconds apart yields a second time period of 200 milliseconds.


After completing its data transmission, waiting the first time period, and sending the burst of health probes during the second time period, the path becomes idle in step 935. That is, the transmitting appliance has nothing further to transmit over the path and deems the path idle until such time as a subsequent data transmission begins over the path. Optionally, transmitting appliance can send slow health probes over the network path, while the path is idle.


In various embodiments, when a path is transitioning from an active state of data transmission to an idle state, the transmitting appliance may wait the first time period after finishing the data transmission, and then send a burst of health probes during the second time period that are much more closely spaced than other health probes that may be sent. That is, health probes may be sent at a faster rate than normal specifically when a path is transitioning from an active state to an idle state. Because the burst of probes are spaced very closely together (more closely than used in other scenarios to measure health of network components), less network bandwidth is utilized for health probes. Thus, a quick detection of path break conditions can be determined while minimizing network overhead usage for this purpose.


Thus, methods and systems for detecting a path break in a communication network are disclosed. Although embodiments have been described with reference to specific examples, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Therefore, these and other variations upon the exemplary embodiments are intended to be covered by the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A method for determining a break condition in a communication path by a receiving network appliance of a plurality of network appliances, the method comprising: receiving at a receiving network appliance, a first plurality of data packets for a data flow that was transmitted from a transmitting network appliance to the receiving network appliance over a communication path;determining at the receiving network appliance that: a first predetermined time interval has elapsed since a last data packet of the first plurality of data packets was received by the receiving network appliance over the communication path;no data packets of any data flow have been received during the first predetermined time interval; andno health probe packets have been received during the first predetermined time interval;after expiration of the first predetermined time interval and during a second predetermined time interval: expecting receipt at the receiving network appliance of a data packet of any data flow transmitted from the transmitting network appliance; andexpecting receipt at the receiving network appliance of a health probe packet of a plurality of health probe packets transmitted by the transmitting network appliance in response to determining that no data packets of any data flow have been transmitted over the communication path from the transmitting network appliance to the receiving network appliance during the second predetermined time interval;determining, by the receiving network appliance, that: the second predetermined time interval has elapsed;no data packets of any data flow have been received from the transmitting network appliance during the second predetermined time interval; andno health probe packets have been received from the transmitting network appliance during the second predetermined time interval; andsending a message to the transmitting network appliance that there is likely a break condition in the communication path.
  • 2. The method of claim 1, wherein the first predetermined time interval can be dynamically adjusted by an administrator of the receiving network appliance.
  • 3. The method of claim 1, wherein the first predetermined time interval is less than one second.
  • 4. The method of claim 1, wherein the second predetermined time interval can be dynamically adjusted by an administrator of the receiving network appliance.
  • 5. The method of claim 1, wherein the second predetermined time interval is less than one second.
  • 6. The method of claim 1, wherein the message to the transmitting network appliance that there is likely a break condition in the communication path is sent over a different communication network than a communication network for the likely broken communication path.
  • 7. The method of claim 1, further comprising: receiving at the transmitting network appliance, the message from the receiving network appliance that there is likely a break condition in the communication path;ceasing to utilize the communication path for data transmission by the transmitting network appliance;selecting a second communication path for data transmission to the receiving network appliance based on network performance metrics; andcontinuing to transmit the data packets of the data flow over the second communication path.
  • 8. The method of claim 1, further comprising: receiving at least one of data packet of any data flow, or the health probe packet over the communication path, after expiration of the first predetermined time interval and expiration of the second predetermined time interval; andsending a message to the transmitting network appliance that there is no longer a break condition in the communication path.
  • 9. A method for determining a no-break condition in a communication path by a receiving network appliance of a plurality of network appliances, the method comprising: receiving at a receiving network appliance, a first plurality of data packets for a first data flow that was transmitted from a transmitting network appliance to the receiving network appliance over a communication path; determining, at the receiving network appliance, that:a first predetermined time interval has elapsed since a last data packet of the first plurality of data packets was received, andno data packets of the first data flow, no data packets of a second data flow, or no health probe packets have been received during the first predetermined time interval;after expiration of the first predetermined time interval, expecting during a second predetermined time interval receipt at the receiving network appliance of either a data packet of the first data flow transmitted from a transmitting network, a data packet of the second data flow, or a health probe packet;determining, at the receiving network appliance, that the second predetermined time interval has elapsed and at least one of the data packet of the first data flow, the data packet of the second data flow, or the health probe packet is received within the second predetermined time interval; andreceiving, at the receiving network appliance, a second plurality of data packets transmitted by the transmitting network appliance over the communication path.
  • 10. The method of claim 9, further comprising: during the second predetermined time interval, after expiration of the first predetermined time interval, transmitting a plurality of health probe packets by the transmitting network appliance to the receiving network appliance.
  • 11. The method of claim 7, wherein the communication path and the second communication path are in different communication networks.
  • 12. The method of claim 9, wherein the first predetermined time interval can be dynamically adjusted by an administrator of the receiving network appliance.
  • 13. The method of claim 9, wherein at least one minute elapses between the receiving the first plurality of data packets and receiving the second plurality of data packets.
  • 14. The method of claim 9, wherein the first predetermined time interval is less than one second.
  • 15. The method of claim 9, wherein the second predetermined time interval can be dynamically adjusted by an administrator of the receiving network appliance.
  • 16. The method of claim 9, wherein the second predetermined time interval is less than one second.
  • 17. A method for enabling fast detection of a break condition in a communication path, the method comprising: transmitting, by a transmitting network appliance, a first plurality of data packets of a data flow to a receiving network appliance over a communication path;determining, by the transmitting network appliance, that the transmission of the first plurality of data packets of the data flow has completed and the communication path is transitioning to an idle state; andin response to determining that the transmission of the first plurality of data packets of the data flow has completed and the communication path has transitioned to the idle state: after expiration of a first predetermined time interval, transmitting, by the transmitting network appliance, a plurality of fast health probes to the receiving network appliance during a second predetermined time interval.
  • 18. The method of claim 17, further comprising: receiving the first plurality of data packets of the data flow by the receiving network appliance;determining that the second predetermined time interval has elapsed and no expected fast health probes have been received by the receiving network appliance; andsending a message from the receiving network appliance to the transmitting network appliance that there is likely a break condition in the communication path.
  • 19. The method of claim 18, further comprising: receiving at least one data packet of any data flow, or a health probe packet by the receiving network appliance over the communication path, after expiration of the first predetermined time interval and the second predetermined time interval.
  • 20. The method of claim 19, further comprising: in response to receiving the at least one data packet of the data flow, or the health probe packet by the receiving network appliance over the communication path, after expiration of the first predetermined time interval and the second predetermined time interval, sending a message from the receiving network appliance to the transmitting network appliance that there is no longer a break condition in the communication path.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/919,121 filed Mar. 12, 2018, the disclosures of which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (566)
Number Name Date Kind
4494108 Langdon, Jr. et al. Jan 1985 A
4558302 Welch Dec 1985 A
4612532 Bacon et al. Sep 1986 A
5023611 Chamzas et al. Jun 1991 A
5159452 Kinoshita et al. Oct 1992 A
5243341 Seroussi et al. Sep 1993 A
5307413 Denzer Apr 1994 A
5357250 Healey et al. Oct 1994 A
5359720 Tamura et al. Oct 1994 A
5373290 Lempel et al. Dec 1994 A
5483556 Pillan et al. Jan 1996 A
5532693 Winters et al. Jul 1996 A
5592613 Miyazawa et al. Jan 1997 A
5602831 Gaskill Feb 1997 A
5608540 Ogawa Mar 1997 A
5611049 Pitts Mar 1997 A
5627533 Clark May 1997 A
5635932 Shinagawa et al. Jun 1997 A
5652581 Furlan et al. Jul 1997 A
5659737 Matsuda Aug 1997 A
5675587 Okuyama et al. Oct 1997 A
5710562 Gormish et al. Jan 1998 A
5748122 Shinagawa et al. May 1998 A
5754774 Bittinger et al. May 1998 A
5802106 Packer Sep 1998 A
5805822 Long et al. Sep 1998 A
5883891 Williams et al. Mar 1999 A
5903230 Masenas May 1999 A
5955976 Heath Sep 1999 A
6000053 Levine et al. Dec 1999 A
6003087 Housel et al. Dec 1999 A
6054943 Lawrence Apr 2000 A
6081883 Popelka et al. Jun 2000 A
6084855 Soirinsuo et al. Jul 2000 A
6175944 Urbanke et al. Jan 2001 B1
6191710 Waletzki Feb 2001 B1
6240463 Benmohamed et al. May 2001 B1
6295541 Bodnar et al. Sep 2001 B1
6308148 Bruins Oct 2001 B1
6311260 Stone et al. Oct 2001 B1
6339616 Kovalev Jan 2002 B1
6374266 Shnelvar Apr 2002 B1
6434191 Agrawal et al. Aug 2002 B1
6434641 Haupt et al. Aug 2002 B1
6434662 Greene et al. Aug 2002 B1
6438664 McGrath et al. Aug 2002 B1
6452915 Jorgensen Sep 2002 B1
6463001 Williams Oct 2002 B1
6489902 Heath Dec 2002 B2
6493698 Beylin Dec 2002 B1
6570511 Cooper May 2003 B1
6587985 Fukushima et al. Jul 2003 B1
6614368 Cooper Sep 2003 B1
6618397 Huang Sep 2003 B1
6633953 Stark Oct 2003 B2
6643259 Borella et al. Nov 2003 B1
6650644 Colley et al. Nov 2003 B1
6653954 Rijavec Nov 2003 B2
6667700 McCanne Dec 2003 B1
6674769 Viswanath Jan 2004 B1
6718361 Basani et al. Apr 2004 B1
6728840 Shatil et al. Apr 2004 B1
6738379 Balazinski et al. May 2004 B1
6754181 Elliott et al. Jun 2004 B1
6769048 Goldberg et al. Jul 2004 B2
6791945 Levenson et al. Sep 2004 B1
6823470 Smith et al. Nov 2004 B2
6839346 Kametani Jan 2005 B1
6842424 Key Jan 2005 B1
6856651 Singh Feb 2005 B2
6859842 Nakamichi et al. Feb 2005 B1
6862602 Guha Mar 2005 B2
6910106 Sechrest et al. Jun 2005 B2
6963980 Mattsson Nov 2005 B1
6968374 Lemieux et al. Nov 2005 B2
6978384 Milliken Dec 2005 B1
7007044 Rafert et al. Feb 2006 B1
7020750 Thiyagaranjan et al. Mar 2006 B2
7035214 Seddigh et al. Apr 2006 B1
7047281 Kausik May 2006 B1
7069268 Burns et al. Jun 2006 B1
7069342 Biederman Jun 2006 B1
7110407 Khanna Sep 2006 B1
7111005 Wessman Sep 2006 B1
7113962 Kee et al. Sep 2006 B1
7120666 McCanne et al. Oct 2006 B2
7145889 Zhang et al. Dec 2006 B1
7149953 Cameron et al. Dec 2006 B2
7177295 Sholander et al. Feb 2007 B1
7197597 Scheid et al. Mar 2007 B1
7200847 Straube et al. Apr 2007 B2
7215667 Davis May 2007 B1
7216283 Shen et al. May 2007 B2
7242681 Van Bokkelen et al. Jul 2007 B1
7243094 Tabellion et al. Jul 2007 B2
7249309 Glaise et al. Jul 2007 B2
7266645 Garg et al. Sep 2007 B2
7278016 Detrick et al. Oct 2007 B1
7318100 Demmer et al. Jan 2008 B2
7359393 Nalawade et al. Apr 2008 B1
7366829 Luttrell et al. Apr 2008 B1
7380006 Srinivas et al. May 2008 B2
7383329 Erickson Jun 2008 B2
7383348 Seki et al. Jun 2008 B2
7388844 Brown et al. Jun 2008 B1
7389357 Duffie et al. Jun 2008 B2
7389393 Karr et al. Jun 2008 B1
7417570 Srinivasan et al. Aug 2008 B2
7417991 Crawford et al. Aug 2008 B1
7420992 Fang et al. Sep 2008 B1
7428573 McCanne et al. Sep 2008 B2
7441039 Bhardwaj Oct 2008 B2
7451237 Takekawa et al. Nov 2008 B2
7453379 Plamondon Nov 2008 B2
7454443 Ram et al. Nov 2008 B2
7457315 Smith Nov 2008 B1
7460473 Kodama et al. Dec 2008 B1
7471629 Melpignano Dec 2008 B2
7496659 Coverdill Feb 2009 B1
7532134 Samuels et al. May 2009 B2
7555484 Kulkarni et al. Jun 2009 B2
7571343 Xiang et al. Aug 2009 B1
7571344 Hughes et al. Aug 2009 B2
7587401 Yeo et al. Sep 2009 B2
7596802 Border et al. Sep 2009 B2
7617436 Wenger et al. Nov 2009 B2
7619545 Samuels et al. Nov 2009 B2
7620870 Srinivasan et al. Nov 2009 B2
7624333 Langner Nov 2009 B2
7624446 Wilhelm Nov 2009 B1
7630295 Hughes et al. Dec 2009 B2
7633942 Bearden et al. Dec 2009 B2
7639700 Nabhan et al. Dec 2009 B1
7643426 Lee et al. Jan 2010 B1
7644230 Hughes et al. Jan 2010 B1
7676554 Malmskog et al. Mar 2010 B1
7698431 Hughes Apr 2010 B1
7702843 Chen et al. Apr 2010 B1
7714747 Fallon May 2010 B2
7746781 Xiang Jun 2010 B1
7764606 Ferguson et al. Jul 2010 B1
7793193 Koch et al. Sep 2010 B2
7810155 Ravi Oct 2010 B1
7826798 Stephens et al. Nov 2010 B2
7827237 Plamondon Nov 2010 B2
7849134 McCanne et al. Dec 2010 B2
7853699 Wu et al. Dec 2010 B2
7873786 Singh et al. Jan 2011 B1
7917599 Gopalan et al. Mar 2011 B1
7924795 Wan et al. Apr 2011 B2
7925711 Gopalan et al. Apr 2011 B1
7941606 Pullela et al. May 2011 B1
7945736 Hughes et al. May 2011 B2
7948921 Hughes et al. May 2011 B1
7953869 Demmer et al. May 2011 B2
7957307 Qiu et al. Jun 2011 B2
7970898 Clubb et al. Jun 2011 B2
7975018 Unrau et al. Jul 2011 B2
7996747 Dell et al. Aug 2011 B2
8046667 Boyce Oct 2011 B2
8069225 McCanne Nov 2011 B2
8072985 Golan et al. Dec 2011 B2
8090027 Schneider Jan 2012 B2
8090805 Chawla et al. Jan 2012 B1
8095774 Hughes et al. Jan 2012 B1
8140757 Singh Mar 2012 B1
8171238 Hughes et al. May 2012 B1
8209334 Doerner Jun 2012 B1
8225072 Hughes et al. Jul 2012 B2
8271325 Silverman et al. Sep 2012 B2
8271847 Langner Sep 2012 B2
8307115 Hughes Nov 2012 B1
8312226 Hughes Nov 2012 B2
8352608 Keagy et al. Jan 2013 B1
8370583 Hughes Feb 2013 B2
8386797 Danilak Feb 2013 B1
8392684 Hughes Mar 2013 B2
8442052 Hughes May 2013 B1
8447740 Huang et al. May 2013 B1
8473714 Hughes et al. Jun 2013 B2
8489562 Hughes et al. Jul 2013 B1
8516158 Wu et al. Aug 2013 B1
8553757 Florencio et al. Oct 2013 B2
8565118 Shukla et al. Oct 2013 B2
8570869 Ojala et al. Oct 2013 B2
8576816 Lamy-Bergot et al. Nov 2013 B2
8595314 Hughes Nov 2013 B1
8613071 Day et al. Dec 2013 B2
8681614 McCanne et al. Mar 2014 B1
8699490 Zheng et al. Apr 2014 B2
8700771 Ramankutty et al. Apr 2014 B1
8706947 Vincent Apr 2014 B1
8725988 Hughes et al. May 2014 B2
8732423 Hughes May 2014 B1
8738865 Hughes et al. May 2014 B1
8743683 Hughes Jun 2014 B1
8755381 Hughes et al. Jun 2014 B2
8775413 Brown et al. Jul 2014 B2
8811431 Hughes Aug 2014 B2
8843627 Baldi et al. Sep 2014 B1
8850324 Clemm et al. Sep 2014 B2
8885632 Hughes et al. Nov 2014 B2
8891554 Biehler Nov 2014 B2
8929380 Hughes et al. Jan 2015 B1
8929402 Hughes Jan 2015 B1
8930650 Hughes et al. Jan 2015 B1
9003541 Patidar Apr 2015 B1
9036662 Hughes May 2015 B1
9054876 Yagnik Jun 2015 B1
9092342 Hughes et al. Jul 2015 B2
9106530 Wang Aug 2015 B1
9130991 Hughes Sep 2015 B2
9131510 Wang Sep 2015 B2
9143455 Hughes Sep 2015 B1
9152574 Hughes et al. Oct 2015 B2
9171251 Camp et al. Oct 2015 B2
9191342 Hughes et al. Nov 2015 B2
9202304 Baenziger et al. Dec 2015 B1
9253277 Hughes et al. Feb 2016 B2
9306818 Aumann et al. Apr 2016 B2
9307442 Bachmann et al. Apr 2016 B2
9363248 Hughes Jun 2016 B1
9363309 Hughes Jun 2016 B2
9380094 Florencio et al. Jun 2016 B2
9397951 Hughes Jul 2016 B1
9438538 Hughes et al. Sep 2016 B2
9549048 Hughes Jan 2017 B1
9584403 Hughes et al. Feb 2017 B2
9584414 Sung et al. Feb 2017 B2
9613071 Hughes Apr 2017 B1
9626224 Hughes et al. Apr 2017 B2
9647949 Varki et al. May 2017 B2
9712463 Hughes et al. Jul 2017 B1
9716644 Wei et al. Jul 2017 B2
9717021 Hughes et al. Jul 2017 B2
9875344 Hughes et al. Jan 2018 B1
9906630 Hughes Feb 2018 B2
9948496 Hughes et al. Apr 2018 B1
9961010 Hughes et al. May 2018 B2
9967056 Hughes May 2018 B1
10091172 Hughes Oct 2018 B1
10164861 Hughes et al. Dec 2018 B2
10257082 Hughes Apr 2019 B2
10313930 Hughes et al. Jun 2019 B2
10326551 Hughes Jun 2019 B2
10432484 Hughes et al. Oct 2019 B2
10637721 Hughes et al. Apr 2020 B2
10719588 Hughes et al. Jul 2020 B2
10771370 Hughes et al. Sep 2020 B2
10771394 Hughes Sep 2020 B2
10805840 Hughes et al. Oct 2020 B2
10812361 Hughes et al. Oct 2020 B2
20010026231 Satoh Oct 2001 A1
20010054084 Kosmynin Dec 2001 A1
20020007413 Garcia-Luna-Aceves et al. Jan 2002 A1
20020009079 Jungck et al. Jan 2002 A1
20020010702 Ajtai et al. Jan 2002 A1
20020010765 Border Jan 2002 A1
20020040475 Yap et al. Apr 2002 A1
20020061027 Abiru et al. May 2002 A1
20020065998 Buckland May 2002 A1
20020071436 Border et al. Jun 2002 A1
20020078242 Viswanath Jun 2002 A1
20020101822 Ayyagari et al. Aug 2002 A1
20020107988 Jordan Aug 2002 A1
20020116424 Radermacher et al. Aug 2002 A1
20020129158 Zhang et al. Sep 2002 A1
20020129260 Benfield et al. Sep 2002 A1
20020131434 Vukovic et al. Sep 2002 A1
20020150041 Reinshmidt et al. Oct 2002 A1
20020159454 Delmas Oct 2002 A1
20020163911 Wee et al. Nov 2002 A1
20020169818 Stewart et al. Nov 2002 A1
20020181494 Rhee Dec 2002 A1
20020188871 Noehring et al. Dec 2002 A1
20020194324 Guha Dec 2002 A1
20030002664 Anand Jan 2003 A1
20030009558 Ben-Yehezkel Jan 2003 A1
20030012400 McAuliffe et al. Jan 2003 A1
20030033307 Davis et al. Feb 2003 A1
20030046572 Newman et al. Mar 2003 A1
20030048750 Kobayashi Mar 2003 A1
20030048785 Calvignac et al. Mar 2003 A1
20030067940 Edholm Apr 2003 A1
20030123481 Neale et al. Jul 2003 A1
20030123671 He et al. Jul 2003 A1
20030131079 Neale et al. Jul 2003 A1
20030133568 Stein et al. Jul 2003 A1
20030142658 Ofuji et al. Jul 2003 A1
20030149661 Mitchell et al. Aug 2003 A1
20030149869 Gleichauf Aug 2003 A1
20030204619 Bays Oct 2003 A1
20030214502 Park et al. Nov 2003 A1
20030214954 Oldak et al. Nov 2003 A1
20030233431 Reddy et al. Dec 2003 A1
20040008711 Lahti et al. Jan 2004 A1
20040047308 Kavanagh et al. Mar 2004 A1
20040083299 Dietz et al. Apr 2004 A1
20040085894 Wang May 2004 A1
20040086114 Rarick May 2004 A1
20040088376 McCanne May 2004 A1
20040114569 Naden et al. Jun 2004 A1
20040117571 Chang et al. Jun 2004 A1
20040123139 Aiello et al. Jun 2004 A1
20040158644 Albuquerque et al. Aug 2004 A1
20040179542 Murakami et al. Sep 2004 A1
20040181679 Dettinger et al. Sep 2004 A1
20040199771 Morten et al. Oct 2004 A1
20040202110 Kim Oct 2004 A1
20040203820 Billhartz Oct 2004 A1
20040205332 Bouchard et al. Oct 2004 A1
20040243571 Judd Dec 2004 A1
20040250027 Heflinger Dec 2004 A1
20040255048 Lev Ran et al. Dec 2004 A1
20050010653 McCanne Jan 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050053094 Cain et al. Mar 2005 A1
20050055372 Springer, Jr. et al. Mar 2005 A1
20050055399 Savchuk Mar 2005 A1
20050071453 Ellis et al. Mar 2005 A1
20050091234 Hsu et al. Apr 2005 A1
20050111460 Sahita May 2005 A1
20050131939 Douglis et al. Jun 2005 A1
20050132252 Fifer et al. Jun 2005 A1
20050141425 Foulds Jun 2005 A1
20050171937 Hughes et al. Aug 2005 A1
20050177603 Shavit Aug 2005 A1
20050182849 Chandrayana et al. Aug 2005 A1
20050190694 Ben-Nun et al. Sep 2005 A1
20050207443 Kawamura et al. Sep 2005 A1
20050210151 Abdo et al. Sep 2005 A1
20050220019 Melpignano Oct 2005 A1
20050220097 Swami et al. Oct 2005 A1
20050235119 Sechrest et al. Oct 2005 A1
20050240380 Jones Oct 2005 A1
20050243743 Kimura Nov 2005 A1
20050243835 Sharma et al. Nov 2005 A1
20050256972 Cochran et al. Nov 2005 A1
20050278459 Boucher et al. Dec 2005 A1
20050283355 Itani et al. Dec 2005 A1
20050286526 Sood et al. Dec 2005 A1
20060010243 DuRee Jan 2006 A1
20060013210 Bordogna et al. Jan 2006 A1
20060026425 Douceur et al. Feb 2006 A1
20060031936 Nelson et al. Feb 2006 A1
20060036901 Yang et al. Feb 2006 A1
20060039354 Rao et al. Feb 2006 A1
20060045096 Farmer et al. Mar 2006 A1
20060059171 Borthakur et al. Mar 2006 A1
20060059173 Hirsch et al. Mar 2006 A1
20060109805 Malamal Vadakital et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060136913 Sameske Jun 2006 A1
20060143497 Zohar et al. Jun 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060195547 Sundarrajan et al. Aug 2006 A1
20060195840 Sundarrajan et al. Aug 2006 A1
20060212426 Shakara et al. Sep 2006 A1
20060218390 Loughran et al. Sep 2006 A1
20060227717 van den Berg et al. Oct 2006 A1
20060250965 Irwin Nov 2006 A1
20060268932 Singh et al. Nov 2006 A1
20060280205 Cho Dec 2006 A1
20070002804 Xiong et al. Jan 2007 A1
20070008884 Tang Jan 2007 A1
20070011424 Sharma et al. Jan 2007 A1
20070038815 Hughes Feb 2007 A1
20070038816 Hughes et al. Feb 2007 A1
20070038858 Hughes Feb 2007 A1
20070050475 Hughes Mar 2007 A1
20070076693 Krishnaswamy Apr 2007 A1
20070076708 Kolakowski et al. Apr 2007 A1
20070081513 Torsner Apr 2007 A1
20070097874 Hughes et al. May 2007 A1
20070110046 Farrell et al. May 2007 A1
20070115812 Hughes May 2007 A1
20070127372 Khan et al. Jun 2007 A1
20070130114 Li et al. Jun 2007 A1
20070140129 Bauer et al. Jun 2007 A1
20070150497 De La Cruz et al. Jun 2007 A1
20070160200 Ishikawa et al. Jul 2007 A1
20070174428 Lev Ran et al. Jul 2007 A1
20070179900 Daase et al. Aug 2007 A1
20070192863 Kapoor et al. Aug 2007 A1
20070195702 Yuen et al. Aug 2007 A1
20070195789 Yao Aug 2007 A1
20070198523 Hayim Aug 2007 A1
20070226320 Hager et al. Sep 2007 A1
20070237104 Alon et al. Oct 2007 A1
20070244987 Pedersen et al. Oct 2007 A1
20070245079 Bhattacharjee et al. Oct 2007 A1
20070248084 Whitehead Oct 2007 A1
20070258468 Bennett Nov 2007 A1
20070260746 Mirtorabi et al. Nov 2007 A1
20070263554 Finn Nov 2007 A1
20070276983 Zohar et al. Nov 2007 A1
20070280245 Rosberg Dec 2007 A1
20080005156 Edwards et al. Jan 2008 A1
20080013532 Garner et al. Jan 2008 A1
20080016301 Chen Jan 2008 A1
20080028467 Kommareddy et al. Jan 2008 A1
20080031149 Hughes et al. Feb 2008 A1
20080031240 Hughes et al. Feb 2008 A1
20080037432 Cohen et al. Feb 2008 A1
20080071818 Apanowicz et al. Mar 2008 A1
20080095060 Yao Apr 2008 A1
20080133536 Bjorner et al. Jun 2008 A1
20080133561 Dubnicki et al. Jun 2008 A1
20080184081 Hama et al. Jul 2008 A1
20080205445 Kumar et al. Aug 2008 A1
20080222044 Gottlieb et al. Sep 2008 A1
20080229137 Samuels et al. Sep 2008 A1
20080243992 Jardetzky et al. Oct 2008 A1
20080267217 Colville et al. Oct 2008 A1
20080285463 Oran Nov 2008 A1
20080300887 Chen et al. Dec 2008 A1
20080313318 Vermeulen et al. Dec 2008 A1
20080320151 McCanne et al. Dec 2008 A1
20090006801 Shultz et al. Jan 2009 A1
20090024763 Stepin et al. Jan 2009 A1
20090037448 Thomas Feb 2009 A1
20090060198 Little Mar 2009 A1
20090063696 Wang et al. Mar 2009 A1
20090080460 Kronewitter et al. Mar 2009 A1
20090089048 Pouzin Apr 2009 A1
20090092137 Haigh et al. Apr 2009 A1
20090100483 McDowell Apr 2009 A1
20090158417 Khanna et al. Jun 2009 A1
20090168786 Sarkar Jul 2009 A1
20090175172 Prytz et al. Jul 2009 A1
20090182864 Khan et al. Jul 2009 A1
20090204961 DeHaan et al. Aug 2009 A1
20090234966 Samuels et al. Sep 2009 A1
20090245114 Vijayaraghavan Oct 2009 A1
20090265707 Goodman et al. Oct 2009 A1
20090274294 Itani Nov 2009 A1
20090279550 Romrell et al. Nov 2009 A1
20090281984 Black Nov 2009 A1
20100005222 Brant et al. Jan 2010 A1
20100011125 Yang et al. Jan 2010 A1
20100020693 Thakur Jan 2010 A1
20100054142 Moiso et al. Mar 2010 A1
20100070605 Hughes et al. Mar 2010 A1
20100077251 Liu et al. Mar 2010 A1
20100082545 Bhattacharjee et al. Apr 2010 A1
20100085964 Weir et al. Apr 2010 A1
20100115137 Kim et al. May 2010 A1
20100121957 Roy et al. May 2010 A1
20100124239 Hughes May 2010 A1
20100131957 Kami May 2010 A1
20100150158 Cathey et al. Jun 2010 A1
20100169467 Shukla et al. Jul 2010 A1
20100177663 Johansson et al. Jul 2010 A1
20100225658 Coleman Sep 2010 A1
20100232443 Pandey Sep 2010 A1
20100242106 Harris et al. Sep 2010 A1
20100246584 Ferguson et al. Sep 2010 A1
20100290364 Black Nov 2010 A1
20100318892 Teevan et al. Dec 2010 A1
20100333212 Carpenter et al. Dec 2010 A1
20110002346 Wu Jan 2011 A1
20110022812 Van Der Linden et al. Jan 2011 A1
20110113472 Fung et al. May 2011 A1
20110131411 Lin et al. Jun 2011 A1
20110154169 Gopal et al. Jun 2011 A1
20110154329 Arcese et al. Jun 2011 A1
20110181448 Koratagere Jul 2011 A1
20110219181 Hughes et al. Sep 2011 A1
20110225322 Demidov et al. Sep 2011 A1
20110258049 Ramer et al. Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110276963 Wu et al. Nov 2011 A1
20110299537 Saraiya et al. Dec 2011 A1
20120036325 Mashtizadeh et al. Feb 2012 A1
20120069131 Abelow Mar 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120185775 Clemm et al. Jul 2012 A1
20120198346 Clemm et al. Aug 2012 A1
20120218130 Boettcher et al. Aug 2012 A1
20120221611 Watanabe et al. Aug 2012 A1
20120230345 Ovsiannikov Sep 2012 A1
20120239872 Hughes et al. Sep 2012 A1
20120290636 Kadous et al. Nov 2012 A1
20130018722 Libby Jan 2013 A1
20130018765 Fork et al. Jan 2013 A1
20130031642 Dwivedi et al. Jan 2013 A1
20130044751 Casado et al. Feb 2013 A1
20130058354 Casado et al. Mar 2013 A1
20130080619 Assuncao et al. Mar 2013 A1
20130083806 Suarez Fuentes et al. Apr 2013 A1
20130086236 Baucke et al. Apr 2013 A1
20130086594 Cottrell Apr 2013 A1
20130094501 Hughes Apr 2013 A1
20130103655 Fanghaenel et al. Apr 2013 A1
20130117494 Hughes et al. May 2013 A1
20130121209 Padmanabhan et al. May 2013 A1
20130141259 Hazarika et al. Jun 2013 A1
20130142050 Luna Jun 2013 A1
20130163594 Sharma et al. Jun 2013 A1
20130250951 Koganti Sep 2013 A1
20130263125 Shamsee et al. Oct 2013 A1
20130266007 Kumbhare et al. Oct 2013 A1
20130282970 Hughes et al. Oct 2013 A1
20130325986 Brady et al. Dec 2013 A1
20130343191 Kim et al. Dec 2013 A1
20140052864 van Der Linden et al. Feb 2014 A1
20140075554 Cooley Mar 2014 A1
20140086069 Frey et al. Mar 2014 A1
20140101426 Senthurpandi Apr 2014 A1
20140108360 Kunath et al. Apr 2014 A1
20140114742 Lamontagne et al. Apr 2014 A1
20140123213 Vank et al. May 2014 A1
20140181381 Hughes et al. Jun 2014 A1
20140269705 DeCusatis et al. Sep 2014 A1
20140279078 Nukala et al. Sep 2014 A1
20140321290 Jin et al. Oct 2014 A1
20140379937 Hughes et al. Dec 2014 A1
20150058488 Backholm Feb 2015 A1
20150074291 Hughes Mar 2015 A1
20150074361 Hughes et al. Mar 2015 A1
20150078397 Hughes et al. Mar 2015 A1
20150110113 Levy et al. Apr 2015 A1
20150120663 Le Scouarnec et al. Apr 2015 A1
20150127701 Chu et al. May 2015 A1
20150143505 Border et al. May 2015 A1
20150170221 Shah Jun 2015 A1
20150281099 Banavalikar Oct 2015 A1
20150281391 Hughes et al. Oct 2015 A1
20150312054 Barabash et al. Oct 2015 A1
20150334210 Hughes Nov 2015 A1
20150365293 Madrigal et al. Dec 2015 A1
20160014051 Hughes et al. Jan 2016 A1
20160034305 Shear et al. Feb 2016 A1
20160093193 Silvers et al. Mar 2016 A1
20160112255 Li Apr 2016 A1
20160142310 Means May 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160255000 Gattani et al. Sep 2016 A1
20160255542 Hughes et al. Sep 2016 A1
20160359740 Parandehgheibi et al. Dec 2016 A1
20160380886 Blair et al. Dec 2016 A1
20170026467 Barsness et al. Jan 2017 A1
20170111692 An et al. Apr 2017 A1
20170149679 Hughes et al. May 2017 A1
20170187581 Hughes et al. Jun 2017 A1
20170359238 Hughes et al. Dec 2017 A1
20180089994 Dhondse et al. Mar 2018 A1
20180121634 Hughes et al. May 2018 A1
20180123861 Hughes et al. May 2018 A1
20180131711 Chen et al. May 2018 A1
20180205494 Hughes Jul 2018 A1
20180227216 Hughes Aug 2018 A1
20180227223 Hughes Aug 2018 A1
20190089620 Hefel et al. Mar 2019 A1
20190104207 Goel et al. Apr 2019 A1
20190149447 Hughes et al. May 2019 A1
20190230038 Hughes Jul 2019 A1
20190245771 Wu et al. Aug 2019 A1
20190253187 Hughes Aug 2019 A1
20190260683 Hughes Aug 2019 A1
20190274070 Hughes et al. Sep 2019 A1
20190280917 Hughes et al. Sep 2019 A1
20200021506 Hughes et al. Jan 2020 A1
20200279029 Hughes et al. Sep 2020 A1
20200358687 Hughes et al. Nov 2020 A1
Foreign Referenced Citations (3)
Number Date Country
1507353 Feb 2005 EP
H05061964 Mar 1993 JP
WO0135226 May 2001 WO
Non-Patent Literature Citations (24)
Entry
“IPsec Anti-Replay Window: Expanding and Disabling,” Cisco IOS Security Configuration Guide. 2005-2006 Cisco Systems, Inc. Last updated: Sep. 12, 2006, 14 pages.
Singh et al. ; “Future of Internet Security—IPSEC”; 2005; pp. 1-8.
Muthitacharoen, Athicha et al., “A Low-bandwidth Network File System,” 2001, in Proc. of the 18th ACM Symposium on Operating Systems Principles, Banff, Canada, pp. 174-187.
“Shared Lan Cache Datasheet”, 1996, <http://www.lancache.com/slcdata.htm>, 8 pages.
Spring et al., “A protocol-independent technique for eliminating redundant network traffic”, ACM SIGCOMM Computer Communication Review, vol. 30, Issue 4 (Oct. 2000) pp. 87-95, Year of Publication: 2000.
Hong, B et al. “Duplicate data elimination in a SAN file system”, In Proceedings of the 21st Symposium on Mass Storage Systems (MSS '04), Goddard, MD, Apr. 2004. IEEE, pp. 101-114.
You, L. L. and Karamanolis, C. 2004. “Evaluation of efficient archival storage techniques”, In Proceedings of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-6.
Douglis, F. et al., “Application specific Delta-encoding via Resemblance Detection”, Published in the 2003 USENIX Annual Technical Conference, pp. 1-14.
You, L. L. et al., “Deep Store an Archival Storage System Architecture” Data Engineering, 2005. ICDE 2005. Proceedings of the 21st Intl. Conf. on Data Eng.,Tokyo, Japan, Apr. 5-8, 2005, pp. 12.
Manber, Udi, “Finding Similar Files in a Large File System”, TR 93-33 Oct. 1994, Department of Computer Science, University of Arizona. <http://webglimpse.net/pubs/TR93-33.pdf>. Also appears in the 1994 winter USENIX Technical Conference, pp. 1-10.
Knutsson, Bjorn et al., “Transparent Proxy Signalling”, Journal of Communications and Networks, vol. 3, No. 2, Jun. 2001, pp. 164-174.
Definition memory (n), Webster's Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary).
Definition appliance, 2c, Webster's Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary).
Newton, “Newton's Telecom Dictionary”, 17th Ed., 2001, pp. 38, 201, and 714.
Silver Peak Systems, “The Benefits of Byte-level WAN Deduplication” (2008), pp. 1-4.
Business Wire, “Silver Peak Systems Delivers Family of Appliances for Enterprise-Wide Centralization of Branch Office Infrastructure; Innovative Local Instance Networking Approach Overcomes Traditional Application Acceleration Pitfalls” (available at http://www.businesswire.com/news/home/20050919005450/en/Silver-Peak-Systems-Delivers-Family-Appliances-Enterprise-Wide#.UVzkPk7u-1 (last visited Aug. 8, 2014)), 4 pages.
Riverbed, “Riverbed Introduces Market-Leading WDS Solutions for Disaster Recovery and Business Application Acceleration” (available at http://www.riverbed.com/about/news-articles/pressreleases/riverbed-introduces-market-leading-wds-solutions-fordisaster-recovery-and-business-application-acceleration.html (last visited Aug. 8, 2014)), 4 pages.
Tseng, Josh, “When accelerating secure traffic is not secure” (available at http://www.riverbed.com/blogs/whenaccelerati.html?&isSearch=true&pageSize=3&page=2 (last visted Aug. 8, 2014)) 3 pages.
Riverbed, “The Riverbed Optimization System (RiOS) v4.0: A Technical Overview” (explaining “Data Security” through segmentation) (available at http://mediacms.riverbed.com/documents/TechOverview-Riverbed-RiOS_4_0.pdf (last visited Aug. 8, 2014)), pp. 1-18.
Riverbed, “Riverbed Awarded Patent on Core WDS Technology” (available at: http://www.riverbed.com/about/news-articles/pressreleases/riverbed-awarded-patent-on-core-wds-technology.html (last visited Aug. 8, 2014)), 2 pages.
Final Written Decision, Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00403, pp. 1-38.
Final Written Decision, Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00402, pp. 1-37.
“Notice of Entry of Judgement Accompanied by Opinion”, United States Court of Appeals for the Federal Circuit, Case: 15-2072, Oct. 24, 2017, 6 pages.
“Decision Granting Motion to Terminate”, Inter Partes Review Case No. IPR2014-00245, Feb. 7, 2018, 4 pages.
Related Publications (1)
Number Date Country
20200213185 A1 Jul 2020 US
Continuations (1)
Number Date Country
Parent 15919121 Mar 2018 US
Child 16811014 US