The present invention relates to methods of detecting psychotic illnesses, e.g., psychotic illnesses associated with serotonin receptor deficiencies), more particularly to methods of detecting psychotic disorders in a patient (e.g., human) by administering a particular antipsychotic medication and evaluating responsiveness of the patient.
Schizophrenia is a severe psychotic illness of unknown cause that affects 1% of the population worldwide. Currently, there is no diagnostic test for schizophrenia. Instead, the diagnosis is typically established through a psychiatric interview of the patient, who is evaluated against a set of established criteria of signs and symptoms. It can take many months to years to establish a diagnosis of schizophrenia and achieve an appropriate treatment regimen to attain resolution of the patient's symptoms. This process is particularly challenging in areas of limited access to specialists, a problem not only in third world countries and rural regions, but throughout the United States where there can be long waits to obtain an appointment with a psychiatrist.
The present invention features methods for detecting or diagnosing particular psychotic disorders (e.g., schizophrenia) and methods of distinguishing particular psychotic disorders (e.g., schizophrenia) from other causes of psychosis. The present invention also features detecting or diagnosing a psychotic disorder (such as but not limited to Bipolar I disorder), e.g., a psychotic disorder associated with deficiencies or alterations in serotonin receptors/receptor activity (e.g., deficiencies in serotonin 2A receptors/receptor activity and/or increases in serotonin 1A receptors/receptor activity). The present invention also features distinguishing a psychotic disorder (such as but not limited to Bipolar I disorder, schizophrenia) from other causes of psychosis. The present invention also features detecting resistance to sedative effects of particular drugs such as antipsychotic drugs.
In some embodiments, the method comprises administering a dose of an antipsychotic medication or a medication that binds to serotonin 2A receptors (or other appropriate medication) to an individual suspected of having schizophrenia (or other psychotic disorder, e.g., Bipolar I, etc.) and subjecting the individual to an evaluation adapted to determine the degree of sleepiness or sedation in response to the dose of the antipsychotic medication. The evaluation may comprise one or more of the following: a physical examination, a questionnaire, or any other appropriate approach to evaluating sleepiness or sedation. A high resistance to the sedative/sleepiness side effects that are typically caused by the antipsychotic medication may be considered indicative of a psychotic disorder, e.g., schizophrenia, bipolar I, etc., or indicative of a high probability of a psychotic disorder, e.g., schizophrenia, bipolar I, etc. Note that deficiencies in receptor activity (e.g., serotonin 2A receptor) may be caused by various states, e.g., a reduction in the number of receptors, dysfunctional receptors, etc. Increases in receptor activity (e.g., serotonin 1A receptor) may be caused by various states, e.g., an increase in the number of receptors, a change in the binding affinity of the receptor, hyperactive receptors, etc.
In some embodiments, the method comprises evaluating a biological sample (e.g., blood, saliva, or other appropriate biological sample) of the individual. For example, in some embodiments, the method comprises assessing peripheral levels of the serotonin 2A receptor. In some embodiments, the method comprises assessing levels of serotonin 1A receptor The results of the biological sample evaluation may be correlated with a diagnosis of a psychotic disorder, e.g., schizophrenia, bipolar I, etc., as appropriate.
Without wishing to limit the present invention to any theory or mechanism, it is believed that the methods of the present invention may help ascertain with a high degree of assuredness whether or not the individual has a psychotic disorder, e.g., schizophrenia, bipolar I, etc. In some embodiments, the methods of the present invention may be used to help ascertain whether or not the individual has a specific subtype of a psychotic disorder, e.g., subtype of schizophrenia (e.g., one characterized by decreased levels of brain serotonin 2A receptors).
The methods of the present invention may provide benefits, for example the methods may help (a) decrease the time to diagnosis, (b) identify a subtype of schizophrenia (schizophrenia is currently a broad diagnosis widely believed to encompass numerous biologically distinct illnesses), which may allow for the development of personalized treatments, (c) distinguish schizophrenia from other causes of psychosis; (d) provide a diagnostic tool that can be performed by a non-physician in areas with limited access to health care or specialists, and/or (e) improve research by helping to clarify diagnostic groups and provide a biological marker of the illness.
The present invention features methods for detecting or diagnosing psychotic disorders, e.g., psychotic disorders associated with deficiencies in serotonin 2A receptors/receptor activity (and/or increases in serotonin 1A receptors/receptor activity), e.g., schizophrenia, bipolar I disorder, etc. The present invention also features methods of distinguishing psychotic disorders, e.g., psychotic disorders associated with deficiencies in serotonin 2A receptors/receptor activity (and/or increases in serotonin 1A receptors/receptor activity) such as but not limited to schizophrenia, bipolar I disorder, etc., from other causes of psychosis. The present invention also features detecting resistance to sedative effects of particular drugs such as antipsychotic drugs.
Without wishing to limit the present invention to any theory or mechanism, the present invention may allow for distinguishing certain psychotic disorders (e.g., psychotic disorders associated with deficiencies in serotonin 2A receptors/receptor activity and/or increases in serotonin 1A receptors/receptor activity, e.g., schizophrenia, bipolar I disorder, etc.) from other causes of psychosis, e.g., psychiatric illnesses (such as but not limited to bipolar disorder I, major depression with psychotic features, delusional disorder, PTSD), medical illnesses (such as but not limited to delirium, toxicity of a drug, imbalance of electrolytes, hormones, other metabolic disturbances, infection, etc.), effects of drugs or alcohol, etc.
In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication or a medication that binds to serotonin 2A receptors (or other appropriate medication); and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. The evaluation may be adapted to determine a level of sedation resulting from the dose of the antipsychotic medication. In some embodiments, the level of sedation is within a range from a high level of sedation to zero level sedation. In some embodiments, the more the individual experiences sedation toward the high level of sedation then the less probability the individual has a particular psychotic disorder such as one associated with deficiencies in serotonin 2A receptors (and/or elevations in serotonin 1A receptors), e.g., schizophrenia, bipolar I disorder, etc. In some embodiments, the more the individual experiences sedation toward the zero level of sedation then the more the probability that the individual has a particular psychotic disorder such as one associated with deficiencies in serotonin 2A receptors (and/or elevations in serotonin 1A receptors), e.g., schizophrenia, bipolar I disorder, etc. In some embodiments, the antipsychotic medication is clozapine or a derivative of clozapine. In some embodiments, the antipsychotic medication is a second-generation antipsychotic. In some embodiments, the antipsychotic medication is a selective 5-HT2AR antagonist or a derivative of a selective 5-HT2AR antagonist. In some embodiments, the antipsychotic medication is a 5-HT2AR inverse agonist or a derivative of a 5-HT2AR inverse agonist. In some embodiments, the antipsychotic medication is a first generation antipsychotic. In some embodiments, the antipsychotic medication is a selective 5-HT2AR antagonist or a 5-HT2AR inverse agonist.
In some embodiments, the level of sedation may include completely sedated, significantly sedated, moderately sedated, not significantly sedated and completely alert. In some embodiments, if the individual is not completely sedated or significantly sedated, the patient has a likelihood of having a particular psychotic disorder such as one associated with deficiencies in serotonin 2A receptors, e.g., schizophrenia, bipolar I disorder, etc. The present invention is not limited to completely or significantly sedated. In some embodiments, the level of sedation is moderately sedated. In some embodiments, the level of sedation is “difficult to arouse.” Assessments may include eye opening in response to sound or light touch, withdrawing in response to light touch, withdrawing in response to pain, etc.
In some embodiments, the time point following administration of the medication is 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes, 70 minutes, 80 minutes, 90 minutes, 100 minutes, 110 minutes, 120 minutes, 130 minutes, 140 minutes, 150 minutes, 160 minutes 170 minutes, 180 minutes, from 5 to 10 minutes, from 10 to 30 minutes, from 15 to 60 minutes, from 5 to 120 minutes, from 10 to 180 minutes, or more than 180 minutes, e.g., 210 minutes, 240 minutes, 300 minutes, etc.
In some embodiments, the dose of the antipsychotic medication is effective for rendering an individual who does not have schizophrenia completely sedated or significantly sedated at the time point following administration of the antipsychotic medication.
In some embodiments, the evaluation comprises measurement of one or more of the following parameters: pulse, oxygen saturation, blood pressure, and respiratory rate. In some embodiments, the evaluation comprises subjecting the patient to a stimulus and measuring the result of the stimulus. In some embodiments, the stimulus comprises a sternal rub, nail bed pressure, or smelling salts. In some embodiments, if the individual is not aroused by a sternal rub, nail bed pressure, or smelling salts then he/she is completely sedated.
In some embodiments, the evaluation comprises administering a questionnaire to the patient. In some embodiments, the evaluation comprises determining whether the individual can keep his/her eyes open fora time period (e.g., 5 seconds, 10 seconds, 15 seconds, or 20 seconds, etc.). In some embodiments, the evaluation comprises using the Stanford Sleepiness Scale (SSS) or the psychomotor vigilance task (PVT), Epworth Sleepiness Scale (ESS), Chalder Fatigue Scale (CFM), and/or Fatigue Severity Scale (FSS), and/or the Pasero Opioid-Induced Sedation Scale (POSS) and/or the Glasgow Coma Scale (GCS).
The present invention features a method for detecting a deficiency in serotonin 2A receptor activity or elevations in serotonin 1A receptor in a patient displaying signs or symptoms of a psychotic disorder. The present invention also features a method for detecting a deficiency in serotonin 2A receptor activity in a patient displaying signs or symptoms of a psychotic disorder. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication, the evaluation is for determining a level of sedation resulting from the dose of the antipsychotic medication, the level of sedation being in a range of high level of sedation to zero level of sedation. In some embodiments, if the sedation is toward the high level of sedation then the patient does not have a deficiency in serotonin 2A receptor activity, or does not have an elevation in serotonin 1A receptor activity, whereas if the sedation is toward the zero level of sedation then the patient does have a deficiency in serotonin 2A receptor activity or an elevation in serotonin 1A receptor activity.
The present invention also features a method of detecting schizophrenia in a patient displaying signs or symptoms of schizophrenia. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication, the evaluation is for determining a level of sedation resulting from the dose of the antipsychotic medication, the level of sedation being in a range of high level of sedation to zero level of sedation. In some embodiments, if the level of sedation is toward the high level of sedation then the patient does not have schizophrenia, whereas if the level of sedation is toward the zero level of sedation then the individual has schizophrenia.
The present invention also features a method of treating schizophrenia, in some embodiments, the method comprises administering to a patient suspected of having schizophrenia a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication, the evaluation is for determining a level of sedation resulting from the dose of the antipsychotic medication, the level of sedation being in a range of high level of sedation to zero level of sedation (in some embodiments, if the level of sedation is toward the high level of sedation then schizophrenia is not detected in the patient, whereas if the level of sedation is toward the zero level of sedation then schizophrenia is detected in the patient); and administering an anti-schizophrenia medication to the patient, wherein the anti-schizophrenia medication is effective for reducing symptoms of schizophrenia.
The present invention also features a method of differentiating between a psychotic disorder associated with deficiencies in serotonin 2A receptor activity and a psychotic disorder not associated with deficiencies in serotonin 2A receptor activity. In some embodiments, the method comprises administering to a patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication, the evaluation is for determining a level of sedation resulting from the dose of the antipsychotic medication, the level of sedation being in a range of high level of sedation to zero level of sedation. In some embodiments, if the sedation is toward the high level of sedation then the patient does not have a psychotic disorder associated with a deficiency in serotonin 2A receptor activity, whereas if the sedation is toward the zero level of sedation then the patient does have a psychotic disorder associated with a deficiency in serotonin 2A receptor activity.
In some embodiments, the antipsychotic medication comprises clozapine, a derivative of clozapine, a second-generation antipsychotic, a selective 5-HT2AR antagonist, a derivative of a selective 5-HT2AR antagonist, a 5-HT2AR inverse agonist, a derivative of a 5-HT2AR inverse agonist, or a combination thereof. In some embodiments, the antipsychotic medication is a selective 5-HT2AR antagonist or a 5-HT2AR inverse agonist. In some embodiments, the time point following administration of the medication is 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, or 60 minutes, 70 minutes, 80 minutes, 90 minutes, 100 minutes, 110 minutes, 120 minutes, 130 minutes, 140 minutes, 150 minutes, 160 minutes 170 minutes, 180 minutes, from 5 to 10 minutes, from 10 to 30 minutes, from 15 to 60 minutes, from 5 to 120 minutes, from 10 to 180 minutes, or more than 180 minutes. In some embodiments, a deficiency in serotonin 2A receptor activity is associated with schizophrenia or bipolar I disorder. In some embodiments, the dose of the antipsychotic medication is effective for rendering an individual who does not have schizophrenia completely sedated or significantly sedated at the time point following administration of the antipsychotic medication. In some embodiments, the evaluation comprises measurement of one or more of the following parameters: pulse, oxygen saturation, blood pressure, and respiratory rate. In some embodiments, the evaluation comprises subjecting the patient to a stimulus and measuring the result of the stimulus (e.g., sternal rub, nail bed pressure, or smelling salts). In some embodiments, if the individual is not aroused by a sternal rub, nail bed pressure, or smelling salts then he/she has a high level of sedation. In some embodiments, the evaluation comprises administering a questionnaire to the patient. In some embodiments, the evaluation comprises determining whether the individual can keep his/her eyes open for a time period. In some embodiments, the time period is from 5 to 10 seconds, from 10 to 30 seconds, or from 10 to 60 seconds. In some embodiments, the evaluation comprises using Stanford Sleepiness Scale (SSS), Psychomotor Vigilance Task (PVT), Epworth Sleepiness Scale (ESS), Chalder Fatigue Scale (CFM), Fatigue Severity Scale (FSS), the Pasero Opioid-Induced Sedation Scale (POSS), or a combination thereof. In some embodiments, the evaluation comprises using a Bispectral Index. In some embodiments, the Bispectral Index is a scale of sedation from 0 to 100, wherein 100 is awake and 0 is a flatline EEG.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. In some embodiments, if the patient is asleep for at least 15 minutes after administration then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for less than 15 minutes, then the patient does have a psychotic disorder. In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. In some embodiments, if the patient is asleep for at least 30 minutes after administration then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for less than 30 minutes, then the patient does have a psychotic disorder. In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. In some embodiments, if the patient is asleep for at least 45 minutes after administration then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for less than 45 minutes, then the patient does have a psychotic disorder. In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. In some embodiments, if the patient is asleep for at least 60 minutes after administration then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for less than 60 minutes, then the patient does have a psychotic disorder. In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. In some embodiments, if the level of responsiveness is low, then the patient does not have a psychotic disorder. In some embodiments, if the level of responsiveness is high, then the patient does have a psychotic disorder. Low level of responsiveness may be, for example, failure to open eyes in response to verbal cues and/or light touch, diminished verbal response or slurring of speech, or diminished motor response to commands, touch, or pain (e.g., as measured by the Glasgow Coma Scale), the like, or a combination thereof. Responsiveness scales and/or sleepiness/sedation scales known to those of ordinary skill in the art (e.g., Glasgow Coma Scale, Stanford Sleepiness Scale, Chalder, etc.), or those to be developed in the future, may be used. In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. In some embodiments, if the patient is asleep at a particular time point following administration, then the patient does not have a psychotic disorder. In some embodiments, if the patient is awake at a particular time point following administration, then the patient does have a psychotic disorder. In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication. In some embodiments, if the patient sleeps for at least a particular duration of time during a time frame after administration, then the patient does not have a psychotic disorder. In some embodiments, if the patient sleeps less than the particular duration of time during the time frame after administration, then the patient does have a psychotic disorder. In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder. In some embodiments, the duration of time after administration is from 15 minutes to 30 minutes. In some embodiments, the duration of time after administration is from 30 minutes to 1 hour. In some embodiments, the duration of time after administration is from 1 to 2 hours. In some embodiments, the duration of time after administration is from 2 to 3 hours.
In some embodiments, the antipsychotic medication is a first generation antipsychotic medication. In some embodiments, the antipsychotic medication is a second generation antipsychotic medication. In some embodiments, the time point following administration of the medication is from 5 to 10 minutes, from 10 to 30 minutes, from 15 to 60 minutes, from 5 to 120 minutes, from 10 to 180 minutes, or more than 180 minutes. In some embodiments, if the patient is asleep for at least 1 hour after administration then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 2 hours after administration then the patient does not have a psychotic disorder.
In some embodiments, the methods herein further comprise assessments of dopamine receptor levels. For example, a method for detecting a psychotic disorder in a human patient may comprise administering to the patient a dose of an antipsychotic medication and evaluating levels of dopamine receptors.
The present invention also features a method for detecting altered serotonin receptor levels or activity in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication; and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication, the evaluation is for determining a level of sedation resulting from the dose of the antipsychotic medication; wherein if the level of sedation is a score of 6, 7 or X according to Stanford Sleepiness Scale (SSS), a score of 15 or greater according to Chalder Fatigue Scale (CFM), or a score of 3 or 4 according to Pasero Opioid-Induced Sedation Scale (POSS), a score of less than 15 on the Glasgow Coma Scale (GCS), or a combination thereof, then the patient does not have altered serotonin receptor levels or activity, whereas if the level of sedation is a score of 1, 2, 3, or 4 according to Stanford Sleepiness Scale (SSS), a score of 0-12 according to Chalder Fatigue Scale (CFM), a score of 1 or 2 according to Pasero Opioid-Induced Sedation Scale (POSS), or a combination thereof, then the patient does have altered serotonin receptor levels or activity; and administering an anti-schizophrenia medication to the patient if the patient has altered serotonin receptor levels or activity.
In some embodiments, altered serotonin receptor levels or activity is: a deficiency in serotonin 2A receptor activity, a deficiency in serotonin 2A receptor levels, an elevation in serotonin 1A receptor activity, or an elevation in serotonin 1A receptor levels. In some embodiments, a deficiency in serotonin 2A receptor activity is associated with schizophrenia or bipolar I disorder. In some embodiments, the antipsychotic medication is a first generation antipsychotic medication. In some embodiments, the antipsychotic medication is a second generation antipsychotic medication. In some embodiments, the time point following administration of the medication is from 5 to 10 minutes, from 10 to 30 minutes, from 15 to 60 minutes, from 5 to 120 minutes, from 10 to 180 minutes, or more than 180 minutes. In some embodiments, if the patient is asleep for at least 30 minutes after administration then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 1 hour after administration then the patient does not have a psychotic disorder.
The present invention also features a method for detecting a psychotic disorder in a human patient. In some embodiments, the method comprises administering to the patient a dose of an antipsychotic medication and subjecting the patient to an evaluation at a time point following administration of the dose of the antipsychotic medication.
In some embodiments, the evaluation is for determining a level of responsiveness. In some embodiments, the evaluation is for determining whether or not the patient is sleeping. In some embodiments, the evaluation is for determining how much the patient slept after administration of the drug (e.g., how much the patient slept within a time frame after administration of the drug).
In some embodiments, if the level of responsiveness is low, the patient does not have psychotic disorder. In some embodiments, if the patient is asleep at a particular time point following administration, the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 10 minutes after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 20 minutes after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 30 minutes after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 40 minutes after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 50 minutes after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 1 hour after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 90 minutes after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 2 hours after administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 10 minutes during a time frame following administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 20 minutes during a time frame following administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 30 minutes during a time frame following administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 40 minutes during a time frame following administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 50 minutes during a time frame following administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 1 hour during a time frame following administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 90 minutes during a time frame following administration of the drug, then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 2 hours during a time frame following administration of the drug, then the patient does not have a psychotic disorder.
In some embodiments, if the level of responsiveness is high, then the patient does have a psychotic disorder. In some embodiments, if the patient is awake at the time point following administration, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 10 minutes after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 20 minutes after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 30 minutes after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 40 minutes after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 50 minutes after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 1 hour after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 90 minutes after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 2 hours after administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 10 minutes during a time frame following administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 20 minutes during a time frame following administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 30 minutes during a time frame following administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 40 minutes during a time frame following administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 50 minutes during a time frame following administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 1 hour during a time frame following administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 90 minutes during a time frame following administration of the drug, then the patient does have a psychotic disorder. In some embodiments, if the patient is asleep for less than 2 hours during a time frame following administration of the drug, then the patient does have a psychotic disorder.
In some embodiments, the method further comprises administering an anti-schizophrenia medication to the patient if the patient has a psychotic disorder.
In some embodiments, the antipsychotic medication is a first generation antipsychotic medication. In some embodiments, the first generation antipsychotic medication is haloperidol, chlorpromazine, or other first generation antipsychotic medication, or combinations thereof.
In some embodiments, the antipsychotic medication is a selective 5-HT2AR antagonist. In some embodiments, the antipsychotic medication is a selective 5-HT2AR antagonist or a 5-HT2AR inverse agonist.
In some embodiments, the antipsychotic medication is a second generation antipsychotic medication. In some embodiments, the second-generation antipsychotic medication comprises a 5-HT2AR inverse agonist. In some embodiments, the second-generation antipsychotic medication is ziprasidone or olanzapine.
In some embodiments, the time point following administration of the medication is from 5 to 10 minutes, from 10 to 30 minutes, from 15 to 60 minutes, from 5 to 120 minutes, from 10 to 180 minutes, or more than 180 minutes. In some embodiments, if the patient is asleep for at least 1 hour after administration then the patient does not have a psychotic disorder. In some embodiments, if the patient is asleep for at least 2 hours after administration then the patient does not have a psychotic disorder.
Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one of ordinary skill in the art. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims.
The features and advantages of the present invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawings in which:
The present invention features methods for detecting or diagnosing psychotic disorders, e.g., psychotic disorders associated with deficiencies in serotonin 2A receptors/receptor activity (and/or increases in serotonin 1A receptors/receptor activity), e.g., schizophrenia, bipolar I disorder, etc. The present invention also features methods of distinguishing psychotic disorders, e.g., psychotic disorders associated with deficiencies in serotonin 2A receptors/receptor activity (and/or increases in serotonin 1A receptors/receptor activity) such as but not limited to schizophrenia, bipolar I disorder, etc., from other causes of psychosis. The present invention also features detecting resistance to sedative effects of particular drugs such as antipsychotic drugs.
As previously discussed, the methods may comprise administering a dose of an antipsychotic medication to an individual displaying signs or symptoms of a psychotic disorder associated with a deficiency in serotonin 2A receptors/receptor activity and/or increases in serotonin 1A receptors/receptor activity (e.g., schizophrenia, bipolar I disorder, etc.) and subjecting the individual to an evaluation adapted to determine the degree of sleepiness or sedation resulting from the dose of the antipsychotic medication. Without wishing to limit the present invention to any theory or mechanism, it is believed that the degree of sleepiness or sedation resulting from the dose of the antipsychotic medication may be able to be correlated with the presence of the psychotic disorder associated with a deficiency in serotonin 2A receptors/receptor activity and/or increases in serotonin 1A receptors/receptor activity (e.g., schizophrenia, bipolar I disorder, etc.). For example, a high resistance to the sedative/sleepiness side effects that are typically caused by the antipsychotic medication (e.g., lack of sedation) may be considered indicative of schizophrenia or indicative of a high probability of schizophrenia. Or, in some embodiments, a low resistance to the sedative/sleepiness side effects that are typically caused by the antipsychotic medication (e.g., complete sedation) may be considered indicative that the individual does not have schizophrenia (or bipolar I, etc.) or indicative of a high probability that the individual does not have schizophrenia (or bipolar I, etc.).
In some embodiments, the antipsychotic medication comprises: clozapine, an appropriate derivative of clozapine, a second-generation antipsychotic, a selective 5-HT2AR antagonist (e.g., M100907 (Volinanserin)), an appropriate derivative of the selective 5-HT2AR antagonist, a 5-HT2AR inverse agonist (e.g., pimavanserin (APC-103), a derivative thereof, ziprasidone, olanzapine, or the like. The present invention is not limited to the aforementioned medications.
In some embodiments, the evaluation comprises a physical examination (or a physical stimulation). In some embodiments, the evaluation comprises a questionnaire. The present invention is not limited to the aforementioned types of evaluations and may include any other appropriate types of evaluations or combinations of types of evaluations. A physical examination may include measuring pulse, respiratory rate, blood pressure, oxygen saturation, the like, or a combination thereof. In some embodiments, the physical examination comprises subjecting the patient to a stimulus and measuring the response to the stimulus, e.g., to determine arousability, responsiveness, alertness, etc. For example, in some embodiments, the patient is subjected to a sternal rub. In some embodiments, the patient is subjected to nail bed pressure. In some embodiments, the patient is subjected to smelling salts. In some embodiments, failure to arouse after a sternal rub is indicative of complete sedation (or significant sedation, etc.). In some embodiments, failure to arouse after nail bed pressure is indicative of complete sedation (or significant sedation, etc.). In some embodiments, failure to arouse after smelling salts is indicative of complete sedation (or significant sedation, etc.).
In some embodiments, the examination comprises asking the patient to open his/her eyes for a period of time (e.g., 5 seconds, 10 seconds, 15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 55 seconds, 60 seconds, more than 60 seconds, 0 to 5 seconds, 5 to 10 seconds, 5 to 15 seconds, 10 to 30 seconds, 10 to 60 seconds, the like, etc.). In some embodiments, failure to keep the eyes open for that period of time is indicative of complete sedation (or significant sedation, etc.).
In some embodiments, complete sedation (or significant sedation) is indicative of a lack of schizophrenia or indicative of a high probability of lack of the psychotic disorder associated with a deficiency in serotonin 2A receptors/receptor activity and/or increases in serotonin 1A receptors/receptor activity (e.g., schizophrenia, bipolar I disorder, etc.). In some embodiments, lack of complete sedation or lack of significant sedation (e.g., resistance to sedative effects of the medication) is indicative of the psychotic disorder associated with a deficiency in serotonin 2A receptors/receptor activity and/or increases in serotonin 1A receptors/receptor activity (e.g., schizophrenia, bipolar I disorder, etc.) or indicative of a high probability of the psychotic disorder associated with a deficiency in serotonin 2A receptors/receptor activity and/or increases in serotonin 1A receptors/receptor activity (e.g., schizophrenia, bipolar I disorder, etc.).
In some embodiments, the patient is evaluated using a questionnaire. In some embodiments, the questions are used to help determine sleepiness or sedation levels. In some embodiments, the time needed for the patient to respond to various questions is used to help determine sleepiness or sedation levels. In some embodiments, the overall level of attention of the patient is assessed to help determine sleepiness or sedation levels.
The present invention is not limited to the aforementioned means of measuring sleepiness or sedation. For example, in some embodiments, the Stanford Sleepiness Scale (SSS), the psychomotor vigilance task (PVT), the Epworth Sleepiness Scale (ESS), the Chalder Fatigue Scale (CFM), the Fatigue Severity Scale (FSS), the Pasero Opioid-Induced Sedation Scale (POSS), Pasero Opioid-Induced Sedation Scale (POSS), Glasgow Coma Scale (GCS), the like, or a combination thereof used to help assess sleepiness or sedation.
In some embodiments, the method comprises evaluating a biological sample (e.g., blood or other appropriate biological sample) of the individual. For example, in some embodiments, the method comprises assessing peripheral levels of the serotonin 2A receptor. In some embodiments, the method comprises assessing peripheral levels of the serotonin 1A receptor. The results of the biological sample evaluation may be correlated with a diagnosis of schizophrenia as appropriate.
In some embodiments, the method comprises subjecting the patient to a positron emission tomography (PET) scan, e.g., to evaluation levels of brain serotonin 2A receptor (5-HT2AR) and/or serotonin 1A receptor (5-HT1AR). In some embodiments, the method comprises subjecting the patient to an electroencephalogram (EEG) (e.g., waking and sleep, at baseline, following antipsychotic administration, etc.). Data from these tests may be used to help determine a diagnosis of schizophrenia.
The present invention also features a kit comprising the dose of the medication. In some embodiments, the kit further comprises a questionnaire. In some embodiments, the kit further comprises a set of instructions for evaluating the patient.
For reference,
In some embodiments, the evaluation for determining the level of sedation comprises using a Bispectral Index (derived from an EEG-related algorithm). For example, the Bispectral Index (BIS) is a scale of sedation from 0 to 100, wherein 100 is awake and 0 is a flatline EEG. In some embodiments, a high level of sedation is a BIS of 80 or less. In some embodiments, a high level of sedation is a BIS of 70 or less. In some embodiments, a high level of sedation is a BIS of 60 or less. In some embodiments, a high level of sedation is a BIS of 50 or less. In some embodiments, a low level of sedation (e.g., a level of sedation towards no sedation) is a BIS of 70 or more or 80 or more. In some embodiments, a low level of sedation is a BIS of 90 or more. Other sleepiness scales or methods for determining levels of sedation may be correlated with the BIS scale.
High levels and low levels of sedation are well known to one of ordinary skill in the art and recognized by presentation, e.g., a high level of sedation is that when a patient does not respond to verbal stimulus and/or physical stimulus or the patient is in a deep hypnotic state. A low level of sedation may be that when a patient is awake and can respond to verbal stimuli. The present invention is not limited to the aforementioned examples of sedation levels.
Example 1 describes an example of research used to help determine parameters for determining the level of sleepiness or sedation (or lack thereof) that is associated with schizophrenia or a lack of schizophrenia. EEG patterns in patients recently diagnosed with schizophrenia or schizophrenia-like disorders will be compared at baseline and after a typical dose of clozapine (or other antipsychotic medication). Subjects will undergo one to 5 hours of continuous videotaped EEG monitoring. Before and after drug administration, patients' somnolence will be rated using the Stanford Sleepiness Scale (SSS) and the Psychomotor Vigilance Task (PVT) (or other scale, e.g., ESS, CFM, FSS, POSS, etc.). Baseline and post-antipsychotic administration EEG and EMG recordings during both sleep and awake states will be read. Statistical analyses will be conducted to identify correlations between EEG response, scores on sedation assessments, and clinical diagnosis.
Example 2 describes an example of research used to help determine parameters for determining the level of sleepiness or sedation (or lack thereof) that is associated with schizophrenia or a lack of schizophrenia. EEG patterns in patients recently diagnosed with schizophrenia or schizophrenia-like disorders will be compared at baseline and after a typical dose of medication (e.g., ziprasidone, olanzapine, the like, combinations thereof, e.g., antipsychotics with receptor binding profiles designed to mimic the serotonin 2A receptor and dopamine D2 receptor binding profile of clozapine, etc.). Subjects will undergo 1 hour of continuous EEG monitoring (e.g., including continuous observation by at least one individual) before medication administration and 4 hours of continuous EEG monitoring (e.g., including continuous observation by at least one individual) after medication administration. Before and after drug administration, patients' somnolence or sedation may be rated using the a scale, e.g., the Stanford Sleepiness Scale (SSS), the Psychomotor Vigilance Task (PVT), the ESS, the CFM, the FSS, the POSS, the like, combinations thereof, etc. Baseline and post-medication recordings during both sleep and awake states will be read. Statistical analyses will be conducted to identify correlations between EEG response, scores on sedation assessments, and clinical diagnosis.
A 35-year-old male presents to the emergency department complaining of hallucinations. The attending physician requests a psychiatry consult. The psychiatrist orders a test according to the present invention: the patient is administered a dose of olanzapine at time zero; one hour following the administration of the medication, the nurse evaluates the patient. The evaluation comprises the following tests: (a) respiratory rate measurement; (b) oxygen saturation measurement; and (c) pulse measurement. Since the patient appears relatively alert, the evaluation also comprises an eye test wherein the patient is asked to keep his eyes open for 10 seconds. The patient's respiratory rate, oxygen saturation, and pulse are not significantly altered by the administration of the medication. The patient has no difficulty keeping his eyes open for more than 10 seconds. Based on the results of the evaluation, the psychiatrist diagnoses the patient with a high probability of having schizophrenia. The psychiatrist makes medication decisions based upon the results of this test.
A 27-year-old female presents to the emergency department complaining of disorganized speech and abnormal motor behavior. The attending physician requests a psychiatry consult. The psychiatrist orders a test according to the present invention: the patient is administered a dose of olanzapine at time zero; one hour following the administration of the medication, the nurse evaluates the patient. The evaluation comprises the following tests: (a) respiratory rate measurement; (b) oxygen saturation measurement; and (c) pulse measurement. Since the patient appears sedated, the evaluation also comprises a sternal rub and an eye test wherein the patient is asked to keep her eyes open for 10 seconds. Respiratory depression is observed, as is a decrease in pulse. The patient is barely aroused by a sternal rub. She is unable to keep her eyes open for more than 3 seconds. Based on the results of the evaluation, the psychiatrist diagnoses the patient with a high probability of not having schizophrenia.
Twenty patients enroll in a study to assess levels of sleepiness after taking certain antipsychotic drugs.
Two patients receive 20 mg ziprasidone, two patients receive 40 mg ziprasidone, and two patients receive 60 mg zipradisone. Two patients receive 2.5 mg olanzapine, two patients receive 5 mg olanzapine, two patients receive 7.5 mg olanzapine, and two patients receive 10 mg olanzapine. Six patients receive placebo.
The patients remain in the clinic for at least four hours while research assistants assess the level of sleepiness of the patients. A questionnaire is given every hour for four hours.
A 45-year-old female presents to the emergency department complaining of disorganized speech and abnormal motor behavior. The attending physician requests a psychiatry consult. The psychiatrist orders a test according to the present invention: the patient is administered a dose of olanzapine at time zero; one hour following the administration of the medication, and the patient is evaluated. One hour after administration of the drug, she is unable to keep her eyes open and falls asleep for 1 hour. Based on the results of the evaluation, the psychiatrist diagnoses the patient with a high probability of not having schizophrenia.
A 35-year-old female presents to the emergency department complaining of disorganized speech and abnormal motor behavior. The attending physician requests a psychiatry consult. The psychiatrist orders a test according to the present invention: the patient is administered a dose of a first generation antipsychotic at time zero; one hour following the administration of the medication the patient is evaluated. One hour after administration of the drug, she is unable to keep her eyes open and falls asleep for 30 minutes. Based on the results of the evaluation, the psychiatrist diagnoses the patient with a high probability of not having schizophrenia.
The disclosures of the following documents are incorporated in their entirety by reference herein: Williams et al., 2012, Neuropsychopharmacology 37:2285-2298; Gallitano-Mendel et al., 2008, Neuropsychopharmacology 33:1266-1275; McOmish et al, 2012, Neuropsychopharmacology 37:2747-2755; Maple et al., 2015, ACS Chem Neurosci (7):1137-42; Gronli et al., 2016, Sleep 39(12):1-11.
Various modifications of the invention, in addition to those described herein, will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. Each reference cited in the present application is incorporated herein by reference in its entirety.
Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Therefore, the scope of the invention is only to be limited by the following claims. Reference numbers recited in the claims are exemplary and for ease of review by the patent office only, and are not limiting in any way. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are representative only and the claims are not limited by the dimensions of the figures. In some embodiments, descriptions of the inventions described herein using the phrase “comprising” includes embodiments that could be described as “consisting of”, and as such the written description requirement for claiming one or more embodiments of the present invention using the phrase “consisting of” is met.
This application is a continuation-in-part, and claims benefit of U.S. patent application Ser. No. 16/067,735, filed Jul. 2, 2018, which is a 371 application of PCT/US17/12571 filed Jan. 6, 2017, which claims benefit of U.S. Provisional Application No. 62/276,040 filed Jan. 7, 2016, the specification(s) of which is/are incorporated herein in their entirety by reference.
This invention was made with government support under Grant No. R01 MH097803, awarded by National Institutes of Health. The government has certain rights in the invention
Number | Date | Country | |
---|---|---|---|
62276040 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16067735 | Jul 2018 | US |
Child | 17497517 | US |