Airborne weather radars are used to identify convective weather that generates turbulence that can be hazardous to aviation. The detection is typically based only on radar reflectivity of the weather that exists at a selected part of a storm. The degree of hazard is assumed to be related to this reflectivity. However, this is not always a valid assumption to make.
An assessment of whether a convective weather cell is a hazard is more properly made by an evaluation of the amount of vertical development of the cell. The greater the vertical extent and amount of precipitation maintained aloft, the greater is the vertical air velocity, which then produces turbulence that is hazardous to aviation. Therefore, to improve the assessment of the degree of hazard resulting from convective weather, there is a need to include the amount of vertical development of convection.
The present invention provides systems and methods for improving output of weather information. A weather radar system receives weather reflectivity values. A processing device stores the received weather reflectivity values into a three-dimensional buffer, calculates a sum of the reflectivity value stored in a column of cells within the three-dimensional buffer, and assigns a first hazard indication to the cells of the column when the result of the calculation is above a first threshold. A display device generates a weather display based on data stored in the three-dimensional buffer. The weather display includes a display icon associated with the hazard indication when a cell from the three-dimensional buffer has been selected for the weather display.
Preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings:
Radar relies on a transmission of a pulse of electromagnetic energy, referred to herein as a signal. The antenna 56 narrowly focuses the transmission of the signal pulse. Like the light from a flashlight, this narrow signal illuminates any objects in its path and illuminated objects reflect the electromagnetic energy back to the antenna.
Reflectivity data corresponds to that portion of a radar's signal reflected back to the radar by liquids (e.g., rain) and/or frozen droplets (e.g., hail, sleet, and/or snow) residing in a weather object, such as a cloud or storm, or residing in areas proximate to the cloud or storm generating the liquids and/or frozen droplets.
The radar controller 50 calculates the distance of the weather object relative to the antenna based upon the length of time the transmitted signal pulse takes in the transition from the antenna to the object and back to the antenna 56. The relationship between distance and time is linear as the velocity of the signal is constant, approximately the speed of light in a vacuum.
The present invention uses the system 30 to obtain the three-dimensional distribution of radar reflectivity of weather using an airborne radar, perform integrations of the reflectivity in vertical columns, and evaluate the integrations. The result provides a degree of turbulence hazard information to the aircraft. Because of the nature of radar detection of weather, the present invention also identifies areas above and below the analyzed column that might present a turbulence risk. A top of the convective storm might actually be above the detected top because the reflectivity might drop below what can be detected by the radar at that range. Because of this, one embodiment allows for some margin above and below the column to account for the possibility that the hazard extends somewhat beyond the detected column because of radar limitations.
The present invention uses a radar system capable of measurement of the three-dimensional distribution of weather reflectivity from which vertical integrations of reflectivity can be performed. An example radar system capable of measurement of the three-dimensional distribution of weather reflectivity is the IntuVue™ made by Honeywell International, Inc.
In one embodiment, an approximation of that integral is performed by
where Zi is the reflectivity of the i-th cell in the column, hi, is the altitude of the i-th cell in the column, N is the number of cells in the column in the 3D buffer, and Δh is the vertical size of the buffer cell. If a=1 and b=0 are used as the power values, then this is just a straight vertical integration of reflectivity (i.e., VIR). To compute vertically integrated liquid (VIL), which is a quantity that has been generated in the past using ground-based radar data, b=0, a= 4/7 are used, and the result is multiplied by a factor of 3.44e-6. This factor and the 4/7 exponent are taken from a power law relationship between weather reflectivity and liquid water content (LWC), which has units of kg/m3.
In another embodiment, a= 4/7, b=1 are used as the power values. This turns the result into something like a potential energy. Potential energy of a mass (m) lofted to a height (h) is given by PE=mgh, where g is the gravitational acceleration. So if the reflectivity is converted to LWC (which is a mass-like quantity), times an altitude, the result is proportional to the energy that the vertical motion has expended to loft the water up into the atmosphere. More energetic vertical motion is expected to generate more energetic turbulence.
At a decision block 88, the processor 42 determines whether the result of the action performed at the block 86 is above a first threshold. If the result is above the first threshold, a hazard icon in a first format is generated and displayed on the display device 44, see block 90. After block 90, the process 80 goes to a next column for analysis, see blocks 94, 86. If the result is not above the first threshold, the processor 42 determines whether the result is above a second threshold, see decision block 98. The actions after the decision block 98 are similar to those after the decision block 88, except a hazard icon in a second format is outputted if the second threshold is exceeded.
In one embodiment, the first and second formats indicate whether the hazard is a “moderate risk” (e.g., amber) or a “high risk” (e.g., magenta) hazard. Other hazard indications (color, geometric) may be used as well as more than two types of hazards.
In one embodiment, the three-dimensional buffer is replaced with a conventional buffer for storing values from various radar sweeps at a particular latitude/longitude location or just adding a value from a radar sweep at a particular latitude/longitude location to a previous summation of values at that location.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, the reflectivity values can be obtained from off-aircraft sources (e.g., other aircraft, ground weather systems, etc.) Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
5198819 | Susnjara | Mar 1993 | A |
5265024 | Crabill et al. | Nov 1993 | A |
5488375 | Michie | Jan 1996 | A |
5945926 | Ammar et al. | Aug 1999 | A |
6384830 | Baron et al. | May 2002 | B2 |
6563452 | Zheng et al. | May 2003 | B1 |
6865452 | Burdon | Mar 2005 | B2 |
6879280 | Bull et al. | Apr 2005 | B1 |
6882302 | Woodell et al. | Apr 2005 | B1 |
6917860 | Robinson et al. | Jul 2005 | B1 |
7081834 | Ruokangas et al. | Jul 2006 | B2 |
7109913 | Paramore et al. | Sep 2006 | B1 |
7205928 | Sweet | Apr 2007 | B1 |
7307576 | Koenigs | Dec 2007 | B1 |
7307577 | Kronfeld et al. | Dec 2007 | B1 |
7352317 | Finley et al. | Apr 2008 | B1 |
7411541 | Khatwa | Aug 2008 | B2 |
7467031 | King | Dec 2008 | B2 |
7471995 | Robinson | Dec 2008 | B1 |
7474250 | Makkapati et al. | Jan 2009 | B2 |
7486220 | Kronfeld et al. | Feb 2009 | B1 |
7528765 | Woodell et al. | May 2009 | B1 |
7656343 | Hagen et al. | Feb 2010 | B1 |
7705769 | Kelly et al. | Apr 2010 | B2 |
7714767 | Kronfeld et al. | May 2010 | B1 |
20060145912 | Makkapati et al. | Jul 2006 | A1 |
20070005249 | Dupree et al. | Jan 2007 | A1 |
20070236383 | Makkapati et al. | Oct 2007 | A1 |
20070285283 | Bitar et al. | Dec 2007 | A1 |
20080158048 | Ridenour et al. | Jul 2008 | A1 |
20080165051 | Khatwa | Jul 2008 | A1 |
20090177343 | Bunch et al. | Jul 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110148692 A1 | Jun 2011 | US |